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The signal-to-noise ratio (SNR) and heterodyne efficiency are investigated for coherent (heterodyne
detection) laser radar under the Fresnel approximation and general conditions. This generality includes
spatially random fields, refractive turbulence, monostatic and bistatic configurations, detector geometry,
and targets. For the first time to our knowledge, the effects of atmospheric refractive turbulence are
included by using the path-integral formulation. For general conditions the SNR can be expressed in
terms of the direct detection power and a heterodyne efficiency that can be estimated from the laser radar
signal. For weak refractive turbulence (small irradiance fluctuations at the target) and under the Markov
approximation, it is shown that the assumption of statistically independent paths is valid, even for the
monostatic configuration. In the limit of large path-integrated refractive turbulence the SNR can become
twice the statistically independent-path result. The effects of the main components of a coherent laser
radar are demonstrated by assuming untruncated Gaussians for the transmitter, receiver, and local
oscillator. The physical mechanisms that reduce heterodyne efficiency are identified by performing the
calculations in the receiver plane. The physical interpretations of these results are compared with those
obtained from calculations performed in the target plane.
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I. Introduction

Remote sensing by using laser radar or light detection
and ranging (lidar) systems is flourishing as the
optimum and sometimes unique technique for numer-
ous scientific, commercial, and military applications.
These applications include the profiling of atmo-
spheric aerosol concentrations; the profiling of at-
mospheric gases by using multiwavelength differen-
tial absorption lidar'" (DIAL); meteorological studies
and observations of the atmosphere including humid-
ity, clouds, and aerosols2; determination of target
range, velocity, and identity; target tracking; detec-
tion of dangerous low-altitude wind shear near air-
ports5 ; and the space-based global profiling of tropo-
spheric wind fields.6'7

Both incoherent (direct) and coherent (heterodyne)
detection laser radar measurements have been dem-
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onstrated. However, laser radar systems that operate
at wavelengths between 0.4 and 1.4 [um are poten-
tially dangerous to the retina of the human eye.
Incoherent laser radar systems, which usually use
photomultipliers in the visible wavelength region,
become insensitive at wavelengths that are >1 jIm,
where photocathode materials for photomultipliers
cease to be effective. Above 1 m other detector/
preamplifier combinations must be used that are
comparatively noisy, thereby reducing the sensitivity
of incoherent laser radar measurements. Coherent
laser radars have several orders of magnitude more
sensitivity in the infrared (IR) wavelength region. In
addition to sensitivity, heterodyne detection is re-
quired for certain laser radar measurements (e.g.,
wind and target velocity, velocity width, and velocity
spectrum).

Much work has been published on coherent laser
radar (CLR) theory. 35 During the 1960's and 1970's
much of the basic formulation of the CLR signal-to-
noise ratio (SNR) was developed by Thomson and
co-workers with NASA and NOAA support. Most of
this work resides in unpublished contract reports.36 37

The theory of CLR performance is required if one is to
understand the physics of the measurement process,
to assess the feasibility of proposed measurements
(e.g., through computer simulation), to optimize the
design of a system, and to devise new applications.
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Ideally the theory uses a minimum of assumptions,
clearly states the necessary assumptions and their
implications, and provides physical insight. Analytic
expressions are particularly desired for obtaining
understanding and for ease in performing computer
simulations. However, we were unable to find pub-
lished CLR theory and SNR equations that simulta-
neously met certain criteria that are necessary to
obtain the benefits listed above. Examples of this
include papers that (1) presented numerical results
instead of analytic solutions20 273234; (2) were not
applicable to the commonly used monostatic CLR
system 5 2229; (3) made simplifying assumptions at the
start concerning the transmitted field, the receiver
optics, the local oscillator (LO) field, or the target,
which reduced the generality of the results'5 222729;

(4) assumed far-field or near-field focused condi-
tions 10 1 5 24

,
25; and/or (5) neglected atmospheric refrac-

tive turbulence effects. 12,14,16,
2 3

,
2 9

,
3
3

5 The treatment of
near-field, nonfocused conditions and atmospheric
refractive turbulence effects is becoming more impor-
tant as laser radar systems employ shorter wave-
lengths.33 Books and review papers in the field1'4,8 3

9-4
8

deal primarily with direct detection, and their discus-
sions of coherent detection do not include our desired
theoretical development of an SNR equation. Pub-
lished comparisons of theoretical and experimental
CLR SNR show theoretical exceeding experimental
by 5-10 dB.49 2

The physics of coherent detection for deterministic
fields53 2 is well understood. The performance of
coherent detection for this case has been determined
with calculations of SNR and heterodyne efficiency.
The theoretical foundations of coherent detection
were established by Siegman0 and his antenna theo-
rem, which was derived under the Fraunhofer approx-
imation (far field). The derivation of CLR perfor-
mance under the Fresnel approximation (the near
and far fields) and the target plane formulation was
presented by Rye.'6 The performance of CLR systems
in the absence of refractive turbulence has been
investigated numerically232 34 to determine optimal
parameters. Arbitrary field distributions have been
analyzed theoretically with orthogonal Hermite poly-
nomial expansions.35 The effects of atmospheric refrac-
tive turbulence have been investigated by using many
approximations, none of which is valid in medium or
strong path-integrated refractive-turbulence condi-
tions.

Previous work has considered many CLR geome-
tries and targets. Many parameters have been defined
to describe CLR performance in various regimes and
under various approximations. Many field normaliza-
tions have been proposed to simplify the expressions.
The system-dependent contribution of the SNR for
uniform diffuse targets has been called optical sensi-
tivity by Zhao et al.3 3 We use the term coherent
responsivity and also add the term direct responsivity
for the analogous quantity for direct detection laser
radar. These two statistics provide a useful descrip-
tion of CLR performance for random transmitter and

LO fields, general detector characteristics, general
refractive-turbulence spectra (form and strength),
and general targets. The analysis is presented first by
using the physical fields and a general formulation
that is valid for spatially random fields, refractive
turbulence, arbitrary detectors, and general targets.
Then the most convenient normalized fields are used
to identify the most basic system-dependent contribu-
tion (coherent and direct responsivity) for the three
classes of detector: the large uniform detector, the
finite uniform detector, and the arbitrary detector.

We derive a general theory for the SNR of a
coherent detection laser radar based on previous
work, using the path-integral formulation (Fresnel
approximation), which is valid for any typical path-
integrated atmospheric refractive turbulence. The
general theory and definitions of useful performance
parameters are presented in Section II. This includes
a heterodyne efficiency for general conditions and
targets that can be estimated from the laser radar
signal. The leading order effects of refractive turbu-
lence are discussed in Section III. Analytic expres-
sions are presented in Section IV for the case of
untruncated Gaussians for the transmitted field, LO
field, and transmitter/receiver optics. The physical
interpretations of the receiver plane and target plane
calculations are also presented. Comparisons with
previous work are contained in Section V, and calcula-
tions are presented in Section VI. Conclusions and
recommendations follow in Section VII.

Although we present analytical results for only the
leading order effects of atmospheric refractive turbu-
lence, we provide the tools to analyze laser radar with
general refractive turbulence conditions and a gen-
eral transmitter, receiver, and detector. All results
are presented with units explicitly specified to facili-
tate calculations for real systems. The many expres-
sions for laser radar performance are essential for
understanding CLR systems, especially when atmo-
spheric refractive turbulence is important.

11. Theory

A. Detector Plane

Coherent detection laser radar provides optimal detec-
tion sensitivity and Doppler information for wind and
other target velocity measurements. The perfor-
mance of coherent detection has been investigated for
ideal conditions, i.e., deterministic beams and shot-
noise-limited detectors." 2 Two important measures
of CLR performance are the SNR and heterodyne
efficiency. We derive the CLR SNR and the hetero-
dyne efficiency for a general CLR system and general
targets under the Fresnel approximation, using the
path-integral formulation.6 s70 This theoretical foun-
dation allows a clear extension to both medium and
strong path-integrated atmospheric refractive-turbu-
lence conditions.

The geometry for a CLR system is shown in Fig. 1.
The optical scalar field 4T(u, z, t)[(W m-2) 2] of the
transmitted laser pulse in a homogeneous medium at
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given by

PD(w, L, t) = Es(w, L, t)exp[i(kL - (ot + Os)]

+ ELO(w, L, t)exp[i(kL - )Lot)], (3)

where Es(w, L, t) is the reduced backscattered field
from the target in the detector plane, ELO(w, L, t) is
the reduced LO field in the detector plane (which may
have stationary random fluctuations), LO is the
angular frequency of the LO, and O (rad) is the
random phase of the backscattered field compared
with the LO field. The signal current I(t) (A) for an
ideal linear detector (e.g., photomultiplier, photo-
diode) is

(4)

Fig. 1. Geometry for the coherent detection laser radar system.
An actual system has an overlap of the transmitted and back
propagated local oscillator beams at the target.

transverse coordinate u (m) and time t (s) is

I'T(U, Z, t) = ET(u, z, t)exp(ikz - it), (1)

where i = +/4 k = 2 r/X (rad m') is the wave
number of the field, (m) is the wavelength of the
field in a homogeneous medium, = 2rrv (rad s-1) is
the angular frequency, v (Hz) is the optical frequency,
and ET(U, , t)[(W m 2

)
1 2

] is the reduced scalar field.
The scalar fields are normalized so that in the absence
of extinction

E | 'T(U, Z, t) du = |ET(u, Z, t) du PT(t - z/c), (2)

where IE I denotes the absolute value of E, PT(t) (W) is
the transmitted pulse power as a function of time,
c (m s-) is the speed of light in a homogeneous
atmosphere, and du denotes two-dimensional (2-D)
integration over the plane defined by constant z. It is
assumed that the pulse profile varies slowly compared
with the period of the optical field 1/v. The total
backscattered field ti 5(v, z, t) is collected by a receiver
consisting of an aperture and an effective lens with a
dimensionless response function WR(v), where v (m)
is the transverse coordinate at the receiver plane. The
received field is then mixed with a LO field on the
surface of a detector at a transverse coordinate w (m)
and distance L (m) from the receiver plane. (A
positive L implies a negative z.) The polarization of
the LO field is assumed to match that of the backscat-
tered field. (In practice the LO polarization is usually
chosen by assuming a nondepolarizing target and a
negligible unintentional effect on polarization by the
CLR.) The field incident on the detector %(w, L, t) is

where TQ(W) (electrons/photon) is the detector quan-
tum efficiency function on the detector surface, GD is
the dimensionless amplifier gain, e = 1.602 x 10-19
(C/electron) is the electronic charge, h =6.626 x
10-34 (Js) is Planck's constant, and fD denotes integra-
tion over the detector surface. Substituting Eq. (3)
into Eq. (4) produces

1(t) = IdC(t) + 1(t) + i(t), (5)

where

Id(t)G= h 'qQ(w)ELQ(wLt) 2dw= Ge PLODId()-hv fD hv jw=PO

is the direct current (dc) (A) caused by the LO,

IsG(t)e= fD 'rQ(w) IEs(w, L, t) 2dw= hD PD(t)hv D. hv

(6)

(7)

is the direct detection signal current (A) from the
backscattered field,

is(t)

2GDe 
= - Re rQ(w)Es(w, L, t)ELO*(w, L, t)exp(iAwt + i0s)dwhv fD

(8)

is the intermediate-frequency (i.f.) signal current (A)
at frequency Aw = WLO - O << w, Re denotes the real
part,

PLOD(t) =rD TQ(W) IELo(w, L, t) I2 dw (9)

is the effective LO power (W) measured by the
detector, and

PD(t) = fD Q(w) I Es(w, L, t) I2dw (10)

is the effective direct detection irradiance power (W)
measured by the detector. The three components of
the signal current are shown in Fig. 2 as a depiction of
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Fig. 2. Depiction of coherent detection signal and power for a
Gaussian pulse incident on a rigid hard target: (a) Signal current
with no noise and normalized by the average dc (IdC). The average

backscattered signal current (direct detection current) (15(t)) is
indlicated by (----). The i.f. signal is the oscillating component. (b)
Intermediate frequency power with no noise (the square of the i.f.
signal). The average laser radar power (i8

2
(t)) is indicated by

(----). (c) Same as (a) but with noise. (d) Same as (b) but with

noise. The SNR is 20.0 at time 0.5.

typical data38 7' from a CLR transmitting a Gaussian
pulse and reflected from a rigid target. For typical
CLR systems the LO power is much larger than the
direct detection power. The i.f. current i(t) is ob-
tained by passing the total signal through a bandpass
filter to remove the dc and direct detection compo-
nents and unnecessary noise. The i.f. signal current is
converted to power with a squaring circuit (see Fig. 2)
and a low-pass filter with bandwidth B (Hz). The
average of this CLR power is (see Appendix A)

(i8
2
(t)) = 2(h-) fD f, 'qQ(WI)'IQ(w 2)Ms(w1, w 2, L, t)

X MLO*(w,, W, L)dwldw, (11)

where ( denotes the ensemble average (or time
average for an ergodic process),

Ms(w, w2, L, t) = (Es(w1, L, t)Es*(w 2 , L, t)) (12)

is the mutual coherence function (W m 2) of the total
backscattered field in the detector plane z = L,
MLO(w,, w2, L) is the mutual coherence function of
the LO field in the detector plane, which is indepen-
dent of the time t since the LO field is stationary.
Here we have assumed that the LO field is statisti-
cally independent of the backscattered field. In prac-
tice the LO field is usually deterministic, and the
random fluctuations of the CLR power are deter-
mined from the statistics of the backscattered field.

If the noise is dominated by the LO shot noise72 73

(an ideal photomultiplier detector or an ideal unbi-
ased photodiode detector), the average noise power
(A2) caused by the Poisson statistics of the detection
process is

(iN2) = 2GDeB(IdC), (13)

where (IdC) is the average of the dc signal current, Eq.
(6), and is also independent of time t since the LO field
is stationary. (We assume a photovoltaic detector.
Note that a photoconductive detector has a factor of 2
more noise.8 7 2) The dimensionless CLR SNR is de-
fined as (see Fig. 2)

SNRQt) (iN') hvB(PWD) JD nqQ(wj)9Q(w 2)Ms(w, w 2, L, t)

x MLO*(w1 , w2, L)dw1 dw,, (14)

where (PLOD) is the average of the effective LO power
measured by the detector [see Eq. (9)]. The average
i.f. power (is 2(t)) can be obtained from the following
expressions for SNR by multiplying the SNR by the
average noise power (iN2).

Another useful measure of CLR performance is the
dimensionless heterodyne efficiency 'H, which mea-
sures the loss in coherent power when the received
field and the LO field are not perfectly matched. For
random fields heterodyne efficiency is defined in an
analogous manner to the case of deterministic
fields, 

24
,
29

,5662 i.e.,

- (i t))

f fD 'Q(Wl)TQ(W 2)MS(Wl, w 2, L, t)MLo*(w, w2, L)dwdw 2

(PI(t)) (POD)

(15)

The heterodyne efficiency has a maximum value of
unity when Es(w, L, t) ELO(w, L). [To see this use
the Schwartz inequality, Eq. (9), Eq. (10), and the
definition of the mutual coherence function, Eq. (12),
in Eq. (15).] The heterodyne efficiency in Eq. (15) can
be estimated from the detector signal by using the
average CLR power (iS

2
(t)) and the ensemble average

of the detector current

(W(t)) = (IdC) + (I() (16)

provided the direct detection signal from the backscat-
tered field I(t) is large enough to be determined
accurately. The average of the direct detection signal
(Is(t)) can be obtained by subtracting the average dc
IjdC) [(I(t)) when there is no backscattered signal] from

the average signal current (I(t)) (see Fig. 2), if the i.f.
signal current i8 (t) has a random phase from pulse to
pulse or over the observation time. Using a calibra-
tion target with high backscatter increases the direct
detection signal Is(t) compared with the dc signal Idc

from the LO. The ability to estimate heterodyne
efficiency for general conditions provides a useful
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measure of the alignment of the backscattered and
LO fields on the detector, which is critical to the
performance of CLR.

Using Eqs. (14) and (15), we can express the CLR
SNR in terms of the heterodyne efficiency as

SNR(t) =D ( H(t). (17)SN~) hvB

The SNR depends on two physical mechanisms: (1)
the average direct detection power (PD(t)) and (2) the
heterodyne efficiency NH, in addition to the wave-
length and detection bandwidth B. Both mecha-
nisms are required to evaluate system performance.

B. Receiver Plane

The propagation of the backscattered field through
the receiver complicates CLR calculations. It is more
convenient to express the field on the detector in
terms of the backscattered field ES(v, 0, t) incident on
the receiver6 8 "954 defined by the plane z = 0. The
backscattered field after passing through the effective
receiver optics (e.g., lens) is expressed in terms of the
dimensionless function WR(V) by

Es(v, 0-, t) = Es(v, 0, t)WR(v), (18)

where z = 0- defines the plane of an idealized
infinitesimally thin receiver aperture. If the Fresnel
diffraction approximation is valid, the field on the
detector is related to Es(v, 0-, t) by

Es(w, L, t) = fEs(v, 0-, t)Gf(w; v, L)dv, (19)

where

Gf(w; v, L) = 2rriL e2L(w v)2] (20)

is the free-space Green's function (m-'). The average
of the laser radar power [Eq. (11)] can then be
expressed in terms of the fields in the receiver plane,
z = 0, by substituting Eqs. (12), (18), and (19) into Eq.
(11), i.e.,

(i8
2
(t))

2 [-el1 - fxMs(v
1

, V
2

0, t)MPLo(Vl, v2 , 0)dvldv2, (21)

where

EBPLO(V, 0) = WR(V) ELO*(w, O)Y[(v - w)k/L]

X expFM (v' - w2)}dw (22)

is the field of the reciprocal receiver 2 or the backprop-
agated LO (BPLO) field at the target side of the
receiver aperture originating from the detector sur-

face, v2 = v v, w2= w w,

1
Y(K) = ()2 f1 qQ(w)exp(-iK w)dw (23)

is the 2-D Fourier transform (m2) of the detector
quantum efficiency function iQ(W), K(rad m'1) is the
2-D wave vector, ELO(v, 0) is the LO field at the
receiver plane z = 0, M8(Vl, v", 0, t) (W m-2) is the
mutual coherence function [see Eq. (12)] of the
backscattered field incident on the receiver, and
MBPLO(V1, V2, 0) is the mutual coherence function of
EBPLO(V, 0). This representation of the BPLO field
defines the receiver of a general CLR including gen-
eral detector quantum efficiency.

The CLR SNR can be expressed in terms of the
backscattered field incident on the receiver and the
BPLO field, i.e.,

SNR(t)

hvB(PL) .x ' l. X v2, 0, t)MPLo(vl, v2 , 0)dvlv,. (24)

This expression is the same as in Eq. (14), except that
the calculations are performed in the receiver plane
instead of in the detector plane. This eliminates the
complexity of propagating the random fields through
the receiver. The calculation of the CLR performance
in the detector plane provides useful insight.34 The
SNR, the average direct detection power (PD(t)), and
the heterodyne efficiency NqH all depend on the CLR
components and on the mutual coherence functions
of the backscattered and BPLO fields at the plane z =
0.

C. Target Plane

The backscattered field at the receiver depends on the
transmitted field, the intervening atmosphere, and
the nature of the scattering target. The transmitted
field incident on a rigid target at transverse coordi-
nate p (m) and range R (m) in the absence of
extinction is

ET(p, R, t) = ET(u, 0, t - R/c)G(p; u, R)du, (25)

where G(p; u, R) (m-') is the Green's function for
wave propagation through a turbulent atmosphere
with no extinction. We include random fluctuations of
the transmitted fields in both space and time over the
observation time. This permits analysis of any time-
dependent spatial variations of the transmitted field
within the pulse. If the transmitted field experiences
narrow angular displacement caused by refractive
turbulence (the paraxial or Fresnel diffraction approx-
imation), the Green's function is expressed as a
Feynman path integral.6 '0 If there is no refractive
turbulence, the Green's function is the free-space
Green's function, i.e., G(p; u, R) = Gf(p; u, R) [see
Eq. (20)].

The transmitted field ET(U, 0, t) [(W m-2)"12] at the
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exit of the transmitter aperture is given by

ET(u, 0, t) = EL(u, 0, t)WT(u), (26)

where EL(u, z, t) [(W m-2 )"2] is the field of the laser,
and WT(u) is the dimensionless response function of
the transmitter optics (e.g., lens). All the physics of a
laser radar transmitter are described by the effective
transmitter field ET(U, 0, t). However, the optimal
performance of monostatic CLR is referenced to the
laser power and requires knowledge of both the laser
source field EL(u, z, t) and the transmitter response
function WT(u).

The performance of CLR depends on the interac-
tion of the transmitted field with the target. We
assume that the backscattered field at the target
Es(p, R, t) can be expressed as48

Es(p, R, t) = f. ET(q, R, t)V(q, p)dq, (27)

where V(q, p) (m-2 sr"'/ 2 ) is the local reflection coeffi-
cient of the target. This representation of a hard
target allows the special cases of the point scatterer,
the dielectric and conductive surface, the diffuse
target, and the retroreflector (corner cube). The
backscattered field at the receiver in the absence of
extinction becomes

ES(v, 0, t) = fl f. ET(q, R, t - R/c)V(q, p)G(p; v, R)dqdp

(28)

on application of the reciprocity theorem for the
Green's function,74 G(v; p, R) = G(p; v, R). If the
scattering mechanism of the target is statistically
independent of the transmitted field, the mutual
coherence function of the total backscattered field in
the receiver plane including extinction, and, with the
definition of the mutual coherence function, Eqs. (12)
and (28), is given by

Ms(Vi, V2 , 0, t) = [K(R)]2 (Es(vi, 0, t)ES*(V2 0, t))

= [K(R)]2 f r ff B(q,,q 2,Pl,P2)

x (ET(q,, R, t - R/c)ET*(q2, R, t - Ric)

x G(p,; vi, R)G*(p 2 ; v2, R))dqldq 2 dpdp 2 , _

where

B(q, q2, PI, P2) = (V(qI, PI)V*( 4, P2))

is the target scattering function (m-4 sr-') and

K(R) = exp[ _fR(z)dzj

is the dimensionless one-way irradiance extinctio:
wavelength , and a(z) (m-') is the linear extincl
coefficient along the propagation path. We neg
any changes in a(z) between transmit and rec(

paths. When Eq. (25) is substituted into Eq. (28),

MS (VI, V2, O. t)

[K(R)]2 f r r f B(q1 , q2, P P2)

X MT(UI, U2, 0, t - 2R /c)(G(q,; u,, R )G* (q2; U2 , R )G(p,; vI, R)

x G* (P
2

; v 2, R)) dqldq2 dpldp2 duldu2 , (32)

where MT(ul, U2, Z, t) is the mutual coherence func-
tion of the transmitted field and we have assumed
that the transmitted field in the z = 0 plane is
statistically independent of the random medium. In
practice the transmitted field is deterministic at the
transmitter lens, and

MT(U1 , U2, 0, t) = ET(uI, 0, t)ET* (u2 , 0, t) (33)

However, for partially coherent sources and many
unstable-resonator high-powered lasers, the mutual
coherence of the transmitter field is required for
calculating the SNR and heterodyne efficiency.

The average CLR power (is2(t)), SNR, and hetero-
dyne efficiency -qH depend on a special case of the
general fourth moment of waves propagating in ran-
dom media68 (G(q; ul, R )G* (q 2 ; U 2 , R )G(pl; v,
R)G*(p 2 ; v2, R)) [see Eqs. (21) and (32) and on the
target-scattering function B (qj, q2 , pl, p2). Using Eq.
(32) for the mutual coherence of the backscattered
field in the expression for the SNR [Eq. (24)] results in

SNR(t)

(R/ f . . j . . j. .B (q1, q2PI, P2)
X MT(Ul U21, 0, t - 2R cC)MBPLo(vl, v2, 0)(G(q,; ul, R)

x G*(q2; u2, R)G(p,; v,, R)G* (P2 ; v 2, R))

x dqldq 2 dpldp 2 duldu2 dvldv2 , (34)

where we have assumed that the transmitted field
ET(U, 0, t), reciprocal receiver field EBPLO (v, 0), and
the random medium contribution G(p; u, R) are all
statistically independent.

The calculation of SNR or qH requires an eightfold
integration. The order of integration is arbitrary.
Performing the v integrals last results in the receiver
plane calculation, Eq. (24). Performing the q and p
integrals of Eq. (34) last and using Eq. (25) result in
the target plane calculation

(30) SNR(t) = [K( ) r . fr f B (qI, q2, PI, P2)

X (ET(q, R, t - R/C)ET*(q2 , R, t - Ric)

X EBPLO (pi, R)EBPLO*(P2, R ))dqldq2dpldp2
(31)

or, equivalently,

(35)

SNR(t) = hK(|)o2 ( f f V(qI, Pi)

x E(ql, R, t - R /)EBPLO(Pl, R)dqldpl |2) (36)
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(The latter representation is more compact but does
not permit ready evaluation since it is not expressed
in terms of the basic statistics.) This is the essence of
the target plane formulation presented by Rye'8 ; the
calculations of CLR power can be performed in the
target plane by backpropagating the effective LO field
to that plane.

D. Targets

1. Point Scatterer
For a point scatterer4 8 (simple glint)

V(q,, PI) = Xo8
1s 2 exp(i0s)8(q - p)(p -p), (37)

backscattered field at the receiver is then

Ms(v1, v2, 0, t) = [K(R)]2 f fff r(pI)r* (P2)

X exp[2ikOp (Pi - p2 )]MT(ul, U2 , 0, t - 2R/c)

x (G(p,; u,, R )G* (P2; U2 , R)

x G(p,; vi, R )G* (P2; v2, R ))dpldp2duldu2 ,

(44)

and the SNR is given by

SNR(t) = hB(P)J f: J r(pl)r* (p2)exp[2ik0p(p, - P2)]

x (ET(P, R, t - R Ic)ET* (P2, R, t - R /C)

B (ql, q2, Pi, P2)

=X2 rS(pi - P)P2 - p)B(q, - p)b(q2 - p), (38)

where p (m) is the location of the point scatterer,
Os (rad) is the phase of the backscattered field, as
(M2 sr-') is the scattering cross section of the point
scatterer, and 8(p) (m-2) is the 2-D vector 6 function.
The mutual coherence function of the backscattered
field in the receiver plane is

MS(V1 , v2, 0, t) = X2oS[K(R)]2 f: M( U2, 0,t - 2R/C)

x (G(p; U1, R )G* (p; u 2, R )G(p; v1, R )G* (p; v2, R))duldu2, (39)

where we have assumed that the transmitted field
and refractive turbulence are statistically indepen-
dent.

The SNR in the target plane representation is given
by

SNR(pt) = hvB(PR) (JT(p,R,t - 2R/c)JBpLo(pR)), (40)

where

JT(P, R, t) = ET(p, R, t)12, JBPLO(P, R) = IEBPLO(p, R)12 (41)

x EBPLO(Pl, R )EBPLO* (P2, R))dpldp2 (45)

in the target plane representation where the fields at
the target are calculated in the absence of extinction.

3. Diffuse-Scattering Target
For a diffuse-scattering target the reflection coeffi-
cient V(q, p) is random and48

B (q,, q2, PI, P2) = X
2

p(p1)8(p, - P2)8(q - P)(c - P2), (46)

where p(p) (sr-') is the scattering coefficient at trans-
verse coordinate p. The mutual coherence function of
the backscattered field in the receiver plane is

MS(VI, 2, 0, t) = 2[K(R)]2 r- r r. P (P)

X MT(U1 , U2, 0, t - 2R/c)

X (G(p; U1, R)G* (p; U2 , R)G(p; v1 , R)

X G* (p; V
2

, R))duldu2dp- (47)

The SNR in the target plane representation is

SNR(t) = x2
[K(R)]

2
f p(p)(JT(p, R, t - 2R c)JBpLo(P, R))dp

hvB(PLODI-(

(48)

are the irradiances (W m-2) of the transmitted f
and the BPLO field at range R in the absencE
extinction [see Eq. (25)].

2. Plane Surface
For a plane deterministic surface (e.g., mirror) wl
normal makes an angle O, with respect to the transi
ter axis,

V(q, p) = r(p)B(q - p)exp(2ikOp P),

B (q,, q2P, P2)

= r(pi)r* (p2)exp[2ikOp (PI - P2)]8(q, - P1)B(q2 - P2),

where r(p) (sr"112) is the complex amplitude rel
tivity of the surface. The mutual coherence of

(see Fig. 1 of Ref. 18).
For an infinite uniform diffuse-scattering target

p(p) = p, the average backscattered irradiance in the
receiver plane in the absence of turbulence becomes
[substitute Eq. (20) into Eq. (47) and integrate]

Ms(v, v, 0, t) = P2 [K(R)]
2

(PT(t - 2R/c)).
R

2

4. Retroreflector

(42) For a retroreflector (corner cube)48

V(q, p) = r(p)8(q + p),

(49)

(50)

B(q,, q2, Pi, P2) = r(p,)r*(p2)(q, + P1 )8(q2 + P2), (51)

where r(p) (sr"112) is the complex amplitude reflec-
tivity of the surface. The mutual coherence of the

20 December 1991 / Vol. 30, No. 36 / APPLIED OPTICS 5331



backscattered field at the receiver is then

MS(v1 , v 2 , 0, t) = [K(R)]2 f ff f r(pI)r*(P 2)

X M,(u1 , u2, 0, t - 2R/c)

x (G(-p,; u, R )G* (-P2; U2, R )G(p,; V, R )

x G* (P2; V2 , R ))dpdp 2 duldu2, (52)

the SNR is given by

$NR(t) = h(R)2 r(pI)r*(P2)

X (ET(-p, R t - R C )ET* (-P2, R t - R c)

X EBPLO(P1 , R)EBPLO*(P2 , R))dpdP2 (53)

in the target plane representation, and the fields at
the target are calculated in the absence of extinction.

5. Distributed Aerosol Target

The receiver plane calculation of SNR, H, and re-
ceived CLR power (iS2 (t)) requires the mutual coher-
ence function of the backscattered field incident on
the receiver. For natural aerosol targets, the phase of
the backscattered field at each aerosol particle is
random, and the mutual coherence function of the
total backscattered field is the addition of the mutual
coherence functions from each aerosol particle. The
mutual coherence function [see Eq. (12)] of the
backscattered field at the receiver because of a single
aerosol particle is the same as that for a point
scatterer [see Eq. (39)]. The mutual coherence func-
tion of the total backscattered field at the receiver is
obtained by integrating Eq. (39) over all the scatter-
fng aerosols (i.e., over p, R, and us),

MS(V1, V2, 0, t) = A2 f r f f f3(p, R)[K(R)]2

X MT(U1 , U2, 0, t - 2R/c)

x (G(p; u,, R)G* (p; u2 , R )G(p; vI, R)

x G* (p; v2, R ))duAdu2 dpdR, (54)

where

13(PR) OsN(s;p, R)das (55)

is the atmospheric aerosol backscatter coefficient
(m-' sr-') and N(cr; p, R) (m-5 sr) is the number
density of aerosols per unit volume per unit as at
location (p, R). For confined laser beams and typical
atmospheric conditions, f3(p, R) and N(us; p, R) may
be assumed to be functions of range only. Then the
average backscattered irradiance in the receiver plane
in the absence of refractive turbulence becomes

Note that Eq. (54) has almost the same form as Eq.
(47) for a diffuse hard target. All the results for
aerosol targets can be converted to diffuse hard target
results by replacing f3(p, R) with p(p) and removing
the integration over R. Since the aerosol target
results are identical to the diffuse hard target results,
a diffuse hard target with a known p can be used to
calibrate a CLR system for aerosol backscatter mea-
surements.5-77 In general the calibration measure-
ments must be performed at all ranges of interest.
However, if the system geometry is understood, a
theoretical calibration curve can be calculated and
compared with calibration measurements made at
one or more suitable ranges.76

The target plane calculation of the SNR is obtained
by performing the integration over the target last
[substitute Eq. (54) into Eq. 24) and rearrange the
integration]. Then

SNR(t) hvB(PD) fo (p, R)[K(R)]
2

x (JT(p, R, t-R /c)JBPLO(p, R))dpdR, (57)

which would be compared with Eq. (48), the diffuse
target case.

Note that Eqs. (40), (45), (48), and (57) are symmet-
ric in ET (p, R) and EBPLO (p, R) and are also symmet-
ric in ET (U. 0) and EBPLO (v, 0). Laser radar power, the
SNR, and heterodyne efficiency i9H are unchanged
with an interchange of ET(U, 0) and EBPLO (V, 0) for a
point scatterer, diffuse target, aerosol target, and
plane surface. This is not true for the case of a
retroreflector target [see Eq. (53)].

E. System Performance: Infinite Uniform Detector

It is convenient to define the system performance by
using the most basic system components. This con-
cept was applied to the case of infinite aerosol targets
in free space for deterministic fields by Zhao et al.'3

We apply this concept for general conditions and
general targets. The formulation depends on the
three detector geometries: a large uniform detector, a
finite uniform detector, and a nonuniform detector.
We present explicit results for the first case since this
geometry is common and produces familiar expres-
sions. The extension to the last two cases is obtained
by appropriate substitutions.

The basic components of system performance are
extracted by convenient field normalization. Some
authors normalize the scalar field so that

(58a)2 r IET(W) | dx = PT,

where e0 (F m-') is the permittivity of free space and
ET(X) ( m') is defined in the mks system of units
[compare with Eq. (2)]. Shaprio et al. introduced the
normalized signal r (t) (W"12) given by

Ms(v, v, 0, t) = P (R) [K(R)W(PT(t - 2R/c))dR. (56)
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where -qQ is a constant detector quantum efficiency.
With this normalization the average shot-noise power
for (r2(t)) is hvBI1Q, which is different from the
current noise power [Eq. (13)].} The normalized fields
are defined by

EL(u, Z, t) = [(PL(t))] "eL(u, z, t), (59)

ELO(V, Z) = [(PLO)]112
eLO(V, Z), (60)

where e(u, z, t) (m-') and eLO (v, z) (m-l) are the
normalized fields for the transmitted laser field and
LO field, respectively, and PLO (W) is the total power
of the LO beam. This normalization references CLR
performance to the average laser power (PL(t)) in-
stead of to the average laser power transmitted
(PT(t)).

For a CLR with a detector that has uniform
quantum efficiency qQ and that collects all the energy
of both the LO and the backscattered fields incident
on the receiver aperture, the Fourier transform of the
detector response, Eq. (23), is

Y(K) = T1Qb(K). (61)

Then the BPLO field, Eq. (22), becomes

EBPLO(V, 0) = qQELO (V, O)WR (V), (62)

and the average power measured by the detector is

(PLOD) = 11Q(PLO). (63)

The normalized field at the exit of the transmitter is
defined as

eT(u, 0, t) = eL(u, 0, t)WT(u), (64)

and the normalized field of the BPLO at the exit of
the reciprocal receiver is defined as

eBPLO(V, 0) = eLO (V, O)WR (V). (65)

The performance of CLR can be expressed in terms of
these basic normalized fields for general conditions,
general atmospheric refractive turbulence, and gen-
eral targets.

1. Point Scatterer
Usings Eqs. (24) and (39) and the normalized fields,
we can write the SNR for a point scatterer at (p, R) as

SNR(t) = 'Q(PL(t - 2R/c))[K(R)]us ( R ) (66)
SNR~~t) hvB cpRt, (6

where

c(p,R, t) = A2f. E. .fJ.MT(l, u 2, 0O t-2R/c)

X mBPLO(vl, v2, 0)(G(p; u1 , R)G* (p; U2, R)

x G(p; vi, R)G* (p; v2 , R ))duldu2 dvldv2

is the coherent responsivity density (m-2) of the CLR.
Here m ( 1 , u2 , 0, t) (m-2 ) and mBPLO ( 1, v2, 0) (m 2

)

are the mutual coherence functions [see Eq. (12)] of
the normalized transmitted field eT (u, 0, t) and BPLO
field eBPLO (v, 0), respectively. The term density refers
to the dependence on the target coordinate p. The
target plane representation of the coherent responsiv-
ity density is obtained by integrating Eq. (67) over ul,
u2,v 1, and v2 , i.e.,

c(p, R, t) = X2( j(p R, t -R /C)jBPLO(p, R)), (68)

where

jT(p, R, t) = IeT(p, R, t) , iBPLO(P, R) = I eBPLO(p, R) | (69)

are the random irradiances (m-2) of the normalized
transmitter and BPLO fields at the target [see Eq.
(25)].

The average integrated normalized transmitter
irradiance is

J_ QJT(U, U, t))dU = Fr(t)/IL(t)) = T(t), (70)

where TT(t) is the average fraction of the last power
transmitted through the transmitter aperture de-
fined by WT(u). Similarly, for an infinite, uniform
detector, the average integrated normalized BPLO
irradiance is

f jPLO(VI 0))dv = TR, (71)

where TR is the average fraction of the LO power that
would be transmitted through the reciprocal receiver
defined by WR (v).

The SNR can also be expressed [see Eq. (17)] in
terms of the average power collected by the detector
and the heterodyne efficiency. For a large uniform
detector all the power collected by the receiver is
measured by the detector. Therefore, the average
direct detection power (PD(t)) [see Eq. (10)] can be
expressed in terms of the mutual coherence of the
backscattered field incident on the receiver, i.e.,

(PD(t)) = IQ I WR(V)IMS(V v, V0, t)dv. (72)

For the point scatterer [substitute Eq. (39) into Eq.
(72)]

(PD(t)) = qQ(PL(t - 2R/c))[K(R)]2csd(p, R, t), (73))

where

d(p, R, t) = X2 . . .mT(u, u2 0, - 2R/c)IWR(v) 12

x (G(p; u1 , R)G*(p; u2 , R)G(p; v, R)G* (p; v, R))dudu 2dv (74)

is the direct responsivity density (m-2 ) of the laser
(67) radar. The target plane representation of direct re-
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sponsivity density is obtained by integrating Eq. (74)
over u, u2, and v, i.e.,

d(p, R, t) = X
2
(jT(p, R, t - R c)jR(p, R)), (75)

where

jR(P,R) = f R(v)2G(p;v,R)G*(p;v,R)dv

where

D(R, t) = f d(p, R t)dp

= x2 f (jT(PR, t-Rc)jR(pR))dp (83)

is the dimensionless direct responsivity of the lasar
(7) radar. Then

is the random irradiance (m-2) of a normalized spa-
tially incoherent source defined by the receiver aper-
ture I WR (v) 12. The target plane representation of the
direct responsivity density is the correlation between
the normalized transmitted irradiance and the irradi-
ance from a normalized spatially incoherent source
distribution given by the aperture transmittance
IWR(v)l2 . By using Eqs. (17), (66), and (73), the
heterodyne efficiency for a point scatterer or simple
glint target at (p, R) is

c(p, R t)
XH(P, RX t) = d(p, R t)

'.(R, t) = D(R, t) (84)

The heterodyne efficiency is again the fraction of
direct detection power converted to coherent detec-
tion power by the CLR. By using Eqs. (81), (83), and
(84), the target plane representation of heterodyne
efficiency is

'rj(R, t) = -
r: (jT(p, R, t - R /jBPLO(p, R))dp

(85)
fi (j T(p R t - RIc)jR(p, R))dp

(77)

This states that heterodyne efficiency is the fraction
of the direct (incoherent) detection power converted
to coherent (heterodyne) detection power by the CLR.
In the target plane representation the heterodyne
efficiency is

'H (p, R, t) = (jT(p, R, t - R/)jBPL(p, R)) (78)
(jT(p, R, t- Rc)jR (p,R)) (8

For diffuse and aerosol targets in the far-field
regime, Rye23 has described the performance of CLR
in terms of an effective coherent receiver area ACOH

(i 2). For a diffuse target, we define

ACoH(R, t) = R
2
C(R, t) = ARyE(R, t)TT(t)TR, (86)

whereARn is the definition used by Rye. The effective
coherent receiver area is also given in terms of an
antenna gain GA (4) (m2 sr-'), i.e.,

2. Infinite Uniform Diffuse Hard Target
When the backscatter coefficient p(p) is uniform over
the dimensions of the transmitted beam, the target
can be considered an infinite uniform diffuse hard
target. Then p(p) = p and [use Eq. (47) in Eq. (24)]

SNR(t) =hQ(PL(t- 2Rc))K(R)p C(R, ), (79)

ACOH(R, t) = f GA(4I t)d, (87)

where

GA(4, t) = R4c(OR, R, t), (88)

and 4) (rad) is the angle defined by the target coordi-
nate (p, R) and the transmitter axis under the Fresnel
approximation.

where

C(R,t) = c(p R, t)dp (80)

is the dimensionless coherent responsivity of the
CLR. The target plane representation of coherent
responsivity is obtained by substituting Eq. (68) into
Eq. (80), i.e.,

C(R, t) = X
2 f (IT(p, R, t - R/c)jBPLO(p, R))dp. (81)

For the diffuse target the average direct detection
power (PD (t)) is given by substituting Eq. (47) into Eq.
(72) and using the normalized fields

(PD(t)) = -rQPL(t - 2R/c)[K(R)]
2
pD(R, t), (82)

3. Infinite Uniform Aerosol Target

When the aerosol backscatter coefficient ,(p, R) is
uniform over the dimensions of the transmitted
beam, the target can be considered an infinite uni-
form aerosol target and ,(p, R) = ,B(R). Substituting
Eq. (54) into Eq. (24) and using the normalized fields
produce

SNR(t) f (PL (t - 2R/c))[K(R)]2 3(R)C(R, t)dR. (89)

The average direct detection power (PD(t)) is [substi-
tute Eq. (54) into Eq. (72) and use the normalized
fields]

(PD(t)) = TQ fO (PL(t - 2RIc))[K(R)]2 (R)D(R, t)dR. (90)
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The heterodyne efficiency is given by

O t (PL (t - 2R /c))[K(R)1I2 3(R)C(R, t)dR
,qH(R, t = '-'(91)

f (PL(t - 2R /c))[K(R)] 2 p(R)D (Rt )dR

For sufficiently short laser pulse durations,

SNR(t) = 'QP(R)[K(R)]2C(UL)C (R, t) (92)
SNR~t) - 2hvB (2

(PD(t)) = Q2 (R)[K(R)] 2D(R, t), (93)

and the heterodyne efficiency qlH is given by Eq. (84)
where UL(J) is the total laser pulse energy, and R =
ct /2 is the range probed by the leading edge of the
pulse at time t.

4. Infinite Uniform Plane Surface
When the complex scattering coefficient r(p) of a
plane surface is uniform over the dimensions of the
transmitted beam, the target can be considered an
infinite uniform plane surface. Then r(p) = r and the
SNR is given by [substitute Eq. (44) into Eq. (24) and
use the normalized fields]

SNR(t) hvBQ(pL(t _ 2R/C))[K(R)2 r12
C(R, t), (94)

hvB

where the coherent responsivity is given by

C(R, t) = f f. exp[2ikOp (Pi - P2 )]CJ(P,, P2, R, t)dpdp 2 , (95)

CJ(P1 P2, R, t) = E f . . JX mT(ul, U2, 0, t)

X mBPLO(Vl, V
2
, 0)

x (G(p,; u,, R)G*(p2; U2, R)G(p,; v,, R)

x G*(p2 ; v2, R ))duldu 2 dvldv 2 (96)

is the joint coherent responsivity density (m-4). The
target plane representation is [integrate Eq. (96)]

Cj(P1, P2, R, t) = X
2

(eT(p,, R t - Ric)

X eT*(P2, R t - R/c)eBPLO(pl, R )eBPLo*(P2, R)). (97)

The average direct detection power (PD(t)) is [substi-
tute Eq. (44) into Eq. (72) and use the normalized
fields]

(PD(t)) = fQ (PL(t - 2R/c)) [K(R)]2Jr12

X f exp[2ikop (Pi - P2 )]d(P 1 , P2, R, t)dpdp 2 , (98)

where the direct responsivity is given by

D(R, t) = f d,(p, P2, R, t)dpldp 2,

d(p 1, P2, R, t) = 2 r: f mT(Ul, U2 , t) | WR(V) 2

x (G(p,; u1 , R)G*(p 2 ; u2 , R)G(p,; v, R)G*(p 2 ; v, R))duldu 2 dv

(100)

is the joint direct responsivity density (m-4). The
heterodyne efficiency for an infinite uniform plane
surface is obtained by using Eq. (84).

5. Infinite Uniform Retroreflector
When the complex scattering coefficient r(p) of a
retroreflector is uniform over the dimensions of the
transmitted beam, the target can be considered an
infinite uniform retroreflector. Then r(p) = r and the
SNR is given by Eq. (94) [substitute Eq. (52) into Eq.
(24) and use the normalized fields] where

CJ(P1, P2, R, t) = XI fl fx fi fl mT(ul, U
2

, 0, t - 2R/c)

X mBPLO(VI, V
2

, 0)

x (G(-p,; u,, R)G*(-P2; U2, R)G(pl; v,, R)

x G*(P2 ; v2, R))du 1du 2 dv 1dv 2 (101)

is the joint coherent responsivity density. The target
plane representation is given by [integrate Eq. (101)]

CJ (Pi P2, R, t) = X2(eT(-p,, R, t - R/c)

x eT (-P 2, R, t -R /c)eBPLO(p, R)eBPLO*(P2, R)). (102)

The average direct detection power (PD (t)) is given by
Eq. (98) where

dI(Pb, P2, R, t) = 2 J. f. . mT(ul, u2, 0 t - 2R/c)

X WR(V) 1
2 (G(-pl; U1, R )G* (-P2; u2 , R)

x G(p,; v, R )G* (P2; v, R ))dudu 2dv (103)

is the joint direct responsivity density.

6. Nonuniform Diffuse Hard Target
A nonuniform diffuse target is described by the
scattering coefficient p(p, R). The SNR is [substitute
Eq. (47) into Eq. (24) and use the normalized fields]

SNRWt) - Q(PL(t - 2R c))[K(R)] 2
ppcpRtdp. (104)

SNR~) = - ' hvB C ~~~,R ~p 14

The average direct detection power (PD(t)) is [substi-
tute Eq. (47) into Eq. (72) and use the normalized
fields]

(PD(t)) = Q(PL(t - 2R c))[K(R)]2 f p(p)d(p, R, t)dp. (105)

The heterodyne efficiency is given by

'1(, t) = -x

(99)

f p(p)c(p, R, t)dp
(106)

p(p)d(p, R, t)dp
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which is the ratio of the coherent responsivity density
weighted by the target-scattering coefficient to the
direct responsivity density weighted by the target-
scattering coefficient.

7. Nonuniform Aerosol Target

A nonuniform aerosol target is described by the
backscatter coefficient ,B(p, R). The SNR is [substi-
tute Eq. (54) into Eq. (24) and use the normalized
fields]

SNR(t) = hvQB fQ S. (PL(t - 2R/c))[K(R)]2

x 1(p, R)c(p, R, t)dRdp. (107)

The average direct detection power, (PD (t)) is [substi-
tute Eq. (54) into Eq. (72) and use the normalized
fields]

(PD(t)) = 9Q f fo (PL(t - 2R/C))[K(R)]23(p, R)d(p, R, t)dRdp.

(108)

The heterodyne efficiency is given by

= f2 f (PL(t - 2R/c))[K(R)]213(p, R)c(p, R, t)dRdp

'9H(R, t) = x 
t) Sf (PL(t - 2R/c))[K(R)] 2p(p, R)d(p, R, t)dRdp

(109)

which is the ratio of the coherent responsivity density
weighted by the pulse profile, backscatter coefficient,
and extinction to the direct responsivity density
weighted by the pulse profile, backscatter coefficient,
and extinction. For sufficiently short laser pulse
durations

SNR(t) = 1Q (UL)C[Kp(R)] (p,R)c(pR, t)dp, (110)

(P,,w) = IQ2U~ [K(R)]2 fr (p, R)d(p, R. t)dp. (111)

8. Nonuniform Plane Surface
A nonuniform plane surface is described by the
complex scattering coefficient r (p). The SNR is [sub-
stitute Eq. (44) into Eq. (24) and use the normalized
fields]

SNR) = qQ(PL(t - 2R/C))[K(R)] f . r(p,)r(p.)
DINXWU = hvB _ 

x exp[2ikO* (P, - P2 )kCj(P1 P2, R, t)dpldp 2 . (112)

The average direct detection power, (PD(t)) is [substi-
tute Eq. (44) into Eq. (72) and use the normalized
fields]

(PD(t) = nQ(PL(t - 2R/C))[K(R)]2 X f r(p,)r*(p2)

x exp[2ikO,*(pl - p2 )]d,(p, P2, R, t)dpdp 2 . (113)

The heterodyne efficiency is given by

_ lH(R, t)

f. f. r(pr,)r*(p2 )exp[2ik Op * (' - P2)]CJ(P11 P2, R, t)dPldP2

Jf fi r(pl)r*(p2)exp[2iko * (P - P2)]dJ(pl, P2, R, t)dpldp 2

(114)

which is the ratio of the joint coherent responsivity
density weighted by the target-scattering coefficient
and phase gradient to the joint direct responsivity
density weighted by the target-scattering coefficient
and phase gradient.

9. Nonuniform Retroreflector

A nonuniform retroreflector is described by the com-
plex scattering coefficient r(p). The SNR is given by
Eqs. (112) and (101). The average direct detection
power (PD (t)) is given by Eqs. (113) and (103), and the
heterodyne efficiency is given by Eqs. (114), (101),
and (103).

F. No Atmospheric Refractive Turbulence and
Deterministic Optical Fields

For deterministic optical fields and no' refractive
turbulence, ensemble averages over the random me-
dia and random fields are not required. All the results
of the previous section simplify by substituting the
free-space Green's function Gf [see Eq. (20)] for the
random Green's function G. For example, the coher-
ent responsivity density, Eq. (67), becomes

c(p, R, t) = 2 f f E eT(U 0, t - 2R /c)

x eT*(u 2, 0, t - 2R /c)eBPLO(Vl, O)eBPLO*(V2, 0)

X G (p; Ul, R)Gf* (p; U2, R)G' (p; v 1, R)

x Gf* (p; v2, R)dudu 2dvldv2 . (115)

For a uniform diffuse target the direct responsivity
[Eq. (83)] becomes

D(R, t) = TT(t(R), (116)

where

fl(R) = AR/R2
= XR(P, R) (117)

is the solid angle (sr) presented by the receiver with
an effective area (M

2
) of

AR = f WR(v) dv. (118)

Then the coherent responsivity becomes [see Eqs.
(84), (116), (117)]

C(R, t) = fl(R)TT(t)H(R, t) = fl(R)'ris(R, t), (119)

where [see Eq. (86)]

%(R, 0 m Tp(0sq11(R, 0 AcoH(R,t) C (R, t)
'118IL~t."1~tJ~11k1~tJ AR fl(R) (120)
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is the dimensionless system efficiency, which is a
measure of the laser radar performance for the fixed
transmitter laser power P, fixed LO power PLO, fixed
transmitter aperture, fixed receiver aperture, and
fixed range R. The system efficiency is also valid for
atmospheric refractive turbulence and can be esti-
mated from the laser radar signal by estimating the
heterodyne efficiency %H [see Eq. (15)].

For a uniform diffuse target the target plane repre-
sentation of heterodyne efficiency is [see Eqs. (70),

field by using Eq. (19)] is then given by

(PLOD) =L2 (PLO) E E -LO(VII V2, O)Y[(V 1 - v2)k IL]

ik 2 1
x exp[TL (v1' - v2 )Jdvldv, (127)

in terms of the normalized LO field at the receiver
plane. For a finite detector with a uniform quantum
efficiency 'Q, the system performance is given by the
results of the previous sections with the substitution

kWR(v) f X eLo* (w, O)Y[(v - w)k IL]exp[ i (V2
- 2)]dw

L[f r mLO(vl, v 2, O)Y[(v1 - v 2)kIL]exp[ i (v1
2

- v22)]dvidV 2]2

for Eq. (65) where

R'X'
H, t ) =A T(t) f iT(p, R, t - R/C)jBPLO(P, R)dp. (121)

The effective coherent receiver area can also be
written as an integration over the receiver plane, i.e.,

ACOH(R, t) = E_ OT(s, R, t)OBPLO*(s, R)ds, (122)

where

OT(s, R, t) = . ' (u, R, t)er'* (u - s, R, t)du (123)

is the
field

dimensionless autocorrelation function o

eT' (u, R t) e(U, O. t)exp ik u2) 

f the

'Q (w) = 1 on the detector surface,

= 0 off the detector surface (129)

is used in the definition of Y(K) [see Eq. (23)]. The
average direct detection power (PD (t)) is given by the
results of the previous section with

X2k 2xxxx
d(p R 0= L2 Ex EX E_ mT(u1, U2, 0, t - 2R /c)

x WR (v1)WR* (v2)Y[(v - v2)k IL ]

x exp[jL (v1 ' - v22)}(G(p; u1 , R)G*(p; U2, R)

x G(p; v1, R )G* (p; v2, R))duldu2dvldv2
(130)

for the point scatterer, diffuse target, and aerosol
(124) target;

2k 2 f
dJ(PI, P2, R, = L 2 E.r ~ E.E .MT(U1, U2, t -2R 1c)

is the
field

OBPLO(s, R) = . eBPLO(V, R)eBpLO* (V - s, R)dv (125)

dimensionless autocorrelation function of the

eBPLO(v, R) = eBPLO(V, O)exp( V2)- (126)

This formulation has been used by Rye 6 23to express
CLR performance in terms of effective areas.

G. System Performance: Finite Uniform Detector

A finite detector does not collect all the available LO
power or all the backscattered field incident on the
receiver. The average LO power measured by the
detector [see Eqs. (9) and (23) and propagate the LO

X WR (V1 )WR* (v2)Y[(v1 - v2)k IL ]

x exp[L (v1 - 02)](G(p,; u1 , R)

x G* (P2; U2, R )G(p; v1, R)

x G* (P2; v 2, R))duldu 2 dvldv2

for the plane surface; and

dJ(p1, P2,R, t) = i f2 f f :mT(ul, U
2

, 0, t - 2R c)

X WR (V1 )WR* (v2)Y[(v - v2)k /L]

x exp[L (v1
2

- v 22)](G(-p; u1, R)

x G* (-P2; U2, R )G(pl; v,, R )

x G* (P2; v 2, R))duldu2dvldv,2
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(132)



for the retroreflector; and Eq. (129) is used in the
definition of Y(K). The ratio of the average detected
power with a finite uniform detector to the average
detected power with an infinite uniform detector is
the fraction of average power collected by the receiver
that is measured by a finite uniform detector. This
ratio permits CLR performance to be referenced to
the average backscattered power collected by the
receiver instead of the average power measured by
the detector.

H. System Performance: Finite Nonuniform Detector

A finite detector with a nonuniform quantum effi-
ciency 9Q (w) combines the optical effects with the

detector effects. The system performance is given by
the results of the previous section with the uniform
quantum efficiency qQ removed and by using TQ(W) in
the definition of Y(K) instead of Eq. (129).

1. Receiver Plane Representation

All the results for coherent responsivity can be repre-
sented in terms of the mutual coherence function of
the normalized backscattered field at the receiver
plane. This permits a clear presentation of the back-
scatter enhancement effects caused by atmospheric
refractive turbulence (see Section III). For the coher-
ent responsivity density [see Eq. (67)]

c(p, R, t) = ffmSD(P, V1, V2 , 0, t)mBPLO(V1, V 2 , O)dvldV2,

(133)

where

mSD(P, V1, V2 , 0, t) = 2 J. mT(ul, U2, 0, t - 2R/c)

x (G(p; ul, R)G*(p; u, R)G(p; V,, R)G*(p; v2 , R))duldu, (134)

is the mutual coherence function density (m-4) of the
normalized backscattered field from a point scatterer
at location (p, R). For an infinite uniform diffuse
target the coherent responsivity [see Eq. (80)] is given
by

C(R, t) = fJ fx ms(vi, V2, 0, t)mBPLO(Vl, V2, O)dvldv2, (135)

where

mS(v1, V2, 0, t) = mSD(P, V1 , V2, 0, t)dp (136)

is the mutual coherence function (m-2) of the normal-
ized backscattered field.

The joint coherent responsivity density for a plane
surface [see Eq. (96)] is given by

CJ(P11 P2, R. t) =E. r . MJ m(PII P2, VII V2, O (3

X MBPLO(vl, V2, O)dvldv2, (137)

where

m-S(PI, P2, VI V2 , t) = X2 f fr mI(ul, U2, 0, t - 2R/c)

x (G(p,; uI, R)G*(p2; u2 , R)

x G(p,; v,, R)G*(p2; v 2, R))duldu 2

(138)

is the joint mutual coherence function density (m-4)
of the normalized backscattered field from two-point
scatterers at (p, R) and (p2 , R).

The joint coherent responsivity density for a retrore-
flector is given by Eq. (137) where

mSJ(PI, P2, VI, V2, ) 2= fA f m(ul, u2 , 0, t - 2R/c)

x (G(-pl; u,, R)G*(-P2; U2; R)

x G(pl; v,, R)G*(p2; v2 , R))duldu2.

(139)

The mutual coherence function of the normalized
backscattered field contains the physical interpreta-
tion of the coherent detection process in the receiver
plane.

111. Effects of Atmospheric Refractive Turbulence

Many theoretical techniques of wave propagation in
random media have been used to predict the effects of
refractive turbulence on CLR performance. Fried"'
used Rytov theory to estimate signal reduction. Yura'5

modified the bistatic results to describe the effects of
refractive turbulence. Wang22 and Murty27 used the
extended Huygens-Fresnel approximation, which is
valid only in weak path-integrated refractive-turbu-
lence conditions.78 Clifford and Wandzura'0 used the
phase approximation of the extended Huygens-
Fresnel theory, which is an approximate solution.63 79

Shapiro et al.'9 introduced a phase cancellation limit
of the extended Huygens-Fresnel approximation,
which considers the log-amplitude scintillation as the
dominant mechanism. Their theory is also a weak-
integrated refractive-turbulence theory. Rye8 used
phenomenological arguments to include the effects of
refractive turbulence. None of these theories has
been shown to be valid for general path-integrated
refractive turbulence.

It has been argued that the correlation of the
transmitted and backscattered fields in monostatic
systems will produce improved performance because
wave-front tilts will be self-correcting.20 '80 Theoretical
justification for this hypothesis is based on geometri-
cal optics arguments (e.g., random wedges that pro-
duce a square-law structure function description of
the random medium) and the extended Huygens-
Fresnel approximation. We show that this self-
correcting mechanism is negligible for atmospheric
refractive turbulence when the irradiance fluctua-
tions on the target are small.

When the angular deviation of propagating waves
because of refractive turbulence is small, the propaga-
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tion Green's function is given by a Feynman path
integral.6 ""8 The moments of the random field are
then given in terms of the ensemble average of
multiple-path integrals. When the fields change slowly
with propagation distance, the Markov approxima-
tion is valid8 '82 (i.e., the refractive turbulence is
uncorrelated in the propagation direction, a good
approximation for normal atmospheric conditions82),
and the fourth-moment Green's function may be
expressed as a series.68 This series has two physical
representations: a low-spatial-frequency (f) behavior
and a high-spatial-frequency (hf) behavior.

A. Low-Spatial-Frequency Behavior

The f behavior is the dominant behavior when
intensity fluctuations at the target are small. The
first term of this series (indicated by the subscript 0)
for the coherent responsivity density is

co (p, R, t) = X2 Ef Ef f f mT(ul, U2 , 0, t - 2R/c)

x mBPLO(vl, v2, )(G(p; U 1 , R)G*(p; U2, R))

x (G(p; v 1, R)G*(p; v 2, R))duldu 2 dvldv, 1
(140)

and the target plane representation is

c,"(p, R, t) = A2(jT(p, R, t - R/c))(jBPLo(P, R)). (141)

The analogous term for the direct responsivity den-
sity is

dolf(p R t) =2 f Er fr m uW1, U2, 0, t 2R/c) I WR(V) 12

x (G(p; U,, R)G*(p; U2, R))

x (G(p; v, R)G*(p; v, R))duldu 2 dv, (142)

and the target plane representation is

do(p, R, t) = 
2
(jT(p, R, t - Rc)) (jR(p, R)). (143)

The first term of the lf behavior of the joint coherent
responsivity density is given by

CoIf(Pi, P2, R, t) = 2 fr fr Er Er

x mT(u1, U2 , 0, t - 2R/c) mBPLO(V1, V2, 0)

• (G(p,; ,, R)G*(P2; 2, R))

x (G(pl; v, R)G*(p2; v 2, R))

x duAdudv2dv,, (144)

and the target plane representation is

CJO'(P1, P2, R, t) = XA(eT(pl, R, t - Rc)eT*(p2, R t - Rc))

x (eBPLO(pl, R) eBPLO (P2, R)). (145)

The analogous term for the joint direct responsivity
density is

djo f(p, P2, R, t) = A f r r m,(Ul, U2, 0, t 2RIc) WR(v) 2

x (G(pl; Ul, R)G*(p2; U2, R))

x (G(p,; v, R)G*(p2; v, R))dududv.
(146)

Using the first term of the series is equivalent to
assuming that the backscattered field from the target
passes through statistically independent refractive
turbulence compared with that of the transmitted
field. The next (second) term of the path integral
expansion contains the Born approximation. (The
field experiences single scattering from refractive
turbulence eddies, then interferes with the unscat-
tered field.) This implies that the assumption of
statistically independent paths is valid for the mono-
static configuration if the contribution from the Born
approximation is negligible, i.e., if the irradiance
fluctuations at the target are small. This can be
inferred from the work of Rye 8 for the infinite
uniform diffuse target and the special case of the
matched transmitter field and reciprocal receiver field
(matched monostatic), i.e.,

eT(u, 0, t) = eBPLO(U, 0), jT(P R t) =iBPLO(P, R), (147)

c(p, R) = X
2
(jT(p, R))2

[1 + o,2(p, R)], (148)

where cr 2(p, R) is the dimensionless normalized vari-
ance of the transmitted irradiance at the target. Since
o2(p, R) is positive, the statistically independent-path
result is a lower bound for the SNR, which is propor-
tional to c(p, R). When the irradiance fluctuations at
the target are small, uA(p, R) can be neglected and
the statistically independent-path result is valid. The
calculation of the CLR power by using the phase
approximation of the extended Huygens-Fresnel the-
ory depends on the ratio of the field coherence length
to the dimensions of the transmitter-receiver. This is
the same parameter that describes the effects of
refractive turbulence for imaging systems. The re-
gime where the effects of refractive turbulence be-
come important for CLR performance cannot be
reliably determined by this parameter. In the limit of
large path-integrated refractive turbulence, the com-
plex field at the target becomes a joint Gaussian
random process.64'68 Then68 uZ2(p, R) = 1, and the SNR
is twice the statistically independent-path result for
the matched monostatic condition. For moderate
path-integrated refractive turbulence, ,2(p, R) can be
larger than unity,83 ' and for typical atmospheric
conditions and wavelengths in the visible, ,2(p, R)
approaches unity slowly with increased path-inte-
grated refractive turbulence.

The higher terms of the series solution for the
fourth-moment Green's function describe the multi-
ple-interference and correlation effects of propagat-
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ing back through the same turbulent atmosphere. As

the irradiance fluctuations on the target become
large, there is an enhancement of the CLR SNR

compared with the statistically independent-path cal-

culation if the fluctuations in irradiance at the target
from the transmitter and BPLO are correlated. We

call this enhancement normal enhancement. If this

enhancement causes the SNR to become larger than

the SNR with no refractive turbulence (homogeneous
atmosphere or vacuum), we call it super enhance-
ment. The fluctuations in irradiance at the target

from the transmitter and BPLO have maximum

correlation and hence maximum enhancement for

the matched condition. Many conditions are created

by varying the transmitter and LO parameters. The
physical explanation of the enhanced CLR SNR caused

by the refractive turbulence is the correlation of
irradiance fluctuations at the target plane. The physi-

cal explanation of the enhancement in terms of the

receiver plane calculation is the enhancement of the
backscattered irradiance at the receiver plane cen-

tered on the transmitter axis4 8 or an increase in the

field coherence of the backscattered field. A clear
understanding of the effects of atmospheric refractive
turbulence on CLR performance requires calcula-
tions in both the target plane and receiver plane.

B. High-Spatial-Frequency Behavior

When the propagation of the fields through refractive
turbulence results in great intensity fluctuations at

the target, a small-scale structure is produced, i.e.,
high spatial frequencies. The fourth-moment Green's

function that describes this structure can be ex-
pressed as a series solution. The leading-order term of
this series for the coherent responsivity density is
[compared with Eq. (140)]

Cohf(p, R, t) = X I fI fI f. m,(u,, u2, 0, t - 2R/c)

x mBpLO(vl, V2, O)(G(p; U,, R)G*(p; V2, R))

X (G(p; v1, R)G*(p; u2 , R))duldu 2 dvldv2 ,
(149)

and the target plane representation is

COhf(p, R) = XI I (e,(p, R, t - R/c)eBPLO(p, R)) 12. (150)

The analogous term for the direct responsivity den-

sity is

doh(p, R, t) = X I f fI mT(ul, U
2

, 0, t - Rc) I WR(V) 2

x (G(p; U,, R)G*(p; v, R))

x (G(p; v, R)G*(p; u2 , R))duldu2 dv. (151)

The first term of the hf behavior of the joint coherent
responsivity density is given by

Cjo"'(pi, P2, R, t) = X2 f. f. fI f2
x mT(u,, u,, 0, t - 2R/C)mBPLo(vl, V2, 0)

x (G(pl; Ul, R)G*(p 2 ; v 2, R))

x (G(pl;v,, R)G*(p 2 ; u2 , R))duldu2 dvldv2,

(152)

and the target plane representation is

CA"(P11 P2, R, t) = X
2
1 (eT(pl, R, t - R/)eBPLO(P2, R)) 1

2
. (153)

The analogous term for the joint direct responsivity
density is

djohf(P 1
, P2, R, t) = A2 fl fl fl mT(ul, U

2
, 0, t -2RIc)

X WR(V) 1
2(G(pl; ul, R)G*(p 2 ; v, R))

x (G(p,; v, R)G*(p 2 ; u2, R))duldu 2 dv. (154)

These leading-order effects of refractive turbulence
can also be obtained by assuming that the complex
fields at the target are a joint Gaussian random
process (full saturation of intensity fluctuations).
Then the fourth-moment Green's function can be
expressed as the sum of the product of the second-
moment Green's functions, i.e.,

(G(pl; ul, R)G*(p 2 ; u2, R)G(pl;vl, R)(G*(P2 ; v 2, R))

= (G(pl; u1 , R)G*(p2 ;u2 , R))(G(pl; v, R)G*(P2 ; v 2, R))

+ (G(pl; u,, R)G*(p 2 ; v2, R))(G(pl; v,, R)G*(p2 ; u2 , R)). (155)

The first term in Eq. (155) describes the zero-order
term of the lf behavior, and the second term describes
the zero-order term of the hf behavior. Then

c(p, R, t) = co0 (p, R, t) + coh(p, R, t), (156)

d(p, R, t) = do'(p, R, t) + dohf(p, R, t), (157)

CJ(pI, P2, R, t) CJOl(pl, P2, R, t) + CJOhf(pl, P2, R, t), (158)

dJ(Pl, P2, R, t) djo(pl, P2, R, t) + djohf(p 1 , P2, R, t). (159)

This approximation was verified previously with path-
integral methods.6 6 '68 The limit of full saturation
depends on the statistics of the refractive turbulence
and the parameters of the transmitter and LO fields.
The two terms of the Gaussian field approximations
for the fourth-moment Green's function are the basis
of the lf series and the hf series.

C. Zero-Order Fourth-Moment Solution

The lf series is required for any strength of path-
integrated refractive turbulence. The hf series is
important when the intensity fluctuations at the
target become large, and small-scale scintillation
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structures are formed. The zero-order fourth-mo-
ment expressions for the effects of refractive turbu-
lence are given in terms of the second-moment Green's
functions ((GG*)) for wave propagation in random
media.68 For narrow angular deviations caused by
refractive turbulence and the Markov approxima-
tion, 8 1

,
82

(G(pl; u1 , R)G*(p 2 ; U2, R))

k_ 2 ik

(2irR)' exPr [(Pi - U,)2 - (P2 - U2 )9]

x exp- 2 D'[(u - U2)(1 - zR) + (P1 - P2)ZIR, Z]dz} 

(160)

where

D'[X, z] = 4rk f [1 - COS(K )](DN(K K= 0, z)dK (161)

is the structure function density (m-'), 'Dj(c, K(, z)
(m3) is the local 3-D spectrum of refractive-index
fluctuations at range z, and K (rad m'1) is the spectral
wave vector. The spectrum is defined by

1 r
(I.(K, Z) = (21)3 fI B(r, s, z)exp(-iK r - is)drds, (162)

where

Bjr, s, z) = (n(p, z)n(p + r, z + s)) (163)

is the dimensionless correlation of refractive-index
fluctuations n(p, z) at range z. For Kolmogorov turbu-
lence 8 5

Using Eqs. (76), (143), and (160),

d0"(p, R, t) = fl(R)(jT(p, R, t - Ric)).

Using Eqs. (70), (83), and (166),

DO,(R, t) = TT(t)(R),

(166)

(167)

which is the result for no refractive turbulence. The
SNR reduction based on the leading term of the lf
series is due to a loss in heterodyne efficiency only and
not to changes in direct detection power [see Eq.
(84)].

For collimated and diverged laser beams the magni-
tude of the irradiance fluctuations is described by the
dimensionless parameter

U(R) = 2(FR) - R(R) '

where RF = (Rlk)"2 (m) is the Fresnel distance and
Rs(R) = R/[kpo(R)] (m) is the radius of the effective
scattering region. When U is small the irradiance
fluctuations are small 83 85 [q

1
(p, R) << 1]. When U is

extremely large, the irradiance fluctuations are satu-
rated83 85 [,(p, R) = 1], and the CLR performance is
given by Eqs. (156-159). These limits provide the
following convenient heuristic algorithm for merging
the lf behavior with the hf behavior:

Co(R, t) = Col(R, t) + 1+U(R) C(R, t),

DJ(R, t) = Dolf(R, t) + 1 U(R)
2

D.hf(R, t),

(169)

(170)

R D[(Uu - u2)(1 - z/R), z]dZ = u (sR) ']

where

po(R) = [Hk2 Cn
2
(z)(l - z/R)

5 3
dz]-3/5

which also provides a connection formula for the 
(164) heterodyne efficiency %q. For focused beams in the

near-field region the level of scintillation is governed
by a different parameter, and the full saturation
regime [,(p, R) = 1] is approached much sooner.

(165)

is the transverse-field coherence length (m) of a point
source located at (0, R), C(z) (m21/3) is the refractive-
index structure constant at range z, H = 2.914383,
and the range integrations in Eqs. (164) and (165)
proceed from the laser radar to the scattering volume.
Replacing the 5/3 index with 2 in Eq. (165) is a useful
approximation that produces little error. 5 This ap-
proximation becomes exact85'86 when the transverse-
field coherence length is smaller than the inner scale
of the refractive turbulence. Then the average beam
profile caused by refractive turbulence is a Gaussian.
Note that our theory was not developed under a
square-law structure function approximation. That
pathological case corresponds to an atmosphere com-
posed of random wedges,80 which implies that there is
only beam wander and no scintillation, and wave-
front tilts are self-correcting for monostatic lidar.

IV. Gaussian Lidar System

The results presented up to this point are valid for
general CLR parameters and conditions (e.g., mono-
static and bistatic). The behavior of the laser radar
performance in the different physical regimes is more
easily described with analytic expressions for SNR
and heterodyne efficiency. This section employs com-
plex Gaussian functions for all the main components
of a CLR, since this is the simplest representation
that still contains all the physics of the system and
permits analytic solutions. The physics of the SNR
and heterodyne efficiency are described completely by
the transmitter field at the exit of the transmitter
aperture, the receiver lens, and the LO field.

The remainder of this paper assumes the simplify-
ing assumptions that the transmitter and LO fields
are deterministic, that the detector response function
is uniform [Q(w) = Q], and that the detector col-
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lects all the LO power and backscattered power
incident on the receiver aperture.

To describe the interaction of the transmitter
optics with the laser field (truncation and focusing),
we assume an untruncated Gaussian for the transmit-
ter laser, i.e.,

eL(u, 0, t) = (aL2)l/
2

expI U2 iku
2

) (171)

where u2 is u u, CL (m) is the lie intensity radius of
the laser beam, and FL (m) is the phase curvature of
the laser beam. (FL is positive if focused at a positive
distance z.) [The e 2 (14%) intensity diameter is given

by 2a2 CL. Truncation effects by a circular aperture,

e.g., a mirror, may be safely neglected if the physical

aperture diameter is > 4U2 orL.17 A circular aperture of

radius cUL passes 63% of the beam power, and a

circular aperture of radius 1.5 a CL passes 99% of the

beam power.] We also assume a monostatic CLR with
a transmitter lens described by an untruncated Gaus-
sian response function for the scalar field

2 iku2

WT(u) = exp -- - (172)

where UT (m) is the lie intensity radius of the
transmitter lens and FT (m) is the phase curvature of
the transmitter lens (FT is positive for a focusing or

positive lens.) The untruncated Gaussian assump-
tion, while not as realistic as a circular aperture,
allows analytic solutions while preserving a size
parameter for the transmitter and receiver compo-
nents. The normalized field at the exit of the transmit-
ter lens is given by

where

R2 2R2
UBT(R) TE

2
(l RFTE)

2 + -T
2 kp 2 R (177)

The ensemble average of the normalized irradiance in
the target plane has a Gaussian profile with a lle
irradiance radius of CBT (m).

A. Low-Spatial-Frequency Calculation

The calculation of the CLR performance in the re-
ceiver plane requires the mutual coherence function
of the normalized backscattered field at the receiver.
The first term of the If behavior is [using Eqs. (133),
(134), (136), (140), and (160) and the square-law
approximation for the structure function]

ms (vl, v2, 0)

UT
2 r S2 2 2 172 8

=r2 R2exPRr 2 o2(R) 4R
2 J(18

where

2r=v1+v2 , S=V1 -V
2

(179)

are the centroid and difference coordinates (m), respec-
tively. The term (ik/R)r * s represents the phase-front
curvature of the backscattered fields. The term s2/
[2p0

2(R)] is the one-way loss of the field coherence of

the backscattered fields because of refractive turbu-
lence, and the last term in the exponent is the loss of
field coherence because of the propagation of the
fields from the illuminated target (defined by the
average irradiance of the transmitted beam) back to
the receiver in the absence of refractive turbulence.

For spatially varying irradiance the field coherence
length is defined by the complex degree of coherence88

U
2 iku2

eT(U, 0) = (rUL
2
Y

1
I
12 exp - - -Ik 203TE

2 2
FTEJ

1 1 1

JTE2 UL2 T

(173)

(174)

mh(vI, V2, 0) [ ( V 0)m(v2, v2, 0)]1I2

For the leading-order term

Fik 22 1
ho(vv2, 0) = expR r *s- 2p02(R) I

where aTE (m) is the lie intensity radius of the
transmitted field and with

1 1 1PTF + '' (175)
FTE FL FT

where FTE (m) is the phase curvature of the transmit-
ted beam (FTE is positive if focused at a positive
distance z.) For the Gaussian transmitter the average
irradiance of the normalized transmitted field at the
target plane, Eq. (69), becomes

UT2 2J(P, R) - exp(176)'TR) - 11L2GrBT2(R) exp BT(R)~

where

1 1 aB (R)k

=2(R) Po
2

(R) 2R2 (182)

is the effective field coherence length at the receiver
axis and describes the leading-order behavior of the
small-scale coherence at the receiver caused by the
large-scale structure of the target. The first term in
Eq. (182) is the field coherence of a point source at the
target propagating through the refractive turbulence.
The second term is the field coherence caused by the
free-space propagation of a spatially incoherent source
defined by the average transmitted irradiancejT(p, R).
This is the Van Cittert-Zernike theorem.88
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(180)
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The average irradiance of the normalized back
tered field is given by

mS, (v, V, 0) ORT

which is independent of the level of the refra
turbulence. This is not true for the other terms o
path-integral expansions, which describe the back
ter enhancement mechanism.

We assume a monostatic CLR with a receiver
described by an untruncated Gaussian receive
sponse function [see Eq. (172)] for the scalar fielk

IV 2 ikv 2 \
WR( = expt 2cTR2 2

FRI

where CTR (m) is the l/e intensity radius of
receiver, and FR (m) is the phase curvature (the
length of the lens or telescope) of the receiver (.
positive for a focusing or positive lens.) [Alth(
actual lidar systems usually employ a rectangula
hat receiver function (e.g., a circular telescope
mary mirror), the Gaussian assumption allows
lytic solutions while preserving a size paramete
the receiver. Gaussian profile truncation by thl
ceiver is therefore included unless we set CR -
which case there is no receiver truncation. The 
comments apply to the transmitter function and
The effective receiver area AR = rTOR2 [see Eq. (11

The LO at the receiver plane (z = 0) is assum(
be an untruncated Gaussian beam, i.e.,

eL =( S L)- eXp 2 ikv
2

eLo(V, 0) = loo)
2

ep- 2LO2 2~LQ

scat- and the leading-order expression for iheterodyne effi-
ciency is [using Eqs. (84), (167), and (189)]

(183) rj 4(R) = 2 14 + L + LO + 1 - R 2 k2
cTE

2
LO

2
0
R [4+j42 4TE 1 FTE) 4R2

+ [ _ R k 2CrE 2rL 2 .L2 1-1

FRE 4R2
+ p(R)

(190)

The SNR is given by Eqs. (79) and (89) for uniform
lens diffuse and aerosol targets, respectively. The assump-
r ens tions employed in deriving these results are listed in

rr- Table I.
d: Equations (189) and (190) describe the loss of the

SNR and heterodyne efficiency caused by several
(184) physical mechanisms of monostatic CLR. The second

term in the brackets in the denominator contains the
mismatch between the LO and backscattered beam

the profile on the detector. The third and fourth terms
focal represent the loss of received field coherence caused
~'R is by the incoherent aerosol target in the absence of
)ugh refractive turbulence. The third term is the diffrac-

top tion component of the transmitted beam, and the
pri- fourth term is the corresponding geometrical optics

ana- component. The fifth term is the mismatch between
r for the phase-front curvature of the LO field and the
a re- total backscattered field as modified by the receiver.
,o, in The last term is the effect of atmospheric refractive
same turbulence, which includes two mechanisms: the first
1 T.] mechanism is the expansion of the transmitted beam
8)] caused by refractive turbulence, which produces a

ed to larger incoherent image at the target, and the second
mechanism is the loss of coherence of the backscat-

(185)

where urLO (m) is the lie intensity radius of the beam,
and FLO (m) is the phase curvature of the beam.
(Positive FLO indicates a beam waist on the detector
side of the receiver.) The normalized field of the
BPLO is

eBpLO(v, 0) = (rLo 2
)" exp- 2v 2

-
2FRE (186)

where

1 1 1

URE rR2 LO

1 1 1

- = F0

(187)

(188)

The leading term of the f series for coherent
responsivity is [using Eqs. (135) and (178)]

2(TTE 2RE21 9L0 CLO I R \2 k
2

CrTE 
2
crLO

2

cr
2
)

2
L4 + 4rT.2 + FTE 4R2

+ ( R k 2 FE 
2

LO
2

+LO - 1 8FR) 4R?2 +p02(R)J (89

Table . Assumptions for Calculations

(1) Monostatic heterodyne detection laser radar system
(2) Small fractional frequency difference between transmit-

ter and LO
(3) Transmitted pulse profile changes slowly compared with

optical period
(4) Untruncated Gaussian transmitted beam
(5) Untruncated Gaussian transmitter/receiver lens
(6) Untruncated Gaussian LO
(7) Ideal polarization match
(8) Ideal square-law detector for i.f. power
(9) Uniform quantum efficiency across the photovoltaic

detector
(10) Large detector area compared with LO size
(11) Shot-noise-limited heterodyne detection
(12) Received power much smaller than LO power
(13) Locally stationary atmosphere
(14) Kolmogorov refractive-turbulence spectrum
(15) Weak integrated refractive turbulence
(16) Square-law structure function (x53 - x2) on the leading

term of path-integral expansion
(17) Paraxial approximation or Fresnel diffraction theory
(18) Markov approximation (turbulence in statistically inde-

pendent layers)
(19) Backscatter coefficient is a function of range only
(20) No optical aberrations or misalignments
(21) Independent refractive turbulence on forward and back-

ward paths
(22) Extinction the same for transmit and backscatter paths
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tered field as it propagates through the refractive
turbulence.

The symmetric representation of coherent respon-
sivity is

C f(R) 'rUTE'URE [_1
C1( -u'uLO'R' 

4oURF
+ -+ (1 -)2 kTE2

+ 1 - kR r 4R
2 +po2(R)| (191)

The analogous calculation in the target plane is
given by Eq. (141). The average of the normalized
BPLO irradiance in the target plane is

(JBPLo(p, R)) 7aLO2aBR (R) exp OBR(R) (192)

where
2 2

UBR (R) = RE2(1 - R/FRE) + + k2
p

2
(R)

and aB (m) is the lie intensity radius of the imagined
BPLO in the target plane. The transmitter and
reciprocal receiver truncation ratios are [see Eqs. (70)
and (71)]

UTE URE (194)

UL ULO

The coherent responsivity density in the target plane
representation becomes

c(p, R) = x
2
TTTR 2 P2 (195)

cp R BT 
2

(R)BR
2 (R) -P UBT 

2
(R) BR(R))

Performing the integration over the target coordinate
[Eq. (80)] produces

x
2
TTTR

Co (R) 'rr[BT 
2

(R) + UBR (R)] (196)

which is equivalent to Eq. (189). Note that the radius
of the LO, aLO, appears as a separate parameter and
that CLR SNR cannot be specified by only 0 TE, FTE,

cr., FRE and po. For fixed transmitter power PT

atmospheric parameters [P(R), K(R)], and receiver
parameters (URE, FRE), the maximum SNR occurs
when cTBT << BR; i.e., the size of the transmitted beam

on the target is much less than the size of the
imagined BPLO on the target, or equivalently, the
transmitter dimensions are much larger than the
receiver dimensions. This condition was noted by
Fluckiger et al.89 in the far-field limit and is shown
here to be generally true. Note that this is not a
practical case because the transmitter dimensions are
much larger than the receiver dimensions and the
cost performance is poor.

1. Fixed Receiver Lens

For a given receiver lens (fixed uR and FR) the
maximum heterodyne efficiency occurs when the field

accepted by the receiver matches the LO field. This
occurs when all the mechanisms for the loss of
heterodyne efficiency in Eq. (189) are negligible. The
effects of atmospheric refractive turbulence are re-
moved when p(R) >> cLo (C, 2

-> 0). The loss of
heterodyne efficiency from the geometrical compo-
nent of the illuminated target is removed when FTE =

R. The loss of heterodyne efficiency from the diffrac-
tion component of the illuminated target is removed
when crTE >> uLO; i.e., a compact illuminated image is
produced at the target that approximates a point
source and produces a coherent spherical wave over
the dimensions of the LO at the receiver. The phase
front of the received field is matched to the phase
front of the LO when F. = R. These limits produce a
coherent field incident on the receiver. The receiver
lens converts this coherent field into a coherent
Gaussian field of the proper phase curvature, which is
mixed with the Gaussian LO field. The spatial distri-
butions of these two fields are matched when oLO = oR
(cr, 2 = 0R2/2). Then the heterodyne efficiency, Eq.
(190), is unity and [see Eq. (84)]

Co"(R) = Do0
1 (R), (197)

and the coherent detection responsivity is equal to
the direct detection responsivity. Note that the condi-
tion for maximum heterodyne efficiency is not a
feasible geometry since the transmitter is much
larger than the receiver dimensions. Therefore practi-
cal CLR's will always have a maximum heterodyne
efficiency and maximum system efficiency that are
less than unity.

The receiver plane (detector plane) calculation pro-
vides a clear connection to the physics of CLR. The
corresponding interpretation in the target plane is
not as clear. The overlap integral for the case of unity
heterodyne efficiency corresponds to a small transmit-
ted beam size on the target compared with the BPLO
beam size, and with reciprocal receiver parameters
chosen to give maximum irradiance over the overlap
region. Note that matching the two irradiance pro-
files in the target plane does not produce maximum
heterodyne efficiency but produces maximum coher-
ent responsivity when there is no refractive turbu-
lence. 90

2. Optimal LO Parameters
Fr a given transmitter and receiver geometry (fixed
UTE, FTE, aR, and FR) and a target at range R, the
optimal LO parameters for maximum SNR, maxi-
mum heterodyne efficiency lH, and maximum system
efficiency -9s are

CTLO = U
T

R 1 + p 'R 2UB 2(R) + 2 R

FLOPtF= R.
R - FR

(198)

(199)

which produces maximum performance at the range
R = FTE. These optimum LO values usually are not
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implemented in real CLR systems because they de-
pend on the target range R.

3. Optimal Conditions for a Gaussian Monostatic
CLR System

The maximum SNR for a uniform diffuse target is
obtained by maximizing coherent responsivity. The
governing equations for maximum SNR for the mono-
static CLR have been derived90 by using functional
maximization, and analytic solutions have been ob-
tained for the Gaussian aperture CLR system. For a
monostatic CLR the transmitter lens and receiver
lens are the same [WT(u) = WR(u)]. Then UT = oR and
FT = FR. We now determine the conditions for maxi-
mum SNR and coherent responsivity for a given
range R and fixed receiver and transmitter lens
dimension UR. This requires that p(R) 0o (no
refractive turbulence), FTE = R, and FRE = R. Taking
the partial derivatives of coherent responsivity (or
SNR) with respect to L and oTLo and solving the
simultaneous equations result in q = YLO = R//2 =
0.7 07uR. For the maximum SNR of this general
Gaussian aperture CLR system, the heterodyne effi-

Col(R) =

The maximum SNR, heterodyne efficiency, and
coherent responsivity for the general Gaussian CLR
system require a focused condition (R = FTE = FRE =
F) or, equivalently, the far-field condition. With
parameters optimized (L = aLo = uR//2) for this fo-
cused condition, the heterodyne efficiency at any
range R becomes

u(R) = 9|1 + (1 - F k ¢B + 2aR2 |-1 (200)

The behavior of this heterodyne efficiency and SNR
for a typical CLR is presented in Section VI. Using the
optimal parameters for the general Gaussian CLR
system provides useful analytic expressions for study-
ing CLR performance.

4. Receiver Lens Larger than the LO Beam
When the dimension of the receiver lens aR is much
larger than the dimension of the LO beam LO (i.e.,
negligible receiver truncation of the LO), then
cRE = uLO, and Eq. (189) becomes

IOLO'

I + 1.2 ~ R I
2
k 

2
u3TE

2
uL0

2 +~_R 1
2
k u~o I RD2

-+ F/ 
2

+(F 4R2 )2
4 4rTE FTE R R/42 p (R)]

(201)

ciency -lH is 4/9, the transmitter power truncation
ratio TT is 2/3, and the system efficiency %j(R) is
8/27 = 0.296 [see Eqs. (189), (190), and (194)].
Because of diffraction the transmitter cannot produce
an illuminated target spot that is small enough to
approximate a point source, and the received field
from the target deviates from a spherical wave over
the effective area of the receiver. These results agree
with the results from functional maximization.90 The
optimal performance of a CLR system with a more
realistic circular transmitter-receiver aperture of
radius RA and Gaussian laser and LO field was
considered by Rye,23 Wang,32 and Zhao et al.33 This
laser radar has the same collecting area AR as the
Gaussian aperture system when RA = R. The optimal
parameters for the circular aperture with the same
collecting area and a Gaussian LO incident on the
detector are = UrLo = RAI1.763 = 0.5 6 7 2RA, which is
close to the condition for the Gaussian aperture
system. However, the system efficiency -1s for the
circular aperture system is 0.40118, which is a factor
of 1.354 better than the Gaussian aperture system.
Rye23 obtained a system efficiency of 0.43837 for the
Gaussian monostatic lidar with a circular aperture by
using an improved LO design. A monostatic circular
aperture CLR has a better SNR than a comparable
untruncated Gaussian aperture CLR system with an
equal collecting area. (Other noncircular apertures
may have a higher SNR than a circular aperture with
an equal collecting area.)

The effective receiver aperture is defined by the LO,
and the SNR is independent of the parameter rR;
however, the heterodyne efficiency is poor since much
of the backscattered field does not mix with the LO
field. This was noted by Wang29 for the case of a
Gaussian LO and a circular aperture. This limit
(uR-- oo) has been used by many authors (see Section
V) and is the correct limit if the physical receiver
mirror is sufficiently larger than the BPLO beam. If
we further assume a matched monostatic CLR sys-
tem, FTE = FRE = F and TE = LO = , assume a short
pulse duration, substitute D2 = 2u (lie2 intensity
diameter) and B = 1/T, where T (s) is the pulse
duration (matched filter assumption), and utilize
Eqs. (92) and (201), the SNR becomes

SNR = 7MQUTfCTD 2 [1K(R)]2
8hvR2

= (D ) 2
+ (rD 2)

2 R_2 ' (202)

which is a commonly used form of the CLR equation.6
Further simplification occurs if we assume negligible
refractive-turbulence effects (po >> D2 ) and either
focused (R = F) or far-field operation (D2

2/ <<
R < F):

= 8hBQUTXD[K(R)
SNR= hMM (03

which is often used for the CLR equation, especially
for space-based systems.9"
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B. High-Spatial-Frequency Calculation

The leading-order term for the hf behavior of the
mutual coherence of the normalized backscattered
field at the receiver plane is given by4 8 [use Eqs. (133),
(134), (136), (149), and (160) and the square-law
structure function approximation]

mso (vi, V2, 0) R'[1 + aTE'/Po0(R)]

x exp {k 11- (1 - RIFTE)/[1 + p (R)/oTE'] r s

S UTEk(1 - R/FTE) S2 r2

4R 
2

[1 + CrTE
2
/po

2
(R)] 4arTE

2
OTE + po2(R)

(204)

When we use Eqs. (149) and (160) and the square-
law-structure function limit, the coherent responsiv-
ity density is

c 'h(p, R) = 2 
2(R) 

2
(R) exp[-p

2
1/c0

2(R)], (210)

where

a1
2(R) = UBT(R) + acBR

2
(R)

8

2
(R) TRE2IR -UTE+ TE + 2 RE2(FT-I - FRE 1)2 - 2 , (211)

cTRE

:r,
2
(R) = RS

2
(R) + {RS

2
(R)[crBT

2
(R) + UrBR(R)]

+ TBT (R)BR2(R)lal . (212)

The normalized backscattered irradiance is given by

M '(,v, 0) -R
2[1 + o 21p2(R)] exp[ OT 2+p2(Rj' (205)

which can be written as

hfv °,0) = [1
1

(v, v, 0) I V ] (206)MS~hl(VVO) + T/po(R)] exp PO\'.(206(R 0
TE + 2wRI

When the field coherence length is larger than the
effective transmitter beam dimensions [po(R) >> Tj,

the average irradiance of the backscattered field from
the leading-order term of the hf series has a maxi-
mum enhancement at the transmitter axis (v = 0)
equal to the free-space irradiance [m s'(v, v, 0)], and
the transverse scale of this enhancement is the field
coherence length. For the more common case of
small-field coherence length compared to the effective
transmitter beam dimensions [po(R) << ro], the mag-
nitude of the enhancement is reduced, and the trans-
verse scale becomes the effective transmitter dimen-
sions crTE-

The complex degree of coherence for the leading
term of the hf behavior is

So (V1, V
2

, 0) =

exp( r - (1- R/FT)/[1 + Po
2
(R)/ITE

2
]1 -2 (207)

where

1 2(R)2[1 + 2/p 2(R)] -l ( R/FTE)' + 21
=o2R 2R2 1+TE/(R][E k2

UTE 
(208)

and AO(R) is the field coherence length of the backscat-
tered field at the axis of the transmitter beam.

The coherent responsivity becomes

Cohi(R) = RFTR 14R2 [uBT2(R) + cR,
2
(R)] + 4p0

2
(R)

' 0
+ O TE2 + k 2 2"TE' -E (FTE -FRE 1)2 - 21

(
0
TE2 UpR2

(209)

The correlation of the small-scale fluctuations of
transmitted and imagined BPLO irradiance at the
target has a Gaussian profile with a widthu0o (m).

The coherent responsivity is obtained by integrat-
ingEq. (210) overp, i.e.,

ChiR = 2
TTTR

rr,2O (R)
(213)

which agrees with the receiver plane calculation, Eq.
(209).

The leading-order term for the hf behavior of the
direct responsivity is [use Eqs. (83), (151), (160) and
the square-law structure function approximation]

D hf(R) = [- 
2
(R) + 

0
2 + (R]

When RF > po(R) >> rT, and oTR,

Dohi(R) = TTQf(R) = Do"(R).

(214)

(215)

The backscatter intensity enhancement from the
leading-order term of the hf behavior is equal to the
backscatter irradiance at the receiver with no refrac-
tive turbulence. This increase in direct'detection
power produces a factor of 2 increase in the SNR
(heterodyne efficiency does not change) compared to
the statistically independent-path calculation for large
path-integrated refractive turbulence. The phase ap-
proximation of the extended Huygens-Fresnel theory
does not predict this effect.20 When RF > po(R) >> rTE

and oR, N0 << 1 in Fig. 1 of Ref. 20. The calculation
using the phase approximation of the extended Huy-
gens-Fresnel theory is equal to the statistically inde-
pendent-path calculation.

When po(R) < RF << TE and crR,

D hi(R) Do
1

(R)po2(R)
DT( + (r2

(216)

The backscatter intensity enhancement from the hf
component integrated over the receiver aperture
[D hf(R)] is small compared with the contribution
from the If component Do0

1 (R)]. For the matched
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monostatic CLR [eT(u, 0) = eLO(v, 0)] and large
path-integrated refractive turbulence, the SNR is
twice the statistically independent-path calculation
[see Eq. (148)]. This behavior is predicted by the
phase approximation of the extended Huygens-
Fresnel theory.20 When p(R) << urT and (TR the
increase in the SNR is due to an increase in hetero-
dyne efficiency from the hf component (see Fig. 4).
The direct detection power is unchanged.

V. Comparison with Previous Results

There have been several results published for mono-
static CLR systems with Gaussian geometries. We
now compare our results with these previous works.

Sonnenschein and Horrigan'2 calculated the SNR
for a monostatic CLR with Gaussian transmitter,
receiver, and LO but neglected refractive turbulence.
The conversion of notation is qQ 'q, TE

2
=(Lo

R2 /2, FTE = FRE- f, R - L, p(R) = = FLO °°0
K(R) - 1, 1(R) - (0), and k - 2rrIX. The noise
power was specified as that from a photoconductive
detector, but a photovoltaic expression was used.
Then our Eq. (89) with Eq. (189) becomes

SNR = 9pTp rP)TrR2 dL

10Z lo"t lo, lo, lo,
R (km)

Fig. 3. Heterodyne efficiency ,H and the SNR as a function of
range R by using the statistically independent-path calculation for
a monostatic laser radar system [see Eqs. (92), (189), and (190)] at
a wavelength of 1.064-1 pum and focused at 1 km (FTE = FR = F = 1
km). The system parameters are aR = 10.0 cm, aL = Lo = 7.07 cm,
FLO = -, UT = 5 mJ, (R) = 1 = 4 10-6 m- 1 sr-', K(R) = 1.0,Q =
0.5, and B = 50 MHz. The level of refractive turbulence C 2 has the
values C 2

= 0 (-), C,2 = 10-14 m-2/3 (- ) C ,
2

= 10-13 m-2/3 ( )
C,

2
= 10-12 M-2/3 ( ).

1 (217)

which matches their Eq. (20) except for a factor of 2.
The factor of 2 error is traced to their Eq. (13), where
a factor of 4/ is omitted. However, since photocon-
ductive noise power is a factor of 2 larger than
photovoltaic noise, their final results are correct for
the specified case of photoconductive noise, since the
two factors of 2 cancel.

Yura'5 calculated the CLR SNR reduction factor 
caused by refractive turbulence for a Gaussian trans-
mitter and Gaussian LO but ignored the receiver lens.
The conversion of notation is UTE -- a, FTE - f, rLO
b, R z, po(R) IPR, = FRE 00 (RE -- b), and 

/HPH[P(R) = 0] [see Eq. (190)]. Then tj becomes

b2
+ a2

[1 _ (Zlf)]2
+ (z/ka)2 + (z/kb)2

b
2

+ a
2
[1 - (zlf)]2 + (z/ka)2

+ (z/kb)2
+ (2z/kpR)2

which should match Yura's Eq. (41). The b2 terms in
the numerator and denominator are missing from
Eq. (41) of Yura because the phase curvature term
(ik/2z) (p1

2 _ p2
2) of his Eq. (23) was dropped in going

to his Eq. (25). This is equivalent to the far-field
assumption.

Clifford and Wandzura2 0 calculated the CLR power
reduction (no detector noise was considered) includ-
ing the refractive turbulence for the identical Gaus-
sian transmitter and combined receiver LO. Their
result [Eq. (15)] for propagation through statistically
independent atmospheric paths is proportional to our
result [Eqs. (92) and (189)] with the conversion of
notation uTE = rRE - Do/12, FTE = FE f, R z, and
po2(R) Po/2

Wang22 calculated the average CLR power (no

detector noise was considered) for a diffuse target,
uncorrelated atmospheric turbulence, no receiver lens,
and LO matched to the transmitter. His Eq. (47) is
proportional to our Eq. (92) with Eq. (189) under the
conversion of notation (TR = FR -4 Ml UTE = ULO °-n%

URE - aO, FTE F0, FLO - -F0 , FRE- FLO, 6.88 p0
2

_

ro2 , and R L. These linkages to prior work support
the validity of our general results.

100

lo-'
10.2

1 to-3

104

1o-

1016

lo,
100

ztlo-,Z10.1

U 10-3

1 -4

1o-

10.01
1 0

r2 1o01 100

R (km)
1o' 10

2

Fig. 4. Heterodyne efficiency ,H and the SNR as a function of
range R for a collimated Gaussian monostatic laser radar system at
a wavelength of 1.064 pum. The system parameters are FTE = F =
oo, R = 10.0 cm, (JL = LO = 7.07 cm, FLO = - U = 5 mJ, 3 = 4 x
10-5 m-' sr-', K(R) = 1.0, sQ = 0.5, and B = 50 MHz. The level of
refractive turbulence C,,2 has the values of C,, = 0 (-); C,2

=10-15
m-23, lf calculation [see Eqs. (84), (92), (167), and (200)] (... ), lf
plus hf calculation [see Eqs. (84), (92), (167), (169), (170), (189),
(209), and (214)] (---- -); and C, = 10-1 m 213

, lf calculation (- - *
If plus hf calculation (.. - ).
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Table 1. Diversification of Coherent Laser Radar Theory

Detector:
Target:

Geometry:
Analysis plane:
Power normalization:
Propagation regimes:
Transmitter/receiver:
Laser/LO field:
Refractive turbulence:
Theoretical method:

Scintillation regimes:
Performance criterion:

Large uniform YfQ

Glint
Mirror
Monostatic
Detector
Laser power
Near field
Untruncated Gaussian
Gaussian
Spectrum
Rhytov
Functional methods
Low spatial frequencies
SNR
System efficiency

Finite uniform s
Aerosol
Retroreflector
Bistatic
Receiver
Transmitter power
Near field focused

Circular
Gaussian modes
Turbulence profile
Extended Huygens-Fresnel
Two-scale expansion
High spatial frequencies
Heterodyne efficiency
Coherent receiver area

Variable qQ

Diffuse
General

Target
Noise power
Far field
General aperture
General
Intermittency
Path integral
Heuristic

Coherent responsivity

VI. Calculations

The conditions for the optimal performance of a
general Gaussian CLR system were determined in
Subsection IV.A. The behavior of the SNR and hetero-
dyne efficiency for the If behavior as a function of
range and level of refractive turbulence C for a
typical focused CLR system" with optimal parame-
ters [Eqs. (84), (92), (167), and (200)] is shown in Fig.
3. Here X = 1.0641 Am, cR = 10.0 cm, L = uLo = 7.07
cm, FTE = FRE = F = 1 km, UT = 5 mJ, and refractive
turbulence strength C is assumed uniform with
range. As expected, the best performance is obtained
at the focal distance with small CQ2. The collimated
case FTE = FRE = F = a) and the If and hf calculations
[Eqs. (92) and (84) using Eqs. (169) and (170)] are
shown in Fig. 4. The near-field behavior is important
for all ranges of < 10 km. The enhancement of the
SNR at large distances is due to an enhancement in
heterodyne efficiency from the hf contribution. Note
the region of superenhancement (a SNR higher than
predicted for no refractive turbulence; see Subsection
III.A) near the 1-km range.

VII. Conclusions and Recommendations

The use of shorter wavelengths in CLR systems
makes the theoretical treatment of atmospheric refrac-
tive turbulence and near-field, nonfocused conditions
more important. The analytic expressions derived
here are complementary to numerical investigations
and lead to an insight and understanding of CLR
physics, operating regimes, parameter dependencies,
and optimizations.

The numerous choices or branches possible when
considering CLR theory present a formidable multidi-
mensional parameter space, as Table II conveys. We
chose notation and normalization to provide the
clearest extension of previous results to the most
general conditions.

The performance of CLR can be determined by
calculations of the SNR [Eq. (14)] and heterodyne
efficiency [Eq. (15)]. The SNR is proportional to the
product of two terms [Eq. (17)]: the direct detection
power PD(t) and the heterodyne efficiency NH. The
heterodyne efficiency can be estimated from the laser

radar signal for general conditions. These expressions
are defined by the fields in the detector plane. The
SNR and heterodyne efficiency can also be calculated
in the receiver plane (Subsection II.B) and the target
plane (Subsection II.C). It is essential to perform
calculations in both the target plane and the receiver
plane to understand fully the physics of CLR perfor-
mance, especially when refractive turbulence is impor-
tant. For a large detector with uniform quantum
efficiency and for many common targets, the SNR can
be expressed in terms of the target characteristics and
in terms of the coherent responsivity (Subsection
II.D), which contains all the system and atmospheric
refractive turbulence contributions to the SNR. The
coherent responsivity is related to the heterodyne
efficiency and the direct responsivity, which contains
all the system and atmospheric refractive turbulence
contributions to direct detection power. The results
for a large detector with uniform quantum efficiency
are extended to the case of a finite detector with
uniform quantum efficiency (Subsection II.G) and a
detector with varying quantum efficiency (Subsection
II.H). The results for aerosol targets are directly
related to the results for diffuse hard targets; thus
calibration methods based on hard targets are justi-
fied.

The effects of atmospheric refractive turbulence
(Section III) are included by using path-integral
expansions that produce two separate series, the If
series and the hf series. The If series describes the
contribution to system performance from the large-
scale scintillation processes. When the intensity fluc-
tuations on the target are small, the first term of the
lf series yields the dominant behavior. This term is
equivalent to the assumption of statistically indepen-
dent paths and simplifies the numerical calculations
for a number of problems, in particular, monostatic
CLR calculations for short propagation paths. The
enhancement of the SNR over the statistically inde-
pendent path calculation is only possible if the irradi-
ance fluctuations on the target are appreciable. In
this region the small-scale scintillation appears on the
target and the hf series becomes important. In the
limit of large path-integrated refractive turbulence,
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the SNR approaches twice the statistically indepen-
dent path calculation when the transmitted and
BPLO fields are matched. The enhancement of the
SNR compared to no refractive turbulence (super
enhancement) is also possible for a variety of parame-
ter regimes.

The effects of the different physical mechanisms on
CLR performance were determined by calculations of
the SNR and heterodyne efficiency for untruncated
Gaussian transmitter, receiver, and LO (Section IV)
for the leading-order term of both the lf and hf series.
A heterodyne efficiency of unity is possible when the
dimensions of the transmitter are much larger than
the dimensions of the receiver. However, this is not a
practical system, and heterodyne efficiency is less
than unity for the more useful monostatic configura-
tion. The SNR and heterodyne efficiency for the
optimal Gaussian laser radar system are shown for a
typical 1.0641-p1m wavelength system (Figs. 3 and 4)
and demonstrate that the near-field region and atmo-
spheric refractive turbulence are more important
than for 10.6-jim wavelength systems.

Extensions of this work include the CLR SNR,
system efficiency %, and heterodyne efficiency %H
theory and calculations appropriate for

(1) arbitrary transmitter, receiver, LO, and detec-
tor response;

(2) medium and strong path-integrated refrac-
tive- turbulence conditions;

(3) the use of optical fibers for mixing fields;
(4) general scattering surfaces;
(5) bistatic CLR systems in strong path-inte-

grated refractive turbulence;
(6) space-time statistics of real atmospheric re-

fractive turbulence;
(7) refractive-turbulence spectra for real atmo-

spheric conditions;
(8) effects of misalignments; and
(9) effects of optical aberrations.

Many of these theoretical extensions may be analyt-
ically intractable, and numerical calculations and
simulations may be required. However, because of
the difficulty of performing numerical calculations
that include the effects of refractive turbulence,
analytical expressions based on expansions for the
transmitter field, receiver lens, and LO field would be
useful for understanding laser radar performance.
They also provide benchmarks for testing the accu-
racy of any numerical calculation.

Appendix A: Average Intermediate Frequency
Heterodyne Power

Using the complex representation of a real expres-
sion, Eq. (8) becomes

is(t) ID f qQ(w)[Es(w, L, t)ELO*(w, L) exp(iAwt + i)

+ Es*(w, L, t)ELo(w, L) exp(-iAet - is)]dw. (Al)

The average CLR power is the ensemble average of
the square of i,(t), i.e.,

(G~e) fD f 
(iS (t) = , f 'q)rDi Q(W01qQ(W2)

x [(Es(w, L, t)Es*(w 2 , L, t))(ELo*(wl, L)ELO(w2, L))

+ (E2 (w2 , L, t)Es*(wl, L, t))(ELo*(w2, L)ELo(wl, L))

+ (ES(w,, L, t)Es(w 2, L, t))(ELo*(wl, L)ELO*(w2, L))

x exp(2iAwt + 2i0s) + (Es*(wl, L, t)Es*(w2 , L, t))

X (ELO(wl, L)ELo(w2 , L))exp(-2iAot - 2i0s)]dwjdw2.

(A2)

The first two terms are equal, and the last two terms
are zero because of the ensemble average over the
random phase Os. This produces Eq. (11).

Appendix B: Symbols

ACOH R(m )

BPLO

B (Hz)
B(ql, q2, P1, P2) (m- 4

sr-')
B(x, z)

C(R, t)
C,

2
(z) (

213
)

D(R, T)
D'(x, z) (m-1)
EBPLOL,LoTs(x, R, t)

[(W .m-2
)1/2]

FLLORTRETE (i)

GD
GA() (m2)

G(p; u, R) (m-2)

GW(p;u,R)

I(t) (A)

IdcS (A)

JT,BPLO(P, R) (W m'1)

K(R)
L (m)

LO

MBPLo,LoST(Xl, X
2

, Z, t)

(W m-2)

N(os; p, R) (m-' sr)

OBPLOT(X, R, t)

PD,L,LO,LOD,T (W)

R (m)

RF,S,A ()

coherent area and area of receiver;
backpropagated local oscillator;
bandwidth of detector and amplifier;
target-scattering function;
correlation of refractive-index

fluctuations;
coherent responsivity;
refractive-index structure constant;
direct responsivity;
structure function -density;
reduced field for BPLO, laser, local

oscillator, transmitter, and
backscattered field;

focal length for laser, local oscillator,
receiver lens, transmitter lens,
effective receiver, effective
transmitter;

detector amplifier gain;
antenna gain for effective coherent

area;
Green's function for propagation

through random media;
Green's function for propagation

through free space;
total detector current;
detector direct current and

backscattered signal current;
target irradiance of transmitter and

BPLO;

one-way irradiance extinction;
distance from receiver aperture to

detector;
local oscillator;

mutual coherence function for BPLO,
LO, backscattered, and transmitter
fields;

number density of aerosols per unit
volume per unit q,;

autocorrelation of BPLO and
transmitter field;

power of direct detection, laser, LO, LO
on the detector, and transmitter;

target range;
radius of Fresnel zone, scattering

caused by turbulence, and circular
receiver aperture;
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TrR power truncation of laser by

transmitter aperture and of BPLO
by receiver aperture;

UL, (J) pulse energy of the laser and
transmitter;

U(R) strength of integrated refractive
turbulence;

V(q1 , p1) (m-
2

sr-
1

/
2
) target-scattering coefficient;

WR,T (x) field transmittance for the receiver
and transmitter aperture;

Y(K) (In2) Fourier transform of detector
quantum efficiency qQ(W);

c (m S-) speed of light;

c(p, R, t) (m-
2

) coherent responsivity density;

cJ(p1 , p2, R, t) (M 4
) joint coherent responsivity density;

d(p, R, t) (m-2) direct responsivity density;
dJ(p1, P2, R, t) (m-4) joint direct responsivity density;
e = 1.602 x 10-"9 (C) electronic charge;

eBPLOLLT(x, R, t) (m-
2
) normalized fields for BPLO, laser,

LO, and transmitter fields;

h = 6.626 x 10-34 (J s) Planck's constant;

iNs(t) (A) noise and signal current fluctuations;

JBPLORT(X, R, t) (M 2
) irradiance of normalized fields for

BPLO, incoherent receiver, and
transmitter;

k (rad m') wave number of the field;
MBPLOST(X1, X2, Z, t) (M-

2
) mutual coherence function of

normalized fields for the BPLO,

backscattered field, and transmitter

mSD(p, X1, X2, Z, t) (m-
4
)

MSJ(P1, P2, X1, X2 Z t)

n(x, z)
p, q (m)
r (m)
r (sr-1 2)
S (m)
t (s)
u (m)
v (m)
w ()
x (m)
Z (m)

a(Z) (M-')
P (mi

1 sr')

V(p) (m-
2
)

1 QJs

Os

0P

K (m-')
X (m)

v (Hz)
p (sr-')

p0(R) (m)

`BhR.BT,LLO,R,RE,T,TE (m)

field;

mutual coherence function density of
the normalized backscattered field;

joint mutual coherence function
density of the normalized
backscattered field;

refractive-index fluctuations;
target transverse coordinates;
centroid coordinate;
reflection coefficient;

difference coordinate;

time;
transmitter transverse coordinate;
receiver transverse coordinate;
detector transverse coordinate;
general transverse coordinate;
general propagation direction;
linear extinction coefficient;
aerosol backscatter coefficient;
2-D vector delta function;
quantum, heterodyne, and system

efficiency;

phase of backscattered field compared
to the LO field;

angle between the normal of a plane
surface and the transmitter axis;

spectral spatial wave number vector;
wavelength of the optical field;
frequency of the optical field;

backscatter coefficient of the diffuse
target;

transverse field coherence length;
Gaussian width of the BPLO beam,

transmitter beam, laser, LO,
receiver lens, effective receiver,

transmitter lens, effective

transmitter;
normalized variance of irradiance;

a.S (M
2
)

1r (s)

$ (rad)

w (rad s)

wLO (rad s-
1

)

(%nk 0 ( )
*D,ST(X, Z, t) [(W m-

2 )/2

fl (sr)

backscatter cross section for point
scatterer;

pulse duration;
angle between target vector and

propagation axis;
angular frequency of the transmitted

field;
angular frequency of the LO field;
spatial spectrum of the

refractive-index fluctuations;
total detector field, backscattered

field, and transmitted field;

solid angle of the effective receiver
aperture viewed from the target.
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