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Abstract 
 

We study atomic coherence and interference in four-level atoms confined in an optical 
cavity and explores the interplay between cavity QED and electromagnetically induced 
transparency (EIT). The destructive interference can be induced in the coupled cavity-
atom system with a free-space control laser tuned to the normal mode resonance and leads 
to suppression of the normal mode excitation. Then by adding a pump laser coupled to the 
four-level atoms from free space, the control-laser induced destructive interference can be 
reversed and the normal mode excitation is restored.   When the free-space control laser is 
tuned to the atomic resonance and forms a Λ-type EIT configuration with the cavity-atom 
system, EIT is manifested as a narrow transmission peak of a weak probe laser coupled 
into the cavity mode. With the free-space pump laser driving the cavity-confined atoms in 
a four-level configuration, the narrow transmission peak of the cavity EIT can be split into 
two peaks and  the dressed intra-cavity dark states are created analogous to the dressed 
states in free space. We report experimental studies of such coherently coupled cavity-
atom system realized with cold Rb atoms confined in an optical cavity and discuss 
possible applications in quantum nonlinear optics and quantum information science. 
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1. Introduction 

   Cavity QED has been a subject of many recent studies and has a variety of applications in 
quantum physics and quantum electronics [1]. The basic cavity QED system consists of a single 
two-level atom coupled to a single cavity mode [2]. The composite atom-cavity system exhibits a 
double-peaked transmission spectrum representing the two normal modes of the first excited 
eigenstates. When the system is resonantly coupled, the two normal modes are separated in 

frequency by 2g ( Vg a 02/ εωµ h= is the atom-cavity coupling coefficient), commonly referred 

to as the vacuum Rabi splitting [1-2]. Observation of the two normal modes in the optical 
wavelength range requires a cavity-atom system with a g value greater or comparable with the 
decay rates of the cavity and the atomic system, which can be realized in a high finesse cavity 
with a small mode volume [2]. On the other hand, if N two-level atoms collectively interact with 
the cavity mode, the coupling coefficient becomes gNG =  and the vacuum Rabi splitting of the 
normal modes for the collectively coupled atom-cavity system becomes 2G and may then be 
observed in a cavity with a moderate mode volume and finesse [3-5].  
   Electromagnetically induced transparency (EIT) can be created in various atomic systems via 
coherent interactions of radiations fields and atoms [6-7]. EIT has been shown to be important for 
various applications in quantum optics and nonlinear optics [8-10]. Recent studies of EIT and 
related phenomena have been extended to coherent coupled atom-cavity systems [11-14]. It has 
been shown that in a coherently coupled cavity and multi-atom system, the interplay of the 
collective coupling of the atoms and the cavity mode, and the atomic coherence and interference 
manifested by EIT may lead to interesting linear and nonlinear optical phenomena [15-20].  
   Here we present studies of an atom-cavity system consisting of N four-level atoms confined in 
an optical cavity and coherently coupled from free space by two laser fields: one acts as a 
coupling laser and forms a Λ-type standard EIT configuration with the cavity mode; another acts 
as a pump laser and forms a N-type coupled atomic system with the control laser and the cavity 
mode. By varying the frequency detuning of the control laser, several distinct phenomena are 
manifested in the coupled cavity-atom system. When the control laser is tuned to the atomic 
resonance and the pump laser is absent, the cavity-atom system exhibit cavity EIT [11-15]. If the 
pump laser is turned on and tuned to the atomic resonance, the transmission peak of the cavity 
EIT can be split into two peaks, indicating generation of two dressed intra-cavity dark states [21-
22]. On the other hand, when the control laser is tuned to the resonance of one of the two normal 
modes and the pump laser is off, the destructive interference is induced for the normal mode 
excitation, which is manifested as a narrow dip in the transmission spectrum of the probe laser 
coupled into the cavity mode [23-24]. When the pump laser is on and tuned to the atomic 
resonance, the destructive interference induced by the control laser is reversed and the light 
transmission of the probe laser at the resonance of the normal mode is restored. Such 
manipulation of the coupled cavity-atom system shows a simple way to control the quantum 
states of the cavity QED by the laser induced coherence and interference and may be useful in a 
variety of applications in nonlinear optics, and quantum information science.      
 
2. Theoretical analysis 
 
   We consider a composite atom-cavity system that consists of a single mode cavity confining N 
identical four-level atoms driven by a control laser and a pump laser from free space as shown in 
Fig. 1. The cavity mode couples the atomic transition |1>-|3> and 13νν −=∆ cc is the cavity-atom 
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detuning. The classical control laser drives the atomic transition |2>-|3> with Rabi frequency 2Ω, 
and the classical pump laser drives the atomic transition |2>-|4> with Rabi frequency 2Ωs. 

23νν −=∆  is the control frequency detuning and 24νν −=∆ ss is the pump laser detuning. We 
calculate the light transmission of a weak probe laser coupled into the cavity mode as the probe 
frequency detuning 

13νν −=∆ pp
 is scanned across the atomic transition frequency ν13. The 

interaction Hamiltonian for the cavity-atom system is  
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lmσ  (l, m=1-4) is the atomic operator for the ith atom and â  is the annihilation operator of 
the cavity photons. The resulting operator equations of motion for the intra-cavity light field 
(two-sided cavity, one input) is given by [25-26] 
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pâ is the input probe field, and κ1 and κ2 are the loss rates of the cavity mirrors. The 

equation of the motion for the expectation value of the intra-cavity probe field is [20] 
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Fig.1 The schematic coupling scheme of coherently coupled four-level atoms in a cavity. A 
control laser drives |2> - |3> transition with Rabi frequency 2Ω and a pump laser couples 
|2> - |4> transition with Rabi frequency 2Ωs. ∆ (∆s) is the control (pump) detuning. The 
cavity mode is coupled to the atomic transition |1> - |3> with the collective coupling 
coefficient gN ( Vg a 02/ εωµ h= ) (∆c is the cavity-atom detuning). A weak probe laser is 

coupled into the cavity and ∆p is its frequency detuning from the atomic transition.  
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For a symmetric cavity (as in our experiment), κκκ == 21 . Under the condition of g<<Ω, the 
atomic population is concentrated in |1> and the steady-state solution of the intra-cavity probe 
field is given by 
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 where χ is the atomic susceptibity given by  
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Here Γ3 (Γ4) is the decay rate of the excited state |3> (|4>) and γ12 is the decoherence rate of the 
ground states |1> and |2>.  The transmitted probe field is then given by aa out

p κ= . 

First, we consider manipulation of cavity EIT in the four-level system. Fig. 2 plot the  
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Fig. 2 The transmission intensity of the probe laser coupled into the cavity-atom 
system versus the probe detuning ∆p/Γ. (a) Without the control laser (Ω=0) and the 
pump laser (Ωs=0). (b) With the control laser at ∆=0 (Ω=2Γ), but without the pump 
laser (Ωs=0), (c) With both the control laser (Ω=2Γ) and the pump laser at ∆s=0 
(Ωs=Γ). The other parameters are Γ3= Γ4 = Γ, Γ= 5.3Ng , Γ= 5.1κ , γ12=0.001Γ, and 

∆c=0.
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versus the probe frequency detuning ∆p/Γ. Fig. 2(a) depicts the probe transmission spectrum 
without both the control laser and the pump laser, in which the two transmission peaks represent 
the two normal modes separated in frequency by the vacuum Rabi frequency gNG 22 =  [3-5]. 

When the control laser is present and tuned to the atomic resonance at ∆=0 (without the pump 
laser), cavity EIT is created in the cavity-atom system, and the probe transmission spectrum 
exhibits three peaks as shown in Fig. 2(b): the central peak at ∆p=0 represents the cavity EIT, or 
intra-cavity dark state [11-13] and the two sideband peaks represent the normal modes of the 
coupled cavity-atom system [3-5], which are modified by the free-space control laser [21]. Fig. 
2(c) plots the probe transmission spectrum when a resonant pump laser (∆s=0) and a Rabi 
frequency Ωs=Γ is present. It shows that the central EIT peak is split into two peaks and the peak 
separation is approximately equal to 2Ωs. This is analogous to the dressed states of a laser 
coupled two-level system in free space [27].    Next we consider the effect of the control-laser-
induced interference on the normal mode excitation of the multi-atom cavity QED system. Fig. 

3(a) plots the transmitted intensity of the probe field 
in

t

I

I
 versus the probe frequency detuning  
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Fig. 3 The normalized transmission intensity It/Iin of the probe laser (Iin is the probe 
input intensity) through the cavity versus the probe detuning ∆p/Γ. (a) The probe 
transmission spectrum without the control laser (Ω=0) and the pump laser (Ωs=0). The 
two transmission peaks represents the two normal modes of the cavity QED system. 
(b) The probe transmission spectrum with the control laser (Ω=2Γ), but without the 
pump laser (Ωs=0), (c) The probe transmission spectrum with both the control laser 
(Ω=0.5Γ) and the pump laser (Ωs=0.5Γ). The relevant parameters are Γ3= Γ4 = Γ, 

Γ= 6Ng , Γ= 5.1κ , γ12=0.001Γ, and ∆c=0. 

            
 

∆p/Γ3 without the control laser and the pump laser. The probe spectrum exhibits two transmission 
peaks representing two normal modes separated by the vacuum Rabi frequency 2G. Fig. 3(b) 
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plots the probe transmission spectrum with the control laser present (Ω=0.5Γ) and tuned to the 
normal mode resonance at gN=∆ , but without pump laser (Ωs=0). Fig. 3(b) shows that the 
control laser induces the destructive interference and suppresses the normal mode excitation (the 
probe transmission at the normal mode resonance (∆p=G) is blocked) [23]. Fig. 3(c) plots the 
probe transmission when the pump laser is present (Ωs=0.5Γ) and tuned to the atomic resonance 
(∆s=0). The spectrum shows that the pump laser reverses the destructive interference and enables 
the excitation of the normal mode and therefore the transmission of the probe light as seen by the 
increased transmission at the normal mode resonance ∆p=G. 
 
3. Experimental results 
 
   We carried out experimental studies of the coherently coupled cavity and four-level atoms 
system with cold 85Rb atoms confined in a near confocal cavity consisting of two mirrors of 5 cm 
curvature with a mirror separation ~ 5 cm. The empty cavity finesse is measured to be ~ 150. A 
detailed description of our experimental set up can be found in elsewhere [13,21] and is only 
briefly outlined here. Three extended-cavity diode lasers were used as the control laser that drives 
the 85Rb D1 transition F=3 to F’=3, the pump laser that couples the 85Rb D2 transition F=3 to 
F’=4, and the probe lasers that couples the 85Rb D1 transition F=2 to F’=3. The circularly-
polarized control laser and the linearly polarized pump laser were directed to overlap the cold 
atoms from the open side of the cavity and propagated in the directions nearly perpendicular to 
the cavity axis. The probe laser was linearly polarized parallel to the propagating direction of the 
control laser and then after sufficient attenuation, was coupled into the cavity. The transmitted 
probe light was collected by a photon counter (PerkinElmer SPCM-AQR-16-FC). The probe 
transmission spectrum was measured as the probe laser frequency was scanned across the 85Rb D1 
transition F=2 to F’=3.  

The experiment was run sequentially with a repetition rate of 10 Hz. All lasers were turned on 
or off by acousto-optic modulators (AOM) according to the time sequence described below. For 
each period of 100 ms, ~98 ms was used for cooling and trapping of the 85Rb atoms, during 
which the trapping laser and the repump laser were turned on by two AOMs while the coupling 
laser, the pump laser, and the probe laser were off. The time for the data collection lasted ~ 2 ms, 
during which the repump laser was turned off first, and then after a delay of ~0.2 ms, the trapping 
laser was turned off (the current to the anti-Helmholtz coils of the MOT was always kept on), and 
the coupling laser, the pump laser, and the probe laser were turned on. After the coupling laser, 
the pump laser, and the probe laser were turned on by the AOMs for 0.2 ms, the probe laser 
frequency was scanned across the 85Rb D1 F=2→F=3 transitions and the probe light transmitted 
through the cavity was then recorded versus the probe frequency detuning.   

Fig. 4 plots the measured cavity transmission intensity of the probe laser Iout/Iin (Iin is the 
resonant transmission of the probe light through an empty cavity) versus the probe frequency 
detuning ∆p. The empty cavity is tuned to the atomic transition frequency ∆c= 013 =−ννc  and both 

the control laser and the pump laser are on resonance (∆≈0 and ∆s≈0). The decay linewidth of the 
Rb transitions are Γ3=5.7 MHz and Γ4=5.9 MHz, respectively. Other parameters are 

20=Ng MHz, 14=κ  MHz, Ω=12 ΜΗz, γ12=0.01Γ, and 0=∆=∆=∆ sc . The measured spectrum 
was the average of 50 scans. Fig. 4(a) plots the probe transmission spectrum without both the 
control laser and the pump laser. The two transmission peaks represent the two normal modes 
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Fig. 4 The cavity transmission intensity It/Iin versus the probe detuning ∆p. Black lines 
are experimental data and red lines are calculations. (a) Without both the control laser 
and the pump laser. (b) With the control laser (Ω≈12 MHz) and without the pump 
laser. (c) With both the control laser (Ω≈10 MHz) and the pump laser Ω s ≈8 MHz. 

   
separated in frequency by the vacuum Rabi frequency (2 MHzNg 40≈ ). Fig. 4(b) plots the probe 
transmission spectrum with the control laser, but without the pump laser, and exhibits the three-
peaked cavity EIT spectrum: two sideband peaks located at Ngp

22 +Ω±=∆  represent the normal 

modes of the coupled cavity-atom system, and a central peak at ∆p=0 is manifested by EIT (the 
intra-cavity dark state) [11,13]. Fig. 4(c) plots the probe transmission spectrum with both the 
control laser and the pump laser, in which the cavity EIT peak is split into two peaks. We 
observed that the splitting is nearly equal to 2Ωs and appear at sufficiently high pump intensities 
(Ω3 >3 MHz).  We are in the process of carrying out experimental studies of manipulating the 
excitation of the normal modes by the quantum interference in the cavity-coupled four-level 
atomic system. We observed destructive interference in the normal mode excitation induced by 
the control laser when it is tuned to the normal mode resonance (detuned from the atomic 
resonance by ∆=G). The experimental results are plotted in Fig. 5. Fig. 5(a) plots the probe 
transmission spectrum without the control laser. The measured vacuum Rabi splitting is 

8522 ≈= NgG MHz (the experiment was done with the number of cold atoms about 4 times that 
of the experiment shown in Fig. 4).  Fig. 5(b) plots the probe transmission spectrum when the 
control laser is present (∆=42 MHz and Ω=12 MHz), but without the pump laser. It shows that 
the normal mode excitation at the resonance ∆p=G is suppressed and a dip appears in the probe 
transmission. We plan to add the pump laser to form the coherently coupled four-level atom and 
cavity system and in subsequent experiments, expect to observe the phenomenon of reversed 
destructive interference and restoration of the normal mode excitation predicted in the theoretical 
calculation of Fig. 3(c).   
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Fig. 5 The probe transmission intensity versus the probe detuning ∆p. Black lines are 
experimental data and red lines are calculations. (a) Without both the control laser and 
the pump laser. (b) With the control laser (Ω≈12 MHz) and without the pump laser. 
The parameters are 8522 == NgG  14=κ  MHz, Ω=12 ΜΗz, γ12=0.01Γ, Ng=∆ , 

and 0=∆=∆ sc  
    
 
4. Conclusion 
 
   In conclusion, we have shown that the atomic coherence and interference induced by laser 
fields in four-level atoms can be used to manipulate and control quantum states of the coupled 
cavity and atom system. Specifically, the destructive interference can be induced by a free-space 
control laser in the excitation of the normal mode of the cavity-atom system and can be reversed 
by a free-space pump laser. Under appropriate conditions, the same control laser and the pump 
laser can be also used to manipulate the cavity EIT and create the dressed intra-cavity dark states. 
The coherent coupled cavity-atom system and the interference phenomena reported may be useful 
to a variety of applications in nonlinear optics and quantum physics. For example, the coherently 
coupled cavity-atom system can be used to explore the light-control-light phenomena such as all 
optical switching and cross-phase modulations at ultra-low light intensities [17,24], which may be 
useful for quantum gates applications. The cavity-atom system can be also used to realize the 
broadband cavity EIT and explore possibility of applications for multi-channel and multi-color 
light memories [10, 28]. Furthermore, our recent study shows that the transmitted photons and 
reflected photons from the coherently coupled cavity-atom system are highly correlated, which 
may render the system useful for studies of the photon correlation and quantum entanglement for 
the atoms and light fields.  
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