
Coherent Measures of Risk from a General Equilibrium
Perspective∗
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Abstract

Coherent measures of risk defined by the axioms of monotonicity, subadditivity,
positive homogeneity, and translation invariance are recent tools in risk management
to assess the amount of risk agents are exposed to. If they also satisfy law invariance
and comonotonic additivity, then we get a subclass of them: spectral measures of
risk. Expected shortfall is a well-known spectral measure of risk.

We investigate the above mentioned six axioms using tools from general equi-
librium (GE) theory. Coherent and spectral measures of risk are compared to the
natural measure of risk derived from an exchange economy model, that we call GE
measure of risk. We prove that GE measures of risk are coherent measures of risk. We
also show that spectral measures of risk are GE measures of risk only under stringent
conditions, since spectral measures of risk do not take the regulated entity’s relation
to the market portfolio into account. To give more insights, we characterize the set
of GE measures of risk via the pricing kernel property.
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1 Introduction

Risk management is of crucial importance considering the enormous financial risk our econ-
omy is exposed to. The risks of many economic agents are regulated by various institutions.

For example, if a financial trader wants to sell options, which give the buyer rights of
buying or selling at a given price during a specified time horizon (or at a given time), he has
to fulfil margin requirements, i.e. he has to deposit some cash or some other riskless and
liquid instrument. An exchange’s clearing firm, which is responsible for the promises to all
parties of transactions being securely completed, requires margin deposits. A measure of
risk can be used to determine the margin requirement. The riskier the trader’s portfolio,
the more the margin requirement should be.

Other external regulators, at an international level, are the International Actuarial As-
sociation (IAA) and the International Accounting Standards Board (IASB), who determine
the capital requirements for insurance companies. Similarly, the Basel Committee gives
guidelines for the acceptable level of capital on banking supervision. Since a government
or central bank could be a lender of last resort for these institutions, and the default of
them could cause serious problems, they are regulated as well. As an internal regulator, a
portfolio manager has to regulate the risk of its traders. In the context of a multi-division
firm setting, the head-office may also set risk-limits for the divisions. Internally the risk
values can also be used for planning and performance evaluation. It is therefore crucial to
measure risk in an appropriate way.

We will use the term portfolio when referring to a risky entity (portfolio, firm, insurance
company, bank, etc.). The value of a portfolio might change due to all kinds of uncertain
events. We relate risk to the probability distribution of the future value of the portfolio.
For the sake of simplicity in this paper we use discrete random variables. A measure of
risk assigns a real number to a random variable. It is the minimal amount of cash the
regulated agent has to add to his portfolio, and to invest in a zero coupon bond. Coherent
measures of risk (Artzner, Delbaen, Eber, and Heath, 1999) are defined by four axioms:
monotonicity, subadditivity, positive homogeneity and translation invariance. Adding two
more axioms: law invariance and comonotonic additivity we get a subclass of coherent
measures of risk, namely spectral measures of risk (Acerbi, 2002). Expected shortfall is a
well-known spectral measure of risk (Acerbi and Tasche, 2002).

Our approach is to model the situation at hand as an exchange economy in a general
equilibrium (GE) setting, and determine which axioms are compatible with this model,
and whether other axioms emerge as natural. This approach has the advantage that it
recognizes the fact that the risk of a portfolio depends on the other assets present in the
economy (the market portfolio), an insight that is generated immediately by the Capital
Asset Pricing Model as developed by Sharpe (1964) and Lintner (1965). By doing so we
would like to contribute to the research agenda that connects finance to GE theory, see for
instance Geanakoplos and Shubik (1990), Magill and Quinzii (1996), or Leroy and Werner
(2001). The corresponding measure of risk of a portfolio would be the amount of cash
needed to sell the risk involved in the portfolio to the market. More precisely, the so-called
GE measure of risk of a portfolio would be the negative of its equilibrium market price.
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We prove that GE measures of risk are coherent and comonotonic additive measures of
risk. However, GE measures of risk fail to satisfy law invariance, i.e. they are functions of
not only the probability distributions of the portfolios, since they also take the regulated
entity’s relation to the market portfolio into account. Nevertheless we show that GE
measures of risk satisfy a generalized notion of law invariance. To check on which domain
spectral measures of risk are GE measures of risk, we consider a general domain for the
measures of risk. We find that the corresponding domain is very small. To give more
insights, we characterize GE measures of risk as the only measures of risk satisfying the
property that we call the pricing kernel property.

The structure of the paper is as follows. In Section 2 we discuss coherent measures of
risk. In Section 3 spectral measures of risk are discussed. Using the exchange economy
model of Section 4 the properties of GE measures of risk are investigated in Section 5. In
Section 6 we show that spectral measures of risk are GE measures of risk only under strin-
gent conditions, and we characterize GE measures of risk via the pricing kernel property.
We conclude in Section 7.

2 Coherent Measures of Risk

Consider a set V ⊆ RS of realization vectors, where S denotes the number of states of
nature. State of nature s occurs with probability ps > 0 and

∑S
s=1 ps = 1. The vector

X ∈ V represents a portfolio’s (firm’s, insurance company’s, bank’s, etc.) possible profit
and loss realizations on a common chosen future time horizon, say at t = 1. The amount
Xs if positive (negative) is the portfolio’s profit (loss) in state of nature s. The inequality
Y ≥ X means that Ys ≥ Xs for all s = 1, . . . , S. We use the notations R+, R++ and
R− for R+ = [0,∞), R++ = (0,∞), R− = (−∞, 0], respectively. The discrete random
variable generated by p ∈ RS

++ and X ∈ V is denoted by X̂, i.e. P (X̂ = Xs) = ps, for all
s = 1, . . . , S.

A measure of risk is a function ρ : V → R measuring the risk of a portfolio from the
perspective of the present (t = 0). It is the minimal amount of cash the regulated agent has
to add to his portfolio, and to invest in a reference instrument today, such that it ensures
that the risk involved in the portfolio is acceptable to the regulator.1 We assume that
the reference instrument has payoff 1 in each state of nature at t = 1, thus its realization
vector is 1= (1, . . . , 1) ∈ V . The reference instrument is riskless in the “classical sense”,
having no uncertainty in its payoffs. It is most natural to think of it as a zero coupon
bond. The price of the reference instrument, the discount factor is denoted by δ ∈ R+.

We adjusted the definition of coherent measures of risk to the discrete case as follows.

Definition 2.1. A function ρ : V → R is called a coherent measure of risk (Artzner et
al., 1999) if it satisfies the following axioms.

1. Monotonicity : for all X, Y ∈ V such that Y ≥ X, we have ρ(Y ) ≤ ρ(X).

1The measure of risk can also be negative, meaning that a portfolio remains acceptable if a certain
amount of cash is withdrawn from it.
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2. Subadditivity : for all X, Y ∈ V such that X + Y ∈ V , we have
ρ(X + Y ) ≤ ρ(X) + ρ(Y ).

3. Positive homogeneity : for all X ∈ V, h ∈ R+ such that hX ∈ V , we have
ρ(hX) = hρ(X).

4. Translation invariance: for all X ∈ V and a ∈ R such that X + a1 ∈ V , we have
ρ(X + a1) = ρ(X)− δa.

The axioms are motivated as follows.
By monotonicity if a portfolio Y is always worth at least as much as X (event by event),

then Y cannot be riskier than X.
Subadditivity says that if we combine two portfolios, the risk is not greater than the sum

of the risks associated with each: it captures the notion of diversification. If an exchange’s
measure of risk would fail to satisfy this property, then a trader could be better off by
splitting his position, opening two accounts and decreasing the margin requirements. The
same motivation applies to firms, banks, insurance companies, etc. For instance, for the
case of internal capital budgeting, if the measure of risk satisfies subadditivity, then the
head office can be sure that by setting risk limits to the divisions, the risk of the whole
firm will be smaller than the sum of the individual risk limits. This enables the head office
to decentralize the risk constraints.

Positive homogeneity requires that portfolio size should linearly influence risk.
Translation invariance ensures that the measure of risk is expressed in appropriate units.

It means that investing an amount δa > 0 (or δa < 0) of cash into a units of reference
instrument at t = 0 leads to the payoff vector a1 at t = 1 and decreases (respectively:
increases) the measure of risk by δa.

For further motivation of the axioms see Artzner et al., 1999.
The four axioms above seem natural, but it is well known that the rather popular

Value-at-Risk (VaR) is not subadditive and hence it is not a coherent measure of risk. As
a byproduct checking the relevance of the coherency axioms from a general equilibrium
perspective enables us to assess this attack on VaR as well.

3 Spectral Measures of Risk

Acerbi (2002) treats spectral measures of risk in case of discrete random variables with
equiprobable outcomes, i.e. when p1 = · · · = pS = 1/S, as a special case. He assumes
that the discount factor is 1, and the domain is RS. In this paper we explicitly want to
use the discount factor, which for the moment is exogenously determined here as the price
of the reference instrument. Since in the general equilibrium model the discount factor
will be determined endogenously, we have to multiply Acerbi (2002)’s definition by δ. Our
model is a generalization also in the sense that we consider a general domain V ⊆ RS. The
definition of spectral measures of risk with equiprobable outcomes is as follows.

4



Let us introduce the ordered statistics Xs:S given by the ordered values of the S-tuple
X1, . . . , XS, i.e. {X1:S, . . . , XS:S} = {X1, . . . , XS} and X1:S ≤ X2:S ≤ · · · ≤ XS:S.

Definition 3.1. Let the outcomes be equiprobable. Consider a domain V ⊆ RS, and a
vector φ ∈ RS. The measure Mφ : V → R defined by

Mφ(X) = −δ
S∑

s=1

φsXs:S (1)

is a spectral measure of risk if φ ∈ RS satisfies the conditions

1. Nonnegativity: φs ≥ 0 for all s = 1, . . . , S,

2. Normalization:
∑S

s=1 φs = 1,

3. Monotonicity : φs is non-increasing, i.e. φs1 ≥ φs2 if s1 < s2 and s1, s2 ∈ {1, . . . , S}.

Spectral measures of risk are calculated as discounted weighted average losses, with
non-increasing weights, with the highest weight on the worst outcome. The weight vector
φ is the so-called risk spectrum. It can be interpreted as expressing the attitude toward
risk. As a special case we have the following definition.

Definition 3.2. Let k ∈ {1, . . . , S}. The k-expected shortfall of the realization vector X
is defined by

ESk(X) = −δ
k∑

s=1

1

k
Xs:S. (2)

The k-expected shortfall is the discounted average of the worst k outcomes. With an
unrestricted domain, i.e. if V = RS, Acerbi (2002) has the following result.

Proposition 3.3. Assume V = RS. A measure of risk Mφ : V → R is coherent if and
only if it is a spectral measure of risk as defined by Definition 3.1.

Proof. Acerbi (2002), Theorem 5.3. 2

Of course on a restricted domain, i.e. if V ⊂ RS, spectral measures of risk still satisfy
the four coherency axioms. However, as the following three examples show, depending on
V one might find other measures of risk Mφ : V → R that are coherent but not spectral
measures of risk.

Example 3.4. As a trivial example, let V contain only one vector, X. In this case all
measures of risk, i.e. all functions ρ : V → R satisfy the six axioms, since there are no two
vectors on which the axioms of monotonicity, subadditivity, etc. could be checked. Note
that in this case spectral measures of risk are those functions ρ : V → R that satisfy

− δ

S

S∑
s=1

Xs:S ≤ ρ(X) ≤ −δX1:S, (3)
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since they are at least as large as the discounted average loss of X, and at most as large
as the discounted highest loss of X.

Example 3.5. In the proof of Theorem 5.3 (Proposition 3.3 here) Acerbi (2002) shows for
the case V = RS that if a measure of risk Mφ : V → R is monotone, then its risk spectrum
φ should be nonnegative. If for a certain s we have that φs < 0, then for any X ∈ V an
increase in Xs:S gives rise to a higher measure of risk, contradicting monotonicity.

However, for many domains V , positivity is not required for monotonicity. Consider
a domain V = RS−1

− × {0}. In this case the best outcome of any portfolio is zero, thus
the weight of the best outcome, φS can be negative, since the best outcome can not be
increased. So although φ is not nonnegative everywhere, the measure of risk remains
monotone.

Example 3.6. IIn the proof of Theorem 5.3 (Proposition 3.3 here) Acerbi (2002) also
shows for the case V = RS that if a measure of risk Mφ : V → R is translation invariant,
then its risk spectrum φ should be normalized. If φ is not normalized, then it is easy to
check that translation invariance fails. It suffices to consider Mφ(X) and Mφ(Y ), where
Y = X + a1, and a ∈ R, a 6= 0.

For general domains V , normalization is not required for translation invariance. All
that is needed is that there are no two vectors X and Y such that X = Y + a1 for some
a ∈ R, a 6= 0. In this case translation invariance does not have bite and normalization can
be omitted.

Any measure of risk Mφ : V → R and in particular spectral measures of risk can be
shown to satisfy the axioms of law-invariance and comonotonic additivity, since they use
the ordered statistics of a portfolio. The definitions of these two axioms are as follows.

Definition 3.7. A measure of risk ρ : V → R is law invariant if for all X, Y ∈ V such
that for all s = 1, . . . , S

Pr(X̂ = Xs) = Pr(Ŷ = Xs),

we have ρ(X) = ρ(Y ).

Law invariance of ρ means that the measure of risk is a function of the probability
distribution (law) only. Note that two random variables X̂ and Ŷ can be different despite
the fact that they have the same probability distribution. Acerbi (2004) explains that law
invariance can be thought of as the property of “being estimable from empirical data”.
We will point out in Section 5 that the portfolios’ relations to the economy as a whole are
also important, which will be shown to violate the law invariance axiom. For instance, if
two portfolios have different covariances with the market portfolio, then the regulator may
perceive their risk differently, even if their probability distribution is the same.

Another characteristic of spectral measures of risk is comonotonic additivity.
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Definition 3.8. Two realization vectors X ∈ RS and Y ∈ RS are comonotonic if for all
s1, s2 ∈ {1, . . . , S}

(Xs1 −Xs2)(Ys1 − Ys2) ≥ 0.

A map ρ : V → R is comonotonic additive if given two comonotonic realization vectors
X, Y ∈ V such that X + Y ∈ V the map displays additivity, i.e. we have ρ(X + Y ) =
ρ(X) + ρ(Y ).

Comonotonicity is a very strong form of dependence that two random variables can
display. If two portfolios are comonotonic, then their value will always move up and down
together event by event, providing no diversification at all when added to each other. The
measure of risk of a portfolio consisting of two comonotonic subportfolios should therefore
be equal to the sum of the measures of risk of the subportfolios.

Tasche (2002) shows that in the continuous, non-atomic case spectral measures of risk
are the only coherent measures of risk satisfying law-invariance and comonotonic additivity.
As his proof requires non-atomic probability distributions, in the discrete, equiprobable
case a new proof is required for the analogous statement. Of course the proposition requires
unrestricted domain, i.e. V = RS.

Proposition 3.9. Assume that the outcomes are equiprobable and V = RS. Then a
measure of risk is coherent, law invariant and comonotonic additive if and only if it is a
spectral measure of risk as defined by Definition 3.1.

Proof.
(⇐) The coherency part follows from Proposition 3.3. Law invariance and comonotonic

additivity follows from the fact that spectral measures of risk are using the ordered statistics
of a realization vector.

(⇒) Take any law invariant and comonotonic additive measure of risk ρ : RS → R

satisfying the four coherency axioms. We will show that law invariance and comonotonic
additivity of ρ implies that it can be written in the form of Equation (1), i.e. there exists
a vector φ ∈ RS such that for all X ∈ RS we have that

ρ(X) = Mφ(X) = −δ

S∑
s=1

φsXs:S. (4)

Law invariance of ρ implies that for all X ∈ RS any permutation of X has the same
measure of risk. A particular permutation is the ordered statistics vector of X, [Xs:S].
Using the notation X̄ = {X ∈ RS|X1 ≤ X2 ≤ · · · ≤ XS} for the space of ordered statistics
we have that for all X ∈ RS the measure of risk ρ can be written as a function f : X̄ → R

of the ordered statistics vector,

ρ(X) = f([Xs:S]). (5)
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Comonotonic additivity of ρ implies that f is linear on X̄. Choosing S independent vectors
in X̄ implies that f is additive separable with constant weight functions φ̄1, . . . , φ̄S ∈ R,
i.e.

f([Xs:S]) = φ̄1X1:S + · · ·+ φ̄SXS:S. (6)

Using φs = − φ̄s

δ
, s = 1, . . . , S we have that Equation (4) is satisfied. Proposition 3.3 im-

plies that ρ should be a spectral measure of risk. 2

It is cumbersome to generalize the definition of spectral measures of risk to the case in
which the outcomes are not equiprobable. Consider the following example.

Example 3.10. In Table 1 we have 4 states of nature with equal probability of occurrence.
Portfolios X and Y , their ordered statistics and the risk spectrum φ is also given. A
straightforward calculation gives Mφ(X) = 0, and Mφ(Y ) = 3.5δ.

s ps Xs Xs:S Ys Ys:S φs

1 0.25 -3 -3 1 -4 0.4
2 0.25 2 2 -4 -4 0.3
3 0.25 2 2 -4 -4 0.2
4 0.25 2 2 -4 1 0.1

Table 1: Spectral measures of risk with equiprobable outcomes.

s p′s X ′
s X ′

s:S Y ′
s Y ′

s:S φg
s

1 0.25 -3 -3 1 -4 0.4
2 0.75 2 2 -4 1 0.6

Table 2: Spectral measures of risk with not equiprobable outcomes.

Since the portfolios X and Y have the same outcome in states of nature 2, 3 and 4,
we can merge those states. This operation leads to Table 2, where the generalized discrete
risk spectrum φg is given by φg

1 = φ1 and φg
2 = φ2 + φ3 + φ4.

By defining Mφg(X) = −δ
∑S

s=1 φg
sXs:S we have that Mφ(X) = Mφg(X ′) = 0, but

Mφ(Y ) = 3.5δ, whereas Mφg(Y ′) = δ. To avoid this problem, within the discrete setting
a different φg should be specified for all the orderings of the portfolio vectors. This would
rather complicate the analysis and would not add much value since with splitting up
the states and increasing their number any discrete distribution can be arbitrarily closely
approximated with equiprobable states. Thus we will use the discrete, equiprobable version
of spectral measures of risk as defined in Definition 3.1 in the sequel.
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4 An Exchange Economy Model

Next we discuss the four axioms underlying coherent measures of risk and the additional
two axioms of spectral measures of risk from a general equilibrium perspective. We do this
by checking the validity of the six axioms on the natural measure of risk derived from an
exchange economy model, that we call General Equilibrium (GE) measure of risk. The GE
measure of risk of a portfolio is the amount of cash needed to sell the risk involved in the
portfolio to the market. More precisely, it is the minimal amount of cash needed to add
to the portfolio, such that its market price becomes nonnegative. It is easy to see that the
GE measure of risk of a portfolio is the negative of its equilibrium market price.

To specify the GE measure of risk we consider an exchange economy model with two
time periods (t = 0, t = 1) and uncertainty concerning the state of nature in period
t = 1. We assume that for each state s in the set {1, . . . , S} its probability of occurrence
is objectively known, ps = 1/S.2 Period t = 0 is identified with state s = 0. There is a
unique nondurable commodity (income) in each state of nature s = 0, . . . , S.

The portfolios (firms, insurance companies, banks, etc.) are represented as exogenously
given realization vectors inRS. Their payoff is a profit or loss in state of nature s = 1, . . . , S.

To simplify the analysis, we assume that the economy can be modeled by means of
a representative agent. However, it is not difficult to extend the model to the case with
heterogenous agents. We assume that the consumption set of the agent is R in all states
of nature. His consumption stream is denoted by c = (c0, . . . , cS) ∈ RS+1.3

The agent’s preferences are represented by a von Neumann-Morgenstern utility function
u : RS+1 → R, given by

u(c0, . . . , cS) = v0(c0) + δ̄
S∑

s=1

psv(cs),

where v0 : R → R and v : R → R are elementary (Bernoulli) utility functions in state 0
and states s = 1, . . . , S respectively; the scalar δ̄ ∈ R++ is the subjective discount factor
of the agent.

Moreover, the representative agent is characterized by his (aggregate) endowment
ω = (ω0, . . . , ωS) ∈ RS+1. The endowment expresses the agent’s consumption possibil-
ities without trade, depending on the realization of the state of nature. To distinguish
between the sure zero-period endowment and the random first-period endowment, we de-
fine ω̃ = (ω1, . . . , ωS).

We assume that income transfers across all states are possible, i.e. markets are com-
plete. Without loss of generality we assume that there are S contingent contracts.

Definition 4.1. A contingent contract for state s (s = 1, . . . , S) is a promise to deliver
one unit of income in state s and nothing otherwise. The price of the contingent contract,

2We shall only employ the equiprobable assumption when comparing GE measures of risk to spectral
measures of risk.

3Since the unique commodity is income, the consumption vector c ∈ RS+1 should be interpreted as
earnings, and its negative values as losses.
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the state price, expressed in units of period 0 income, is denoted by πs for s = 1, . . . , S.
Furthermore, π0 = 1.

The agent can sell his endowment ω, from which he can purchase on the contingent
markets any consumption stream c satisfying the budget inequality

S∑
s=0

πscs ≤
S∑

s=0

πsωs. (7)

The agent’s utility function and his endowment define an economy E = (u, ω). The
equilibrium state prices are determined by the notion of competitive equilibrium.

Definition 4.2. A competitive equilibrium for an economy E = (u, ω) is a consumption
vector c∗ = (c∗0, . . . , c

∗
S) and state price vector π∗ = (π∗

1, . . . , π
∗
S) that satisfy the following

conditions:

1. c∗ ∈ arg maxc u(c0, . . . , cS) s.t.
∑S

s=0 π∗
scs ≤

∑S
s=0 π∗

sωs,

2. c∗ = ω.

We present two sufficient conditions for the existence of an equilibrium with nonnegative
state prices.

Proposition 4.3. Consider an economy E = (u, ω). If the elementary utility function
v0 : R → R is strictly monotonic and concave and v : R → R is monotone and concave,
then a competitive equilibrium (c∗, π∗) exists. Moreover, π∗

s ≥ 0 for s = 1, . . . , S.

Proof. Let us denote by WP(ω) the bundles weakly preferred to ω ∈ RS+1, i.e.

WP(ω) = {c ∈ RS+1|u(c) ≥ u(ω)}.

Since in equilibrium c∗ = ω, we have to show that there exists a state price vector
π∗ ∈ RS

+ that weakly separates the endowment ω from WP(ω). Since the elementary
utility functions v0 and v are assumed to be concave, the set WP(ω) is convex. Since v0

is strictly monotone, ω is at the boundary of WP(ω). Applying the supporting hyper-
plane theorem we get that there exists a vector (π∗

0, π
∗
1, . . . , π

∗
S) ∈ RS+1 such that for every

c ∈WP(ω) we have that
∑S

s=0 π∗
scs ≥

∑S
s=0 π∗

sωs. The strict monotonicity of v0 implies
that π∗

0 > 0, and the monotonicity of v implies that π∗
s ≥ 0 for s = 1, . . . , S. Of course

(π∗
0, π

∗
1, . . . , π

∗
S) can be normalized such that π∗

0 = 1. 2

Let U denote the set of utility functions u in which the elementary utility functions
v0 : R→ R and v : R→ R are twice differentiable, v′0 > 0, v′′0 ≤ 0 and v′ ≥ 0, v′′ ≤ 0.
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Proposition 4.4. Consider an economy E = (u, ω). If u ∈ U , then the competitive
equilibrium (c∗, π∗) is unique. Moreover,

π∗
s =

∂u(ω)
∂cs

∂u(ω)
∂c0

=
δ̄psv

′(ωs)

v′0(ω0)
≥ 0, s = 1, . . . , S.

Proof. It follows from elementary microeconomic theory that the first order conditions
of the agent’s maximization problem are

∂u(c∗)
∂cs

∂u(c∗)
∂c0

=
π∗

s

π∗
0

, s = 1, . . . , S, (8)

that is the marginal rate of substitution equals the corresponding price ratio. In equilibrium
c∗ = ω, and π∗

0 is assumed to be equal to 1. Then Equation (8) can be rewritten as

π∗
s =

∂u(ω)
∂cs

∂u(ω)
∂c0

=
δ̄psv

′(ωs)

v′0(ω0)
, s = 1, . . . , S. (9)

Since v′0 > 0, v′ ≥ 0, δ̄ > 0, and ps > 0 we get that π∗
s ≥ 0 for s = 1, . . . , S. The second

order conditions are satisfied due to the concavity of the elementary utility functions. 2

Under the assumptions of Proposition 4.3 or Proposition 4.4 one can define the equi-
librium price of any portfolio Z ∈ RS.

Definition 4.5. If (c∗, π∗) is a competitive equilibrium of an economy E = (u, ω), then
the equilibrium price, q∗Z of the portfolio Z ∈ RS is given by q∗Z =

∑S
s=1 π∗

sZs.

Note that under the assumption of Proposition 4.4 the equilibrium price of the portfolio
Z ∈ RS is uniquely given by

q∗Z =
S∑

s=1

π∗
sZs = δ̄

∑S
s=1 psv

′(ωs)Zs

v′0(ω0)
. (10)

As an important special case of Equation (10), the discount factor becomes

δ = q∗1 =
S∑

s=1

π∗
s1 = δ̄

∑S
s=1 psv

′(ωs)

v′0(ω0)
. (11)

Note that the discount factor is endogenously determined in the exchange economy model.
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5 General Equilibrium Measures of Risk

Now we can define the GE measure of risk of a portfolio as the negative of its equilibrium
market price.

Definition 5.1. Consider an economy E = (u, ω) with competitive equilibrium (c∗, π∗)
and a domain V . The GE measure of risk is the map ρu,ω : V → R, where ρu,ω(Z) = −q∗Z
for any Z ∈ V .

Note that Definition 4.5 and Definition 5.1 imply that for any Z ∈ V

ρu,ω(Z) = −q∗Z = −
S∑

s=1

π∗
sZs. (12)

Notice that ρu,ω is a linear function.

Example 5.2. Consider an economy E = (u, ω) and a domain V . Let v0(c0) = c0 − 1
2
αc2

0

and v(cs) = cs− 1
2
αc2

s for s = 1, . . . , S, where α ∈ R++ such that 1−αωs > 0, s = 0, . . . , S,
i.e. the elementary utility functions are quadratic and increasing at c∗ = ω. Since u ∈ U ,
using Equations (9) and (12) the GE measure of risk of Z ∈ V is given by

ρu,ω(Z) = −q∗Z = −
S∑

s=1

π∗
sZs = −δ̄

∑S
s=1 psv

′(ωs)Zs

v′0(ω0)
= −δ̄

∑S
s=1 ps(1− αωs)Zs

(1− αω0)
. (13)

One can also look at the stochastic part of the aggregate endowment ω̃ as representing
the market portfolio, since it captures the aggregate uncertainties. Let us denote the total
return of any portfolio Z by rZ , where the total return is the payoff vector divided by the
price: rZ = Z/q∗Z . It is well known (see for instance Geanakoplos and Shubik (1990)) that
with a quadratic utility function the CAPM formula holds. It relates the total return of
any portfolio to the total return of the market portfolio as follows.

E(rZ) = r1 + βZ(E(r
eω)− r1), where βZ = Cov(rZ ,r

eω)
V ar(r

eω)
. (14)

Note that the total return of the reference instrument is given by r1 = 1/δ. From q∗Z =
E(Z)/E(rZ) and Equation (14) it follows that

ρu,ω(Z) = −q∗Z = − E(Z)

r1 + βZ(E(r
eω)− r1)

. (15)

Thus if the elementary utility functions are quadratic, then the GE measure of risk of
portfolio Z is its discounted expected loss −E(Z)/r1 = −δE(Z), corrected with its risk
relation to the aggregate endowment.

Using the differentiability assumption let us denote the set of GE measures of risk on V
by GV , where

GV = {ρu,ω : V → R|u ∈ U , ω ∈ RS+1}.

Let us discuss some properties of GV .
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Proposition 5.3. Any ρu,ω ∈ GV is a coherent measure of risk as defined by Definition
2.1.

Proof. By Proposition 4.4 π∗
s ≥ 0 for s = 1, . . . , S. Using this fact and the linearity of ρu,ω

monotonicity, subadditivity and positive homogeneity follows immediately. For translation
invariance note that δ =

∑S
s=1 π∗

s by Equation (11). Then for all Z ∈ V , for all a ∈ R such
that Z + a1 ∈ V , we have

ρu,ω(Z + 1a) = −q∗Z+1a = −
S∑

s=1

π∗
s(Zs + a) = −

S∑
s=1

π∗
s(Zs)−

S∑
s=1

π∗
sa =

= −q∗Z − δa = ρu,ω(Z)− δa.

2

Note that GE measures of risk are coherent measures of risk under the assumptions of
Proposition 4.3 as well.

As GE measures of risk are coherent and their linearity also implies comonotonic addi-
tivity, so far five out of six axioms of spectral measures of risk are satisfied by them. The
sixth one is law invariance. The following example shows that GE measures of risk are not
law invariant.

Example 5.4. As a special case of Example 5.2 consider 2 states of nature at t = 1 with
equal probability of occurrence. Let δ̄ = 1 and α = 1. Two portfolios, X1 and X2, the
aggregate endowment, and the state prices calculated by Equation (13) are given in Table
3 below.

s ps X1 X2 ω π∗
s

0 - - - 0 1
1 0.5 -1 -2 0.2 0.4
2 0.5 -2 -1 0.5 0.25

Table 3: A GE measure of risk which is not law invariant.

Let us assume that X1, X2 ∈ V . It is easy to see that X̂1 and X̂2 have the same
probability distribution. However, ρu,ω(X1) = 0.9 6= 1.05 = ρu,ω(X2), so law invariance
fails.

Note that the two portfolios in Table 3 are related differently to the economy. Portfolio
X1 is larger when ω is smaller, whereas X2 is smaller when ω is smaller. Although the
two portfolios have the same mean, X1 is a better hedge against the aggregate uncertainty.
That is why the GE measure of risk of X1 is smaller than the GE measure of risk of X2.

One can easily calculate that in Example 5.4 r1 = 1.5385, and E(r
eω) = 1.7073. Using

those numbers we can apply Equation (15) and calculate the GE measures of risk of X1

and X2 through the CAPM formula as it is given in Table 4. Note that βX1 is positive,
whereas βX2 is negative.
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X1 X2

E(X i) -1.5 -1.5
βXi 0.7593 -0.6508

ρu,ω(X i) 0.9 1.05

Table 4: A GE measure of risk and the CAPM formula.

Most of the GE measures of risk are not law invariant. In Example 5.4 all that is
needed is that the state prices are different, which is the case in a generic economy. The
failure of law invariance tells us that the aggregate endowment (or market portfolio, in
terms of CAPM) should be taken into account, when calculating the risk of a portfolio.
Nevertheless one can generalize law invariance in such a way that GE measures of risk
satisfy them. The point is to look at the joint distribution of a portfolio and the aggregate
endowment.

Definition 5.5. A measure of risk ρ : V → R is generalized law invariant if for all
X, Y ∈ V such that for all s = 1, . . . , S

Pr(X̂ = Xs and ω̂ = ωs) = Pr(Ŷ = Xs and ω̂ = ωs),

we have ρ(X) = ρ(Y ).

Proposition 5.6. GE measures of risk are generalized law invariant.

Proof. It is easy to see from Equation (10) and Definition 5.1 that any ρu,ω ∈ GV is
generalized law invariant. 2

6 Connections: Spectral and GE Measures of Risk

In this section we show the conditions under which spectral measures of risk as defined in
Definition 3.1 are GE measures of risk as defined in Definition 5.1. Then we characterize
GE measures of risk.

Definition 6.1. A vector ω ∈ RS and a set V ⊆ RS are comonotonic if ω and Z are
comonotonic for every Z ∈ V .

Proposition 6.2 says that all the spectral measures of risk are GE measures of risk if
and only if their domain is comonotonic with the aggregate endowment, i.e. all the vectors
in V are comonotonic with ω, their values go up and down together event by event.

Proposition 6.2. Assume ω is given and it has different outcomes in each state of nature.
Moreover, let V contain S linearly independent vectors which are comonotonic with ω.
Then for every Mφ there exists a GE measure of risk ρu,ω ∈ GV such that

Mφ(Z) = ρu,ω(Z) for all Z ∈ V

if and only if ω and V are comonotonic.
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Proof. Since ω has different outcomes in each state of nature by assumption, without
loss of generality we can assume that ω1 < ω2 < · · · < ωS.
(⇐) We show that comonotonicity is sufficient. Take any spectral measure of risk, Mφ and
any Z ∈ V . Since ω and V are comonotonic, ω and Z are also comonotonic. Let us search
for a GE measure of risk ρu,ω ∈ GV satisfying the equation Mφ(Z) = ρu,ω(Z). Since ω is
given, the only freedom is in choosing u ∈ U . Using the definitions the requirement is

Mφ(Z) = −δ
S∑

s=1

φsZs:S = −δ̄

S∑
s=1

psv
′(ωs)Zs

v′0(ω0)
= ρu,ω(Z). (16)

From Equation (11) the discount factor is determined as

δ = δ̄

∑S
s=1 psv

′(ωs)

v′0(ω0)
. (17)

Using Equation (17) and the assumption that p1 = · · · = pS = 1
S

Equation (16) reads as

−δ̄

∑S
s=1

1
S
v′(ωs)

v′0(ω0)

S∑
s=1

φsZs:S = −δ̄
S∑

s=1

1
S
v′(ωs)Zs

v′0(ω0)
. (18)

After simplifying and rearranging Equation (18) leads to

S∑
s=1

φsZs:S =

∑S
s=1 v′(ωs)Zs∑S

s=1 v′(ωs)
. (19)

In Equation (19) two weighted averages of Z should coincide. Since ω and Z are comonotonic,
a larger ω implies a larger or equal Z. Thus the ordered and the non-ordered statistics
of Z coincide, i.e. Zs:S = Zs for all s = 1, . . . , S. The weights on the left-hand side are
by definition normalized, nonnegative, and non-increasing. The weights on the right-hand
side are also normalized, and it is easy to see that v can be chosen monotone and concave
to obtain the same weights.
(⇒) We show that comonotonicity is necessary.

By assumption V contains S linearly independent vectors which are comonotonic with
ω. Let us denote them by Z1, . . . , Z S̄ ∈ V , where S̄ = S. Since for all s̄ = 1, . . . , S̄ we
have that Z s̄ and ω and comonotonic, we have that

Z s̄
s:S = Z s̄

s for all s = 1, . . . , S, (20)

that is the ordered and the non-ordered statistics of Z s̄ coincide. Since the proposition
should hold for any given Mφ, let us take a spectral measure of risk with different φs in
each state of nature. We show indirectly that if ω and V are not comonotonic, then there
is no GE measure of risk ρu,ω ∈ GV such that Mφ(Z) yields the same number as ρu,ω(Z)
for all Z ∈ V .
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If Mφ(Z
s̄) yields the same number as ρu,ω(Z s̄) for s̄ = 1, . . . , S̄, then using the logic of

Equation (19) and the fact in Equation (20) the following equations are satisfied:

S∑
s=1

φsZ
s̄
s =

∑S
s=1 v′(ωs)Z

s̄
s∑S

s=1 v′(ωs)
for s̄ = 1, . . . , S̄. (21)

As the equations in (21) are homogeneous, we can assume that
∑S

s=1 v′(ωs) = 1. Since
the vectors Z1, . . . , Z S̄ are linearly independent, the equations in (21) determine that

v′(ωs) = φs for s = 1, . . . , S. (22)

Now take any Z ∈ V which is not comonotonic with ω (such Z exists since ω and V are
not comonotonic). It follows from the definition of comonotonicity that there exist states
of nature s1 and s2 in which

ωs1 < ωs2 but Zs1 > Zs2 . (23)

Using Equation (19) and Equation (22) we get that Mφ(Z) = ρu,ω(Z) if and only if

S∑
s=1

φsZs:S =
S∑

s=1

φsZs. (24)

Both sides of Equation (24) are weighted averages of Z. The left-hand side assigns strictly
decreasing weights to the ordered statistics of Z. The right-hand side assigns the same
weights but due to the observation in (23) at least one higher outcome of Z gets a higher
weight, leading to

S∑
s=1

φsZs:S <
S∑

s=1

φsZs. (25)

We have a contradiction. 2

Note that we had to assume in Proposition 6.2 that ω has different outcomes in each
state of nature. In a generic economy this assumption is satisfied. The second assumption
was that V contains S linearly independent vectors which are comonotonic with ω. It
is easy to check that this assumption is satisfied if V contains all the vectors which are
comonotonic with ω or if V contains a convex cone generated by ω and S − 1 linearly
independent vectors. However, if we only require that V contains ω, then Proposition 6.2
can not be proven as the following example shows.

Example 6.3. Suppose V = {ω,Z}, where ω and Z are given in Table 5 below.
Note that the vector ω and V are not comonotonic in Table 5, since Z ∈ V is not

comonotonic with ω. We show that in this example for every Mφ there exists a GE
measure of risk ρu,ω ∈ GV such that Mφ(Z) = ρu,ω(Z) for all Z ∈ V , although ω and V
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s ωs Zs

1 1 -2
2 2 -1
3 3 -1.25

Table 5: Z is not comonotonic with ω.

are not comonotonic. Using the normalized version of Equation (19) we have that Mφ and
ρu,ω lead to the same number for ω if

φ1 + 2φ2 + 3φ3 = v′(ω1) + 2v′(ω2) + 3v′(ω3), and for Z if (26)

−2φ1 − 1.25φ2 − φ3 = −2v′(ω1)− v′(ω2)− 1.25v′(ω3). (27)

Moreover, we know that

φ1 + φ2 + φ3 = v′(ω1) + v′(ω2) + v′(ω3) = 1, and by definition (28)

φ1 ≥ φ2 ≥ φ3. (29)

Solving the Equations (26), (27) and (28) leads to the unique solution

v′(ω1) = φ1 +
1

5
φ2 −

1

5
φ3, (30)

v′(ω2) =
3

5
φ2 +

2

5
φ3, (31)

v′(ω3) =
1

5
φ2 +

4

5
φ3. (32)

Since v is assumed to be concave,

v′(ω1) ≥ v′(ω2) ≥ v′(ω3) should hold. (33)

From Equation (29) we have that φ2 ≥ φ3. This observation implies with Equation (30)
that v′(ω1) ≥ φ1; with Equations (31), (32) that v′(ω2) ≥ v′(ω3); and with Equation (31)
that v′(ω2) ≤ φ2. Since φ1 ≥ φ2 from Equation (29) the inequalities in Equation (33) are
clearly satisfied.

The strong requirement in Proposition 6.2 is that ω and V should be comonotonic to
represent all the spectral measures of risk by GE measures of risk. In this case all the
vectors in V are dependent in the strongest form on the aggregate endowment, their value
should always go up and down together event by event. The larger the number of states
S, the smaller the probability that it occurs.

To give more insights, we characterize the set of GE measures of risk as follows.
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Definition 6.4. A measure of risk ρ : V → R satisfies the pricing kernel property on V if
there exists a vector γ ∈ RS

+ such that for all Z ∈ V we have that

ρ(Z) = −
S∑

s=1

psγsZs. (34)

The vector γ is interpreted as the pricing kernel, and the measure of risk of portfolio Z
is the negative of its price, induced by the pricing kernel. Let us denote by PV the set
of risk measures satisfying the pricing kernel property on V . Then we have the following
proposition.

Proposition 6.5. The set of GE measures of risk on V coincides with the set of risk
measures satisfying the pricing kernel property on V, thus GV = PV .

Proof.
GV ⊆ PV

For any ρu,ω ∈ GV by Equation (12) we have that

ρu,ω(Z) = −
S∑

s=1

π∗
sZs. (35)

By Proposition 4.4 π∗ ∈ RS
+. Using the notation γs = π∗

s/ps, s = 1, . . . , S Equation (35)
can be rewritten as

ρu,ω(Z) = −
S∑

s=1

psγsZs, γ ∈ RS
+, (36)

thus ρu,ω satisfies the pricing kernel property.
GV ⊇ PV

Let us take any measure of risk ρ̄ ∈ PV satisfying the pricing kernel property on V . By
definition there exists a vector γ ∈ RS

+ such that for all Z ∈ V we have that

ρ̄(Z) = −
S∑

s=1

psγsZs. (37)

We show that there exist a quadratic utility function u and endowment ω ∈ RS such that
for all Z ∈ V we have that ρ̄(Z) = ρu,ω(Z). Let v0(c0) = c0 − 1

2
αc2

0 and v(cs) = cs − 1
2
αc2

s

for s = 1, . . . , S. In equilibrium c∗ = ω. We know from Equation (13) that

ρu,ω(Z) = −δ̄

∑S
s=1 psv

′(ωs)Zs

v′0(ω0)
= −δ̄

∑S
s=1 ps(1− αωs)Zs

(1− αω0)
. (38)

Let α = 1, δ̄ = 1 and ω0=0. Then Equation (38) simplifies to

ρu,ω(Z) = −
S∑

s=1

ps(1− ωs)Zs. (39)
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By setting ωs such that γs = (1 − ωs) Equation (37) and Equation (39) define the same
measure of risk. As v′0 = 1 and v′s = γs, s = 1, . . . , S, the monotonicity requirements of the
elementary utility functions are satisfied. 2

Thus GE measures of risk are the only measures of risk satisfying the pricing kernel
property. They are linear functions induced by S nonnegative parameters (γ1, . . . , γS). On
the other hand spectral measures of risk are piecewise linear functions, also induced by
S parameters (φ1, . . . , φS), which are perturbed for the different orderings of the portfolio
vectors. Thus although the cardinalities of their sets are the same, under some technical
assumptions spectral measures of risk are GE measures of risk if and only if the orderings
of all the portfolio vectors are the same as the ordering of the market portfolio.

7 Conclusion

In this paper we discussed coherent and spectral measures of risk from a general equilibrium
(GE) perspective. Coherent measures of risk can be defined by four axioms: monotonicity,
subadditivity, positive homogeneity, translation invariance. Adding two more axioms, law
invariance and comonotonic additivity leads to spectral measures of risk. We considered
the discrete setting and a general domain V ⊆ RS. We proved that it is also true in the
discrete setting with unrestricted domain, i.e. if V = RS that spectral measures of risk are
the only coherent measures of risk satisfying law invariance and comonotonic additivity.
However, we showed counterexamples that with a general domain V it is not necessarily
the case.

We defined a natural measure of risk coming out of a general equilibrium model. The
GE measure of risk of a portfolio is the negative of its equilibrium market price. Checking
the properties of GE measures of risk enabled us to assess the above mentioned six axioms.
We found that GE measures of risk are coherent measures of risk. This way the four axioms
of coherent measures of risk are supported from a general equilibrium perspective. Thus
the failure of VaR not satisfying subadditivity is strengthened.

However, GE measures of risk do not satisfy law invariance, but only a generalized
version of it, in which the market portfolio is also taken into account. Since spectral
measures of risk are law invariant, we can conclude that in general, when calculating the
risk of a regulated entity spectral measures of risk do not take into account its relation
to the market portfolio, leading to an under- or overestimation of risk. The same idea is
shown by our result that spectral measures of risk are GE measures of risk if and only if all
the regulated entities are comonotonic with the market portfolio, i.e. their value go up and
down together event by event. Finally we showed that GE measures of risk are the only
measures of risk satisfying the pricing kernel property, which means that any nonnegative
pricing kernel can induce them as the negative of the equilibrium market price.
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