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1. INTRODUCTION

The determination of the coherent modes1 of a partially
coherent beam and of their relative weights represents a
key problem in characterizing real laser beams and
sources, and several methods have been proposed to solve
such a problem in the scalar case.2–19

In view of the current interest in light beams that are
both partially polarized and partially coherent,20–28 it is
desirable to extend the coherent-mode representation to
the case of vectorial electromagnetic beams. In the
present paper, we show that such an extension can be car-
ried out in a more or less straightforward way.

The similarity between the coherent-mode representa-
tion in the scalar and vectorial cases becomes particularly
transparent when the structure of the theory is viewed
from a standpoint slightly more formal and general than
the position representation, which is more often used in
optics. For this reason, we will briefly present this gen-
eral point of view, showing how the coherent-mode repre-
sentation of partially coherent scalar sources simply
arises as a particular case, and then we will apply the
coherent-mode decomposition to the case of partially po-
larized, partially coherent vectorial beams described by
the beam-coherence-polarization (BCP) matrix.25,26 Fol-
lowing such a formalism, we will neglect the longitudinal
component of the field and consider the paraxial approxi-
mation to be valid. We will show that, in general, the de-
termination of the coherent modes of a partially polar-

ized, partially coherent source can be a rather difficult
task, but it can be made easier if the pertinent BCP ma-
trix can be reduced to a diagonal form. As an example,
we will consider partially polarized sources characterized
by BCP matrices having Gaussian Schell-model (GSM)1

diagonal elements and specular mutual intensity (SMI)29

antidiagonal ones.
The paper is organized as follows: In Section 2, the

formalism based on the Hilbert space is recalled. After
introduction of the notation to be used, such a formalism
is applied to the scalar and vectorial cases. In particular,
the modal decomposition of a source with a diagonal BCP
matrix is derived. In Section 3, such results are applied
to the particular case of a source for which closed-form re-
sults are achievable. Finally, Section 4 is devoted to the
conclusions.

2. THEORETICAL ANALYSIS

A. Preliminaries and Notation
Let H represent a Hilbert space. Elements of H are de-
noted by Dirac’s ket vectors u w&, u c& ,..., and the inner
product between two vectors u w&, u c& is devoted by ^ wu c&.

Let Ĵ be a linear, Hermitian, positive-semidefinite opera-
tor acting on H.

Hermiticity means that

^ wuĴu c& 5 ^ cuĴu w&* (1)
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for all u w&, u c&PH, the asterisk denoting complex conjuga-
tion, whereas nonnegativity demands that

^ wuĴu w& > 0 (2)

for every u w&PH. Furthermore, if Ĵ satisfies the addi-

tional condition Tr$Ĵ2% , `, Tr$•% being the trace opera-

tor, then Ĵ is called a Hilbert–Schmidt operator.
As is well-known,30,31 every Hilbert–Schmidt operator

has the spectral representation or decomposition

Ĵ 5 (
n

lnun&^nu, (3)

where the ln are nonnegative numbers and the kets un&
are orthonormal, i.e.,

^mun& 5 dm,n , (4)

dm,n being the Kronecker symbol. Equation (3) means

that Ĵ is a convex combination of orthogonal one-
dimensional projection operators in H.

Using the orthonormality property (4), we can rewrite
the above representation in the form

Ĵun& 5 lnun&, n 5 0, 1, 2,..., (5)

so that the ln are the eigenvalues of Ĵ, the corresponding
eigenfunctions are (or can be chosen to be) orthonormal,
and such eigenfunctions form a basis for the subspace of

H over which Ĵ is a nonzero operator. In the orthogonal
subspace of H, the Hilbert–Schmidt operator acts as a

null operator. Clearly, Tr$Ĵ2% 5 (nln
2, and the Hilbert–

Schmidt property gets transcribed into the statement
(nln

2
, `.

The index n runs over a subset of the integer set or the
natural numbers. However, in some particular applica-
tions, symmetry or other insights may make it natural
and convenient to label this subset with two or more dis-
crete variables. Further, a given physical situation may
be such that the Hilbert–Schmidt operator of interest is
conveniently described in a particular basis, which will be
referred to as natural. In that case, the problem will be

to determine the eigenvectors of Ĵ as a linear combination
of these preferred, or natural, basis vectors. However,
the natural basis may be labeled by one or more discrete
variables, and in other cases it is labeled by one or more
continuous variables. Indeed, in the vector case, one
needs two continuous variables to label the natural basis.

B. Scalar Fields
In the case of quasi-monochromatic partially coherent
light sources described by the mutual intensity
J(r1 , r2),1,32 the natural basis consists of the position
eigenvectors ux, y& 5 ur&, which satisfy the following rela-
tionships:

x̂ur& 5 xur&, ŷur& 5 yur&, (6)

^r1ur2& 5 d ~2 !~r1 2 r2!, (7)

E d2rur&^ru 5 1. (8)

In Eqs. (6)–(8), r1 and r2 denote two typical points across
the transverse section of the beam, while a reference

frame (x, y, z), with the z axis coincident with the mean

propagation direction of the beam, has been introduced.
Furthermore, d (2) is the two-dimensional Dirac function.

Given a mutual intensity function J(r1 , r2), we repre-

sent it as a Hermitian nonnegative operator Ĵ in the Hil-
bert space H 5 L2(R2), which consists of complex-valued
functions that are square integrable over the two-
dimensional plane R2. The matrix elements of J are de-
fined as

J~r1 , r2! 5 ^r1uĴur2&. (9)

Using the completeness property of the position eigenvec-
tors given in Eq. (8), we can immediately invert Eq. (9),
i.e.,

Ĵ 5 EE d2r1d2r2J~r1 , r2!ur1&^r2u. (10)

Furthermore, it follows that the Hilbert–Schmidt prop-
erty reads as

Tr$Ĵ2% 5 EE d2r1d2r2uJ~r1 , r2!u2
, `. (11)

Let us assume that our mutual intensity function pos-
sesses such a property. Then the spectral representation
theorem applies. On projecting Eq. (3) to the position
representation, on using the completeness relation (8),
and on denoting ^run&, which is a complex-valued scalar
function of r, by Fn(r), we eventually find that

J~r1 , r2! 5 (
n

lnFn~r1!Fn
*~r2!,

ln . 0, (12)

E d2rFm
* ~r!Fn~r! 5 dm,n . (13)

Similarly, Eq. (5) reads, in the position representation, as
follows:

E d2r2J~r1 , r2!Fn~r2! 5 lnFn~r1!; (14)

i.e., it becomes an integral equation.
Equations (12)–(14) indeed coincide with the familiar

equations of the coherent-mode representation for par-
tially coherent scalar beams.1,33

C. Vectorial Case
In the case of vector beams, we need a binary variable,
say a, to label the states of polarization. Although uu&
and uv& may represent two generic orthogonal polariza-
tion states, for simplicity we will consider them as linear
polarization states along x and y, respectively. An arbi-
trary (fully polarized) state can be written as

cuuu& 1 cvuv& 5 (
a

caua&, (15)

where a runs over its binary values u and v. We wish to
allow the possibility that the state of polarization may
change with position, so that cu and cv are (independent)
functions of position across the transverse plane. It fol-
lows that the Hilbert space of relevance to the present
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problem is the tensor product C2
^ L2(R2),34 with C2 rep-

resenting the two-dimensional complex vector space cor-
responding to states of polarization and L2(R2) again cor-
responding to the space of complex-valued functions that
are square integrable over the plane R2, as in the scalar
case. The natural basis is $ua; r& 5 ua& ^ ur&%, where a
runs over (u, v) and r runs over the transverse plane.
The orthonormality and completeness relations become

^a; r1ub; r2& 5 da,bd ~2 !~r1 2 r2!, (16)

(
a
E d2rua; r&^a; ru 5 1, (17)

respectively. Furthermore, in Eq. (17), the symbol 1
stands for the identity operator on the Hilbert space C2

^ L2(R2).
In place of the mutual intensity of the scalar case, we

now have the BCP matrix,14,26 and thus the BCP operator,

denoted again by Ĵ. Then we have the following rela-
tionship between the BCP matrix and the BCP operator:

Jab~r1 , r2! 5 ^a; r1uĴub; r2&, (18)

together with the inverse relationship

Ĵ 5 (
a,b

d2r1d2r2Jab~r1 , r2!ua; r1&^b; r2u. (19)

By allowing a, b to run over their binary values (u, v) in-
dependently, we can write Jab(r1 , r2) symbolically as a
232 matrix:

J~r1 , r2! 5 FJuu~r1 , r2! Juv~r1 , r2!

Jvu~r1 , r2! Jvv~r1 , r2!
G . (20)

In particular, the Hilbert–Schmidt property reads now as

Tr$Ĵ2% 5 (
a,b

EE d2r1d2r2uJab~r1 , r2!u2
, `, (21)

while the nonnegativity condition, which for the Ĵ opera-
tor turns out to be

^ wuĴu w& > 0 ;u w& P C2
^ L2~R2!, (22)

leads, once projected to the ua; r& basis, to

(
a,b

EE d2r1d2r2Jab~r1 , r2!wa*~r1!wb~r2! > 0 (23)

for any pair of functions wu(r), wv(r). We assume hence-
forth that our BCP matrix (and hence the BCP operator)
possesses such a property, so that the spectral-
representation theorem, given in Eqs. (3)–(5), applies.

Let us denote the function ^a; run& by Fn;a(r). When
a 5 u, this represents a fully coherent beam, fully polar-
ized along the x direction. For a 5 v the polarization is
in the y direction. On projecting Eq. (3) to the ua; r& basis
and on using the completeness property (17), one obtains

Jab~r1 , r2! 5 (
n

LnFn;a~r1!Fn;b* ~r2!, (24)

(
a
E d2rFn;a~r!Fn;b* ~r! 5 dm,n , (25)

where Ln denotes the nth eigenvalue in the vector case.
The coherent modes now have the vector form

Fn~r! 5 S Fn;u~r!

Fn;v~r! D , (26)

and J may be written in the alternative form

J~r1 , r2! 5 (
n

LnFn~r1!Fn
† ~r2!, (27)

the dagger denoting the Hermitian conjugate of the vector
(26). Furthermore, on projecting Eq. (5) to the ua; r& ba-
sis, we obtain

(
b
E d2r2Jab~r1 , r2!Fn;b~r2! 5 LnFn;a~r1!

~a, b 5 u, v !, (28)

which represents a pair of coupled integral equations.
This result generalizes the corresponding integral equa-
tion (14) (a homogeneous Fredholm integral) obtained for
the scalar case. When polarization of light is taken into
account, it will be necessary to solve this pair of equa-
tions.

For a given BCP matrix, solving the set of integral
equations (28) may be nontrivial. However, in some fa-
vorable cases it may happen that a coherent-mode decom-
position is known for Juu , Jvv , and Juv individually and
that the integral equations (28) couple only a few of these
coherent modes. This happens, for instance, when the
BCP matrix has, or can be reduced to, a diagonal form, as
we shall see in Subsection 2.D.

D. Diagonal Case
Let us suppose that the BCP matrix J0 has a diagonal
form, i.e.,

J0~r1 , r2! 5 FJuu~r1 , r2! 0

0 Jvv~r1 , r2!
G . (29)

As we shall see in a moment, for such a BCP matrix the
modal decomposition can be easily achieved as follows.
First, let the modal decompositions of the two diagonal
terms of the BCP matrix (29) be

Juu~r1 , r2! 5 (
n

lnfn~r1!fn
*~r2!, (30)

Jvv~r1 , r2! 5 (
n

mncn~r1!cn
*~r2!, (31)

respectively. In Eqs. (30) and (31), ln and mn are the ei-
genvalues associated with the two scalar mutual intensi-
ties Juu and Jvv , respectively, while fn(r) and cn(r) are
the corresponding eigenfunctions. Accordingly, the BCP
matrix (29) can be given the form in Eq. (27) simply on
letting, for instance,

L2n 5 ln , F2n~r! 5 S fn~r!

0 D ,

L2n11 5 mn , F2n11~r! 5 S 0

cn~r! D , n 5 0, 1, 2,...,

(32)
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which represents the modal decomposition of a diagonal
BCP matrix. In such a way, the modes turn out to be al-
ternately polarized along x and y. It should be noted that
the diagonal case is of particular importance, since a wide
class of BCP matrices can be reduced to a diagonal form
simply by means of a suitable rotation of the reference
frame.26,27

In Section 3, we present an example of modal decompo-
sition of a partially polarized, partially coherent source
where the problem can be solved in closed-form terms.

3. EXAMPLE OF COHERENT-MODE
DECOMPOSITION

A. Preliminaries
For simplicity, in the following we shall limit ourselves to
a two-dimensional problem.

Let us consider the following BCP matrix at the plane
z 5 0 of the (x, z) reference frame:

J0~x1 , x2!

5 I0 expF2

b

2
~x1

2
1 x2

2!G
3 Fexp@2g ~x1 2 x2!2# exp@2g ~x1 1 x2!2#

exp@2g ~x1 1 x2!2# exp@2g ~x1 2 x2!2#
G ,

(33)

where I0 , b, and g are positive parameters. J0 is a bona
fide BCP matrix, since it satisfies both the Hermiticity
(the matrix is real and symmetric) and nonnegativeness
conditions (see Appendix A). On the other hand, the cor-
relation functions between the various components of the
field take values having modulus ranging from 0 to 1.

The partially polarized, partially coherent source char-
acterized by the BCP (33) is indistinguishable, as far as
measurements with no anisotropic elements are con-
cerned, from an ordinary, scalar Gaussian Schell-model
(GSM) source.1 In fact, the mutual intensity of the
equivalent scalar partially coherent source35 turns out to
be

Jeq~x1 , x2! 5 2I0 expF2

b

2
~x1

2
1 x2

2!G
3 exp@2g ~x1 2 x2!2#, (34)

where both the intensity and the degree of coherence are
Gaussian.

Each of the elements of the matrix (33) has the struc-
ture of a mutual intensity function. The two diagonal
terms simply correspond to the mutual intensity of a sca-
lar GSM source. The antidiagonal ones, on the other
hand, present a Gaussian intensity profile, just as for the
diagonal elements, but their degree of coherence (which
takes into account the cross correlation between Ex and
Ey) has the form

g~x1 , x2! 5 exp@2g ~x1 1 x2!2#, (35)

i.e., depends only on the sum of the two coordinates x1

and x2 . From Eq. (35), it is easily seen that the maxi-
mum value (unitary) of g is achieved for x1 5 2x2 , i.e.,

when the two considered points are symmetric with re-
spect to the origin. Sources of this kind were extensively
studied in the scalar case29 and were termed sources en-
dowed with specular mutual intensity (SMI). In the
present case, Eq. (35) leads to the fact that, when x1

5 2x2 , a perfect correlation between the components Ex

and Ey is achieved.
As is well-known, the polarization features of the

source are determined by the local BCP matrix, i.e.,26

J0~x, x ! 5 I0 exp~2bx2!F 1 exp~24gx2!

exp~24gx2! 1
G .
(36)

For instance, let us assume that uu& and uv& correspond to
x and y linearly polarized states, respectively, so that the
Stokes parameters at each point and the local degree of
polarization P (Refs. 1 and 36) are easily calculated from
Eq. (36) as

s0 5 Jxx 1 Jyy 5 2I0 exp~2bx2!, (37)

s1 5 Jxx 2 Jyy 5 0, (38)

s2 5 2 Re~Jxy! 5 2I0 exp@2~b 1 4g !x2#, (39)

s3 5 2 Im~Jxy! 5 0, (40)

P 5 F ~Jxx 2 Jyy!2
1 4uJxyu2

~Jxx 1 Jyy!2 G1/2

5 exp~24gx2!. (41)

The source turns out to be partially polarized with a non-
uniform degree of polarization P across the transverse
section with a Gaussian profile. In particular, the degree
of polarization P presents a Gaussian profile with the
maximum value at the center, and the width of such a
profile is proportional to A1/g. On the other hand, from
the previous equations it can be seen that if we decom-
pose the wave into an unpolarized and a polarized portion
that are mutually independent,32 then its totally polar-
ized component is linear with azimuth 45°.

An important property of the BCP matrix (33) is that it
can be diagonalized simply by using a new reference
frame, say (j,h), for representing the electric field, which
is rotated by p/4 with respect to the (x, y) fraone. In
fact, since in our case Jxx 5 Jyy and Jxy 5 Jyx , the BCP
matrix in the (j,h) reference frame turns out to be26

J0~x1 , x2! 5 FJjj~x1 , x2! 0

0 Jhh~x1 , x2!
G , (42)

where

Jjj~x1 , x2! 5 I0 expF2

b

2
~x1

2
1 x2

2!G
3 $exp@2g ~x1 2 x2!2#

1 exp@2g ~x1 1 x2!2#%,

Jhh~x1 , x2! 5 I0 expF2

b

2
~x1

2
1 x2

2!G
3 $exp@2g ~x1 2 x2!2#

2 exp@2g ~x1 1 x2!2#%. (43)

Gori et al. Vol. 20, No. 1 /January 2003 /J. Opt. Soc. Am. A 81



As a consequence, the partially polarized source can be
thought of as arising from the superposition of two inde-
pendent sources, linearly polarized along the j and h
axes, respectively, whose mutual intensities are given by
Eqs. (43). Accordingly, results given in Subsection 2D
pertinent to diagonal BCP matrices can now be applied to
our source. This will be done in the next section.

B. Coherent-Mode Decomposition for Sources with
Beam-Coherence-Polarization Matrix of the Form
of Eq. (33)
First, let us introduce the functions J6(x1 , x2), defined
as

J6~x1 , x2! 5 I0 expF2b
x1

2
1 x2

2

2
2 g ~x1 6 x2!2G .

(44)

Note that the mutual intensities given in Eqs. (43) can be
written in terms of J1 and J2 as follows:

Jjj~x1 , x2! 5 J2~x1 , x2! 1 J1~x1 , x2!,

Jhh~x1 , x2! 5 J2~x1 , x2! 2 J1~x1 , x2!. (45)

It is evident that J2 corresponds to the mutual intensity
of a scalar GSM source, so that its coherent-mode decom-
position reads37,38

J2~x1 , x2! 5 S c

p
D 1/2

(
n50

`
l0qn

2nn!
Hn~x1Ac !Hn~x2Ac !

3 expS 2c
x1

2
1 x2

2

2
D , (46)

where Hn is the nth-order Hermite polynomial39 and

c 5 2~b2
1 2bg !1/2,

q 5 g/~b 1 g 1 c !,

l0 5 I0S p

~b 1 g 1 c !
D 1/2

. (47)

On the other hand, we can obtain an analogous expansion
for J1 starting from Eq. (46), replacing x2 by 2x2 , so that

J1~x1 , x2! 5 J2~x1 , 2x2!

5 S c

p
D 1/2

(
n50

`
l0~2q !n

2nn!
Hn~x1Ac !

3 Hn~x2Ac !expS 2c
x1

2
1 x2

2

2
D , (48)

where use has been made of the following property of the
Hermite polynomials39:

Hn~2s ! 5 ~21 !nHn~s !. (49)

On substituting from Eqs. (46) and (48) into Eq. (45), we
finally obtain

Jjj~x1 , x2! 5 2l0S c

p
D 1/2

(
n50

`
q2n

22n2n!

3 H2n~x1Ac !H2n~x2Ac !

3 expS 2c
x1

2
1 x2

2

2
D ,

Jhh~x1 , x2! 5 2l0S c

p
D 1/2

(
n50

`
q2n11

22n11~2n 1 1 !!

3 H2n11~x1Ac !H2n11~x2Ac !

3 expS 2c
x1

2
1 x2

2

2
D , (50)

which correspond to the expansions in Eqs. (30) and (31).
Accordingly, the modal decomposition (32) holds, on let-
ting

An 5 2l0qn,

fn~x ! 5 S c

p
D 1/4 1

A22n2n!
H2n~xAc !expS 2

cx2

2
D ,

cn~x ! 5 S c

p
D 1/4 1

@22n11~2n 1 1 !!#2
H2n11~xAc !

3 expS 2

cx2

2
D , (51)

which constitutes the coherent-mode decomposition of the
partially polarized SMI source. We recall that if the
modes of the source are linearly polarized Hermite Gauss-
ian ones, the knowledge of the modal expansion allows us
to obtain in an easy way all the beam characzteristics
upon propagation through a typical first-order ABCD

paraxial optical system.40 In particular, since Hermite
Gaussian beams are shape invariant upon propagation,
the same holds for the beams radiated by sources having
a BCP matrix of the form (33). Moreover, in this case the
state of polarization, which is described across the source
by the Stokes parameters (37)–(40) and by the local trans-
verse degree of polarization, remain unchanged under
propagation through first-order optical systems and, in
particular, under free propagation. This suggests a
method to measure, in a simple way, the coherence fea-
tures across the source: Simply measure the distribution
of polarization [see Eq. (41)] in the transverse section at
any plane z 5 constant.

4. CONCLUSIONS

In this paper, a general investigation about the coherent-
mode decomposition of partially polarized, partially co-
herent sources has been presented. In doing so, we have
applied a formalism based on Hilbert operators to the
BCP matrix, which has recently been proposed as a tool
for characterizing partially polarized, partially coherent
sources. In particular, we have shown that, under very
general hypotheses, any partially polarized, partially co-
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herent source can be represented through a superposition
of coherent modes with orthogonal polarizations, which
have to be determined by solving a system of two coupled
integral equations. Such a system decouples in the case
of diagonal BCP matrices, so that the problem reduces to
two scalar modal decomposition problems.

As a particular case, sources characterized by BCP ma-
trices having GSM diagonal elements and SMI antidiago-
nal elements have been considered. The beams radiated
from these sources are, in general, partially and/or non-
uniformly polarized in their transverse section. It turns
out that such sources can be expressed as the superposi-
tion of fully coherent and linearly polarized Hermite
Gaussian modes. As a consequence, the beam keeps the
same transverse intensity shape as well as the same local
state and degree of polarization under paraxial propaga-
tion. Furthermore, it has been shown that the degree of
polarization P presents, at any transverse plane, a Gauss-
ian distribution, whose width is related to the coherence
features of the source. This fact suggests a method to ob-
tain information about the coherence properties of the
source by measuring the sole local degree of polarization
at different transverse planes upon free propagation.

APPENDIX A: PROOF OF NONNEGATIVITY

Let us start from the nonnegativity condition (23), i.e.,

^ cuĴu c& 5 EE dx1dx2$@ g1*~x1!g1~x2!

1 g2*~x1!g2~x2!#exp@2a~x1 2 x2!2#

1 @ g1*~x1!g2~x2! 1 g2*~x1!g1~x2!#

3 exp@2a~x1 1 x2!2#%, (A1)

where we set g j(x) 5 c j(x)exp(2bx2) ( j 5 1, 2).
If we take into account that

exp@2a~x1 6 x2!2# 5 Ap

a
E du expS 2

p2u2

a
D

3 exp@i2p~x1 6 x2!u#, (A2)

Eq. (A1) becomes

^ cuĴu c& 5 Ap

a
E du expS 2

p2u2

a
D

3 @ g̃1*~u !g̃1~u ! 1 g̃2*~u !g̃2~u !

1 g̃1*~u !g̃2~2u ! 1 g̃2*~u !g̃1~2u !#, (A3)

where g̃ j(u) ( j 5 1, 2) denotes the Fourier transform of
the function g j(x) ( j 5 1, 2). Let us introduce the even
and odd parts of the g̃ j functions, namely,

g̃ j~u ! 5 Ẽ j~u ! 1 Õ j~u !, j 5 1, 2, (A4)

where, of course, Ẽ j(2u) 5 Ẽ j(u) and Õ j(2u)

5 2Õ j(u). On substituting from Eq. (A4) into Eq. (A3),
we eventually obtain, after lengthy but straightforward
algebra,

^ cuĴu c& 5 Ap

a
E du expS 2

p2u2

a
D @ uẼ1~u ! 1 Ẽ2~u !u2

1 uD̃1~u ! 2 D̃2~u !u2#, (A5)

which turns out to be positive for any choice of f j(x).
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