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1. Introduction

Molecular aggregates are abundant in nature; they form spontaneously in concentrated
solutions and on surfaces and can be synthesized by supramolecular chemistry techniques.1–
3 Assemblies of chromophores play important roles in many biological processes such as light-
harvesting and primary charge-separation in photosynthesis.4 Aggregates come in various
types of structures: one-dimensional strands (H and J aggregates),2,5 two-dimensional layers,
6–8 circular complexes,9 cylindrical nanotubes, multiwall cylinders and supercylinders,10–12

branched fractal structures, dendrimers, and disordered globular complexes.13 They also can
be fabricated on substrates by “dip-pen” technology.14 Figure 1 presents some typical
structures of pigment-protein complexes found in natural light-harvesting membranes. These
are made of chlorophyll and carotenoid chromophores held together by proteins.4,9,15,16

We consider aggregates made out of chromophores with nonoverlapping charge distributions
where intermolecular couplings are purely electrostatic. The optical excitations of such
complexes are known as Frenkel excitons.17–20 Applications of molecular exciton theory to
dimers4,21–24 show some key features shared by larger complexes. Their absorption spectra
have two bands, whose intensities and Davydov splitting are related to the intermolecular
interaction strength and the relative orientation.

Excitons in large aggregates can be delocalized across many chromophores and may show
coherent or incoherent energy transfer. The optical absorption, time-resolved fluorescence, and
pump-probe spectra in strongly coupled linear J-aggregates have been extensively studied.2,
5,18,25–29 These spectra contain signatures of cooperative optical response: the absorption
splits into several Davydov sub-bands and is shifted compared to the monomer. Additionally,
the absorption and fluorescence bands are narrower in strongly coupled J aggregates because
of motional and exchange narrowing that dynamically average these properties over the
inhomogeneous distribution of energies.30 Aggregates may show cooperative spontaneous
emission, superradiance, which results in shorter radiative lifetime than the monomer.31–36

Large molecular aggregates may show several optical absorption bands12 whose shapes and
linewidths depend on their size and geometry. They undergo elaborate multistep energy-
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relaxation pathways that can be monitored by time-resolved techniques. These pathways are
optimized in natural photosynthetic antennas to harvest light with high speed and efficiency.
4,37–41 Exciton energy and charge transport, as well as relaxation pathways, are of fundamental
interest. Understanding their mechanisms may be used toward the development of efficient,
inexpensive substitutes for semiconductor devices.

Nonlinear optical four-wave mixing (FWM) techniques have long been used for probing inter-
and intramolecular interactions, excitation energies, vibrational relaxation, and charge-
transferpathwaysinmolecularaggregates.Pump-probe, transient gratings, photon-echo, and
time-resolved fluorescence were applied to study excited states, their interactions with the
environment, and relaxation pathways.4,42–52

Optical pulse sequences can be designed for disentangling the spectral features of the coherent
nonlinear optical signals. Multidimensional correlation spectroscopy has been widely used in
NMR to study the structure and microsecond dynamics of complex molecules.53 It has been
proposed to extend these techniques to the femtosecond regime by using optical (Raman) or
infrared (IR) lasers tuned in resonance with vibrations.54–56 The connection with NMR was
established.57–59 Multidimensional infrared spectroscopy monitors hydrogen-bonding
network and dynamics, protein structures, and their fluctuations.60–67 Development of these
IR techniques was reviewed recently67 and will not be repeated here.

Multidimensional techniques allow one to study molecular excitons in the visible region and
reveal couplings and relaxation pathways. These applications were proposed in refs 68–70 and
demonstrated experimentally in molecules40,41,65,71,72 and semiconductor quantum wells.
73–75 Laser phase-locking during excitation and detection is required in these experiments,
which measure the signal electric field (both amplitude and phase), not just its intensity. All
excitation pulses as well as the detected signal must have a well-defined phase. This review
covers multidimensional techniques carried out by applying four femtosecond pulses, as shown
in Figure 2, and controlling the three time intervals, t1, t2, and t3, between them. In practice
the t3 information is usually obtained interferometrically in one shot rather than by scanning
t3. Spectral dispersion of the signal with the local oscillator gives the Fourier transform with
respect to t3. Two-dimensional (2D) spectra are displayed by a Fourier transform of these
signals with respect to a pair of these time variables. NMR signals do not depend on the
wavevectors since the sample is much smaller than the wavelengths of the transitions. Different
Liouville space pathways are then separated by combining measurements carried out with
different phases of the pulses, rather than by detecting signals in different directions. This
phase-cycling technique, which provides the same information as heterodyne detection,57–59

has been first used in the optical regime using a collinear pulse configuration.76 Direct
heterodyne detection by wave-vector selection was reported in ref 77. By controlling the time-
ordering of incoming pulses and the signal wavevector (ks), we obtain a wealth of spectroscopic
information about the system. Multidimensional techniques can target a broad variety of
physical phenomena. Visible pulses probe electronically excited-state dynamical events:
ultrafast intramolecular and intermolecular dephasing and relaxation, energy transport, charge
photogeneration, and recombination.76,77 2D techniques can also eliminate certain types of
inhomogeneous broadenings, show two-exciton resonances, and reveal couplings and
correlations between chromophores.24,40,41,45,65,70,72,78–81 Extensions to the UV82–84 may
target backbone transitions of proteins and DNA. In the future, X-ray attosecond techniques
may reveal electronic wavepackets with high temporal and spatial resolution.85–87

Multidimensional techniques could further utilize the vector nature of the optical field by
selecting specific polarization configurations. These may lead to pulse sequences sensitive to
structural chirality (hereafter denoted chirality induced, CI)79,88–92 These are 2D extensions
of the 1D circular dichroism spectroscopy (CD).93 CI optical signals can be employed to probe
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specific correlations and couplings of chromophores. These have been demonstrated for
probing protein structure in the infrared.94 Numerical sensitivity analysis algorithms and pulse-
shaping and coherent-control techniques can help dissect and analyze coherent spectra and
simplify congested signals.95–97

This review surveys the broad arsenal of theoretical techniques developed toward the
description of nonlinear optical signals in molecular complexes. By treating the system-field
coupling perturbatively, the signals are expressed in terms of response functions, which allow
a systematic classification and interpretation of the various possible signals.

The optical properties of molecular aggregates may be described by the Frenkel exciton model.
This model has been first applied to molecular crystals17,98 and subsequently extended to
aggregates.4,5,27–29,99 The system is partitioned into units (chromophores) with
nonoverlapping charge distributions; electron exchange between these units is neglected. The
direct product of eigenstates of isolated chromophores forms a convenient basis set for the
global excited states. In the Heitler-London approximation, the aggregate ground state is given
by the product of ground states of all chromophores.17,99 Single-exciton states are formed by
promoting one chromophore to its excited state, keeping all others in their ground state. Their
number is equal to the number ℕ of chromophores. Double- and higher-excited states are
created similarly. The response is formulated in Liouville space in terms of the system’s density
matrix, which allows one to incorporate energy dissipation due to interaction with the
environment.52

The methods used for computing the optical response of aggregates may be broadly classified
into two types.100 In the supermolecule or Sum Over States (SOS) approach, the response
function is expanded in the global eigenstates. Optical spectra are interpreted in terms of
transitions between these states. Feynman diagrams, which describe the evolution of the
molecular density matrix (Liouville space pathways, LSP), are the key tool in the analysis.52

These provide a direct look at the relevant dynamics at each time interval between interactions
with the fields. The signals are interpreted in terms of the relevant density matrix elements of
the super-molecule and the sequence of transitions between eigenstates.

The LSP can be divided into two groups, depending on whether the density matrix during the
second interval t2 is in a diagonal state (populations) or off diagonal (coherences).81 These
groups have symmetry properties associated with permutations of pulse-polarization
configurations that lead to distinct signatures in the multidimensional spectrum.

The necessary calculations of excited states make the supermolecule approach computationally
expensive. Calculating the global eigenstates is not always feasible. Moreover, sums over states
do not offer a simple physical picture when many states are involved.

In the alternative quasiparticle (QP) description, the aggregates are viewed as coupled,
localized electronic oscillators. Two-exciton eigenstates are never calculated explicitly;
instead, two-exciton resonances are obtained via exciton scattering and calculated using the
nonlinear exciton equations (NEE).68,69,101–107 Two-exciton propagators are calculated using
the QP scattering matrix by solving the Bethe Salpeter equation. The lower computational cost,
stemming from the more favorable scaling with size, makes this approach particularly suitable
to large aggregates. The dominant contributions to the scattering matrix can be identified a
priori by examining the exciton overlaps in real space, providing an efficient truncation
strategy.

The spectral lineshapes of 2D signals contain signatures of interactions with phonons,
vibrations, and the solvent. Slow and static fluctuations may be treated by statistical averaging.
Fast fluctuations can be easily incorporated through population relaxation and dephasing rates.
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The intermediate fluctuation-time regime requires more careful attention. Many techniques
exist for the modeling of quantum dissipative dynamics.108–111 These treat the coupling of
excitons to a bath at different levels of sophistication. In the simplest scheme, bath fluctuations
are assumed to be fast, and second-order perturbation theory for the coupling is used to derive
a Pauli master equation in the Markovian limit. Dephasing and energy-transfer processes enter
as simple exponential decays. When exciton transport is neglected, energy (diagonal)
fluctuations coming from a bath with Gaussian statistics can be exactly incorporated in the
response functions using the cumulant expansion for Gaussian fluctuations (CGF).42,43,100,
112 Exciton transport may be approximately incorporated into the CGF.24 A more detailed (and
computationally expensive) approach is based on the stochastic Liouville equations (SLE),
which explicitly include collective bath coordinates in the description.113 The SLE have been
used to describe the signatures of chemical-exchange kinetics in coherent 2D signals.

The quasi-particle description of the Frenkel-exciton model is formally similar to that of
Wannier excitons in multiband tight-binding models of semiconductors.108,114–116 The
number of variables is, however, different: since electrons and holes in the Frenkel-exciton
model are tightly bound, the number of single-exciton variables coincides with the number
ℕ of sites; in contrast, the holes and electrons of Wannier excitons are loosely bound, and the
number of single-exciton variables scales as ~ℕ2. This unfavorable scaling is more severe for
double-exciton states (~ℕ2 for Frenkel and ~ℕ4 for Wannier). Periodic infinite systems of
Frenkel and Wannier excitons may be treated analytically, making use of translational
invariance.

Several approaches for computing response functions and multidimensional optical signals are
presented in this review. Closed expressions for the signals are derived based on both the QP
representation and the supermolecule approach. We use Markovian limit with respect to bath
fluctuations in the QP representation. Higher-level CGF and SLE approaches are described
within the supermolecule approach. The semiclassical treatment of the molecular coupling with
the radiation field whereby the classical radiation field interacts with the quantum exciton
system.117 Applications to the Fenna-Matthews-Olson (FMO) photosynthetic complex made
of seven coupled bacteriochlorophyll molecules illustrate the various levels of theory.

Section 2 introduces a simple multilevel model system. The response functions are derived in
section 3. Section 4 develops the density-matrix formalism and derives the response functions
for dissipative quantum systems. The response function theory is connected with experimental
heterodyne-detected signals in section 5. Section 6 develops a microscopic model for excitonic
aggregates in the quasi-particle representation. In section 7, we derive response functions for
2D signals based on the quasi-particle approach. Different models of system-bath coupling are
analyzed. Exciton relaxation and dephasing rates are calculated in section 8, and section 9
provides closed expressions for multidimensional signals that include exciton population
transport. Section 10 presents various applications of the quasi-particle theory to the FMO
complex. In Section 11, we revisit the supermolecule approach to include slow bath fluctuations
and exciton transport. In section 12, we describe a stochastically modulated multilevel system
by including bath coordinates explicitly. Spectral line-shape parameters are obtained by solving
the stochastic Liouville equations (SLE). Section 13 describes the response functions of an
isotropic ensemble of molecular complexes (solutions, liquids). The response functions of the
previous sections are extended by orientational averaging going beyond the dipole
approximation to include first-order contributions in the optical wavevector. Chirality-induced
and nonchiral signals are compared. Section 14 shows how coherent control pulse-shaping
algorithms can be used to simplify 2D signals. General discussion and future directions are
outlined in section 15.
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Most mathematical background and technical details are given in the appendices. Linear optical
signals are described in Appendix A. Appendix B describes different modes of signal detection
of nonlinear signals. Appendix C provides the relation between a system of coupled two-level
oscillators (hard-core bosons) and boson quasi-particles. In Appendix D, we present complete
expressions for the response function for the model introduced in section 6. These complement
the expressions of section 9. In Appendix E, we describe single- and double-exciton coherent
propagation within the QP representation and introduce the scattering matrix. Appendix F
derives exciton dephasing and transport rates in the real space representation. The final
expressions for the system relaxation rates in terms of the bath spectral density are given in
Appendix G. Exciton scattering in nonbosonic systems is described in Appendix H. Appendix
I generalizes the quasi-particle description to infinite periodic systems. In Appendix J, we give
expressions for the doorway and window functions using cumulant expansion technique for
the supermolecule approach. Some quantum correlation functions used in section 11.3 are
defined in Appendix K. Appendix L presents closed expressions for orientationally averaged
signals.

2. Supermolecule Approach; Coherent Optical Response of Multilevel

Systems

Conceptually, the simplest approach for describing and analyzing the optical response of a
molecular aggregate is to view it as a supermolecule, expand the response in its global
eigenstates, and add phenomenological relaxation rates. This level of theory will be described
in this section. In the coming sections, we shall rederive and generalize these results using
microscopic models for the bath. The alternative, quasi-particle approach developed in section
6 offers many computational advantages and often provides a simpler physical picture for the
response. The supermolecule and quasiparticle approaches will be compared.

When viewed as a supermolecule, the aggregate is a multilevel quantum system described by
the Hamiltonian,52

(1)

where

(2)

Here, ħεa is the energy of state a and Ĥ′ represents the dipole interaction with the external
optical electric field E,

(3)

where r is the position of the molecule and

(4)
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is the dipole operator. μab = Σαqα〈a|rα|b〉 is the transition dipole between states a and b where
α runs over molecular charges qα (electrons and nuclei) with coordinates rα, relative to the
center of charge.

The quantum state of an ensemble of optically driven aggregates is described by the density
matrix:

(5)

The diagonal elements represent populations of various states, while off-diagonal elements,
coherences, carry phase information.

The density matrix satisfies the Liouville-von Neumann equation,

(6)

Here , the Liouville superoperator, is given by the commutator, with the Hamiltonian ρ̂=
[Ĥ, ρ ̂]. Similar to eq 1, we partition the Liouville operator as

(7)

where  represents the isolated system and ρ̂ = [Ĥ′, ρ̂] is the interaction with the external
field.

The retarded Green’s function (forward propagator) describes the free evolution of the
molecular density matrix between the interaction events. Setting  = 0, we get

(8)

where θ(t) is the Heavyside step-function, defined by . The density matrix of
the driven system (eq 6) can be calculated perturbatively in  by iterative integration of eqs 6
and 7. This yields52

(9)

Equation 9 provides the order-by-order expansion of the density matrix in the field and can be
recast as ρ̂(t) = ρ̂(0)(t) +ρ̂(1)(t) + ρ̂(2)(t) +... . ρ̂(n)(t) is the density matrix to nth order in the field.
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The n’th-order induced polarization is the quantity of interest in spectroscopy since it is a source
of the signal field. It is given by the expectation value of the dipole operator

(10)

The induced polarization is given by P(t) = P(1)(t) + P(2)(t) +.... This polarization is a source
of a new optical field. The generated field is calculated for a simple sample geometry in
Appendix B. The signal optical field obtained by mixing of incoming laser fields characterized
by wavevectors k1, k2, ... may be detected at certain directions ks = ± k1 ± k2 ± ... .

The linear response function connects the linear polarization with the field:52

(11)

Since P(1) and E are both vectors, R(1) is a second-rank tensor. For clarity, we avoid tensor
notation through most of the review. It will be introduced only when necessary, in section 13.
Expressions for the signals related to the linear response function are summarized in Appendix
A.

The linear response function is calculated by substituting eq 9 into eq 10:52

(12)

where ρ ̂0 is the equilibrium density matrix and  ρ̂ ≡ [μ ̂, ρ̂] is the dipole superoperator.

3. Response Functions of a Molecular Aggregate

Hereafter, we consider a molecular aggregate made of three-level molecules, whose exciton
level scheme is shown in Figure 3.4 This model will be introduced microscopically in section
6. The eigenstates of this model form distinct manifolds (bands). The three lowest manifolds
are g, the ground state; e, the single-exciton states; and f, the double-exciton states. The dipole
operator only couples g to e (μeg) and e to f (μfe). The number of chromophores (and single-
exciton states) is denoted by ℕ. The linear response depends only on the e manifold, whereas
the third-order response involves both the e and f bands.

The linear response function can be calculated by expanding eq 12 in eigenstates,

(13)

where the equilibrium density matrix is ρ̂0 = |g〉〈g|, ωeg = εe − εg, and we have added
phenomenological dephasing rate γeg to represent the decay of coherence. Dephasing will be

treated microscopically for a model of fast bath fluctuations in section 8. Note that .
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Higher-order response functions may be defined and calculated in the same way. Since the
second-order response vanishes for our model because of the dipole selection rules, we shall
focus on the third-order signals.

The third-order polarization induced in the system by the optical field is related to the incoming
electric fields by52

(14)

where

(15)

is the third-order response function.

This expression represents a sequence of three interactions with the incoming fields described
by , three free propagation periods between interactions ( ), and signal generation described
by the last μ ̂. Since  is a commutator and μ ̂ can act either from the left or the right, eq 15 has
23 = 8 contributions known as Liouville space pathways.

We shall consider time-domain experiments, where the optical electric field consists of several
pulses:

(16)

Here,  (t − τj) is the complex envelope of the jth pulse, centered at time τj with carrier frequency
ωj and wavevector kj. The indices uj = ±1 represent the positive (uj = +1) and the negative

(uj = −1) frequency components of the field. Note that . The uj variables allow a
compact notation for the response functions. We assume that the pulses are temporally well-
separated: the pulse with wavevector k1 comes first, followed by k2 and finally k3.

The field is generated in the directions ±k1 ±k2 ±k3. The detector selects a signal in one
direction. To calculate the optical signals, we introduce the wavevector-dependent polarization
Pks

(17)

where ks = u1k1 + u2k2 + u3k3 is the signal wavevector, and the sum runs over the possible
choices of uj = ± 1. We assume resonant excitation and make the rotating-wave approximation
(RWA), where only low-frequency terms in eq 14 (where the field and molecular frequency
subtract ωj − ωeg) are retained. High-frequency ωj + ωeg terms make a very small contribution
to the polarization and are neglected. This is an excellent approximation for resonant
techniques. By combining eq 17 with eqs 14 and 16, we get

Abramavicius et al. Page 8

Chem Rev. Author manuscript; available in PMC 2010 November 8.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



(18)

with the signal frequency given by ωs = u1ω1 + u2ω2 + u3ω3. The wavevector-dependent

response function, , represents the signal generated in the ks direction. For short pulses, the
integrand is finite when t3 ≈ t − τ3, t2 ≈ τ3 − τ2, and t1 ≈ τ2 − τ1 Therefore, the integral needs to
be performed only in the narrow time window specified by pulse envelopes. When the pulses
are much shorter than their delays, the pulse delays control the free propagation intervals
between interactions described by the Green’s functions.

There are four independent third-order techniques, defined by the various choices of uj:

(19)

(20)

(21)

(22)

For our excitonic level scheme and its dipole selection rules, the kIV signal vanishes within the
RWA and will not be considered any further.

The resonant third-order response may be interpreted using the Feynman diagrams shown in
Figures 4–6. These represent the sequences of interactions with the various fields as well as
the state of the excitonic density matrix during the intervals between interactions.52 The two
vertical lines represent the ket (left) and the bra (right) of the density matrix. Time flows from
bottom to top; the labels on the graph indicate the density-matrix elements during the free
evolution periods between the radiative interactions. An interaction with the optical field is
marked by a dot. Each interaction is accompanied by a transition dipole μ factor. The density
matrix elements can only change by an interaction with the field. Wavy arrows pointing to the
left indicate an interaction with the negative frequency field component  exp[−ikjr], and
those to the right indicate interaction with the positive frequency  exp[ikjr]. Arrows coming
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into the diagram represent absorption of a photon accompanied by a molecular transition to a
higher-energy state (g to e or e to f); outgoing arrows represent photon emission and a transition
to a lower-energy state (e to g or f to e). The number of interactions, p (red dots), on the right
side (right line) of the diagram determines its overall sign, which is (−1)p.

The kI signal is depicted in Figure 4. During t1, the aggregate density matrix is in an optical
coherence with a characteristic frequency given by the energy difference between states e and
g, ωge. During the second interval (t2), it is either in the ground state (gg) (ii) or in the singly
excited-state manifold (e′e) (i or iii). During the third interval (t3), it again oscillates with optical
frequencies ωe′g (i and ii) or ωfe′ (iii).

The various contributions to the signal are denoted ground-state bleaching (GSB), excited-state
stimulated emission (ESE), and excited-state absorption (ESA),52 as marked in Figure 4. This
nomenclature reflects the physical processes during the course of interactions: in the GSB
pathway, the system returns to the ground-state during the second interval t2; thus, the third
interaction reflects the reduction of the ground-state population, which reduces (bleaches) the
subsequent absorption. In the ESE pathway, during t2, the system is in the single-excited
manifold and the third interaction brings it back to the ground state by stimulated emission.
The ESA pathway has the same t1 and t2 dynamics as the ESE; however, the third interaction
creates a doubly excited state f.

During the intervals between interactions (t1, t2, and t3), the density matrix evolves freely (no
field). For instance, in the ESE (Figure 4) diagram, after the first interaction on the right (bra),
the system density matrix in the t1 interval is in the state ρge, and its evolution gives an exp
(−iωget1) factor, where ωge = εg − εe is the interband frequency. The second interaction from
the left with the ket creates the density matrix element ρe′e, which then evolves as exp
(−iωe′et2). After the third interaction (with the bra), the density-matrix element ρe′g is created
and its evolution is exp(−iωe′gt3). The overall contribution of this pathway to the response
function is

(23)

where the Heavyside step function, θ(t), ensures causality (the response only depends on the
fields at earlier times), and we have added the phenomenological dephasing rate γab for the
ab coherence.

Similar to the three contributions to the kI technique shown in Figure 4, kII has three
contributions (Figure 5) and kIII has two contributions (Figure 6). In the next section, we
provide closed expressions for all techniques by extending this model to include exciton
transport. The expressions corresponding to the diagrams shown in Figures 4–6 may be
obtained from eqs 32–39 by setting the population relaxation matrix to unity,

.

4. Optical Response of Excitons with Transport; The Lindblad Master

Equation

The time evolution of closed quantum systems can be expanded in eigenstates that evolve
independently by simply acquiring exp(−iεjt) phase factors. Open systems (i.e., systems
coupled to a bath) undergo various types of relaxation and transport processes. These are
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commonly described by the evolution of the reduced density matrix of the system, where the
bath variables have been projected out.111,118,119

The dynamics of the reduced density matrix may be described by a quantum master equation
(QME). Its general form may be obtained directly from the quantum mechanical analogue of
the classical Langevin equations of motion for open systems.111 The derivation starts by
phenomenologically adding fluctuation and dissipation terms to the Schrödinger equation. This
yields the Schrödinger–Langevin equation,

(24)

where ψ is the wave function of the open system, V̂ is an arbitrary set of system operators
(independent of ξ) that describe its coupling with the bath, and ξα(t) are white noise variables

with zero mean, 〈ξα(t) 〉= 0, and short correlation time, . The form of
eq 24 guarantees conservation of the norm of the wave function when averaged over the noise.
111

The QME that corresponds to this Schrödinger–Langevin equation is known as the Lindblad
equation.120–122

(25)

It is derived from the Liouville equation for ρ̂(t) ≡ | ψ(t) 〉 〈 (t)| using eq 24 followed by averaging
over the noise variables. This equation may be also derived from firmer foundations that show
how it preserves all essential properties of the density matrix: it is hermitian with time-
independent trace (Tr(ρ ̂) ≡ 1) and positive definite.111 It will be shown in section 8 that the
microscopic Redfield theory in the secular approximation can be recovered by a specific choice
of V̂α. The secular Redfield equations decouple the populations (diagonal elements of ρ̂ in the
eigenstate basis) from the coherences (off-diagonal elements). The populations then satisfy the
Pauli master equation:109,111

(26)

Here, Kee, e′e′ is the population transfer rate from state e′ into e. This is an ℕ × ℕ matrix with
two pairs of identical indices (ee), (e′e′). In eq 26, the diagonal elements, e = e′, Kee, ee are
positive, whereas the off-diagonal elements, e ≠ e′, Kee, e′e′ are negative. The rate matrix
satisfies ΣeKee, e′e′ = 0 (probability conservation) and detailed-balance Ke2e2, e1e1/Ke1e1, e2e2 =
exp(−ℏωe2e1/(kBT)); here, kB is the Boltzmann constant and T is the temperature. These
conditions are sufficient for the system to reach thermal equilibrium at long times.111

The evolution of diagonal density-matrix elements is described by the population Green’s

function, , which is the probability of the transition from state e
into e′ during time t. The formal solution of the Pauli master equation, eq 26, is given by
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(27)

where λp is the pth eigenvalue of the left- and right-eigen equations 

and . χ(L) χ (R) are matrices made out of the left (right) eigenvectors,
and D = χ(L) χ (R) is a diagonal matrix. The eigenvectors are organized as columns of χ (R) and
rows of χ (L). These two sets of eigenvectors are different since Ke′e′, ee is not Hermitian, but

they share the same eigenvalues λp. χ(L) and χ(R) can be normalized as  for each
p; then χ (R) = χ (L)−1 and D is the unitary matrix.

In the secular Redfield equation, the off-diagonal elements satisfy

(28)

Its solution is , where

(29)

The first two terms represent population relaxation, and γ ̂e,e′ is the pure-dephasing rate. For a
compact representation of the response functions, we shall combine the diagonal (eq 26) and
off-diagonal (eq 28) blocks into a single tetradic Green’s function representing both coherence
and population relaxation:

(30)

Comparison of eq 30 with eqs 27 and 28 gives

(31)

This equation will be derived microscopically and further extended in section 8.

For the kI and kII techniques, populations are generated during the second time interval t2 in
the ESA and ESE diagrams of Figures 4 and 5 when e = e′ (GSB includes ground-state
population during t2; since our model contains a single ground state, no population relaxation
occurs in the ground state). Population created in state e′ can relax to e during t2 according to
eq 26. Coherences decay according to eq 28.

By including this relaxation model, we obtain the following sum over states (SOS) expression
for the response function for the kI technique (Figures 4 and 7),
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(32)

(33)

(34)

where we have introduced the complex frequencies ξab ≡ ωab − iγab. Note that we do not include
population relaxation between the excited-state manifold and the ground state; this would
change  (t2) and would influence the GSB t2 dependence.52

The oscillation frequencies during t1 and t3 have opposite sense. For a two-level system (g and
e), the frequency factors cancel out at t1 = t3. This eliminates inhomogeneous broadening and
gives rise to the photon-echo signal,70,123 which has been used for studying dephasing of
coherent dynamics in molecules and molecular complexes.124,125 For multilevel systems (with
a band of e states), this cancelation will occur only for the diagonal e = e′ contributions, in the
ESE and GSB pathways during t2 when transport is neglected.

The diagrams shown in Figure 7 extend Figures 4 and 5 to include population transfer during
t2, as marked by the pairs of dashed arrows. For e = e′, the diagrams in Figure 7 coincide with
Figures 4 and 5.

For the kII technique, we similarly have (Figures 5 and 7)

(35)

(36)

(37)

The two contributions to the kIII (Figure 6) technique are of the ESA type:
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(38)

(39)

Note that exciton transport only enters kI and kII but not kIII where exciton populations are
never created.

The present phenomenological model allows an easy calculation of the response functions.
Exciton relaxation is described by Markovian rate equations. More elaborate decay patterns
that show oscillations and nonexponential correlated dynamics often observed in molecular
aggregates41,48,126 require higher levels of theory that will be presented in the coming sections.

5. Multidimensional Spectroscopy of a Three-Band Model; Heterodyne-

Detected Signals

The response functions introduced earlier may be used to calculate the polarization induced
by a resonant excitation. The relation between the signal and the induced polarization depends
on the detection mode, as described in Appendix B. Heterodyne detection is the most advanced
detection method that gives the signal field itself (both amplitude and phase).

The third-order heterodyne-detected signal is given by

(40)

where the signal depends parametrically on the delays between pulses T3 = τs − τ3, T2 = τ3 −
τ2, and T1 = τ2 − τ1. The notation τ ≡ T1, T ≡ T2, and t ≡ T3 is commonly used. Experimentally
the signal field is often dispersed in a spectrometer. The entire T3 dependence is then measured
in a single shot rather by scanning the delay between the third pulse and the signal. (t – τs) is
the local oscillator field envelope used for heterodyne detection. The first three pulses are
represented by eq 16, and the third-order polarization P(3)(t) is given by eq 18.

Multidimensional signals are displayed in the frequency domain by Fourier transforming

 with respect to the time intervals between the pulses.

(41)

Often, one uses a mixed time-frequency representation by performing double-Fourier
transform. This gives, e.g., S(Ω3, T2, Ω1), etc.
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Assuming that all four pulses are temporally well-separated, the integrations can be carried out
using the response function eqs 32–39.127 Neglecting population transport (Kee, e′e′ ≡ 0), this
gives the following three contributions to the kI signal (see Figures 4–6),

(42)

(43)

(44)

where e and e′ run over the single-exciton manifold, f runs over the two-exciton states, and
η→ +0. ω1, ω2, and ω3 are the carrier frequencies of the first three pulses, and ωab and ξab
were defined in sections 2 and 4. The spectral pulse envelopes

(45)

are centered around ω = 0.

For the kII signal, we similarly obtain

(46)

(47)

(48)

Finally, the kIII signal is given by
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(49)

and

(50)

Note that resonances occur at both positive and negative Ωj.

Population relaxation may be added, as done in eqs 32–39. However, the Ω2 dependence is
then more complicated, and it is usually preferable to display the signal S(Ω3, T2, Ω1) in the
time domain as a function of T2.

Equations 42–50 show how the pulse envelopes select the possible transitions allowed by their
bandwidths. The pulse envelopes serve as frequency filters, removing all transitions falling
outside the pulse bandwidth. If the pulse bandwidth is larger than the exciton bandwidth, we
can set & (ω) = 1. This impulsive signal then coincides with the response function.

This concludes the phenomenological supermolecule description of multidimensional signals
in terms of the global eigenstates. In the next section, we present the alternative, quasiparticle,
picture. Numerical applications of both approaches will be presented in the following sections.

6. Quasiparticle Representation of the Optical Response; The Nonlinear-

Exciton Equations (NEE)

The calculation of double-exciton states requires the computationally expensive
diagonalization of an  ×  matrix, where  = ℕ (ℕ ± 1)/2 is the number of double-exciton
states, and ℕ is the number of molecules. The quasiparticle picture avoids the explicit
calculation of the two-exciton states making it more tractable in large aggregates.68,79,102,
104,106–108,128 This picture naturally emerges out of equations of motion for exciton variables,
the NEE, that were derived and gradually developed at different levels.79,107,108 Spano and
Mukamel had shown how theories of optical susceptibilities in the frequency domain based on
the local mean-field approximation (MFA) can be extended by adding two-exciton variables
to properly account for two-exciton resonances.102,128 The nonlinear response is then
attributed to exciton–exciton scattering.104,105 The formalism was subsequently extended to
molecular aggregates made of three-level molecules and to semiconductors.68,114 Additional
relevant variables have been introduced to account for exciton relaxation due to coupling with
phonons.68 The phonon degrees of freedom are formally eliminated; they only enter through
the relaxation rates. This results in the Redfield equations for the reduced exciton density
matrix.

By solving the NEE, we obtain closed Green’s function expressions for the optical response
that maintain the complete bookkeeping of time ordering. Applications of this approach were
made to J-aggregates,103 pump–probe, photonechoes, and other four-wave mixing techniques
of light-harvesting antenna complexes.78,130,131
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We first introduce the microscopic exciton model for an aggregate made out of ℕ three-level
chromophores. The special case of two-level chromophores is treated in Appendix C.
Electronic excitations are expressed using the basis set of the electronic eigenstates of each

chromophore: these are the ground state , the single-excited state , and the double-excited

state . In the Heitler–London approximation,17 the aggregate ground state is given by a
direct product of the ground states of all chromophores,

(51)

A single-excited-state basis is constructed by moving one of the chromophores into its excited
state,

(52)

Double-excitations are obtained either when one of the chromophores is doubly excited

(53)

or when two chromophores are singly excited:

(54)

Overall, our model has ℕ singly excited states, and  = ℕ( ℕ + 1)/2 doubly-excited states.

We next introduce an exciton-creation operator on molecule m:131

(55)

These operators have the following properties: single-exciton states are created from the ground

state , and double-excitons are obtained either by creating two excitations on

different molecules, , or on the same molecule,  (the √2

factor is introduced to resemble bosonic exciton properties ( ) within the
single- and double-exciton space).

The Hermitian-conjugate, annihilation, operator will be denoted B̂m. Operators corresponding
to different chromophores commute. The commutation relations of these operators are (see
Appendix C)

(56)
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Only these operators are required to describe the linear and the third-order optical signals,
which involve up to double-exciton states. Higher, e.g., triple, excitations, B̂†B̂†B̂†Φg, will not
be considered.

We assume the following model Hamiltonian written in a normally ordered form (i.e., all B̂†

are to the left of B̂)68

(57)

where ℏεn is the single-excitation energy of molecule n and quadratic coupling ℏJmn is
responsible for resonant exciton hopping.132–134 The quartic couplings ℏUmn,kl represent
various types of anharmonicities that only affect the two-exciton (and higher) manifolds. Terms

that do not conserve the number of excitons, such as  and , have been neglected in this
Hamiltonian (a more general Hamiltonian is discussed in ref 135).

A simplified form of eq 57,

(58)

captures the essential physical processes. The diagonal term Δm = 2Umm,mm modifies the energy
of two excitations on the same site: 〈Φfmm|Ĥ0|Φfmm〉/ℏ = 2εm + Δm. Two-level chromophores
can be described by setting Δm → ∞. This prevents two excitations from residing on the same
site. The couplings /4 = Umn, mn ≡Umn, nm shift the two-exciton energies with respect to the
noninteracting excitons 〈Φfmn|Ĥ0|Φfmn〉/ℏ = εm + εn + . They can be either repulsive,  > 0,
or attractive,  < 0.

We further assume the following form for the dipole operator where each interaction with the
field can create or annihilate a single exciton:

(59)

Here, h.c denotes the Hermitian conjugate. The transition dipole 〈Φg|μ ̂ |Φem〉 = μm gives the

transition between the ground and a single-excited state and  is the
transition between a single- and a double-excited state. Within the RWA, the coupling with
the field (eq 3) is given by

(60)

where
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(61)

and

(62)

are the time-dependent transition amplitudes with μ− ≡ (μ+)*: μ− annihilates the photon and,
thus, is conjugated to the creation of exciton, while μ+ creates the photon accompanied by
annihilation of the exciton. The total Hamiltonian is given by eq 1 together with eqs 57 and
60.

The exciton dynamics will be calculated starting with the Heisenberg equations of motion

(63)

Taking Â = B̂m and Â = B̂mB̂n gives

(64)

(65)

with

(66)

(67)

and Vmn,kl = Umn,kl + Unm,kl. These are the first two members of an infinite hierarchy of coupled
equations.
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Different-order contributions in the field can be easily sorted out in these equations since
interactions with the field change the number of excitons one at a time. Thus, μ is first order,

B̂ is first order and higher, B̂†B̂B̂ and  are third order and higher, and B̂†B̂B̂B̂ is at least
fourth order, etc.

When the system is in a pure state, it can be described by a wave function (the expansion

 is sufficient to represent the third-order response), and we have

. We can further factorize  where we used B = 〈B〉 and
Ymn = 〈B̂mB̂n〉. Taking expectation value of both sides of eqs 64 and 65, we obtain the NEE to
third order in the field107

(68)

(69)

Quartic products B̂†2B̂2 contribute only to fourth and higher orders in the fields and were
neglected. Within this space of relevant states, the exciton commutation relation, eq 56, can
be, therefore, replaced by the boson commutation relation,

(70)

which we use in the following derivations. Equation 70 allows the creation of triple- and higher-
exciton states on each chromophore; however, these lie outside of the physical space of states
relevant for third-order spectroscopy. Exact bosonization procedures can be performed for
arbitrary models of nonbosonic truncated oscillators99,136,137 as well as fermions.107,138,139

We review the bosonization of two-level molecules in Appendix C. The same ideas can be
applied to multilevel molecules (truncated oscillators).

Different levels of approximation will be introduced for truncating the hierarchy of eqs 64 and
65. The simplest, mean-field approximation (MFA), which is equivalent to the Hartree–Fock
approximation in many-electron problems114 uses the full factorization of all normally ordered
products 〈B̂B̂〉 = 〈B̂〉〈B̂〉 and 〈B̂†B̂〉 = 〈B̂†〉〈B̂〉, 〈B̂†B̂B̂〉 = 〈B̂†〉〈B̂〉〈B̂〉.102,128 The excitons are
treated as noninteracting quasiparticles, each moving in the mean field created by the others.
Equation 64 is then closed, and the other equations become redundant.103 A higher-level
approximation factorizes all daggered and undaggered variables 〈B̂†B̂〉 = 〈B̂†〉〈B̂〉and
〈B̂†B̂B̂〉 = 〈B̂†〉〈B̂B̂〉, while retaining the 〈B̂B̂〉 variables.79,104,105 This coherent exciton
dynamics (CED) takes into account two-particle statistics but neglects transport. Equations 68
and 69 then form a complete closed set. Another possible factorization 〈B̂†B̂B̂〉 = 〈B̂†B̂〉〈B̂〉
neglects double-exciton statistical properties, while maintaining transport. This level of theory
is equivalent to the Semiconductor Bloch equations (SBE) with dephasing, used for Wannier
excitons.114 The response functions predicted by these various levels of approximation will be
discussed in the coming sections.
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7. Coherent Nonlinear Optical Response of Quasiparticles in the Molecular

Basis

The response functions, eqs 14 and 18, connect the induced polarization to the incoming laser
electric fields. The third-order signals can be calculated using the Green’s function solution of
the equation hierarchy, eqs 64 and 65 (eqs 68 and 69 as a special case). The induced polarization
is defined as the expectation value of the dipole operator (eq 59).

7.1. Linear Response

In the linear regime, we get

(71)

Single-exciton dynamics when the field is switched off is described by

(72)

obtained from eq 68 with Y ≡0. Propagation of excitons is described by a single-exciton Green’s
function,

(73)

whose solution is G(t) = θ(t) exp(−iht), where h is the matrix with elements hmn. The solution

of eq 72 is given by .

The first-order terms in the NEE equations are obtained from

(74)

Substituting the Green’s function solution of eq 74,

(75)

into eq 71, and using eq 11, we get the linear response function:
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(76)

Linear response techniques are surveyed in Appendix A.

7.2. Third-Order Response

The third-order induced polarization is

(77)

Below, we present two levels of approximation for the kI, kII, and kIII techniques: the MFA
and the coherent exciton dynamics (CED) limit.

7.2.1. Mean-Field Approximation—At this level of theory, we make the factorizations
〈B̂B̂〉 = 〈B̂〉〈B̂〉. Equation 68 then becomes

(78)

and the polarization (eq 77) reduces to

(79)

The first-order variable is given by eq 75. The second-order variables vanish, and to third order
from eq 78 we get

(80)

Here and later, summations over repeating indices are implied. Below we present simplified

expressions obtained by setting . The complete third-order polarization obtained by
substituting eqs 75 and 80 into eq 79 is given in Appendix D.

The kI response function is generated by the VB(1)*B(1)B(1) term in eq 80 as follows: pulse 1
creates B(1)*, while the second and third pulses generate B(1) (in any order). This gives

(81)
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For the kII technique, we similarly have

(82)

and for kIII,

(83)

In these expressions, the kj pulse interacts with chromophore nj, and j = 4 denotes the signal
generated at chromophore n4. We thus keep track of all interaction wavevectors and
polarizations.

Corresponding frequency-domain expressions of the signals are given as a special case of eqs
127–129 and will be discussed in section 9.

7.2.2. The Coherent Exciton Dynamics (CED) Limit—When the system–bath coupling
is neglected, the system remains in a pure state and can be described by a wave function at all
times. Equations 68 and 69 then adequately describe the coherent short time dynamics.

A Green’s function for the Y variable is now required for solution of the NEE. The Y variables
describe two-exciton dynamics. The corresponding Green’s function defined by Ymn(t) = 
(t)Ykl(0) satisfies

(84)

The solution, (t) = θ(t) exp(−ih(Y)t), requires the diagonalization of a tetradic matrix h(Y). To
avoid this diagonalization, we calculate this Green’s function using the Bethe–Salpeter
equation, as described in Appendix E. In that appendix, we further introduce the exciton
scattering matrix Γ, which allows one to interpret double-exciton resonances in terms of the
exciton scattering.

By expanding the variables in powers of the fields, the first-order variable is given by eq 75
and the second-order variable

(85)

where we have further used the relation  ≡ , which results from boson symmetry.
Equation 68 then gives
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(86)

The polarization (eq 77) is given by

(87)

For , we get for the kI response function

(88)

We recast this result using the exciton scattering matrix (see Appendix E). Substituting eq 324

in eq 88 with , we get

(89)

Similarly, we obtain for kII

(90)

and for kIII:

(91)

Γn4n3, n2n1 is the exciton scattering matrix in two-exciton space. It is a tetradic matrix, whose
indices n1 and n2 represent incoming excitons and n3 and n4 are outgoing excitons. The
scattering is induced by the coupling V. The scattering matrix is given by
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(92)

where

(93)

Closed frequency-domain expressions of the signals corresponding to eqs 89–91 are obtained
from eqs 127–129 by neglecting transport and setting

, as discussed in section 9.

The physical picture for exciton dynamics emerging from this level of theory is very different
from the MFA: excitons scatter by their mutual interactions as demonstrated by the diagrams
in Figure 8 during the time interval τ – τ′ > 0. This scattering changes the resonant frequencies;
thus, the correct double-exciton resonances are recovered.

8. Coupling with Phonons; Exciton-Dephasing and Transport

So far, we have expressed the third-order response in terms of exciton Green’s functions. These
must be calculated in the presence of a bath to include dephasing and population relaxation.
In section 4, we have introduced the bath phenomenologically using the Lindblad master
equation. We now derive and extend these results using a microscopic model of the phonon
bath.107

8.1. Reduced Dynamics of Excitons Coupled to a Bath

As in section 6, we consider an aggregate made out of ℕ three-level molecules and described
by the Frenkel exciton Hamiltonian:

(94)

Ĥ0 (eq 58) and Ĥ′ (eq 60) represent the isolated system and system-field Hamiltonians,
respectively.

We shall use a harmonic model for the bath,

(95)

where α runs over the bath oscillators and  are Bose creation (annihilation) operators

that satisfy . Note that

(96)
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(97)

where Q ̂α and P̂α are the coordinate and momentum of bath oscillator α with frequency wα.
The system–bath coupling is assumed to be linear in bath coordinates

(98)

where the coupling parameters dmn,α represent bath-induced fluctuations of the transition
energies (m = n) and the intermolecular couplings (m ≠ n). For strongly coupled systems (J
≫ d), both contribute to energy-level and coupling fluctuations when transforming to the
eigenstate basis.

Because of the coupling with the bath, the factorization 〈 B̂† B̂〉 into 〈B̂†〉〈B̂〉 in eqs 64 and 65
now no longer holds, and exciton dynamics for the first-to-third orders in the field depends on

two additional variables,  and . The bath-induced terms are
calculated in Appendix F and result in the relaxation rates for the exciton variables. The full
set of equations up to third order in the field finally reads

(99)

(100)

(101)

(102)

where we have used  = hnn′δmm′ – hmm′δnn′, which is derived from the single-exciton
Liouville operator ; “⊗” denotes the direct product of two vectors: [A ⊗B]mn = AmBn. The
relaxation rate matrices are calculated using eqs 355 and 359. The rate matrix K̃ is given by eq
362 (since ρnm = Nmn, the corresponding relaxation matrices satisfy Kmn,kl = K̃nm,lk).

Some useful approximations may be used for the relaxation matrices.  will be represented

approximately as . For certain parameter regimes, the full Redfield
relaxation operator K may lead to unphysical (negative and larger than 1) probabilities.111,
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140 In the next section, we convert the operator in the eigenstate basis into the Lindblad’s form,
which guarantees a physically acceptable solution.

8.2. Redfield Equations in the Secular Approximation: The Lindblad Form

The secular approximation described in section 4 is widely used since it guarantees a physical
behavior of the propagated density matrix.111,120,141–145 We shall transform eq 101 into the
single-exciton basis, i.e., the eigenstates of the h matrix, hψe = εeψe. This gives (the field is
turned off)

(103)

Assuming that  and both frequencies are larger than values of K, the couplings
between different coherences can be neglected within the RWA, and only the dephasing terms
may be retained in the reduced relaxation operator. However, since ωee = 0, populations do

couple. We thus obtain  with . For the
Redfield equation in the eigenstate basis in the secular approximation, populations are
decoupled from coherences. Furthermore, each coherence satisfies its own equation and is
decoupled from the rest. Populations satisfy the Pauli master equation (eq 26) with population

transport rates, Kee,e′e′. Closed expressions for the relaxation rates and for  in the
eigenstate representation in terms of the bath spectral density are given in Appendix G. This
approximation for the relaxation operator, also known as the Davies procedure,146 guarantees
that the density matrix remains positive-definite. Some examples of nonphysical behavior of
the full Redfield equation are given in refs 111, 122, 140, and 142. Similar difficulties have been
found for the Bloch equations, which describe the nuclear induction of a spin that interacts
with a magnetic field.147 The problems associated with the Redfield equations are a
consequence of the second-order perturbation theory and the Markovian approximation.140

Various schemes have been suggested to remedy this, by introducing short-time corrections to
these equations.140,148,149 These were shown to give physical results for specific model
systems and some ranges of parameters, where the Markovian Redfield equation breaks down.
Unlike the secular approximation, these schemes do not guarantee the positivity of the density
matrix. The secular approximation, when applied to the Redfield equation, brings it into the
Lindblad form.111,120 The stochastic Liouville equation described in section 12 allows a more
general description of the dynamics that does not rely on the secular approximation and
guarantees a physically acceptable behavior.

In the eigenstate basis, the Lindblad equation (eq 25) can be written as

(104)

where we represent α by a pair of indices c and d. This will be convenient for connecting with

the Redfield equation.  where V̂(c,d) has been projected into the one-
exciton eigenstate, Ψe = ψemΦem with Φem and ψlm defined in sections 6 and 9.
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We next present the set of V̂’s that reproduce the Redfield relaxation rates of Appendix G. We
define two types of V matrices: the first contains only a single nonzero off-diagonal element

(105)

with c ≠ d. Since the rank of the Ne2e1 matrix is ℕ, there are ℕ (ℕ – 1) such V(c, d) matrices
(these correspond to all off-diagonal elements of Ne2e1). The remaining ℕ matrices are
associated with the diagonal elements (c = d):

(106)

The elements a and b represent off-diagonal and diagonal fluctuations of the single-exciton
Hamiltonian. They can be determined by writing equations for the population and the
coherences using eqs 104, 105, and 106 and comparing with the Redfield equation within the
secular approximation, eq 103. The a’s govern the population transport and are given by

(107)

To obtain the b’s, one needs to solve the equation

(108)

where γ ̂e1,e2 is the pure-dephasing rate (as introduced in eq 29),

(109)

Multiple solutions for the b’s exist since eq 108 contains ℕ( ℕ – 1) equations with ℕ2

unknowns (the ℕ equations for e1 = e2 in eq 108 are satisfied for any choice of b’s). One
particular solution is obtained from the rate expressions of Appendix G:

(110)

Finally, the frequency,  in eq 104 is related to ω e1e2 in eq 103 by a level-shift,

(111)
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This demonstrates that the Redfield equations in the secular approximation can be recast in the
Lindblad form. In general, however, the Lindblad equation (eq 104) can go beyond the secular
Redfield equation and can couple populations and coherences. They always guarantee to yield
a physically acceptable result.

8.3. Transport of Localized Excitons; Förster Resonant Energy Transfer (FRET)

The full Redfield Green’s function derived by a second-order expansion of the rates in the
system–bath couplings, couples populations and coherences. It is invariant to the basis set used,
i.e., a unitary transformation between the localized and delocalized basis sets does not affect
the dynamics.144 However, because of the different way populations and coherences are
treated, the secular approximation is basis-set dependent. The delocalized eigenstate basis
represents strongly coupled chromophores. For weakly coupled chromophores, the aggregate
eigenstates are essentially localized on individual chromophores and the real-space
representation then constitutes the natural basis set, where the Redfield equations become

(112)

Making the secular approximation in this basis, the Redfield relaxation operator becomes

 where K(F) is known as the Förster exciton-transfer rate. Note

that  (see discussion following eq 103). When the intermolecular distance is large
compared to molecular sizes, we can further invoke the dipole–dipole approximation for
intermolecular interactions. The exciton transfer rate between molecules is then known as the
Förster rate for the energy transfer between the “donor”, D, and the “acceptor”, A, molecules:
4,150

(113)

where FD(ω) is the fluorescence spectrum of the donor molecule, εA(ω) is the absorption
spectrum of the acceptor molecule, and VDA is the dipole–dipole coupling between the
molecules:

(114)

Here, μ are the transition dipoles and RDA is the vector connecting the donor and acceptor
molecules. Note that the exciton transfer rate includes the diagonal energy fluctuations. In
practical applications, one uses the experimental absorption εA(ω) and emission FD(ω) spectra
in the Förster formula. The strong ~R−6 dependence of K(F) is used in fluorescence resonant
energy transfer (FRET) studies, to probe molecular structural fluctuations and energy transport.
151,152

For small RDA, the molecular electron densities begin to overlap and energy transfer can
proceed via a different, Dexter, mechanism involving the double exchange of an electron and
a hole between the donor and acceptor molecules. This mechanism, which results in an
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exponential, ~e−αR; α > 0, dependence of the rate on the distance is particularly important for
triplet excitons where the optical transition is forbidden and the Förster rate vanishes.153,154

9. Optical Response of Quasiparticles with Relaxation

We now derive closed QP expressions for the response functions in the exciton eigenstate basis.
Exciton transport takes place during t2. During the delay periods t1 and t3, we only include
dephasing and neglect transport. This is usually justified since population relaxation times (ps
to ns) are typically longer than the interband dephasing times (100 fs).

The procedure for calculating the response function for the full set of eqs 99 and 100 is the
same as in section 7.2.2: the dynamical variables are expanded to third order in the field using
the necessary Green’s functions. These include the Green’s functions for the N and the Z
variables: N(t) = (t)N(0) and Z(t) = (t)Z(0) where N = 〈 B̂† B̂〉 and Z =〈 B̂† B̂B̂〉.  is a
tetradic matrix, while  is sextic. Note that the N variable corresponds to the transpose of the
density matrix in the single-exciton space, i.e., Nmn ≡ ρnm. The same holds for the Green’s

functions in the real-space representation (compare eq 31), so that , and so we
will use only . The response functions obtained by solving eqs 99 and 100 with the
polarization equation (eq 77) are given by

(115)

(116)

(117)

The exciton creation and annihilation events and the propagation of exciton variables for our
model with μ(2) = 0 are sketched diagrammatically in Figure 9. The excitons are created/
annihilated at each solid dot, and time propagations are represented by solid arrows. Arrow-
up represents G, while arrow-down stands for the conjugate propagation. Two lines within the
t2 interval represent  (when both point up) and  (when pointing in opposite directions).
Three lines (triple propagation) within the t3 interval represent . A horizontal dashed line
stands for the V matrix.

RkI is depicted in the left diagram. The interval between the first and second interactions is
described by the single-exciton variable 〈 B̂†〉, whose propagation oscillates with interband
frequencies according to G†(t1). During the second interval, the system is characterized by 〈
B̂† B̂〉 and its propagation given by (t2). This oscillates at low, intraband frequencies
associated with differences between single-exciton energies on different sites and their
couplings. The B̂† B̂B̂〉 variables generated during the third interval propagate according to 
(t3 – t′), which again oscillate with high interband frequencies. The evolution during t2 is
strongly influenced by the bath since the low, intraband oscillation frequencies are close to the
bath frequencies. Therefore, the interplay of incoherent transport and dynamics will be most
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important during this interval as described by (t2). The high-frequency evolution during t1
and t3 is only weakly influenced by the bath (unless it contains resonances at optical
frequencies).

Approximate factorizations will be used next to simplify the calculation of the Green’s
functions  and : by neglecting exciton population relaxation in the third interval, we can

set .68  is expressed in terms of the exciton-scattering matrix Γ
(Appendix E). The secular approximation, eq 31, will be used for  so that exciton eigenstate
populations will be decoupled from their coherences.

The Green’s function expression (eqs 115–117) assumes a simpler form in the one-exciton
eigenstate basis, e. The one-exciton Green’s functions become

(118)

where the single-exciton dephasing, γe, is derived in Appendix G. In the frequency domain,
we have

(119)

Exciton scattering (Appendix E) is best described in the eigenstate basis.79,91,108 This leads
to efficient truncation schemes of the scattering matrix, based on transition amplitudes and on
the exciton-overlap integrals. The scattering picture has been applied to infinite symmetric
systems and to large disordered aggregates with localized excitons.79,82,92,94,155,156

The transformation of the scattering matrix from the local to the exciton basis reads

(120)

Equation 325 expresses the scattering matrix in terms of the tetradic noninteracting-exciton
Green’s function. In the eigenstate basis, the latter is diagonal,

(121)

and is related to the single-exciton Green’s functions by a convolution:

(122)

To describe the dynamics of the N variables, we transform their Green’s function to the exciton
basis:
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(123)

Since the population and coherence dynamics of eigenstates are decoupled in the secular
approximation, this Green’s function assumes the form of eq 31.

The response functions assume a particularly compact form in the frequency domain (eq 41).
For kI, we obtain from eq 115

(124)

The time-domain response functions  can be calculated by using the inverse
transform (eq 317). We note that the Fourier transforms with respect to t1 and t2 only involve
single Green’s functions and are trivial. We can thus derive simple expressions for mixed

representation such as . When incoherent exciton transport is neglected, we

can set  and recover the coherent dynamics result (eq 89).

Starting from eqs 116 and 117, we similarly obtain the response functions for the other two
techniques

(125)

and

(126)
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Combining eqs 40 and 41 with the response functions (eqs 124–126) and using the results of
section 5, we obtain our final QP expressions for the multidimensional signals:

(127)

(128)

and

(129)

These expressions contain fewer terms than their supermolecule counterparts (eqs 42–50) and
allow one to make the approximations discussed above. The CED limit is obtained by setting

, which includes dephasing but no
transport. The MFA is recovered by neglecting transport and using the MFA scattering matrix,
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Γ(MFA)( ω) = V, as discussed in Appendix E. Equations 127–129 can represent nonbosonic
systems by using the scattering matrix given in Appendix H. These expressions can be readily
applied for infinite periodic structures; see Appendix I.

The numerical integration of eqs 40 and 18 with the response functions of eqs 124–126 will
be required when the optical pulses do overlap temporally or when the density matrix dynamics
is nonexponential (as in section 11). Simulated finite-pulse signals for the FMO light-
harvesting complex are presented in the next section.

10. Applications to the FMO Complex

Photosynthetic light-harvesting complexes found in biological membranes (see Figure 1)
constitute an important class of chromophore aggregates. Photosynthesis starts with the
absorption of a solar photon by one of the light-harvesting pigments, followed by transfer of
the excitation energy to the reaction center where charge separation is initiated.4,150,157,158

This triggers a series of electron-transfer reactions, the redox chain, where ADP is eventually
converted into ATP, which stores chemical free energy.150 The primary step, the absorption
of a photon, takes place in light-harvesting antennae containing assemblies of pigment
molecules that absorb light in a broad window of the solar spectrum. The transfer of this
excitation toward the reaction center occurs with a remarkably high (98%) quantum yield.
150 The active pigments are various types of chlorophylls (Chl) and bacterio-chlorophylls
(BChl, BChla, and BChlb), which absorb light in the 600–700 nm and at longer wavelengths,
159,160 and carotenoids, which absorb light at higher frequencies, in the 450–500 nm range.
159,161 Most energy transferred to the reaction center is absorbed by the Chl and BChl
molecules, but there is clear evidence for energy transfer from the carotenoids to the Chl
molecules.162–164 The carotenoids also act as photoprotective agents by thermally dissipating
excess energy that could otherwise generate harmful photooxidative intermediates.165,166

Optical properties of several complexes, light-harvesting complex 1 (LH1) and 2 (LH2) and
photosystem 1 (PSI) and 2 (PSII), have been extensively studied using linear and nonlinear
optical techniques, revealing ultrafast exciton dynamics and transport pathways.4,37,158,167

Understanding the interaction of these complexes with light is crucial for unraveling their
function and developing new generations of artificial light-harvesting and photonic devices
and poses major theoretical and experimental challenges. Multidimensional spectroscopy
provides an invaluable tool for unraveling and quantifying the photophysics of the
photosynthetic apparatus.40,41,81 These techniques can pinpoint couplings between pigment
molecules70 and can directly probe excitation energy transfer timescales.

The FMO complex168,169 in green sulfur bacteria is the first light-harvesting system whose X-
ray structure has been determined (Figure 1). The FMO protein is a trimer made of identical
subunits, each containing 7 BChl pigments and no carotenoids. This system has been
extensively studied by 1D techniques such as absorption and linear and circular dichroism.
170,171 The spectra were simulated using the exciton model (eq 58) whose parameters (site
energies, εm, and interactions, Jmn) were fitted to experiment.40,170,171 Subsequent 2D optical
spectroscopy40,41,81 revealed that the excitation energy is transferred toward the reaction
center using specific pathways; the energy does not simply cascade stepwise down the energy
ladder.40 By recording 77 K 2D spectra vs t2, Engel et al.41 observed 600 fs quantum beating
in both the shape and intensity of the peaks, indicating long-lived coherences. The role of
exciton delocalization and coherence in energy transport in photosynthesis is an intriguing
issue: if they survive at room temperature, they could allow for fast transport and improve the
efficiency of energy funneling to the reaction center. Pulse sequences that can distinguish
between coherent quantum oscillations and incoherent energy dissipation during t2 will be
presented in section 13.81
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Multidimensional spectroscopy has also been applied to other light-harvesting systems: Lee et
al. measured coherence dynamics in the bacterial reaction center,172 and Zigmantas et al.
generated a 2D signal of photosynthetic antenna LH3 (27 chromophores) in purple bacteria.
173 The reaction center of purple bacteria absorbs light in two well-separated bands at 800 and
850 nm. It is surrounded by a complex of BChl molecules forming a ringlike core light-
harvesting antennae LH1.174,175 The membrane LH1 is surrounded by peripheral light-
harvesting antennae LH2 and LH3. LH2 exists in different sizes. In Rps. acidophila, it is made
of two concentric rings containing 18 and 9 BChl molecules, respectively, while in Rps.
molischianum, the two rings have 16 and 8 BChl molecules, respectively.174 The two rings are
connected by carotenoids.174,176 More details about the structure and the interactions of these
light-harvesting complexes are given in refs 4, 174, and 177. Many theoretical studies of 1D
spectroscopy of this system have been carried out. Schröder et al.178,179 tested various methods
for calculating the linear absorption lineshapes, Jang and Silbey180,181 developed line-shape
theories for single-molecule absorption, and Dahlbom et al.182 calculated transition-absorption
of the B850 ring of LH2. The pump–probe and photon echo signals as well as superradiance
were covered in our group.34,130,183–185 Pullerits et al. have estimated the average
delocalization length of exciton in LH2 from the simulated and experimental pump–probe
spectra.186,187 They showed that the LH2 excitons are delocalized on 4 chromophores on
average.

Photosystem I (PSI) is the largest photosynthetic system with known structure containing 96
BChl and 22 β-carotenoid molecules.16 Six of the BChl molecules form the electron transfer
chain and constitute the reaction center. Ten “red” BChls absorb light at lower energies than
the others, including the reaction center. Their precise role in energy transport is under debate.
188 Photosystem II (PSII) is made of a light-harvesting antenna, LHCII, which contains 8
BChla, 6 BChlb, and 4 β-carotenoids,189 and its reaction center.190 Numerous experimental
and theoretical 1D spectroscopic studies have been carried out on PSI37,38,188,191 and PSII.
192–195 These include absorption, linear and circular dichroism, and pump–probe.

The peak linewidths for the kI technique at t2 = 0 reveal the homogeneous and inhomonegeous
dephasing rates.70,196 Variation of the cross-peak pattern with t2 allows one to monitor pigment
interactions and excitation energy transfer timescales.40,81 During t2, the system’s density
matrix evolves either in the first excited-state manifold, e, where population transport and
coherent evolution take place, or in the ground state, as seen from the Feynman diagrams
(Figure 4). Various quantum master equations for the evolution of the reduced density matrix
have been applied to study energy transport in photosynthetic systems.120,178 These include
the Redfield theory,120 a modified Redfield theory,185,197 and some non-Markovian variants.
178,198 Other studies199 have demonstrated the differences between the Bloch model and the
Redfield theory for the description of relaxation processes in LH2. Short-time, low-
temperature, dynamical features of the pump–probe spectra of LH2 were explained using a
simplified polaron model.200 Exciton annihilation has been shown to strongly affect nonlinear
optical signals.201–203

Various levels of theory developed in the earlier sections will be applied below to simulate 2D
signals of the FMO complex of Chlorobium tepidum. Its chromophore configuration is
sketched in Figure 10. The BChl molecules of the FMO monomer are modeled as 7 coupled
chromophores. The Hamiltonian of eq 58 is used with  = 0 and Δ → ∞ (two-level
chromophores). εm, Jmn, and μn are taken from ref 81. The overdamped Brownian oscillator
spectral density (eq 372) with timescale Λ −1 = 100 fs and interaction strength λ = 35 cm−1 is
used for the bath in the Markovian limit. The linear absorption, calculated using eq 269 shown
in Figure 11 has five peaks labeled a–e. The d and e bands contain unresolved doublets.
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10.1. Simulated Signals at the CED and MFA Levels

We start by neglecting transport and using the quasiparticle approach (eqs 127–129) with the
scattering matrix eq 387 (MFA) or eq 92 (CED). We first assume broad pulse bandwidths,
setting the pulse spectral envelopes to 1.

The MFA and CED SkI signals at t2 = 0 are compared in Figure 12. Since the two approaches
are identical in the single-exciton space, the diagonal section, which shows the single excitons,
is similar and reflects absorption peaks. However, their amplitudes are different.

The large differences appear mostly in off-diagonal regions, where double-exciton properties
show up. In the MFA, the two excitons evolve independently, and their correlations are
neglected. Peak positions, which reflect the double-exciton energies, are then given by the
combinations of single-exciton energies εe + εe′. The CED scattering matrix, in contrast,
induces additional shifts of the resonant positions coming from exciton–exciton interactions.

A similar comparison is shown in Figures 13 and 14 for the double quantum coherence SkIII
signal.83,205,206 It projects the double excitons directly on the Ω2 axis, making it very sensitive
to the fine features of the double-exciton manifold. The MFA provides an approximation to
the double-exciton manifold by neglecting exciton–exciton correlation effects. The two peak
patterns are mostly different in the higher-energy region (Ω2 >24 800 cm−1), where the MFA
signal is featureless but the CED shows well-resolved peaks.

The remainder of this section shows simulated kI signals that go beyond the CED to include
transport during t2 at the secular Redfield theory level.

10.2. Dissecting Energy-Transfer Pathways by Using Finite-Pulse Bandwidths

The 2D signals were calculated using eq 127 and include transport during t2. We used Gaussian
pulse envelopes,

(130)

In Figure 15, we show three finite-pulse simulations that demonstrate how a proper choice of
the pulse envelopes, using information from the absorption spectrum, can be used to reveal the
energy-transfer pathways, without any prior knowledge of the system’s Hamiltonian and
parameters.

Experiment A (top row) uses four broad pulses, whose power spectra are given by Wb in Figure
11 and cover the entire exciton band. At t2 = 0 (left column of Figure 15), the kI signal is
dominated by two diagonal peaks corresponding to bands b and d. The cross-peaks are weak.
As t2 is increased, relaxation toward lower energies is observed; a higher-energy photon creates
an excited state that decays toward lower-energy excited states, and the system emits at lower
energies. At t2 = 1 ps, cross-peaks start to appear below the diagonal. The cross-peak at
(−Ω1 = d, Ω3 = b) shows that some excitation energy of the d band has been transported to b.
The right panel (t2 = 5 ps) shows additional cross-peaks. The (d, b) and (d, a) peaks indicate
that energy from the d band has migrated to both the b and a bands. The absence of a diagonal
(d, d) peak indicates that most of the initial exciton energy of the d band has decayed to lower-
energy bands. The (b, a) peak is induced by energy transfer from b to a. Energy transport to
the lowest excited state is completed in a few picoseconds. All energy-transfer pathways
contribute to the signal; however, some are clearly dominant.
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In Figure 15B, the first two pulses are narrow (We in Figure 11; σ1/2 = 50 cm−1 bandwidth)
and selectively excite band e, and the last two pulses are broad (Wb). At t2 = 0 ps, the pulses
select peaks such that −Ω1 lies in band e. The dominant diagonal peaks at (b, b) and (d, d) fall
out of the pulse bandwidth, making weak cross-peaks more visible. At t2 = 1 ps, the population
created in band e has been transferred to b, c, and d (as seen from the larger (e, d), (e, c), and
(e, b) cross-peak intensities) but not to the lower a band (no (e, a) cross-peak). After 5 ps, we
see four cross-peaks indicating that all lower bands are populated, but the population of the
higher energy states, especially d, is very small (weaker (e, d) and (e, c) cross-peaks). It is
difficult to observe this pathway with broadband pulses (Figure 15A), since it is an order of
magnitude weaker than the dominant one.

In Figure 15C, the first two pulses are narrow (Wd in Figure 11) and selectively excite the d
band, but the last two pulses are broad. At t2 = 0 ps, only the diagonal (d, d) peak is observed.
As in Figure 15B, no significant excitation has been transferred to the lowest-energy band in
1 ps (no (d, a) cross-peak). What is different here is that only two bands are populated during
the entire energy-transfer process (shown as the cross-peaks (d, b) and (d, a), the cross-peak
at (d, c) never appears). The c band is not populated at t2 = 5 ps even though its energy is lower
than the original excitation, suggesting that the c and d bands correspond to localized
excitations residing on different (and weakly coupled) sites. Similar conclusions were reached
by Brixner et al.40 who argued, by analyzing the exciton eigenvectors of a model system similar
to ours, that the energy does not simply relax stepwise down the energy ladder.

10.3. Dissecting the Response Functions in Real Space

The third-order response function, whether calculated using the supermolecule or the
quasiparticle approach, contains a product of four dipole moments associated with the various

interactions with the fields. In order to analyze the NEE  response function, eq 124, we
shall transform the dipoles back to real space using μe = Σnψe,n μn with the single-exciton
eigenstates ψe,n defined in section 9. We further single out the n4 sum and write

(131)

with

(132)

 gives the signal generated at site n4. By varying t2, we can further find the sites into which
excitation energy flows, thus characterizing the population transport pathways and timescales
in real space. Monitoring the energy transport in real-space is of particular interest in
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photosynthetic antennae, where the energy must eventually be funneled into specific sites (the
reaction center).

A similar dissection procedure could be applied by singling out the third, second, or first
interactions with the field (i.e., restricting the sums in eq 131 over n3, n2, and n1, respectively)
and calculating the contributions of each site to the various interactions. The linear absorption
signal can be similarly dissected by singling out the second interaction (see eq 269):

(133)

It gives the contribution of site n2. The dissected absorption spectrum of FMO displayed in
Figure 16 shows that the lowest-energy excited state (band a) is localized on chromophore 3,
band b is on chromophores 4 and 7, and band d is delocalized over chromophores 5 and 6.

The  spectrum displayed in Figure 17 is dominated by chromophores 1, 4,
5, 6, and 7. As can also be seen from the absorption dissection, the (b, b) peak is delocalized
over chromophores 4 and 7. The (d, d) peak is delocalized over sites 5 and 6, while (c, c) is
localized on chromophore 1. For t2 = 10 ps (Figure 18), the signal is generated at chromophores
3, 4, and 7. This is to be expected since excitation energy flows in a downhill path. Band a is
localized on chromophore 3. Hence, the cross-peaks (d, a) and (b, a) are dominated by RkI,3.
The second lowest energy band, b, is still populated at t2 = 10 ps. Hence, RkI,4 and RkI,7 still
contribute to the response function since the b band is delocalized across sites 4 and 7. These
contributions contain the two peaks at (b, b) (the b band is still populated) and (d, b) (exciton
transfer from d to b).

This dissection analysis provides similar information to the finite pulse envelope techniques
discussed above. The difference is that here we select the chromophores, whereas the finite
envelopes select the exciton eigenstates. The two are close when the eigenstates are localized.
One can achieve a similar dissection using a broad band for the first three pulses and a narrow
band for the last pulse.

This dissection analysis provides information that goes beyond the eigenvalues and the
eigenvectors: it can be used to highlight specific energy-transfer pathways and timescales (as
was done in section 10.2 using finite pulses) and find the dephasing rates of coherences between
chromophores. Exciton delocalization can be characterized by the participation ratio,182,207,
208

(134)

Le varies between 1 and ℕ for an ℕ-chromophore aggregate and is a measure of the effective
number of chromophores contributing to the exciton e. For FMO with the Hamiltonian
parameters of ref 81, the participation ratios for the seven exciton states are (in increasing order
of energy): L1 = 1.3, L2 = 2.3, L3 = 1.6, L4 = 1.8, L5 = 2.4, L6 = 2.8, and L7 = 1.6. As expected,
the lowest-energy exciton is localized on a single site (chromophore number 3). The other
excitons are more delocalized, especially excitons 2, 5, and 6, which are delocalized on
chromophores 4 and 7 (exciton 2), 5 and 6 (exciton 5), and 5 and 6 (exciton 6). Another useful
measure is the coherence length,70
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(135)

which reveals the number of chromophores on which the exciton density matrix is delocalized
along the antidiagonal direction.

The dissection analysis can be used to extract some additional measures of exciton-state
delocalization. Let us consider the following quantity

(136)

where  is the contribution of the n4th chromophore to the response function.
Ld will vanish for regions dominated by a single chromophore and will grow with the degree
of delocalization. In Figure 19, we display Ld at t2 = 0 and t2 = 10 ps. Obviously the diagonal
peaks are localized on very few chromophores. This can be anticipated from our analysis of
the linear absorption shown in Figure 16. The cross-peaks in Figure 19 for t2 = 10 ps are more
delocalized because they result from population transfer facilitated by exciton delocalization
(c.f., eq 370).

10.4. Signatures of Quartic Exciton Couplings

The quadratic excitonic couplings Jmn in eq 58 correspond to the “strong J coupling” regime
in homonuclear NMR. Chromophores coupled through negative (positive) couplings form J
(H) aggregates. The quartic couplings  are analogous to the Darling–Dennison coupling209

in infrared spectroscopy and are known as the “weak (heteronuclear) coupling” of
heteronuclear NMR. A detailed comparison between NMR and multidimensional infrared and
optical spectroscopy was given in refs 57 and 58. The FMO simulations presented so far assumed
that each chlorophyll is a two-level chromophore, setting  = 0 and Δm → ∞. This anharmonic
penalty prevents two excitations from residing on the same site.

Here we study the possible signatures of .210 The energy of two-exciton states for excitations
on sites m and n (i.e., Em,n = 〈Φfmn|ĤS|Φ fmn〉, with Φ fmn defined in section 6) is

(137)

The  coupling implies that double excitations on neighboring sites have lower (negative ;
exciton attraction) or higher (positive ; exciton repulsion) energy compared to the sum of
energies of the two single excitations. In the NEE,  enters solely through the scattering matrix.
For finite , the coherent time-evolution of the Y variables will show resonances shifted by

 couplings.

To demonstrate the possible effects of these off-diagonal quartic couplings, we have switched
on the quartic coupling between the fourth and fifth chromophores in FMO. These sites are
chosen because they contribute significantly to the strong b and d absorption bands (Figure
11), as can be easily seen from the dissected linear absorption spectrum (Figure 16). This is a
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simple illustration of possible signature of the  coupling, which we use as a free parameter.
Figure 20 depicts the kI signals calculated with the NEE for  =  = ±300 cm−1 and t2 = 0.

Effects of the quartic couplings are most easily explained by looking at the SOS expressions
for the response function of a dimer,

(138)

where

(139)

(140)

where μ± are the transition dipoles between the ground and one of the single-excited states
(“+” and “−”). They are related to the dipoles in the local basis by the following transformation:
μ± = Ψ±,1μ1 + Ψ±,2μ2. The dimer model has a single doubly excited state, f, with energy ε+ +
ε− + , and the transition dipole between the singly-excited and the double-excited state is
μf,± = Ψ±,1μ2 +Ψ±,2μ1. The two terms of eq 140 are ESA contributions. The quartic coupling
enters only in these terms.

As can be seen from eq 139, the GSB and ESE contributions to the cross-peaks interfere with
the ESA. Hence, the cross-peaks at (ε+, ε−) and (ε−, ε+) interfere destructively. As  is
increased, the ESA peaks are shifted along Ω3 by  and the cross-peaks no longer cancel out,
creating a doublet.

A similar splitting of the cross-peaks is expected in larger aggregates. This explains the trends
seen in Figure 20. When  = 0, the diagonal peaks (b, b) and (d, d) dominate. As  is turned
on, the GSB and ESE contributions to the cross-peaks shift spectrally and no longer interfere
with the ESA and the cross-peaks at (b, d) and (d, b) appear. Furthermore, the ESA cross-peak
can be observed as weaker peaks shifted along Ω3 (these regions are circled in Figure 20).
These cross-peaks appear at (b, d + ) and (d, b + ).

Signatures of the off-diagonal quartic couplings are also manifest for t2 > 0. In Figure 21, we
show the kI response function for different  as in Figure 20 but for t2 = 10 ps. The b band is
still populated even after long t2. This is evident from the large diagonal peak in the b region
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for  = 0, shown in the top panel of Figure 21. Hence, the fourth site is populated since band
b corresponds to an exciton localized mainly on this site. For  = −300 cm−1, the doubly
excited Φf45 state is energetically favored. The excitation energy, absorbed in the b or d band,
which relaxes to b during t2, can re-emit from the d band, leading to a high-energy diagonal
peak and corresponding cross-peaks. Since the doubly excited state Φf45 is blue-shifted when

 = +300 cm−1, these new features are weaker in the second row of Figure 21. In this case,
the anharmonic coupling shifts the ESA contributions for the high-energy diagonal peak (d,
d) and for the (b, d) cross-peak along Ω3.

11. Interplay of Transport and Slow Fluctuations in the Third-Order Response

In section 7, we have derived quasiparticle expressions for the exciton-response functions by
assuming fast fluctuations of the bath, which justifies the Markovian approximation for
relaxation. This leads to a Pauli rate equation for populations and dephasing of exciton
coherences. The supermolecule approach, in contrast, can describe the coupling to a bath with
a broad range of fluctuation timescales. This higher-level treatment requires the explicit
calculation of two-exciton eigenstates, which is only feasible in small aggregates. Fortunately,
the detailed bath dynamics can be typically observed only in small systems where the electronic
spectra are not too congested.

It was shown in section 3 that the resonant Liouville space pathways can be classified into
ESE, ESA, and GSB types. The secular approximation for the Green’s function  additionally
decouples coherences and populations. The response function may then be partitioned into
contributions of coherences C and populations P during t2.

The resonant contributions to each technique are given by the Feynman diagrams of Figures
4–7. In the following expressions, we will use the same labeling for the various terms used in
the diagrams: ia, ii, iiia, iva, v, and via are purely population contributions, and ib, iiib, ivb,
vib, vii, and viii are purely coherence contributions.

The kI response function will be recast in the form:

(141)

(142)

(143)

(144)
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(145)

As in section 4, we define the complex transition frequencies

(146)

where τa is the lifetime of state a. ϕ(t3, t2, t1) are multipoint line-shape functions induced by
bath fluctuations. These are responsible for all other dephasing mechanisms beyond the
lifetimes τ.

Similarly, we recast the kII response in the form:

(147)

(148)

(149)

(150)

(151)

Finally, kIII is composed of ESA1 and ESA2 (both are coherent contributions since populations
are not created in kIII):

(152)
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(153)

In the coming sections, we shall derive microscopically and extend all quantities appearing in
the phenomenological expressions of section 4. The results of three approximations will be
recast in the form of eqs 141–153 and will only differ by the phase functions ϕ that will be
given by eqs 166, 177, and 179. The response function expressions of section 4 are recovered
by setting all ϕ = 0 and assuming that the dephasing is caused by finite lifetimes + pure
dephasing in the Markovian approximation.

11.1. Coherent Exciton Dynamics; Diagonal Gaussian Fluctuations with Arbitrary Timescale

We assume that the system is described by the Hamiltonian equation (eq 94) with the system
part in the form of eq 2 and the harmonic bath model given by eq 95. We partition Ĥ = Συ|υ〉
Ĥυ〈υ|, where the bath operator Ĥυ characterizes the bath-induced perturbation of the energy of
system state υ,

(154)

q̂υυ is a collective bath coordinate:

(155)

q̂υυ induces the frequency fluctuations of state υ with respect to the reference Hamiltonian of
state a:

(156)

Off-diagonal fluctuations responsible for population relaxation are neglected. The arguments
presented here hold in the eigenstate-basis, where all off-diagonal elements of the Hamiltonian
vanish. However, for coupled molecular aggregates, both diagonal and off-diagonal
fluctuations in real-space representation lead to transport, since they result in nonzero off-
diagonal Hamiltonian fluctuations in an arbitrary reference basis set. This model was studied
in refs 100 and 112. Here, we present the final expressions for the exciton model of Figure 3. In
this subsection, unlike the rest of the review, we do not make the RWA for the response
function. This allows for more compact expressions. The RWA is only invoked for the final
results (eq 166).

The linear and third-order response functions can be calculated exactly from eqs 12 and 15
using the second-order cumulant expansion.52,112 This is known as the CGF: cumulant
expansion of Gaussian fluctuations.

The linear response function is given by
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(157)

where (τ2 − τ1) = 〈μ ̂ (τ2)μ ̂ (τ1)〉 is the two-point dipole correlation function. The angular
brackets imply equilibrium statistical averaging over the bath.  is calculated exactly for this
model:

(158)

Here, ρa is the equilibrium population of state a, and we have introduced the line-shape function

(159)

 is the correlation function of bath fluctuations whose time
evolution is given by the ground-state Hamiltonian. The line-shape function can be
alternatively recast in terms of the spectral density,

(160)

see eq 342 and 353. Its symmetries and other properties are summarized in Appendix F. We
then have

(161)

The cumulant expansion similarly gives for the third-order response function,

(162)

where

(163)
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is the four-point correlation function of the dipole operator in the Heisenberg picture (because
we did not select pathways by invoking the RWA, R(3) is now independent of the wavevector
ks). Expansion in the exciton eigenstates yields

(164)

where φdcba(τ4,τ3,τ2,τ1) is a four-point line-shape function. For our harmonic bath model, we
get

(165)

where τij = τi − τj. The expressions given in ref 100 were derived in the semiclassical limit,
〈ωab(t)ωab(0)〉 = 〈ωab(0)ωab(t) 〉; here, we do not invoke that approximation.24 It is important
to note that φ does depend on the ground-state index g, even though it does not appear explicitly
in the right-hand side (rhs), since all time evolutions are calculated with the ground-state
reference Hamiltonian (eq 160).

By invoking the RWA, we can now select the resonant contributions in the response function,
as warranted for each technique. The resulting response functions then assume the form of eqs

141–153 with  and no lifetime broadening τ−1 = 0. The phase functions are
given by
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(166)

The line-shape function can be calculated analytically for certain models of the bath spectral
density. Commonly used examples are Ohmic, white-noise, and Brownian oscillator spectral
densities. The overdamped Brownian oscillator spectral density, defined by

(167)

where Λ −1 is the fluctuation time scale and λ is the system–bath coupling strength, provides
a simple expression for the line-shape function for t > 0 (for more details, see Appendix G),

(168)

where β = (kBT)−1 and νn = (2πn)/(ℏβ) are known as the Matsubara frequencies. For negative

times, we have . The second term is a low-temperature correction, given by the
additional Matsubara oscillators. The third term is responsible for bath-induced transition
frequency shift. In the high-temperature limit, kBT ≫ ℏΛ, we have

(169)

11.2. Response with Population-Transport and Intermediate-Timescale Bath Fluctuations

The results of the previous section hold for purely diagonal (frequency) fluctuations with
arbitrary timescales; population relaxation caused by off-diagonal fluctuations has been
neglected. The Redfield equations, on the other hand, include transport but are limited to fast
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fluctuations. Here, we present approximate expressions, which include exciton transport and
intermediate timescale fluctuations.

Dephasing occurs during the delay times t1 and t3, whereas transport takes place during t2.
Typically t1,t3 ≪t2 (for photosynthetic complexes, population transport occurs in 500 fs-10 ps,
while the coherence time scale is 100–300 fs). We assume an intermediate bath fluctuation
time: fast compared to the transport but slow or comparable to the coherence-dephasing time.
In this case, we can use the doorway-window representation of the response function and
project the doorway and window functions onto the population/coherence blocks of the density
matrix.184,185,211,212

Populations are created during t2 only in the kI and kII techniques. We therefore focus on these
techniques. We first recast the response function, eq 15, in the form

(170)

where (t) ≡   (t) ρ̂0 is the doorway exciton wavepacket prepared by the first two pulses,
(t) describes its propagation and  (t) ≡ P̂ | (t)  is the window wavepacket, which represents

the detection.

Both kI and kII techniques are described by three Feynman diagrams (ESA, ESE, and GSB) as
shown in Figures 4, 5, and 7, respectively. We shall separate the response function accordingly:

(171)

R(ESE) is given by diagrams i and iv, RGSB is given by ii and v, and RESA is given by iii and vi
in Figures 4 and 5.

Expanding eq 170 in the system eigenstates, we get and

(172)

(173)

and

(174)

The superscripts of the doorway and window functions indicate whether interactions occur on
the left (l, ket) or right (r, bra) side of the double-sided Feynman diagram, whereas the subscripts
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denote the density matrix elements. The angular brackets imply statistical averaging over bath
fluctuations.

Making the secular approximation for , we can separate the response function (eqs 172–
174), into two terms:

(175)

The coherent contribution, , only includes coherences (e1 ≠ e2, e1 = e3, e2 = e4) during t2,
and the entire optical process is completed before a relaxed exciton population is created. The

second term ( ) only includes populations (e1 = e2, e3 = e4) and represents sequential exciton
transport contributions. This representation thus keeps track on how populations are created
and propagated during t2. The corresponding response functions have been formally derived
using projection operator techniques;185 here, we present the final results.

We shall evaluate eq 175 using the secular Redfield relaxation operator.  may then be

calculated using the formalism of section 11.1.  is calculated using projection operator
techniques185 by factorizing the bath averages in eqs 172–174 into , , and  factors. This
gives

(176)

In the first, hopping, term, the doorway function De represents the population of the eth exciton
created after two interactions with the radiation field. The hopping term includes the ESA
diagrams (iiia for kI and via for kII) and ESE (ia for kI and iva for kII). The Green’s function

 is the conditional probability for the exciton to hop from e to e′ during t2 obtained by
solving the Pauli equation (eq 26 with the rate matrix in eq 362). The window function We
represents the contribution of the eth exciton to the detected signal. The second term in eq 176
is the GSB contribution where, during t2, the system is in the ground state (diagram ii for kI
and v for kII). Formal expressions for the doorway and the window functions are given in
Appendix J.

The final expressions for the kI and kII response functions are given by eqs 141–151. The
relevant phase functions ϕ(ib), ϕ (iiib), ϕ (ivb), and ϕ (vib) (coherence pathways) are given in eq
166. The remaining phase functions ϕ (ia), ϕ (ii), ϕ (iiia), ϕ (iva), ϕ (v), and ϕ (via) (sequential
pathways) are
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(177)

The lifetimes (eq 146) in this case are given by , and

(178)

is the bath reorganization energy.

The results in section 4 are based on the Markovian approximation for the entire response
function. The present expressions treat the various time intervals and pathways differently. For
the pathways that contain coherences during t2, we maintain the correlated bath dynamics by
treating diagonal fluctuations exactly. Second-order perturbation theory with the Markovian
approximation is used for off-diagonal fluctuations to get lifetime broadenings. The
populations containing pathways during t2 ignore bath-fluctuation correlations between
different propagation intervals t1, t2, and t3. During t1 and t3, the diagonal fluctuations are
treated exactly (by the cumulant expansion). Again, second-order Markovian perturbation
theory is made for off-diagonal fluctuations. During t2, second-order Markovian perturbation
theory is performed for the coupling with all bath coordinates, which results in the secular
Redfield equation.

The Redfield equations assume fast bath fluctuations and yield Lorentzian line shapes. The
present expressions are more general since they allow for finite bath timescale and arbitrary
line shapes. However, we assumed the complete factorization of the response function into the
doorway and window functions, i.e., memory is erased during the t2 period; correlations
between fluctuations during intervals t1 and t3 have been neglected. In the next subsection, we
present a higher-level approximation that does retain such correlations.

11.3. Combining Slow Diagonal Fluctuations with Exciton Transport

We now derive approximate expressions for the kI and kII techniques that include both slow
bath fluctuations and transport.24 kIII does not involve transport and needs not be considered
here. In subsection 11.2, we assumed fluctuation timescale shorter than the time intervals t1,
t2, and t3. Here, the bath fluctuations are slow compared to t1, t2, and t3.

The Feynman diagrams for kI (Figure 4) represent the time evolution of the density matrix in
the coherent regime where population relaxation is neglected. Figure 7 contains additional
terms that represent population transfer (e ≠ e′) during t2. The population contributions,
therefore, have two terms: a coherent, population-conserving term when population during t2
does not change (Figure 4) and the population-transfer term, where populations hop from state
e into e′ (Figure 7). The same partitioning also applies to kII.
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We assume a bath with both slow Q(S) and fast Q(F) modes. The Markovian approximation is
applied to the fast modes. During t1 and t3, these cause homogeneous line broadening (diagonal
fluctuations), while during t2, they induce population relaxation and dephasing (off-diagonal
fluctuations) described by the Pauli master equation (eq 26). The slow bath modes are
responsible for spectral diffusion during all three intervals t1, t2, and t3, which cause

correlations of density matrix between all these intervals. The diagonal parts, , shift the

system energies, while the off-diagonal parts, , can be eliminated by diagonalizing the
system Hamiltonian with Q(S) included explicitly (the adiabatic approximation). This is
justified provided the fluctuation amplitude is smaller than the intraband transitions within the
one-exciton band and the Q(S) timescale is longer than dephasing times γ−1. Within this model,
the Pauli master equation (eq 26) still holds during t2, but the population rate matrix K is
modulated by the fluctuations Q(S). We assume a smooth bath spectral density. Q(S) fluctuations
then induce weak modulations of the transport rates, which will be neglected. The population
Green’s function (t) does not depend on Q(S) and is taken out of the bath averaging in eqs
172 and 173.24 The contribution of the population-transfer pathways to the response functions
presented below is derived in Appendix K.

The complete response functions for the kI and kII techniques (eq 175) contain both coherent
and sequential contributions. As in section 11.2, eqs 141–151 present the final expressions for
kl and kll response functions. The phase functions ϕ(ib), ϕ (iiib), ϕ (ivb), and ϕ (vib) (coherence
pathways) are given in eq 166, while ϕ (ia), ϕ (ii), ϕ (iiia), ϕ (iva), ϕ (v), and ϕ (via) (sequential
pathways) are

(179)

where we define ζab = 1 − δab. As in eq 146, the lifetimes are given by . In
contrast to eq 177, these expressions include correlations between the time intervals t1, t2, and
t3 in both population-conserving and population-transfer diagrams. This level of theory can
reproduce some signatures of population transport during t2 such as the time-dependent
fluorescence Stokes shift.24

This approach, therefore, extends the DW picture of the previous subsection. The full
factorization of doorway and window functions and population propagator in the previous
section implies that the density matrix phase is completely lost when the population is created,
even if the population does not hop to the other exciton state. The approach presented in this
section retains these phases despite population hopping.
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12. Explicit Treatment of Bath Dynamics; The Stochastic Liouville Equations

and Beyond

In the previous sections, bath-induced fluctuations in the exciton transport were described
perturbatively. Bath variables were formally eliminated using projection operator techniques.
A higher level of description is possible by explicitly including some collective bath
coordinates in the supermolecule approach. This makes it possible to address a broader class
of models with arbitrary bath timescales.

12.1. Stochastic Models in Liouville Space

The stochastic Liouville equations (SLE) approach provides a consistent accounting for
fluctuations of arbitrary timescale by including some collective bath modes explicitly.109,213,
214 The method extends the Redfield equations for exciton transport, which are limited to fast
fluctuations. It further extends the CGF, which only applies to linear diagonal coupling of
energies to a Gaussian bath. At high temperatures, both the CGF and Redfield approaches are
obtained as limiting cases of the SLE. However, the SLE has several limitations: it neglects
the system-bath entanglement, assumes an infinite bath temperature, and is computationally
more expensive than the other methods. Finite temperature corrections will be discussed in
section 12.4.

The stochastic model assumes that the exciton Hamiltonian (eq 57) is coupled to some classical
stochastic variables σ(t), which represent the bath. The response function is calculated by
averaging 〈 〉 over the ensemble of stochastic paths

(180)

Here,  = [Ĥσ(t), · · · ] is the Liouville superoperator and subscript + denotes forward time
ordering. It is important to note that Ĥ0;σ now depends on time only implicitly through the
variable σ.

Equation 180 may be recast in the form

(181)

where (ta,tb) is the Green’s function solution of the Liouville equation for free evolution (no
field) between times ta and tb:

(182)

Direct implementation requires the generation of random paths σ(t), by, e.g., molecular
dynamics simulations, constructing the Hamiltonian at each step, and evaluating eq 180. The
quantum evolution for each path σ(t) may be described by a wave function in Hilbert space,
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because relaxation and decoherence effects only appear at the final averaging stage. Formally,
this is obtained from eq 180 by setting

(183)

where the rhs has been recast in Hilbert space. A more economical approach that avoids the
generation of ensembles of paths is possible when the stochastic bath fluctuations, σ(t), can be
described by a few collective coordinates, satisfying simple Markovian dynamical rules: the
probability density P(σ) of the random variables σ satisfies the master equation

(184)

where L(σ) is a linear operator. The dynamics is then fully described by the stochastic Liouville
equations. The contribution to the density matrix ρ may be represented at a given time by a
vector in the joint system + bath space. This density matrix has three indices: two represent
the ket and the bra in Liouville space, while the third denotes the state of the stochastic variable.
In the joint space, the Hamiltonian and the Liouville superoperator are time-independent
(except for the external field). The evolution of the joint density matrix is described by the
SLE:

(185)

 ρ ≡ [Ĥσ,ρ] thus describes both the system evolution Hamiltonian and the system–bath

coupling (  in eq 94). The system density matrix (and the response function) is
finally obtained by the standard prescription of statistical mechanics: averaging over the initial
and summing over the final states of the stochastic variables.

12.2. Stochastic Models for Nonlinear Spectroscopy

Since the bath dynamics is Markovian, the third-order response function may be factorized
into the product of three Green’s function matrices in the joint system + bath space, each
representing a single time interval, with

(186)

with

(187)

Here, the initial joint density matrix |ρ(0) 〉〉 = |gg〉〉|0〉 is a direct product of the equilibrium
distribution of the stochastic variables (zero right eigenvector of L(σ)) and the ground state of
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the system. The final summation 〈0|TrS includes both tracing over the system and summation
over the final bath states realized as a scalar product with the zero left eigenvector 〈0| of L(σ).
111

Equation 186 can be readily used to calculate the nonlinear response function; all correlations
are built into the bath variables. The frequency-domain response function is obtained by a
Fourier transform of the Green’s functions

(188)

(189)

The Green’s function matrices of the exciton-conserving Hamiltonian (eqs 57 and 58) are block
diagonal, and each block (such as gg, eg, ee′) can be calculated separately. For each Liouville
space pathway, eq 186 may be recast in terms of the matrix elements of the various block
submatrices:

(190)

Equation 190 accounts for coherence transfer (e.g., gej → gek) as well as exciton transport.
Consequently, the Feynman diagrams (Figures 4 and 5) can be used, but e and f now denote
the entire single-exciton and two-exciton blocks. The SLE is not limited to any particular basis.

Two types of stochastic models are commonly used in theories of spectral line shapes.215 The
first, M state jump, assumes that the bath hops between M discrete states. The Hamiltonian
Ĥα depends on the state α. The master equation for Pα ≡ P(σ = α) is

(191)
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and the SLE reads

(192)

The zero left eigenvector of , which represents the final summation over discrete bath, is
given by 〉0| = (1, 1, ..., 1).

In the second model, σ is a continuous dimensionless stochastic variable Q undergoing an
Ornstein–Uhlenbeck process and described by a Fokker–Planck equation216

(193)

where Λ is the relaxation rate (inverse autocorrelation time). Equation 193 describes an
overdamped Brownian oscillator in the high-temperature limit.52

The Green’s function solution of eq 193 with the initial condition G(Q,Q′;0) = δ(Q − Q′) is

(194)

The bath density approaches the equilibrium distribution Peq(Q) = G(Q,Q′; ∞) = (2π)− 1/2

e− Q2/2 at long times t ≫ Λ−1. Q is, thus, a Gaussian–Markovian variable. The final summation
over a continuous bath variable is represented by ∫dQ. A Gaussian process is uniquely
characterized by its two-point correlation function.

(195)

All higher multipoint correlations may be calculated by using the Gaussian factorization rule:

(196)

It will be instructive to show how the CGF expressions can be recovered from the SLE. To
that end, we assume linear coupling of the system to the Q coordinate

(197)
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where  and  operate on the system Liouville space. We further assume noninteracting
chromophores with purely diagonal bath fluctuations

(198)

The solution of the stochastic Liouville equations without the field

(199)

is

(200)

This integral can be recast using the Gaussian factorization rule (eq 196). To that end, we
calculate the following functional that holds for arbitrary Gaussian, not necessarily Markovian,
fluctuations.

(201)

Equation 199 can be solved by the second-order cumulant expansion

(202)

with the line-shape function

(203)

Equation 203 may be also obtained from eq 161 by taking the infinite temperature limit, and

the following spectral density . Comparing eqs 169 and 203, we
find 2λνν′ ≡ (βℏ)dννdν′ν′. At infinite temperature, the imaginary part of the line-shape function
vanishes. Qualitatively new effects of the bath timescale, described by the SLE, will only
appear when we go beyond eq 198 and include the coupling between excitons, add nonlinear
coupling between the system and Q, or assume a non-Gaussian bath.
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The third-order response functions can be obtained by using the cumulant expansion and recast
in the form of eqs 162–165 together with eq 203. To see that, we calculate, for instance, the
ESE contribution

(204)

Making use of eqs 201 and 203, the second-order cumulant gives

(205)

This agrees with eqs 162–165. The other contributions to the third-order response can be
recovered in the same manner.

For interacting chromophores, the second-order cumulant expression is an approximation.
However, the exact solution can be calculated from the SLE (eq 193) by expanding in the
eigenbasis set of L(σ) (eq 193),

(206)

where  are Hermite polynomials and α = 0, 1, 2, · · · . The initial (equilibrium) bath state is
represented by |0 〉= (1, 0, 0, ..., 0). The final summation assumes 〉0| = (1, 0, 0, ..., 0).

The bath Liouvillian is thus diagonal [L(Q)]αα′= −αΛ δα α′, and the Q variable is given by a
tridiagonal matrix.

(207)

Assuming linear system–bath coupling (eq 197), the stochastic Liouville equations become

(208)

By switching to Hilbert space notation, we have
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(209)

Green’s function solution (eq 189) to eq 209 thus requires inversion of block tri-diagonal
matrices.216 Since the Q blocks of the Green’s function are connected by raising  (lowering

) operators , these can be calculated iteratively in the form of a continued
fraction

(210)

and

(211)

The Green’s function is computed by starting with the diagonal element

(212)

For fast fluctuations | | ≪ ℏΛ, the continued fraction can be truncated at the lowest level and
the stochastic variables may be eliminated; the dynamics can then be expressed in the reduced
system phase space

(213)

As the fluctuations slow down, the continued fraction must be calculated to higher orders for
a proper convergence.

A single Gaussian coordinate (eq 198) can describe only a special class of bath fluctuations.
Multiexponential decays of arbitrarily correlated bath spectral functions Cij(t) can be
reproduced by including several independent Gaussian–Markovian coordinates Qk (each has
its relaxation rate Λk and coupling d(k)). An arbitrary C″ij is then decomposed into Lorentzians

(214)
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The full SLE treatment (eq 208) requires no additional effort when relaxing the model of purely
diagonal fluctuations, and a general four-index correlation matrix 〈qij(t)qkl(0) 〉 can be
decomposed similarly to eq 214 by allowing finite di≠j.

12.3. Application to Excitons

We now apply the SLE to the exciton model eq 57. The Redfield equations and other quantum
master equations in the reduced system Liouville space hold in the limit of short bath correlation
time (Λ → ∞ in eq 193) where the bath degrees of freedom may be projected out of the explicit
treatment of the SLE. To compare with the Redfield equations, we focus on the single-exciton
manifold (  block). Assuming fast stochastic dynamics, we can employ eq 213. For a general
coupling of the form Ĥ1 = ℏΣlm dlm|el〉〈em|, we get for the relaxation term in the eigenbasis of
Ĥ0

(215)

By making the secular approximation (see discussion below eq 103), we obtain the following
expressions for exciton-transfer rates (i ≠ j) due to off-diagonal fluctuations (compare eqs 104
and 112):

(216)

(217)

In addition, we have dephasing rates originating from exciton transport (lifetime) and pure
dephasing due to site diagonal fluctuations

(218)

The stochastic model thus agrees with the Redfield equations for fast fluctuations and infinite
temperature (see Appendix G). Finite temperature corrections will be discussed below.

Note that, because the SLE is an exact representation of a physical stochastic model, it is
guaranteed to yield a physically acceptable, positive definite density matrix for arbitrary values
of all parameters. For the Redfield equation, in contrast, this is only guaranteed in the secular
approximation.

We next demonstrate qualitatively new features predicted by stochastic models of exciton
dynamics. We restrict the discussion to slow fluctuations, which show the most pronounced
effects. We demonstrate how three assumptions made in the Redfield equations and the
cumulant expansion may be relaxed by the SLE: Gaussian fluctuations, Markovian exciton
transport, and linear system–bath coupling.
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We first consider non-Gaussian fluctuations. The Kubo–Anderson two-state-jump model217–
219 (eq 192 with M = 2) has been applied220 to hydrogen-bonding fluctuations in the OD
stretching mode of phenol in benzene,221 for which 2D line shapes show the timescale of
creation/dissociation of the hydrogen bond. Below, we examine slow two-state-jump
fluctuations in a dimer. We consider a model system with a few well-resolved absorption peaks.
These may arise either from various exciton states or from different slowly inter-converting
states of the bath. The absorption and the 2D SkI line shape of two noninteracting chromophores,
undergoing two-state-jump spectral diffusion, are shown in Figure 22. In Figure 22 [top], the
“up”, u (“down”, d) state is responsible for the two outer (inner) peaks. The 2D line shapes at
short delay times t2 = 0 are plotted for the i, ii, iv, and v diagrams (Figure 22 [bottom]). In
diagrams i, ii, and v, we see cross-peaks between different excitons, because one exciton can
be annihilated and another can be created by two interactions with the laser field, and the
aggregate can thus oscillate at a different frequency during t1 and t3 without any exciton
transport during t2. However, no cross-peaks are observed at short delay times between various
bath states before they can change. (For fast bath, motional narrowing will collapse the
spectrum into a single peak.) In diagram iv, the exciton state in t1 and t3 interval must be the
same and no cross-peaks are observed.

Second, the SLE can account for the finite bath fluctuation timescale. For instance, in ref 221,
fluctuations originating from the complexation timescale and the 2D signals revealed the
kinetic rate constants. The fluctuation timescale is crucial for some dynamical effects. For
excitonic systems that possess some symmetry, the ground state may be dipole coupled to only
a few eigenstates, and many levels are dark. Assuming fast spectral fluctuations (Redfield
theory), these levels remain dark. A slow coordinate may, however, break these selections
rules, and the dark eigenstates |ψi(Q)〉 may temporarily acquire some oscillator strength,
resulting in additional peaks. Similar peaks can be also reproduced by introducing static
disorder on the top of the Redfield equations. However, the SLE account for the fluctuation
timescales and can properly describe the dynamics of the additional peaks.222 Figure 23
illustrates this for a slow Gaussian spectral diffusion in a homodimer where the absorptive line
shape (the sum of kI and kII signals)

(219)

is plotted for two t2 delay times. All oscillator strength is carried by the symmetric state (upper
diagonal peak in Figure 23), and the only way to observe the other (lower) level is through the
coupling to slow bath coordinates (lower diagonal peak in Figure 23), which disappears on the
relaxation timescale.

Third, the SLE can describe nonlinear coupling of system parameters to Gaussian fluctuations.
This effect is less dramatic than the other two, yet clearly observable. For instance, the quadratic
expansion of interchromophore (J) coupling with stochastic motions of dihedral angles in
trialanine is hardly affected by the 1D infrared absorption line shape but was necessary for the
simulation of its 2D spectra.223 Additional effects, such as relaxing the Condon approximation
and allowing for fluctuations of the dipole amplitude, may be readily described by the explicit
representation of the bath.

The SLE show qualitative effects that are missed by the Redfield theory and can provide a test
for other approximate methods, but at a higher computational cost. The dimensionality of the
joint system + bath space grows exponentially with the number of collective coordinates. It is,
therefore, not practical to assign an independent bath oscillator for each chromophore in large
aggregates, as required for the most general description of fluctuations with an arbitrary degree
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of correlations. Few collective coordinates should be identified in order to keep the problem
tractable.

12.4. Microscopic Bath Dynamics beyond the Stochastic Liouville Equations

The SLE, when introduced phenomenologically, can readily describe non-Gaussian
fluctuations such as multistate jumps. However, they do not provide any guidance as to how
to include finite temperature effects. These may be incorporated by adopting a more
microscopic level of modeling of the collective coordinates.

We consider a bath consisting of a single harmonic oscillator (P̂,Q ̂) coupled to many harmonic
modes and described by the Hamiltonian183,224,225

(220)

(221)

This Hamiltonian is identical to eqs 95 and 98 but with a different choice of bath variables.
This microscopic model for linearly coupled Gaussian fluctuations is exactly solvable at all
temperatures and, therefore, allows one to discuss finite temperature corrections to the SLE.
It can describe, e.g., the Stokes shift, finite temperature excitonic densities, and other
temperature effects. Quartic coupling can be solved in a closed form as well, but the expressions
are much more complex.226–229

We introduce the bath spectral density, which describes the correlations of the force F̂ =
Σjcjq ̂j, acting on the Q ̂ coordinates by the other bath modes.

(222)

Comparing with eq 352, we get

(223)

The noise acting on the system is described by a different spectral density C(Q)(ω), which
represents the correlations of Q ̂ coordinate in the Hilbert picture:

(224)
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Assuming that the microscopic bath modes q̂ are faster than the collective coordinate Q ̂, taking
J″ (ω) = ℏMΩ2ω/Λ, and approximating Ω2 − ω2 ≈ Ω2, the bath spectral density reduces to the
overdamped Brownian oscillator form:

(225)

At high temperatures ℏ coth(ℏβω/2) ≈ 2(βω)−1, we recover the Gaussian–Markovian stochastic
process (eq 195) with (½)〈{Q ̂ (t), Q ̂ (0)}〉 = (βMΩ2)−1 exp(− Λ|τ|), where {A, B}= AB + BA is
the anticommutator. The Uhlenbeck–Ornstein process is a high-temperature limiting case of
the model (eq 220).224 By rescaling (βM)1/2ΩQ ̂ → Q, to obtain a dimensionless unit
equilibrium width, and setting MΩ2d̃mnQ ̂ → Q , we recover eq 197.

Finite temperature corrections to the SLE with the linear coupling model are proportional to
the anticommutator {Ĥ1, ρ},109,183

(226)

This correction, which represents the back-action of the system on the bath, is obviously missed
by stochastic models. However, its inclusion does not increase the level of complexity of the
present SLE, because it retains the simple tridiagonal form of eq 208 in Q space

(227)

The resulting equations of motion

(228)

describe a noise at finite temperature, which generalizes the infinite temperature with finite
fluctuation timescale of the SLE, and the finite-temperature fast fluctuations of the Redfield
equations.

The finite-temperature correction (eq 226) represents bath reorganization. Consider the spectral
diffusion model of purely diagonal fluctuations dmn = δmndmm (no off-diagonal coupling
fluctuations). Expanding T in exciton eigenstates |em〉, it may be added to the Smoluchowski
equation,230,231 yielding

(229)

For this model, the free-energy surfaces for the various states are linearly displaced by β
(dmm − dnn). In both states, the Smoluchowski equation represents diffusion of the bath in a
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potential whose equilibrium is displaced by dmm. The displacement depends on the state of the
system. For the coherence block, we have

(230)

and the particle moves on a surface whose equilibrium displacement lies midway between
those of levels |em〉 and |en〉 in eq 229.

Equation 228 holds at moderately high temperatures. At low temperatures, βℏΩ > 1, the
quantization of bath oscillators is necessary and higher-order terms in β obtained by expanding
the coth (ℏβω/2) term in eq 161 must be included. This requires the introduction of additional
bath oscillators with relaxation rates 2πn/β (Matsubara frequencies) and a corresponding width.
183,109 These corrections have a similar structure as eq 228 but increase the computational cost.

The line-shape function for noninteracting chromophores linearly coupled to an overdamped
Brownian oscillator (eqs 161 and 225) may be calculated exactly for arbitrary temperature
using the second-order cumulant expression and is given by eq 168 with 2λνν′≡ (βℏ)dννdν′ν′.
The imaginary part of this line-shape function represents the correction eq 228 and the Stokes
shift.

For interacting chromophores, finite-temperature corrections establish thermal distribution of
exciton densities, which makes this level of theory important for realistic modeling of many
experimental systems in optical domain (such as FMO complex at 77 K).

The phenomenological viewpoint of the SLE model as a spectral random walk suggests another
class of generalizations. The theory of random walks has many techniques and models, which
go beyond ordinary Markovian diffusion.232 One possible extension is the continuous-time
random walk (CTRW) model of spectral diffusion.233 This non-Markovian model assumes a
waiting-time distribution function [ (t)]lk for the random walk jump of the bath from state k
to l. The model is tractable thanks to its renewal property; all memory is erased at the time of
the jump. Rather than looking at the joint system + bath density matrix at a given time, we
must follow the contributions to the density matrix from random walks that made a step to a
given state at the specified time. This contains the information necessary to predict the future
without reference to the past. In contrast, the full (unrestricted) density matrix sums over
contributions where different time had elapsed from the last step. This is not sufficient for
predicting the future jumps. The random walk paths for the third-order response may be sorted
into eight groups, based on whether or not some step is made in any of the intervals t1, t2, and
t3, and the contribution of each group to the response function must be calculated separately.
In each group, we first focus on subintervals between the first and last steps in each applicable
interval and calculate the propagator ℤ between these two times by solving the integral equation

(231)

which follows from the renewal property.

It remains to account for the evolution between the boundary steps in different intervals, during

which the random walk state is fixed. The coherence evolution between the last jump at  in
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the mth interval and the first jump at  in some subsequent (lth) interval is determined by the
fixed state of bath and contributes by factor

(232)

Additional factors for the first jump (that may have special waiting time distribution functions
(WTDF), depending on sample preparation (initial conditions)) and for the final interval
between the very last jump and the final time are constructed in the same way as in eq 232 but
with special function . All of these contributions must be properly multiplied, averaged over

initial and summed over final states, and convoluted over the possible  and .

In Figure 24, we show the 2D absorptive line shape (eq 219) of a Kubo–Anderson two-state
CTRW modulation of transition frequency of a single chromophore with long-tailed WTDFs

(t) ≈ 1/tα+1 (1 < α < 2) resulting in the significant divergences δΩα −3 at fundamental
frequencies of the two bath states and algebraic cross-peak relaxation proportional to

.234 The CTRW model further allows one to treat the aging of random walks with
diverging average waiting time (0 < α < 1). Aging implies that the average mobility vanishes
with time, because more and more paths are trapped in the long tails, resulting, e.g., in the
anomalous relation between squared displacement and time 〈x2 〉 ∝tα of the free diffusion. In
addition, the individual paths σ do not uniformly track the space and the random walks are
nonergodic.235 Clear signatures of aging can be seen in the third-order response function (with
respect to the time interval from the start of the random walk to the first pulse).129 In Figure
25, the 2D absorptive line shape (eq 219) is shown to depend on the initial time t0 elapsed
between the start of the random walk and the first interaction with laser pulse. The parameters
correspond to fast bath limit at t0 = 0, with a single motionally narrowed peak. Diagonal peaks
at the fundamental frequencies that grow with t0 correspond to immobilized particles and
provide clear signatures of aging. Most notable is the coexistence of static diagonal peaks at
fundamental bath frequencies and the central motional narrowing peak. This reflects the
strongly inhomogenous (nonergodic) form of aging as described by the CTRW model.
Measurements of the aging response would require the preparation of fresh samples before the
application of each pulse sequence, making sure that the system has fully relaxed so that the
age of the sample can be properly defined. 2D spectroscopy can thus provide a probe for glassy
systems characterized by broad distributions of tunneling times.

13. Nonlocal Nonlinear Response of Chiral Aggregates

Chiral molecules and aggregates can be probed by pulse sequences that yield chirality-induced
higher-resolution signals. The term “chirality” has been coined more than 100 years ago by
Lord Kelvin. According to his definition, “any geometrical figure, or group of points is chiral
if its image in a plane mirror, ideally realized, cannot be brought to coincide with itself”. Chiral
systems, therefore, come in two equally probable mirror-image configurations.236 Mirror
reflection with respect to the xy plane can be described by two successive symmetry operations:
(i) parity ℙ (space inversion ℙ (x, y, z) = (−x, −y, −z)) and (ii) coordinate system rotation by
π around the z-axis. Isotropic ensembles of randomly oriented molecules are invariant to an
overall rotation. A racemic mixture of chiral molecules with opposite sense of chirality is
invariant to parity, whereas an unequal mixture forms an isotropic chiral ensemble. The parity
operation thus transforms between isotropic ensembles with an opposite sense of chirality.
Aggregate chirality can arise from both the chemical structure of individual chromophores and
from a chiral arrangement (even when the chromophores are nonchiral).
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Since the successive application of two parity operations restores the system back into its
original state, optical signals (like all system properties and physical observables) can be
classified as either parity-odd (ℙFo = −Fo) or even (ℙFe = Fe).237,238 The former change sign
when the chirality is reversed and, therefore, must vanish for nonchiral systems and racemates
(equal mixtures of chiral molecules with opposite chirality). Parity-even signals, in contrast,
are not sensitive to the sense of chirality. We shall distinguish between two types of signals:
chirality-induced (CI) and nonchiral (NC).

Circularly-polarized light is chiral since it has either left (L) or right (R) screw symmetry with
respect to the propagation direction. The simplest chirality-induced linear optical technique,
circular dichroism (CD), measures the difference between absorption of L and R circularly
polarized light.93,239,240 Thanks to its high structural sensitivity, the technique has been
extensively applied to structure determination using electronic transitions in the visible241,
242 and the UV243–245 or vibrational transitions in the IR.246–248 Raman optical activity (ROA)
is a closely related technique that measures the difference between resonant scattering of L and
R circularly polarized light.237,249,250

CI techniques have been extended to the nonlinear regime. The chirality of liquid and solid
interfaces where the surface layer of molecules has some degree of order is commonly studied
using second-order techniques251 such as sum-frequency generation (SFG) and second-
harmonic generation (SHG).252,253 CI tensor elements of the second-order susceptibility have
been determined for specific molecular geometries.254–256 Second-order techniques may also
be used to study chirality in bulk samples; however, such signals are very weak due to phase-
mismatch.89,238,257,258

In the bulk, third-order signal sensitivity to system chirality requires going beyond the dipole
approximation. Chirality induced (CI) two-dimensional pump–probe, photon-echo, double-
quatum correlation signals, have been simulated for vibrations in chiral polypeptides and
electronic spectra of chromophore aggregates.79,81,82,90–92,94,97,156,259–263

Geometry enters optical signals through the transition dipoles and higher multipoles. All our
applications so far were based on the dipole approximation for the coupling with the field. The
molecule was assumed to be small compared to the wavelength of the light and can be treated
as a point particle, neglecting the variation of the phase of the field across the molecule. This
may not be generally justified for large aggregates. To take these phase shifts into account, we
must go beyond the electric dipole approximation and include the system’s interaction with
both electric and magnetic optical fields. This requires the introduction of a large number of
electric, magnetic, and mixed-response functions. A more compact but equivalent description
can be developed by describing the system–field interaction using the minimal coupling (p •
A) Hamiltonian,

(233)

where A is the vector potential of the electromagnetic field.

(234)

is the electric current operator, and
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(235)

is the charge density (rα and pα are the coordinate and momentum operators of electron α). The
p • A Hamiltonian has two coupling terms, which are linear and quadratic, respectively, in the
field. For a time-domain impulsive experiment where each of the incoming laser fields interacts
only once with the system and the fields do not overlap temporally, the AA term can be
neglected. We thus adopt the simplified Hamiltonian of eq 1 with the system–field interaction:

(236)

Similar to eq 16, we shall expand the vector potential in modes

(237)

where  is the vector potential envelope corresponding to pulse j, centered at τj, with
wavevector kj and carrier frequency ωj. Both electric and magnetic optical fields are
represented by the vector potential since B = ∇ × A and the Maxwell equations give E = − Å.
We then have B = iΣj kj × Aj and E = −iΣj ωjAj, where Aj is the vector potential of the jth pulse.

We now generalize eq 14 by introducing the nonlocal response function for the induced current,

(238)

where tj are the delays between successive interactions with the fields and the third-order
response function ℝ(3) now relates the current density to the vector potentials. From the
Maxwell equations and the charge continuity equation, it follows that the current is related to
the polarization P and magnetization M vectors:

(239)

We consider an isotropic ensemble of aggregates. We define the center of charge of the mth
molecule rm and the displacement ρm ≡ r − rm relative to the rm. The total current operator is
given by a sum of operators localized around the chromophore charge centers, J(r) = Σm δ(r −
ρm − rm)Jm(ρm). Each |ρm| < l0, where l0 is the molecular size because Jm(ρm) = 0 for |ρm| ≥
l0. Performing the Fourier transform Jm(k) = ∫ dr e−ik(ρ), we can recast eq 238 for current
amplitudes in a form similar to eq 18:
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(240)

Here, ks = u1k1 + u2k2 + u3k3 and ωs = u1ω1 + u2ω2 + u3ω3. We shall make the RWA for all
interactions with the k1, k2, and k3 fields. Equation 240 is the spatially nonlocal generalization
of eq 18.

The current-density operator for the m’th molecule will be written in the form

(241)

Fourier transform with respect to r, Jm(k) = ∫ dr exp(−ikr)Jm(r), provides a direct connection
with the optical signals. When the aggregate size is small (but not negligible) compared to the
optical wavelength, we can expand the transition current densities to first order in the
wavevectors k, thereby connecting them to the transition dipole, μ, the transition quadrupole
q, and the magnetic transition dipole m for chromophore m:

(242)

All molecular properties have been calculated with respect to the origin Rm. The k • Rm
contribution is required for molecular aggregates, where each chromophore has its own
reference point. Because of exciton delocalization, this enters as an additional contribution of
the single-exciton eigenstate quadrupole (a collection of dipoles has higher multipoles:
quadrupole, etc.). The total quadrupole contribution can then be represented as a sum of two

terms: the transition intramolecular quadrupole amplitude of each chromophore  and
a nonlocal interchromophore contribution originating from spatial distribution of
chromophores of the aggregate Σn ψneRnμn, where Rn is the location (origin) of dipole μn.
Thus, the total contribution of the e exciton to the quadrupole operator is

(243)
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We note that, while in the local molecular basis, we have ; this is no longer the
case for the delocalized excitons basis, where , due to the different origin in the
calculation of the quadrupole moment of different molecule. A common model for molecular
aggregates assumes that each chromophore is nonchiral and is described by its local dipole,
neglecting the intramolecular quadrupole and magnetic contributions.4,241 Only the
interchromophore quadrupole contribution is then taken into account.

The functional form of the transition current operator (eq 241) resemble our previous definition
of the polarization operator (eq 59 with μ(2) = 0). All calculations of the response function,
therefore, proceed as before, except that the transition dipole expectation value must be
replaced with the induced current density. The linear response function (eq 76), for example,
is now given by

(244)

The QP third-order response function in the coherent regime for the kI =−k1 + k2 + k3 (eq 89)
technique similarly reads

(245)

Here,

(246)

and

(247)

is the orientationally averaged product: Jj(k) is the transition current density of transition j,
kj is the jth-field wavevector, and νj is its polarization. The summation over molecules describes
an isotropic orientationally averaged ensemble.

The induced currents in isotropic ensembles (eq 247) can be expressed in terms of
orientationally averaged products of the various multipoles:
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(248)

13.1. The Dipole Approximation

The first term in eq 248 gives the orientationally-averaged response functions in the dipole
approximation (k = 0)

(249)

This product of four transition dipoles is invariant to the parity transformation and is thus
independent of system chirality. The resulting response functions and all signals derived from
them are nonchiral (NC). The following relation holds between current-density/vector potential
response function and the induced-polarization/electric field response function: −i4

ωsu3ω3u2ω2u1ω1R(3) = ℝ(3).

Orientational averaging of the transition dipoles performed using eq 424 in Appendix L

requires the calculation of the vectors  in eq 429. The elements of this vector define the

three linearly independent configurations of transition dipoles, , or

, or . Assuming that all laser beams propagate along z, the
independent polarization configurations, which survive the orientational averaging, are listed
in Table 1; the labels in (ν4ν3ν2ν1) are ordered chronologically: ν1 is the polarization vector of
the first pulse, ν2 is the second, etc.

We next go beyond the dipole approximation, where the response functions become
wavevector-dependent.
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13.2. Beyond the Dipole Approximation; Collinear Chiral Techniques

We assume that all laser beams propagate along z and have the same carrier frequency. This
configuration has been used experimentally.76 The various phase-matching signals can be
separated using phase-cycling (combining various experiments defined with different phases
of the fields) as is commonly done in NMR.58,264 Note that (u1, u2, u3) = (−1, 1, 1) for kI, (1,
−1, 1) for kII, and (1, 1, −1) for kIII. From eq 248, we get

(250)

where k = |k| is the wavevector amplitude and εγβα is the antisymmetric Levi–Civita tensor
(εxyz = εyzx = εzxy = 1, any other permutation of indices changes sign, and εγβα = 0 when at least
two indices coincide). The field polarizations are now restricted to νj = x, y, and we assumed
m = im″ to be pure imaginary, which is the case for a real basis set.

Upon examination of the vector F(5) in eq 430, as was done for the dipole approximation, we
find the three independent techniques listed in Table 2. These involve products of three
transition dipoles and either one quadrupole or magnetic transition dipole. Since these products
change sign upon parity transformation, the signals must be induced by system chirality and
we denote them chirality-induced (CI).

13.3. Noncollinear Chiral Techniques

The resonant response functions in noncollinear configurations depend on both pulse
polarizations and wavevectors, ℝ (k4,k3,k2,k1; ν4,ν3,ν2,ν1). Using eq 240, we decompose all
vectors into elementary components and obtain the tensor expression of the response function
for an arbitrary wavevector configuration:

(251)

Here, ν4ν3ν2ν1(k4k3k2k1) defines an elementary field polarization and wavevector
configuration. Using the formalism of ref 265, we find that only few of these configurations
are linearly independent and should be calculated. Within the dipole approximation, we only
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had three linearly independent configurations. To first order in the wavevector, the column

vector  in eq 430 defines six linearly independent techniques. These are obtained by

specifying , (0, 0, 0, 0, 1, 0)T, etc. The six noncollinear wavevector and

polarization configurations that lead to this 156 are listed in Table 3.

13.4. Chirality-Induced Signals in the FMO Complex

The simulations presented in section 10 used the quasi-particle expressions of the response
function within the dipole approximation. Orientational averaging was described in section
13.1. FMO is a small complex with only 7 single-exciton states and 21 double-exciton states;
the higher-level line-shape expressions of section 11 may be used in this case. Orientational
averaging can be performed beyond the dipole approximation as described in sections 13.2 and
13.3.

In Figure 26, we compare NC (xxxx) and CI (xxxy) signals calculated using the doorway–
window expressions of section 11.2 for different delay times t2. The xxxx (dipole
approximation) is displayed in the top row. At short time (t2 ≤ 500 fs), it shows strong blue
(negative) features along the diagonal (GSB and ESE contributions). Positive (green) peaks
above the diagonal show ESA. Slow redistribution of peaks observed at longer picosecond
timescales reflects population transport to lowest-energy state. The second row depicts the
corresponding xxxy collinear CI signal. At short delay times, the fine structure of the spectrum
is much more detailed than in the NC signal. The peaks along the diagonal now resemble the
CD spectrum, while off-diagonal features provide information about couplings. The variation
with t2 can now be followed more closely since separate well-resolved peaks appear in addition
to peak shoulders seen in (xxxx). These simulations use the realistic line width.

Signals specifically designed to probe coherent and dissipative dynamics81 are shown in Figure

27. The combination  selectively probes exciton-intraband
coherences and their dynamics, since the contributions from populations exactly cancel out.

On the other hand, the signal  highlights population dynamics: since
exciton-coherence contributions from the ESE diagrams are canceled by quantum interference.
Both are CI signals that capture structural information with high sensitivity. Since population
contributions have been canceled, the off-diagonal peak signatures are now much better
resolved and show the coherent exciton evolution. This is connected to coherent quantum
effects in the system such as exciton delocalization, excitonic nature, and relaxation
mechanisms.

The C̃1 signal shows a much slower dynamics. At zero delay, the signal is simply the inverse
of B̃1, but the differences rapidly develop at longer delays. The C̃1 peak structure is richer than
B̃1, and specific peaks can be attributed to coherences in ESE and ESA processes by comparing
both B̃1 and C̃1: the peaks that coincide in B̃1 and C̃1 are from ESA, and the ones missing in
C̃1 are from ESE. Peaks in C̃1, which are absent in B̃1, come from populations. Note that
coherences decay within 150 fs. Thus, the longer time dynamics is now solely due to
populations. The C̃1 signal vanishes in the absence of population transfer in the ESE diagram.
Thus, the peaks in C̃1 are particularly sensitive to the population-transport pathways (note that
ground-state populations in GSB do not evolve in our model and only give static contributions).

14. Manipulating 2D Signals by Coherent-Control Pulse-Shaping Algorithms

In complex biological systems such as photosynthetic aggregates, coherent and dissipative
dynamics occur on similar ultrafast timescales and line broadening leads to congested, weak
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cross-peaks. Global data analysis may be used to extract dynamical information out of time-
resolved signals.50 The technique allows one to unravel spectra of excited species covered
under the background of other signals. This method has been used for data analysis of ultrafast
pump–probe (transient absorption) spectroscopy to characterize energy-transfer dynamics in
light-harvesting antenna,47,266 to identify a photoprotective energy dissipation mechanism in
higher plants,51 and for other applications. The interpretation is, however, model-dependent.

The active control of ultrafast processes can provide detailed information on the underlying
vibrational and electronic dynamics.267–270 Coherent-control pulse-shaping techniques have
been used to drive quantum systems into a desired state,271–275 to manipulate excitons in
multidimensional spectroscopy,96,97,262,263,276–282 and to control the function of biological
systems.283–286

A number of NMR control techniques involving simultaneous and shaped pulses, composite
pulses, refocusing schemes, and effective Hamiltonians have been proposed.287 These
developments are expected to find future applications in quantum information and
computation. The same ideas may be used to design and simplify 2D signals of excitons.

2D spectroscopy of photosynthetic excitons provides valuable insights into coherent and
dissipative excited-state dynamics.40,41,80,173,288,289 Specific energy-transfer pathways may
be directly observed through the temporal evolution of cross-peaks, and their oscillations
provide information about the long-lived electronic quantum coherences. These provide
signatures of quantum effects in primary biological events.290 Analysis of these 2D spectra is
complicated by spectral overlaps and weak cross-peaks. Specific pulse polarization sequences
designed to highlight the off-diagonal spectral features were described in section 13.81,288 In
spite of this progress, resolving weak congested cross-peaks and providing general methods
for simplifying 2D optical spectra as in 2D NMR remain an open challenge.

Below, we demonstrate how pulse-shaping and coherent-control algorithms may be used to
simplify the multidimensional spectra of photosynthetic excitons, revealing information about
dynamical correlations between exciton states. In the weak-field (third-order) regime
considered in this review, the shaped laser pulses do not modify the response functions of the
system but allow one to selectively amplify and resolve the targeted spectral features by
manipulating the constructive and destructive interferences among Liouville space pathways.

We shall represent the optical electric field in the form

(252)

Compared to eq 16, here we have added the temporal phase function ϕjv (t − τj)68,291 and
introduced the pulse polarizations ν explicitly.

The electric field can be alternatively recast in the frequency domain

(253)
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where  is the Fourier transform of the complex envelope function

 and  = [ ]*. Note that  (ω) and ϕ ̃(ω) are not the Fourier transforms of
(t) and ϕ (t).

The signal (eq 40) will now be recast in the form

(254)

The frequency-domain signals may be obtained using eq 41. The nonlinear response contains
a 4-fold summation over molecular eigenstates. These terms interfere. Other types of
interferences arise from the multiple integrations over pulse envelopes (t) and the
superposition of various tensor components. Later in this section we demonstrate how the pulse
phases and envelopes may be manipulated in order to control the interferences among pathways
and simplify the 2D signals.

14.1. Phase, Amplitude, and Polarization Pulse Shaping

The field of coherent control with laser pulse shaping has grown in many directions since the
original proposals in 1980s292–295 and the first experimental realizations in the early 1990s.
296–299 Shaped femtosecond laser pulses provide numerous “control knobs” for manipulating
the outcome of light-matter interactions. Experimentally this is achieved with pulse shapers,
which can independently modify the phase, amplitude, and polarization of each frequency
component of a laser pulse. Various pulse-shaper designs have been introduced to create
arbitrary pulse profiles over broad spectral ranges.300–304

It is possible to perform single-parameter coherent-control protocols, where a pulse width,
chirp, subpulse separation, or other single control knobs are varied. One can also perform free
optimization control by modulating a large number of parameters simultaneously. Pulse-
shaping may be performed in the time or frequency domain, by controlling either the spectral
(eq 253) or temporal (eqs 252) phase and amplitude profiles. Shaping the polarization state of
the electric field (degree of ellipticity and orientation angle) provides a different class of control
parameters.275,305–308 This technique, pioneered by Brixner, Gerber, and co-workers, opens
up a new avenue of control based on manipulating vector properties of light propagation with
promising applications to time-dependent chirality.309 In this method, the spectral phases of
two orthogonal polarization components are modulated, and their interference leads to complex
polarization-shaped field profiles. Various pulse-shaper designs provide full control of the
polarization of ultrashort laser pulses by means of phase and amplitude shaping.310–312

Early work had focused on the a priori design of optical pulse shapes and was limited to simple
model systems and a few control parameters. In 1992, Judson and Rabitz proposed an iterative-
control scheme, where the optimal pulse is found in a self-learning, adaptive loop that does not
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require any prior knowledge of the system.313 This paved the way for practical applications to
complex systems with multiple control parameters. The approach involves the following steps:
(i) generating an input trial laser pulse, (ii) applying the pulse to the sample and observing the
signal, and (iii) using a genetic learning algorithm with a feedback loop to generate new pulse
shapes based on the outcome of the previous trials.314 These steps are repeated iteratively until
the desired target is met. Genetic algorithms perform a parallel search on an entire “population”
of pulses, using payoff (cost function) information, rather than derivatives or auxiliary
knowledge, and employ probabilistic, rather than deterministic, rules.

Adaptive control was demonstrated in 1997.315–317 Various pulse-shaping schemes with
genetic optimization were studied by Motzkus and co-workers.318 They investigated the
stability and effectiveness of evolutionary algorithms, emphasizing the influence of steering
parameters, number of configurations in search space, and noise. One of the most attractive
applications of these closed-loop optimizations is the adaptive control of chemical reactions
in gas and liquid phases, a subject that has been reviewed recently.269,319 Polarization pulse
shaping has been applied to control the ionization of iodine320 and potassium dimers321 and
was found to be more efficient than the shaping of linearly polarized pulses. Brixner and co-
workers have also used polarization pulse shaping for the adaptive control of nano-optical
fields.204 By controlling the interferences between near fields in nanostructures, they achieved
subwavelength localization of electromagnetic energy, which can be used for nanoscopic
ultrafast space-time-resolved spectroscopy.322 Silberberg and co-workers had used
polarization pulse shaping to eliminate the nonresonant background and selectively excite
closely lying Raman modes in coherent anti-Stokes Raman spectroscopy (CARS).307 The same
technique was then applied to control angular-momentum states of atoms, demonstrating that
it can access the three-dimensional vectorial properties of the system and excite states not
accessible by linearly polarized control.323

Polarization pulse shaping has been applied to simulate the control of exciton localization in
an ensemble of energetically disordered and randomly oriented FMO complexes278 and to
control the exciton dynamics in FMO276 and in larger photosynthetic complexes.277 The
excitation energy was localized on one of the chromophores by varying the spectral and
temporal profiles of linearly polarized laser pulses. Linearly polarized pulses and simple forms
of the spectral phase function have been applied toward the control of the energy flow in the
light-harvesting complex LH2.286 Prokhorenko et al.283 varied the isomerization quantum
yield of retinal in Bacteriorhodopsin by ± 20% using a genetic algorithm with a feedback loop
and low-intensity shaped laser pulses.

Femtosecond pulse shaping has been applied to perform phase-coherent multidimensional
spectroscopy.324–327 Nelson et al. constructed a 2D femtosecond pulse-shaping
apparatus325–327 that provides control over the delay times, phases, and temporal shapes of all
four interacting pulses and can be used for the coherent control of multidimensional
spectroscopy. Zanni’s group demonstrated the use of a pulse shaper to generate a phase-stable
collinear pulse pair that can be used to obtain 2D electronic spectra in a partially collinear
configuration.324 These developments make it possible to combine coherent control with pulse
shaping with 2D optical spectroscopy.

Here, we demonstrate how adaptive control can be used to simplify 2D optical spectra of
complex systems and enhance desired spectral features by shaping the spectral, temporal, and
polarization pulse profiles. Various pulse-shaping algorithms may be applied to improve the
resolution of nonlinear optical spectra.96,97,279 Simulations demonstrate how the pump–probe
spectrum of a model helical pentamer may be better resolved by using pure-phase polarization
pulse shaping with genetic and iterative Fourier transform algorithms.279 The state of light was
manipulated by varying the phases of two perpendicular polarization components of the pump,
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holding its total spectral and temporal intensity profiles fixed. Genetic and iterative Fourier
transform algorithms were used to search for pulse phase profiles that optimize the ratio of the
signal at two frequencies and allow for the observation of new features.

We adopt the description of polarization pulse shaping developed by Brixner et al.305,328 The
time-evolution of the electric field vector within a single optical cycle around time t is
represented by an ellipse (Figure 28B). A complete characterization of polarization-shaped
laser pulses is provided by the quasi-3D representation obtained by specifying the temporal
intensity ij(t), total phase ϕj(t), orientation of the ellipse θj(t), and ellipticity εj(t).

We consider a pulse propagating along z (eq 252) with two polarization components ν = x and
y. The field will be described using the following variables. An auxiliary angle χj(t) ε [0, π/2]
represents the ratio of the amplitudes (t):

(255)

A second angle δj(t) ε [-π, π] is given by the difference between the temporal phase modulations:

(256)

θ̃j(t) ε [-π/4, π/4] is a third angle

(257)

The orientation angle of the ellipse θ j(t) ε [-π/2, π/2] is then given by

The ellipticity angle εj(t) ε [-π/4, π/4] is

(258)

Finally, the total phase ϕj(t) of the laser-field oscillation with respect to the perihelion of the
momentary light ellipse is defined as

(259)
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The instantaneous pulse frequency ωj(t) is given by the time derivative of ϕj(t)

(260)

Various porphyrin structures, such as dimers, rings, tapes, wheels, and boxes, have been
proposed as potential artificial light-harvesting systems.4,96,97,279,329,330 The Soret band was
described by the Frenkel-exciton model using known parameters.263,331 Each porphyrin has
two orthogonal electronic transitions (Figure 29A). The electronic level scheme consists of
three manifolds: a ground state (g), four singly excited states (e), and six doubly excited states
(f) (Figure 29B).

We shall compare four laser pulse-shaping protocols. The first (ST||) involves spectral and
temporal shaping of both x- and y-components, creating parallel linearly polarized pulses. The
real and imaginary components of the electric field are independently varied. The second form
(ST⊥) involves spectral and temporal shaping with perpendicular linearly polarized pulses.
The third (P) involves pure-phase polarization pulse shaping constructed using the iterative
Fourier transform (IFT) algorithm.279,332 The temporal envelopes (t) and  (t) are varied

holding the total temporal intensity profile  as well as the spectral amplitudes

of both electric field components (ω) and  fixed to the initial values.
The temporal (ϕjv(t)) and spectral (ϕ ̃jv(ω);) phases were calculated using the IFT algorithm.
To obtain (t), we varied the auxiliary angle χj(t). The fourth (STP) is the most general and
uses the entire parameter space involving spectral, temporal, and polarization pulse shaping.

We apply these pulse-shaping algorithms to control the amplification of weak spectral features
in heterodyne-detected 2D two-pulse photon-echo (PE) signals with a Gaussian linearly
polarized first pulse with wavevector k1, local oscillator ks pulse, and a second pulse k2 = k3
(Figure 28A) tuned with adaptive pulse shaping. The signal is generated in the direction ks =
−k1 + 2k2 by varying t1 and t3 and holding t2 = 0. The signals were calculated by performing
multiple time integrations and taking Fourier transforms with respect to the time delays
between the first and second laser pulses, τ, and between the second and the local oscillator
pulse, t,52

(261)

where (t) are the complex laser pulse envelopes.

The simulated spectra are displayed in Figure 29E. The reference 2D PE spectrum obtained
with two linearly polarized Gaussian pulses (top row) has two major diagonal peaks, D1 and
D2, and weak off-diagonal peaks, C1 and C2. The major contributions to D1 and D2 are the

one-exciton states at  and , respectively (Figure 29C). The chosen control target was
to amplify the off-diagonal (C1 and C2) relative to the diagonal (D1 and D2) peaks. To specify
the target, we define the integrated intensity of the jth peak.
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(262)

The ratios of the integrated diagonal and cross-peaks T1 = (ID1 + ID2)/IC1 and T2 = (ID1 +
ID2)/IC2 were used as cost functions and minimized using a genetic algorithm (GA). The
optimal 2D PE spectra P and STP are displayed in rows 2 and 3 of Figure 29E. Peaks D1, D2,
C1, and C2 are marked by circles. Arrows mark the amplified target peaks.

Complete resolution and amplification of the target peaks was only achieved using the STP
(target T1) and STP′ (target T2). The resulting polarization-shaped pulses are displayed using
the quasi-3D electric-field representation based on specifying the temporal intensity Ij(t), total
phase ϕj(t), orientation of the ellipse θj(t), and ellipticity εj(t).305,328 In Figure 29F, we show
these parameters as a set of instantaneous light ellipses at different times along the electric-
field propagation axis. The ellipse sizes represent the intensity, and their shapes provide
instantaneous snapshots of the polarization state. The projections represent the intensities of
individual electric-field components. The variation of the total phase (chirp) is shown by color.
Weak cross-peaks were enhanced compared to the intense diagonal peaks. The optimized
electric fields with different polarizations select different Liouville space pathways of the
tensor components of the response functions, highlighting several tensor elements with distinct
features. It is clear by comparison of the four pulse-shaping strategies that modulation of the
polarization profiles was necessary in order to achieve the complete resolution and
amplification of the cross-peaks.97

14.2. Adaptive Optimization of Pulse-Polarization Configurations

The multiparameter coherent-control schemes described above involve elaborate pulse-
shaping and characterization techniques. We now describe a different approach for simplifying
2D spectra by taking linear combinations of various tensor components of the response
function.

It was shown in section 13 that the third-order 2D signals depend on various tensor components
of the response function ℝks;ν4ν3ν2ν1.79 The nonchiral (NC) tensor components (dipole
approximation) include ν4ν3ν2ν1 ≡ xxyy, xyxy, and xyyx (note that xxxx = xxyy + xyxy + xyyx).

We label them . The nine linearly independent chirality-induced (CI) kI = −k1 +

k2 + k3 response function tensor components are labeled . These were defined in
Tables 1–3 in section 13.

We have constructed the following superposition of linearly independent response function
tensor components:

(263)

where n = 3 for the NC and n = 9 the CI techniques. The complex coefficients  were
varied using a genetic algorithm in order to optimize the ratios of the amplitudes of selected
peaks in the porphyrin dimer described above (Figure 29).263 The interference of CI tensor
components was used to suppress the strong diagonal peaks and amplify weak cross-peaks
(Figure 30). The initial nonchiral signals at delay time t2 = 0 were simulated with a
homogeneous broadening γ = 500 cm−1. Only two diagonal peaks, P1 and P5, and two cross-
peaks, P2 and P4, were resolved. In the chirality-induced T1–T9 spectra, the remaining four
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cross-peaks P3, P6, P7, and P8 were only partially resolved. Using a genetic algorithm, we
found optimal linear combinations of CI tensor components that amplify these peaks and reveal
information about couplings of the x- and y-polarized transitions. This information was not
available from the absorption spectra or the initial 2D NC spectra. The Soret-band in porphyrin
aggregates is the strongest and is connected with interesting photophysical processes such as
S2-exciton emission and dynamic intensity borrowing.333 The optimized cross-peaks provide
additional information that is not revealed by superpositions of the nonchiral tensor
components.

We next demonstrate how coherent control may be applied to manipulate exciton-transport
pathways262 in the FMO complex as revealed by 2D experiments. The simulated xxxx spectrum
shown in Figure 31 (left column) fits the experimental data.40,80 Thin lines on both axes in the
2D spectra mark the exciton 1–7 positions in order of increasing energy. The cross-peaks (2,4)
and (2,5) corresponding to exciton states 4 and 5 on the Ω1-axis, and state 2 on the Ω3-axis,
overlap with the diagonal peaks of the same sign, forming an L-shape signal.

Using coherent control combined with a genetic learning algorithm, different energy-transfer
channels were separated by optimizing a linear superposition of CI tensor components. The
control targets were aimed at manipulating various peaks in these 2D spectra by selecting the
ratios of the integrated cross-peaks in the absolute values of the 2D signals at long delay time
t2 = 5 ps. Two cross-peaks (1,5) and (1,7) contributing to predicted fast and slow
pathways40,80 are marked in Figure 31 by red and green circles, respectively. These cross-
peaks represent energy transfer from higher to lower energy states, and grow as a function of
t2. The (1,7) cross-peak was not resolved in the xxxx spectrum.

In the optimization of the fast energy-transfer pathway, the ratio of (1,5) to (1,7) is maximized.
The red circle and arrow mark the cross-peaks (1,5) and (1,2), respectively. The optimal
coefficients obtained from the optimizations at t2 = 5 ps were then used to obtain the 2D spectra
for other t2 delay times. The exciton states 1, 2, and 5 are involved in the fast pathway, and the
corresponding cross-peaks are enhanced. For the slow pathway, the ratio of (1,7) to (1,5) is
maximized. Green circle and arrow indicate cross-peaks (1,7) and (1,3), respectively. As a
result, both pathways are separately optimized and well-resolved. In addition, the fast pathway
shows a node (a region where the signal vanishes) between the arrow and the red circle,
corresponding to the elimination of the (1,3) cross-peak. Similarly, in the optimization of the
slow pathway, we see nodes corresponding to the elimination of the (1,2), (1,4), and (1,5) cross-
peaks of the fast pathway. Optimal laser-pulse polarization configurations obtained using
coherent control and genetic algorithms enhance the chirality-induced spectral features,
revealing a specific energy-transfer pathway that was not resolved in the xxxx spectra. These
methods may be applied to other 2D techniques. They have also been applied, for example, in
vibrational 2D spectroscopy to resolve the structure of amyloid fibrils.334

In conclusion, pulse shaping combined with coherent control can increase the sensitivity of
multidimensional spectroscopy of molecular aggregates by unraveling weak cross-peaks from
otherwise congested spectra.

15. Discussion and Conclusions

Femtosecond nonlinear optical spectroscopy had gradually evolved from simple pump–probe
(transient absorption) applications in the early 1980s to the elaborate coherent
multidimensional techniques surveyed here. The field has been driven by both ultrafast pulse-
laser source technology (down to attoseconds)268 and progress in the theoretical modeling of
complex molecular assemblies with dissipation.
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The response-function formalism provides a unified picture of nonlinear optical techniques in
systems driven by moderately strong optical fields. The signals are given as convolutions of
response functions to various orders in the incoming fields, with the field envelopes. The
response functions carry all necessary molecular information for calculating the optical signals.

We have surveyed the key aspects of the theory, focusing on coherent third-order heterodyne-
detected signals. This holographic phase-sensitive detection gives the signal field itself (both
amplitude and phase). Early third-order optical measurements used homodyne detection, which
only gives the signal intensity. For completeness, we briefly describe these signals using the
response-function formalism.

The simplest third-order technique, pump–probe, is performed with two optical pulses with
variable delay time τ. The first pulse, the pump, perturbs the system, and the second, the probe,
detects the time evolution of this perturbation. The technique can be performed in various
configurations: the pump and probe can have same/different carrier frequencies, have same/
different bandwidths, and be in completely different optical regions ranging from THz to the
UV. Instead of using the response function, this signal can be alternatively described as an
induced absorption/emission events from a nonstationary state. Using the third-order response
function when the pump and the probe are temporally well-separated, the pump is associated
with the first two interactions, while the probe induces the third interaction and the self-
heterodyned detection. Since the first two interactions occur within the pulse envelope and are
indistinguishable, the signal is the sum of the kI and kII techniques, which only differ by the
order of the first two interactions (Figures 4, 5). The delay time t1 is controlled by the pump-
field, while t3 is controlled by the probe. The delay between pump and probe pulses then
coincides with the time variable t2. The pump–probe signal is thus given by

(264)

where ωpu and ωpr are the pump and probe carrier frequencies. This gives the absorptive
lineshape (eq 219).

Transient grating is another closely related technique. Here, two pump-pulses with wavevectors
k1 and k2 are applied simultaneously; the probe comes after a delay τ and the homodyne signal
is measured in the k1 − k2 + kpr direction. Usually ωpu and ωpr are tuned to the same optical
transition and the 1D time-domain signal is recorded versus τ. The pulse bandwidth selects the
relevant spectral region. This homodyne signal is given by

(265)

Similar to the pump-probe, this signal monitors excited-state population and relaxation.

Finally, we note the three-pulse photon-echo peak-shifts (3PEPS) often used to study bath
fluctuations. It uses three pulses with the same carrier frequency and a broad bandwidth. 3PEPS
measures the homodyne kI signal as a function of two delay times t1 and t2.

(266)
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This signal is usually displayed as a family of 1D plots vs t1, for various values of t2. For an
ensemble of two-level systems, the signal along t1 grows for short t1, reaches a maximum at
t1 = τM, and eventually decays. The value of τM and its dependence on t2 reflects the bath
correlation function (eq 343). Thus, the dependence τM(t2) (the 3PEPS signal) reveals direct
information on the system–bath couplings.42–44,48,335,336 This interpretation is limited to a
single two-level chromophore.

We have introduced two types of response functions: one (R) connecting the induced
polarization with the incoming electric fields (eq 14), and the other (ℝ) relates the induced
current with the vector potential of the field (eq 238). The relation between them can be
established using the Maxwell equations. In the dipole approximation where the signals
calculated using both approaches must coin-cide, we find that R → (ω1ω2ω3ω4

)−1ℝ, where
ωj is the carrier frequency of the jth laser field. We derived R in the dipole approximation,
ignoring the magnetic dipole and the electric quadrupole contributions. This is adequate for
molecular complexes of nonchiral molecules. The response function R may be extended to
include the magnetic corrections. However, it is much more convenient to calculate ℝ instead.

We have used the Frenkel-exciton model in the boson representation. Two types of parameters
are responsible for the nonlinear optical signals. The quartic potential Umnkl controls the exciton

scattering when the field is turned off, while  represents anharmonic system–field
interaction. Hard-core bosons are a special case of this model, as shown in Appendix C. They
have Ummmm = ∞. This model developed here for electronic excitations also applies to
vibrational excitations. We then model the excitations as intrinsically boson-like with a finite

Ummmm and  (soft-core bosons). This approach has been applied to coupled vibrations
in polypeptides.67,100,337

The supermolecule and quasiparticle scattering are two conceptually different approaches for
calculating the response functions of aggregates. The sources of nonlinearities in these
descriptions look very different. In the supermolecular representation, the double-exciton states
are included explicitly, and interband transitions do not follow a harmonic oscillator model. In
the quasiparticle representation, the final expressions involve only single-exciton states.
Double-exciton resonances are recovered from the frequency-dependent exciton-scattering
matrix. The relation and equivalence of the two representations can be established when
supermolecule double-exciton states are expanded in the single-exciton product basis for an
isolated system. Differences remain since different approximations are made for the system–
bath interaction.

In this review, the quasiparticle representation has been used in conjunction with simple
Lorentzian line shapes in the Markovian limit. More elaborate line-shape theories could be
developed (equivalent to the CGF or SLE); however, this is usually not necessary in large
aggregates where the lineshapes are often controlled by inhomogeneities and spectral
congestions. Each peak is then composed of many overlapping transitions. The detailed
microscopic description of bath dynamics is crucial for small systems (~10 or less coupled
oscillators), where the line shapes are better resolved.

The marriage of coherent-control pulse-shaping techniques with 2D spectroscopy offers
numerous future possibilities. The rich information obtained through snapshots of electronic
dynamics can then be further refined by manipulating the interference of various Liouville
space pathways. These techniques may also be used to shift and isolate specific resonances,
facilitating the assignment of electronic transitions.

Chirality-induced signals may lead to useful applications of multidimensional coherent
spectroscopy to structure determination. X-ray crystallography and NMR determine structures
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of molecular complexes with atomic resolution. Optical spectroscopy can be used as a
complimentary technique for further structure refinement.

Electronic nonlinear spectroscopy is most valuable for tracking dynamical events in molecules
and their complexes. Unlike traditional 1D transient-absorption and transient-grating
techniques, in multidimensional coherent techniques, a large amount of information is gathered
in a single shot. Numerical data processing and analysis techniques need to be developed to
help extract system information (e.g., Hamiltonian, bath, structural, and relaxation parameters)
from the measured signals.

The various methods and techniques reviewed here are based on a generic exciton and
supermolecule approaches within the RWA (sections 2, 5, 6) and may be applied to other
frequency regimes: from THz to X-ray. 2D techniques, originally developed in NMR,53 were
extended during the past decade to IR laser spectroscopy.60,338–343 Simulation protocols based
on molecular dynamics (MD) strategies have been reviewed recently in ref 67. These
applications use the same formalism; however, the vibrations are bosons. Electrostatic
parametrization of vibrational Hamiltonian parameters is currently a useful technique for
including fluctuations, simulated by MD trajectories. Developing electrostatic maps for
electronic Hamiltonians is necessary for affordable modeling of solvation effects.

The theoretical apparatus presented in this review has been implemented in the computer
software package “SPECTRON”, which has been used for simulating coherent nonlinear
optical responses in IR,79,91,92,94,95,155,344,345 visible,81,97 and UV82,156 regions. The code
includes the super-molecule and quasiparticle approaches as well as the spectral lineshape-
broadening models described in sections 2, 4, 9, and 11.
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17. Appendix A: Survey of Linear Optical Techniques

Linear optical signals are generated by a single interaction with the incident optical field. Three
types of linear signals are most widely used: absorption, where the transmission of the incident
beam is measured; linear dichroism, the difference between two polarized absorptions
(longitudinal, L, and transverse, T) in oriented samples; and circular dichroism, the difference
between the absorptions of two circularly polarized beams (left, L, and right, R).

Using the response function formalism, the linear absorption may be interpreted as follows.
The incident beam interacts once with the molecule and induces the linear polarization. This
polarization then creates the outgoing optical field, which interferes with the incoming beam.
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This is a self-heterodyne detection. The detector measures the net optical field, which is
attenuated by the interference. The mathematical formulation is very nicely described in the
book by Loudon.117

The absorption of the field is defined by following the field intensity in the medium, which
follows

(267)

The absorption coefficient κa is given by

(268)

Here, n(ω) is the refractive index of the medium, and c is the speed of light. The macroscopic
response function of an isotropic ensemble of identical absorbers is related to the microscopic
single-molecule response function by a three-dimensional orientational averaging. Using the
response function eq 13, we get for the absorption coefficient

(269)

Assemblies of oriented molecules are described by their tensor properties. The response
function eq 13 is a second-rank tensor with respect to system symmetry axis. Equation 13 then
involves the following orientationally averaged product:

(270)

Here, we introduced the transformation tensor from the molecular (μα) to the laboratory frame
(μi), μi = ΣαTiαμα We assume that the molecules are oriented along z and take the molecular
z-axis to coincide with the laboratory z-axis. Orientational averaging in the xy plane then
amounts to rotating the molecular xy plane around the z-axis. This can be easily calculated
since, in this case, only five elements of the transformation tensor are nonzero: Txx = cos φ,
Txy = −sin φ, Tyx = -sin φ, Tyy = cos φ, and Tzz = 1, and the orientational averaging amounts to
an integration over the rotation angle φ:

(271)

Thus, when μ2 = μ1 =μ, we obtain the following possible field configurations. For ν2 = ν1= z:

(272)

and for ν2 = ν1 = x (the same holds for y):
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(273)

The linear dichroism (LD) technique measures the difference between the absorption of two
perpendicularly polarized beams in an oriented sample. The LD signal vanishes in unoriented
samples. For an oriented sample, it is given by

(274)

where κL is the longitudinal absorption given by eq 269 with the transition amplitude eq 272:

(275)

whereas κT is the transverse absorption (eq 269) together with eq 273:

(276)

Circular dichroism (CD) is a chirality-induced linear technique, involving two circularly
polarized beams. A circularly polarized beam propagating along z is described by rotating unit
electric vector:

(277)

where “− (+)” sign corresponds to R(L) circular polarization.

Using the response function, we get the induced polarization generated by the R/L beam:

(278)

The circular dichroism signal is commonly defined in terms of the ellipticity angle,

(279)

where ER/L are the transmitted field amplitudes of the R and L beams given by eq 282. For
very small angles, we use tan(θ) ≈ θ and get

(280)
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Instead of ellipticity angle, the molar ellipticity angle and the rotational strength are often used.
93

18. Appendix B: Homodyne-Detected versus Heterodyne-Detected Coherent

Signals

The induced polarization serves as a source for the signal field, which is eventually detected.
Several detection schemes are possible. Neglecting the magnetic response, the electric field
and polarization satisfy the Maxwell equation:

(281)

For transverse field and for pencil-shape sample geometry, it is possible to derive a simple
relation between the emitted field envelope and the envelope of the induced polarization:

(282)

where n(ωs) is the dielectric constant at frequency ωs, l is the interaction length, and Δk = ks
− u1k1 − u2k2 − u3k3 is the wavevector mismatch between the polarization and the optical field;
sinc(x) = sin(x)/x. Thus, the strongest amplitude occurs at the phase-matching condition Δk
=0. The other important conclusion is that the signal field is directly proportional to the
polarization amplitude, but is π/2 out of phase because of the i factor.

Two detection schemes for the signal are most commonly employed. These are known as
homodyne and heterodyne detection. In homodyne detection (HOD), the detector is placed at
the phase-matching direction and measures the integrated intensity of the signal field, or counts
photons. The field intensity is proportional to the absolute value of the signal field. Thus, the
homodyne signal is given by

(283)

An additional time-gating device can be introduced that filters the incoming signal in a given
time window before it is detected by the homodyne technique. This time-gated ho-modyne
(TGH) detected signal is given by

(284)

In heterodyne detection (HET), an additional laser pulse (local oscillator, EH) is applied in the
direction of the signal field, ES. It interferes with the signal, and the resulting field is then
detected by homodyne detector. We thus get

(285)
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The local oscillator (second term) can be readily subtracted. The |Es(t)|2 term is typically weak
since Es ≪ EH, and thus, the HET approach detects the signal amplitude

(286)

This measurement can be repeated with varying phase of EH to reveal the induced polarization
Ps(t) using eq 282.

19. Appendix C: Bosonization Schemes for Frenkel Excitons

Transformations between fermion and boson representations widely used in many-body
problems may be employed for describing excitations in semiconductors346–353 and molecular
aggregates.92,136,137,354,355

Consider molecular aggregates made of multilevel molecules. Molecule m has a set of
transitions a from its ground state. Each transition acts as a two-level system, where the
molecule can be either in the excited state a or the ground state. The molecule is now viewed
as a collection of two-level systems. Within the space of a single excitation and double
excitations, an aggregate made of such molecules is described by the Frenkel-exciton
Hamiltonian

(287)

where m, n label different molecules and  is a bosonic ( ) exciton creation
operator on molecule m of transition a (this can be brought into the form of eq 57 by relabeling
pairs ma, nb, kc and ld as single indices). Vma,nb is the exciton resonant coupling term, and

 is the two-boson interaction potential. When W ≪ V (weak scattering regime), the
excitations are soft-core bosons, where two particles have a small penalty (anharmonicity),
when occupying the same state in the molecule. The requirement that two excitations cannot
reside on the same molecule is satisfied by shifting the unphysical state energies out of the
physical window of interest. In the Hamiltonian equation (eq 287), this is done by setting

. The electronic excitations now become hard-core bosons. Note that, by varying

, we can continuously turn soft-core into hard-core bosons.

As a simple example, consider two-level molecules. The bosons do not scatter when they are

on different molecules. To describe this model, we set  for all m (the indices a, b,
c, and d are redundant for this model), while it is finite for all other index combinations and
describes double-exciton binding energies. The exciton-scattering matrix for coupled two-level
systems can be calculated by taking this limit in eq 325,

(288)

where all other elements vanish. Note that it involves the inversion of ℕ × ℕ matrix 
(all other elements are neglected). These are given by
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(289)

The response is given by eqs 127–129 using the transformation to the single-exciton basis with
eq 120. In some cases (for instance, in the MFA), the response functions diverge. The scattering
matrix of Appendix H can then be used.

An alternative bosonization scheme is possible in some cases.137 Consider a single anharmonic
oscillator described by the Hamiltonian:

(290)

where the eigenstate energy ladder consists of only d energy levels so that 〈 B̂† B̂〉 = 0, 1, •••,
d – 1. In this case, B̂ are not boson operators; their commutation relations are as follows:

(291)

The system thus behaves as harmonic only for low excitation levels:  when
j < d; the higher-energy states do not exist.

This system can de described in terms of boson operators [b ̂, b̂†] = 1 using the following
transformation,

(292)

and

(293)

where Ẑ = exp(− b̂† b̂).

This transformation can be extended for a system of coupled truncated oscillators described
by the Hamiltonian (the zero-point energy (1/2 in eq 290) is ignored),

(294)

where the operators B B̂ m refer to the mth molecule and satisfy the commutation rules:
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(295)

The bosonization transformation is then similar to eqs 292 and 293, but each operator has an
additional index m. The resulting new Hamiltonian will be given in terms of various products

of  and b ̂m

As an example, consider a molecular aggregate of two-level molecules. The commutation
relations (d = 2 in eq 295, hard-core bosons) are136,353,354

(296)

In third-order spectroscopy, it is sufficient to consider up to three-particle operators; all terms
involving four or more creation and annihilation operators contribute only to higher orders in
the field and can be neglected. It is, therefore, sufficient to consider the Frenkel-exciton
Hamiltonian of the form

(297)

For the dipole operator, we have

(298)

The transformation eqs 292 and 293 within the single and double excitons reduce to

(299)

(300)

The first term in the transformation is the single-exciton term, while the second term describes
the Pauli exclusion. By substituting eqs 299 and 300 into eq 297, we get the transformed
Hamiltonian,

(301)

where umn,kl = −hml(δmnδnk + δnkδkl) + Umn,kl. For the dipole operator, we similarly get
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(302)

We thus find  in this case (see eq 59 in ).

20. Appendix D: Contributions of Dipole-Operator Nonlinearity to the Third-

Order Response Function

In this section, we generalize eqs 115–117 to include μ(2) contributions to the response function.
In the NEE, this corresponds to several new sources to the third-order polarization, whose
contributions are visualized in the diagrams shown in Figures 32–34. The left-most diagram
in each figure represents the contributions coming solely from μ as given in the main text (eqs
115–117). Various configurations of interactions with μ(2) are shown in the other diagrams.

The rules for these diagrams are as follows: vertical lines represent exciton propagators. As in
the main text, a single line represents G, a double line stands for (both lines pointing up) or

 (lines pointing up and down), whereas a triple line represents . Solid dots represent
μinteractions with the field, while red-circled dots represent μ(2) interactions. Since μ(2) is a
local chromophore property in real space, all Green’s functions must converge into one point
where the interaction takes place. The horizontal dashed line represents V. It also introduces
an integral over the t3 interval.

Using these rules, we obtain the following additional contributions to eq 115 for the response
function for kI:

(303)

(304)

(305)

(306)

Note that, for two-level molecules when , eq 303 cancels some contributions from
eq 115 and eq 304 cancels eq 305.

For kII additional to eq 116, we similarly have

Abramavicius et al. Page 96

Chem Rev. Author manuscript; available in PMC 2010 November 8.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



(307)

(308)

(309)

(310)

For kIII, we have the following additional contributions to eq 117:

(311)

(312)

(313)

(314)

(315)

21. Appendix E: Coherent Single- And Two-Exciton Green’s Functions: The

Bethe Salpeter Equation

In this section, we describe the coherent exciton dynamics in the absence of the bath and the
field. The single-exciton dynamics is described by the Green’s function G(t) by definition B
(t) = G(t)B(0) and is a solution of eq 73. We introduce the frequency-domain Green’s functions:
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(316)

with the inverse transform

(317)

This gives, for single-exciton dynamics,

(318)

where η→ +0 guarantees causality. The double-exciton dynamics is described by Green’s
function given by eq 84. In the frequency domain, we then get

(319)

We next describe the two-exciton propagation in terms of single-exciton scattering. For this,
we use h(Y) = h(0) + V, which gives

(320)

and we define a Green’s function with respect to h(0)

(321)

The two-exciton Green’s function can be written as

(322)

Using the operator identity Â−1 = B̂ −1 + B̂ −1(B̂ – Â ) Â −1 and taking Â = ω − h(Y) + iη and
B̂ = ω − h(0) + iη, we obtain B̂ – Â = VandarriveattheDysonequation:68,79,104,108,326

(323)

We next define the boson-scattering matrix Γ(ω) by the equation

(324)
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Combining eqs 323 and 324 gives

(325)

Γ, like V, is short-range, making it computationally tractable. Substituting eq 324 into eq 323
and transforming back to the time domain, we obtain the Bethe Salpeter equation

(326)

where the first term,  (t), is the free-exciton propagator, with matrix elements

. The second term represents the contribution of exciton scattering.
We note that the scattering matrix has different units than the Green’s function: in the frequency
domain, G has dimensions of time, while Γ has dimensions of angular frequency; in the time
domain, G(t) is dimensionless, while Γ(t) has units of frequency squared.

Equation 326 recasts the two-exciton evolution in terms of the free quasi-particle dynamics
and their scattering in real space. A doubly excited state in this representation is described by
two quasi-particles residing on the same site. Thus, the quasiparticle picture applies even for
a single chromophore (ℕ= 1): two particles are then restricted to be on the same site, and their
scattering appears as the diagonal anharmonicity, Δm.

For two-level chromophores, two excitons cannot reside on the same site. These are, therefore,
known as hard-core bosons. By assuming that U couplings vanish, the hard-core boson
scattering matrix is obtained from the boson-scattering matrix in the limit Umm,mm → ∞. The

scattering matrix is then given by  with all other elements
vanishing. More complicated expression for the scattering matrix (eq 369) can be obtained for
hard-core bosons without performing bosonization as in Appendix H (we then also have

 coming from Pauli blocking).

Note that, in the MFA limit for the response functions in eqs 81–83, the response can be recast

in the form of eqs 89–91 using the scattering matrix,  or in the
frequency domain,

(327)

Comparing this with eq 323 shows that the MFA scattering matrix corresponds to the first-
order correction of the two-exciton Green’s function (eq 323) in the scattering potential V. In
the frequency domain, ΓMFA(ω) = V, and we can write

(328)
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22. Appendix F: Real Space Description of Exciton Dephasing and Transport

In this section, we derive the dephasing matrices of the NEE given by eqs 99–102. For this
purpose, we consider the case where the optical field is switched off.

The system and the bath are described by eqs 99–102. The exciton dynamics is described by
the Heisenberg equation of motion as in section 6. However, because of the bath, the equations
for the exciton variables will be coupled with the bath variables. The bath contributions are
calculated perturbatively to second order in the system–bath coupling, where averages of bath

and exciton variables can be factorized as .
107 For a harmonic bath at thermal equilibrium, we have

(329)

where

(330)

is the mean boson occupation number at temperature T and β = (kBT)−1. Using this
factorization, we arrive at the following NEE:

(331)

(332)

(333)

(334)

We start with the single-exciton dynamics B(1) described by eq 331 and neglecting the Z
variable. The bath-related term in the equation of single-exciton variables is as follows:

(335)
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The Heisenberg equation of motion for bath-assisted variables  and 〈B̂(1)âα〉 reads

(336)

(337)

A formal solution of these equations gives the following:

(338)

(339)

and where G(c)(t) = θ(t) exp(−iht), where h is the matrix and hmn is the zero-order Green’s
function corresponding to eq 331 in the absence of the bath. Substituting these expressions into
eq 335, we get

(340)

k(B) is the relaxation memory kernel of the B variable:

(341)

and

(342)

is the spectral density of the coupling with the bath.

This definition is intimately related to the correlation function of bath coordinates Q ̂ defined
by

(343)
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Using the symmetry

(344)

we split it into real (which is even) and imaginary (odd) parts

(345)

and get

(346)

and

(347)

Here, {A, B} = AB + BA and [A, B] = AB – BA.

The Fourier transform of the correlation function

(348)

is real due to eq 344. We further split  along the lines of eq 345:

(349)

(350)

 is even, and  is odd. These two quantities are related by the fluctuation-dissipation
theorem

(351)

For the harmonic bath model (eq 95), these correlation functions can be calculated analytically
and we get the following:
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(352)

This function is independent of temperature. We refer to it as the spectral density of bath

coordinates and denote it  to distinguish from spectral densities of the
Hamiltonian parameters used in eq 342.

Comparing eqs 342 and 352, we get

(353)

Equation 340 may be simplified further by assuming a short-time memory kernel (the
Markovian approximation) and replacing B(1)(t − t′) in eq 340 by G(0)†(t′)B(1)(t). Note that
even though the exact time propagation of B(1)(t) is described by the full Green’s function, G
(t′), we can still use G(0)(t′) since we have already neglected higher than second order
corrections in the system-bath coupling. This gives the following:

(354)

where the one-exciton relaxation rate matrix is given by

(355)

Dephasing of the second-order Y(2) variables can be calculated similarly from eq 332, since eq
332 is analogous to eq 331 for B. Following the procedure described above, we obtain the
following:

(356)

where k(Y) is the tetradic relaxation memory kernel of the Y variables:

(357)

Abramavicius et al. Page 103

Chem Rev. Author manuscript; available in PMC 2010 November 8.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



and (t) describes the free time evolution of Y in the absence of the bath.

In the Markovian approximation, we obtain

(358)

where the two-exciton relaxation matrix is as follows:

(359)

Exciton dephasing affects the B and Y variables whose Green’s functions involve coherences
and oscillate at high, optical, frequencies. The Green’s function of the N variables is different:
it describes the correlated dynamics of the conjugate variables B̂† and B̂ and contains low-
frequency intraband oscillations related to intermolecular couplings.

Following the same procedure used in the derivation of eqs 340 and 356, we obtain

(360)

The relaxation kernel, k(N), calculated to second order in the coupling with the bath is given
by
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(361)

where  is the coherent N-variable Green’s function calculated in the
absence of the bath. Invoking the Markovian approximation, we define the N-variable

relaxation rates  where

(362)

Kmn,kl ≡ K̃nm,lk is the Redfield relaxation superoperator.

The relaxation operator for Z variable is approximately constructed from γ and γ(Y) matrices
by assuming that Z dephasing is equivalent to that of the product B*Y. The resulting NEE eqs
99–102 contain no bath variables and include only the dephasing and relaxation matrices. The
continuous spectral density bath models are widely used as described in Appendix G.

23. Appendix G: Exciton Dephasing and the Redfield Relaxation Kernel

In this section, we derive expressions for dephasing and relaxation rates of single-exciton
eigenstates using the results of Appendix F when each chromophore is coupled to its own
statistically independent bath with a continuous spectral density. Fluctuations of different
chromophores are uncorrelated, and they all have the same spectral density so that

(363)

where  is now independent of the system indices.
The spectral density has the symmetry C̄″(ω)= − C ̄″(−ω) . Specific models for the spectral
density, e.g., Ohmic, white noise, Lorentzian, etc., are often used for calculating the nonlinear
responses of molecular systems.40,97,224 We assume that the bath has several collective modes
α and recast the spectral density in the following form:

(364)
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where Cα(ω) is a dimensionless spectral density of mode α and λα is the coupling strength
between. We define the auxiliary functions as follows:

(365)

By performing a one-sided Fourier transform,

(366)

we get

(367)

(368)

where ℙℙ stands for the principal part, i.e., integration where the singular point is removed
(we have assumed that (1/ω)Cα(ω) is not singular at ω → 0); and we used πδ(x) = limη→0 η

(x2 + η2)−1. We note the symmetry . The real part of M̄ is responsible for
dephasing and transport rates, and the imaginary part represents spectral shifts.

Using this function, we can calculate the dephasing rate given by eq 355. We first transform
this expression into the single-exciton basis, and then we neglect off-diagonal dephasing matrix
elements (exciton coherence transfer). We get the dephasing rate for exciton e in terms of the
M̄ function:

(369)

where ωe′e = (εe′ − εe) and Φe4e3e2e1 = Σn ψne4 ψne3ψne2ψne1 (we assume that the exciton wave
functions ψ are real). For the Y variables, we do not use their Green’s function explicitly.
Instead, we use the exciton-scattering matrix, which depends only on single-exciton
dephasings.

The Redfield relaxation rate, K (eq 362), for the single-exciton eigenstates is
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(370)

The expression for the population-transport rates is a special case (Ke′e′,ee elements)

(371)

while the dephasing of single-exciton coherences . The pure dephasing (used in

SOS expressions) can be simply obtained by . These compact
expressions can be easily computed for an arbitrary spectral density.

We next adopt the overdamped Brownian oscillator spectral density,

(372)

where λ corresponds to the system coupling strength with the collective bath mode and Λ is
its timescale. Using eqs 364, 367, and 368, we get144

(373)

with the auxiliary functions

(374)

(375)

νn = 2πnkBT/ℏ are the Matsubara frequencies. The relaxation rates now are given in units of
λ. This completes our description of the standard Redfield equations using second-order
perturbation theory.
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Assuming Gaussian statistics, an exact expression for diagonal bath fluctuations can be
obtained for calculating the population (Pauli) relaxation block of the Redfield equations using
the second order cumulant expansion. This expansion is correct to infinite order in the
fluctuations. System-bath coupling of off-diagonal Hamiltonian elements is included
perturbatively to second order. Exponentiation of the second-order correlation functions of
diagonal bath fluctuations, which is exact for the harmonic bath, is then performed. Diagonal
bath fluctuations, which only modulate the transport rate through the energy gap, can thus be
included exactly, while off-diagonal fluctuations are treated by second-order perturbation
theory. This gives for the population relaxation rate185

(376)

(378)

where  is the line-shape function. Here, a dot denotes the
time derivative and

(379)

(380)

where λe4e3e2e1 = −limτ→∞[Im ġ e4e3e2e1 (τ)]. The modified Red-field theory eq 376 generalizes
the population relaxation rate eq 371 to include an arbitrary fluctuation time scale. However,
when the fluctuations are too slow, the transport can no longer be defined by simple Markovian
rate equations. The calculated dephasing and relaxation rates can be used in calculations of
Green’s functions in the signal expressions eqs 127–129.

24. Appendix H: Exciton Scattering in Nonbosonic Systems

In section 6, we derived equations of motion for exciton variables using boson commutation
relations. The bosonization procedure is described in Appendix C. In some applications, it may
be preferable to use variables with the nonboson commutation relations. These should be
incorporated in the equations of motion.

A generic nonbosonic system in the space of single and double excitons is defined by the
commutation relation:

(381)

We assume a linear transition dipole so that μ(2) = 0. The Heisenberg equation of motion (eq
63) truncated at the third order gives the following NEE:
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(382)

(383)

(384)

(385)

where now Vmn,kl = 2Umn,kl – 2Σq ℙmn,qkhql – 2Σqp ℙmn,pqUpqkl.

The response functions and the signals are obtained in the form of eqs 127–129. The scattering
matrix for the coherent dynamics limit assumes the following form:

(386)

In the MFA, this reduces to

(387)

The corresponding scattering matrices of bosons are now obtained by simply taking ℙ = 0,
which gives eqs 325 and 327.

These commutation relations and the corresponding scattering matrix describe hard-core
bosons, ℙmn,kl = δmnδnkδkl, as well as Wannier excitons (electron–hole pairs) in
semiconductors, where the commutation relations are more complex.108,114,354

25. Appendix I: Exciton-Scattering in Infinite Periodic Structures

Molecular crystals are periodic three-dimensional structures. Some molecular aggregates can
be represented as infinite one-dimensional systems. These include J-aggregates and cylindrical
dye aggregates.5,99,355,356 The quasiparticle scattering approach can be applied to the infinite
systems by transforming from real space to the momentum (q) space using the Bloch states.

Consider a periodic D-dimensional system (D = 1, 2, 3) of linear extension L (the number of
unit cells) made of cells with ; sites per unit cell. Thus, the number of chromophores is ℕ=

 × LD. We use periodic boundary conditions to represent the translational invariance. We
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label the sites by indices α, and each cell is identified by its position vector R. For a
translationary invariant system, the intermode coupling Jmm′ ≡ JRα,R′α ′ = Jα,α ′ (R′– R) is a
function of the distance between the cells R′– R. Our starting Hamiltonian is given by eq 57;
however, for an infinite system, each oscillator m in real space is represented by a pair of indices
Rα.

The one-exciton states of this system are the Bloch states. Each eigenstate ν has a pair of
quantum numbers qλ, where λ denotes different Davydov’s sub-bands in the one–exciton band
and the momentum q can have values 2π/(La)(–L/2, –L/2 + 1, ••• , L/2 – 1) (including 0) in
each dimension where the lattice constant is a. The one-exciton wave functions are

(388)

where  = (La)D is the volume of the system and  are the eignstates of the cell,

(389)

and

(390)

Here, Jα,α′ (q) denotes the  ×  matrix with indices α and α′ where each matrix element
depends parametrically on the vector q.

The one-exciton Green’s function in the one-exciton basis now reads

(391)

where

(392)

(393)

We next assume a simplified form for the U matrix, Umn,m′n′ = (Δm,n/4)(δmm′ δnn′+ δmn′ δnm′)
(see eq 57), which reflects the boson scattering, i.e., the energy of the system in the real space
when two molecules m and n are excited is εm + εn + Δmn. Similarly as for quadratic coupling,
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we use two indices for the infinite system Δmm′ = ΔRα,R′α ′ = Δα,α ′ (R′–R) and assume that it
is nonzero only for short distances smaller than some cutoff parameter |R′– R| < lc.

The two-exciton Green’s function in real space is

(394)

To calculate the Green’s function when Rn = Rm + r1 and  when r1 and r2 are within
interaction radius lc, we define the reduced Green’s function

 and expand it in the one-exciton basis,

(395)

where

(396)

is the unit cell’s Green’s function and

(397)

Taking into account the translational invariance with respect to Rm and , we can transform
the two-exciton Green’s function as

(398)

By introducing the ℝ × ℝ matrix D ̄,

(399)

the exciton-scattering matrix may be recast as
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(400)

Since the optical wavelength is typically much longer than the system size, only Bloch states
with zero lattice vector are optically active. The scattering matrix of these states then becomes
with and

(401)

with

(402)

and

(403)

Transforming this into zero-momentum Bloch state, we get

(404)

This scattering matrix can be substituted into eqs 127–129, where the summations over
eigenstates are replaced by summations over zero-momentum Bloch states. For infinite
systems, the index q is a continuous variable and all sums (1/ )Σq turn to be integrals (1/
(2π)D) ∫ dq.

26. Appendix J: Doorway and Window Wavepackets

The doorway and window functions describe ground-state absorption and induced absorption/
emission properties in the third-order response. These functions are defined by eq 170 in section
11.2. Expanded in the system eigenstates (see eq 176), we have185

(405)

(406)

with
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(407)

Here,  is the creation operator of either a single-exciton eigenstate a = e or a double-
exciton eigenstate a = f.

(408)

(409)

The bleaching contribution is given by

(410)

(411)

The doorway and window functions may use the cumulant expansion. This gives

(412)

(413)

where the bath reorganization energy is λνν′, defined by eq 178.

27. Appendix K: Population Transfer with Slow Bath Fluctuations

In this appendix, we present the correlated contribution of the population-transfer pathways to
the response functions described in section 11.3. The density matrix dynamics represented by
the population-transfer diagrams now involves the characteristic single diagram shown in
Figure 35. This diagram describes correlated propagation during the three time intervals and
is given by the correlation function

(414)

Abramavicius et al. Page 113

Chem Rev. Author manuscript; available in PMC 2010 November 8.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Here, we assumed that the bath dynamics for different exciton states is correlated; a simpler
case is given in ref 24.  is evaluated by the cumulant expansion, and we get

(415)

where

(416)

Here, Im denotes the imaginary part. This expression contains line-shape functions that
represent correlations during the time intervals t1 and t3.

The contribution of population-conserving terms to the response function now coincides with
the coherent description. The contribution of the population-transfer diagram can be calculated
using the cumulant expansion of

(417)

where p denotes the summation over ia, iiia, iva, and via pathways: for ia, we have (–1)p ≡ 1,
νp ≡ g, c ≡ e′, b ≡ g,  ≡ , 〈... 〉 p 〈 ... 〉 *; for iiia, we have (–1)p ≡ –1, νp ≡ f, c ≡ f, b = e
′,  ≡ , 〈... 〉p ≡ 〈... 〉*; for iva, we have (–1)p ≡ 1, νp ≡ g, c ≡ g, b ≡ e′,  ≡ , 〈 ... 〉p ≡
〈 ... 〉; for via, we have (–1)p ≡ –1, νp ≡ f, c ≡ e′, b ≡ f, ≡ , 〈... 〉p ≡ 〈... 〉. We next use
μab = μba and the correlation function of eq 414. These yield in the following expression

(418)
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The dynamics of  solely comes from the doorway and window functions. The phase functions
in eq 179 are obtained from eq 418 by sorting out all Liouville space pathways.

28. Appendix L: Orientationally Averaged Molecular Properties

Here, we present expressions for third-order signals in isotropic ensembles of molecules. As
shown in eq 251, the response function has several linearly independent configurations that
differ by the polarization ν and wavevector k orientations in the laboratory coordinate frame.
The complete expressions for this pulse-polarization configuration for the linear response are

(419)

For third-order techniques, we set kI ≡ (u, v, w) = (–1, 1, 1), for kII ≡ (u, v, w) = (1, –1, 1), and
for kIII ≡ (u, v, w) = (1, 1, –1). We then get

(420)

where εγαβ is the antisymmetric Levi–Civita tensor. These can be obtained from orientational
averaging of tensor products of arbitrary sets of vectors di and second-rank tensors ti

(421)

(422)

(423)

(424)

Abramavicius et al. Page 115

Chem Rev. Author manuscript; available in PMC 2010 November 8.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



(425)

(426)

(427)

(428)

 are column vectors that depend on the laboratory-frame unit vectors ν:

(429)

(430)

The matrices M are system-independent:

(431)

(432)

Finally, V are column vectors that depend on the system properties:
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(433)

(434)

(435)

(436)

(437)

where d⊙t ≡ Σα3α 2α 1εα 3α 2α 1dα 3tα 2α 1, (t•d)α ≡ Σα′tαα′dα′, (d•t)α ≡ Σα′ dα′tα ′α, and t ≡ Σαtαα;

consequently, . By comparing with eqs 419 and 420 and
replacing the vectors d with μ and m and the tensors t with quadrupoles q, we can calculate the
orientationally averaged currents.

For the linear response in the exciton basis, we have  and the signal must propagate in
the same direction of the incoming field. We can thus set κ = z. Orientational averaging for
exciton e gives
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(438)

The orientational factors given by eqs 424–437 relate the signals to molecular geometry. The
CI terms can be identified by examining the products of transition dipoles. The electric
transition dipole μξ and coordinate rm are parity-odd, while the magnetic transition dipole mξ
and tensors qξ are even. By performing the parity operation on the response functions and
inspecting the parity symmetry, we can connect the susceptibility with the chirality. All zero-
order in wavevector contributions to odd (linear and cubic) response must be NC, since they
involve either two or four electric transition dipoles. The corresponding first-order
contributions in wavevectors are CI.
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Figure 1.

Some biophysical photosynthetic systems: FMO = Fenna-Matthews-Olson protein, a trimer,
each unit has 7 chromophores; LH2 = light-harvesting complex 2, double-ring structure of
chromophores, 27 chromophores; PS1 = photosystem 1, a complex of 96 chromophores;
BChla = bacteriochlorophyll a, a key chromophore in photosynthetic antennae.
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Figure 2.

Coherent third-order nonlinear optical experiment. The four laser pulses are ordered in time;
the signal is generated in the phase-matching direction k4. Data processing of time-domain
signals and their parametric dependence on the three delays t1, t2, and t3 generate
multidimensional spectrograms.
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Figure 3.

Excitonic aggregate made of coupled three-level chromophores. εn is the excitation energy of
each chromophore and 2(εn + Unnnn) is its double-excitation energy. The chromophores are
quadratically coupled by Jmn (and quartically by Umnkl). The eigenstate energy level scheme
is given on the right with g, the ground state; e, the single-exciton manifold (e denotes “excited”
states); and f, the double-exciton manifold. In the resonant techniques considered here, the
optical field frequencies are tuned to the energy gaps between successive manifolds.
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Figure 4.

Feynman diagrams for the signal generated in the direction kI = −k1 + k2 + k3; ESE = excited-
state emission, ESA = excited-state absorption, and GSB = ground-state bleaching. Transport
is not included in these diagrams (the coherent limit). Population diagrams are labeled ia, ii,
and iiia, and coherence diagrams are labeled ib and iiib.
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Figure 5.

Feynman diagrams as in Figure 4 but for the signal generated in the direction kII = + k1 − k2
+ k3. Population diagrams are labeled iva, v, and via, and the coherence diagrams are labeled
ivb and vib.
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Figure 6.

Feynman diagrams as in Figure 5 but for the signal generated in the direction kIII = +k1 + k2
− k3. ESE and GSB do not contribute in this case, and the technique does not show transport.
The diagrams are labeled vii and viii for future reference.
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Figure 7.

Feynman diagrams for the kI and kII signals, which extend diagrams ia, iiia and iva, via of
Figures 4 and 5 by including population transport.
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Figure 8.

Feynman diagrams representing the quasiparticle dynamics in the various techniques for μ(2)

= 0 in the coherent limit (eqs 89–91). Each interaction with the field is displayed by a solid
dot. Time propagation is from the bottom up. The single solid line represents G(t) propagation;
the shaded region represents the exciton scattering region.
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Figure 9.

Same as Figure 8 but including exciton transport (eqs 115–117). Single solid line represents
G(t) propagation, double line is either (when both lines point to the same direction) or 
(when the lines point to opposite directions), and triple line represents .
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Figure 10.

FMO complex structure of Chlorobium tepidum (left) and its simulated linear absorption
(right), taken from ref 81 (eq 158).
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Figure 11.

Linear absorption spectrum for FMO of Chlorobium tepidum. The 5 identifiable peaks a–e,
where a is the lowest-energy absorption peak and e is the highest. The power spectra of the
three excitation pulses (Wb, Wd, and We) used to calculate the signal in Figure 15. Pulse We
excites band e only, pulse Wd excites band d only, and pulse Wb is broad and excites all bands.
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Figure 12.

Im  signal (imaginary part) in the MFA and CED for FMO at t2 = 0 ps.
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Figure 13.

 signal in the MFA and CED for FMO at t3 = 1 fs and t3 = 200 fs.
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Figure 14.

 signal in the MFA and CED for FMO at t1 = 0 fs.
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Figure 15.

2D signal  for the three experiments A, B, and C, as described in the text. (Top
row, A) broad pulses; (Middle row, B) the first two pulses select the e band; (Bottom row, C)
the first two pulses select the d band. The black line marks the diagonal. The pulses are shown
in Figure 11.
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Figure 16.

Absorption spectrum for FMO dissected into its seven chromophores by the last interaction
with the field (eq 133). The contribution from each chromophore is given by a different color.
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Figure 17.

 signal (eq 132) for the FMO light-harvesting complex at t2 = 0 ps. (Left
column) The imaginary part of the response function; (Right column) the absolute value. The
signal is dominated by chromophores 4, 5, 6, and 7 (Figure 10), which also dominate the two
strongest bands (b and d) of the absorption spectrum. Chromophores 2 and 3 do not contribute
significantly and were omitted. Color code is the same as in Figure 15.
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Figure 18.

Same as Figure 17 but at t2 = 10 ps. The signal is dominated by chromophores 3 and 4 (and a
small contribution of 7), onto which the lowest excited states (3) and the second lowest excited
states (4 and 7) are delocalized.
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Figure 19.

(Left column) Absolute value of the response function,  (eq 124). (Middle
column) The sum of the absolute value of the dissected response function,

 (eq 132). (Right column) The delocalization length, Ld(Ω3, t2, Ω1) (eq
136). The delay time t2 = 0 (top) and 10 ps (bottom). Color code is the same as in Figure 15.
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Figure 20.

Effects of the off-diagonal quartic coupling, , on the kI spectra for t2 = 0. (Left column) The
imaginary part of the response function; (Right column) absolute value. From top to bottom,

 =  = 0, +300, −300 cm−1. Color code is the same as in Figure 15.
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Figure 21.

Same as in Figure 20, but at t2 = 10 ps.
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Figure 22.

Linear (top) and 2D signal (bottom) for two-exciton with a two-state-jump (u, d) bath model.
The signals corresponding to diagrams i, ii, iv, and v are displayed for t2 = 0, ε1u = 30Γ, ε1d =
10Γ, ε2u = −30Γ, ε2d = −10Γ, Ju = Jd = 0; ku = kd = Γ, where Γ is the spectral line width;
Umn,kl = ∞ .
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Figure 23.

1D and 2D absorptive signal (eq 219) of a model dimer with spectral diffusion described by
two Gaussian–Markovian oscillators (one coupled to one site) for short t2 = 0 (left panel) and
long t2 ≫ Λ−1 (right panel) times. Parameters μ1 = μ2 =1, d11 = d22 = 0.3 J; Λ1 = Λ2 = 0.1 J,
ε1 = ε2 = 0.0; Umn, kl = ∞.
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Figure 24.

Variation of the 2D absorptive signal (eq 219) for a single chromophore two-state-jump model
with CTRW jump dynamics (t) = (t) = (θ(t))/(2π) ∫ dω eiωt[(1)/(1 + iκ1ω/[1 +
(καiω) α−1])]; at various time delays (left to right), t2 = 0, 2κ1, 10κ1 • κ1 is the average waiting
time κ1 = ∫ t (t) dt.
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Figure 25.

Aging effects in the 2D absorptive signal (eq 219). The SA signal for the nonstationary random
walk model (t) = (t) = (θ(t))/(2π) ∫ dω eiωt[(1)/(1 + (κiω)α)] at t2 = 0, κ(ε1u − ε1d) = 0.4,
α = 0.98 for various initial times (from left top to right bottom) t0 = 0κ, 10κ, 102κ, 103κ,
104κ, and 105κ.
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Figure 26.

kI signal of the FMO photosynthetic complex calculated using the CGF approach of section
11.2, with population transport for various t2 (broad band pulses with uniform (ω) spectral
shape were assumed; the signal coincides with the response function).
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Figure 27.

Optimized kI signals B̃1 and C̃1 (for details, see the main text) of the FMO complex calculated
using the same approach as in Figure 26. B̃1 shows only contributions from excitonic
coherences, and C̃1 emphasizes population transport.
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Figure 28.

Phase, amplitude, and polarization pulse shaping. (A) Laser pulse sequence and time variables
used in eqs 254 and 261 to describe a heterodyne-detected two-pulse 2D photon-echo
experiment. (B) Polarization ellipse representation of the electric field (adapted from
Brixner328). A1 and A2 are the major and minor principle axes that define the angle of ellipticity
ε. The additional angles are the orientation angle of the ellipse θ and the auxiliary angle χ. The
principal axes A1 and A2 are connected to the laboratory-frame amplitudes  and  by a
principle-axis transformation. The polarization state of the laser pulses is defined by θ and ε.
The sign of ε also defines the helicity: positive (negative) ε corresponds to the left (right)
elliptically polarized light.
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Figure 29.

Pulse shaping control of excitons in the Soret band of a chiral porphyrin dimer. (A) Structure
of the complex. (B) The exciton level scheme: the ground state, four single-exciton states, and
six two-exciton states. (C) and (D) are the linear absorption and circular dichroism (CD)
spectra, respectively, which were obtained using the following parameters: the fluctuation
magnitude Δ = 145 cm−1 and the relaxation rate Λ = 160 cm−1 at room temperature kBT ) 207
cm−1 (eq 169). (E) Absolute magnitudes of heterodyne-detected two-pulse 2D photon-echo
spectra: xxxx and xyyx tensor components with unshaped Gaussian laser pulses; pure-
polarization pulse shaping (P); shaping of polarization, spectral and temporal pulse profiles
(STP). Arrows indicate the optimized peaks. (F) Quasi-3D electric-field representation of the
P and STP laser pulses. The instantaneous frequencies are indicated by colors with an arbitrary
color scheme where blue marks are for the center frequency ω0. The projections to x (bottom)
and y (top) axes represent the amplitude envelopes of the  and  components of the electric
field (see ref 279).
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Figure 30.

Coherent control of 2D signals of a porphyrin dimer by a linear combination of 2D CI tensor
components. Shown are absolute magnitude at delay time t2 = 0: four nonchiral tensor
components xxxx, xxyy = xyxy, xyyx; nine chirality-induced tensor components T1–T9; and
optimized linear combinations P3, P6, P7, and P8, highlighting the initially poorly resolved
cross-peaks with red, green, black, and blue circles, respectively. Optimized peaks are marked
by arrows. The top left panel shows the xxxx signal calculated with narrow line width where
all peaks are resolved.
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Figure 31.

Coherent control of energy transfer in FMO by adaptive optimization of a linear combination
of 2D CI tensor components. Absolute magnitude of 2D signals: nonchiral xxxx and optimal
2D CI (fast) and (slow) linear combinations corresponding to the optimizations of the fast and
slow energy-transfer pathways. The optimized cross-peaks (1, 5) and (1, 7) are indicated with
red and green circles, respectively.
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Figure 32.

Feynman diagrams for quasiparticle dynamics in the kI technique. The left-most diagram is
for μ(0) = 0 case, while others include μ(0) ≠0. Each interaction with the field is displayed by
a solid dot. Time propagation is from the bottom up. The single solid line represents G(t)
propagation, the double line is either  (when both lines point to the same direction) or 
(when the lines point to opposite directions), and the triple line represents . Interaction with
μ(0) ≠ 0 is represented by a dot, where three lines meet. The response function for each
contribution can be directly written from these diagrams.
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Figure 33.

Feynman diagrams of the quasiparticle dynamics in kII technique. The left-most diagram is for
the μ(0) = 0 case, while others include μ(0) ≠ 0. The symbols are the same as in Figure 32.
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Figure 34.

Feynman diagrams of the quasiparticle dynamics in kIII technique. The left-most diagram is
for the μ(0) = 0 case, while others include μ(0) ≠ 0. The symbols are the same as in Figure 32.
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Figure 35.

Generalized diagram with population relaxation showing three density matrix propagation
intervals. By a proper choice of the b and c states, this diagram can represent the density matrix
evolution of all diagrams in Figure 7.
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Table 1

Linearly Independent NC Third-Order Experiments for kI, kII, and kIII Techniques (There Is No Restriction on
the Wavevector Configuration in This Case)

NC configuration F(4) signal label (section 14.2)

(ν4ν3ν2ν1) = (xxyy) (1, 0, 0)T

(ν4ν3ν2ν1) = (xyxy) (0, 1, 0)T

(ν4ν3ν2ν1) = (xyyx) (0, 0, 1)T

(ν4ν3ν2ν1) = (xxxx)

= (xxyy) + (xyyx) + (xyxy) (1, 1, 1)T

Chem Rev. Author manuscript; available in PMC 2010 November 8.



N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t

Abramavicius et al. Page 158

Table 2

Linearly Independent CI Collinear Third-Order Experiments for kI, kII, and kIII Techniques (We Assume
Collinear Configuration Where All Wavevectors Are Along z)

CI configuration; kI, kII, kIII F(5) signal label (section 14.2)

(ν4ν3ν2 ν1) =(xxxy) (0, 0, 0, 0, 0, 1)T

(ν4ν3ν2 ν1)= (xxyx) (0, 0, 0, 0, 1, 0)T

(ν4ν3ν2 ν1)= (xyxx) (0, 0, 1, 0, 0, 0)T
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Table 3

Linearly Independent CI Noncollinear Third-Order Experiments for kI, kII, and kIII Techniques with Pulse
Configurations Denoted as ν4ν3ν2ν1(k4k3k2k1) and ᾱ ≡ −α

CI configuration; kI F(5) signal label (section 14.2)

xxxy (zyȳz ̄) (0, 0, 0, 0, 0, 1)T

xxyx (zyzy) (0, 0, 0, 0, 1, 0)T

xxyz (zzxx) (0, 0, 0, 1, 0, 0)T

xyxx (zzyy) (0, 0, 1, 0, 0, 0)T

xyxz (zxzx) (0, 1, 0, 0, 0, 0)T

xyzx (zx;x̄z ̄) (1, 0, 0, 0, 0, 0)T

CI configuration; kII F(5)

xxxy (zyyz) (0, 0, 0, 0, 0, 1)T

xxyx (zyz ̄ȳ) (0, 0, 0, 0, 1, 0)T

xxyz (zzxx) (0, 0, 0, 1, 0, 0)T

xyxx (zzyy) (0, 0, 1, 0, 0, 0)T

xyxz (zxz ̄x̄) (0, 1, 0, 0, 0, 0)T

xyzx (zxxz) (1, 0, 0, 0, 0, 0)T

CI configuration; kIII F(5)

xxxy (zyyz) (0, 0, 0, 0, 0, 1)T

xxyx (zyzy) (0, 0, 0, 0, 1, 0)T

xxyz (zz ̄x̄x) (0, 0, 0, 1, 0, 0)T

xyxx (zz ̄ȳy) (0, 0, 1, 0, 0, 0)T

xyxz (zxzx) (0, 1, 0, 0, 0, 0)T

xyzx (zxxz) (1, 0, 0, 0, 0, 0)T
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