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Abstract

Objects in a real world image cannot have arbitrary ap-

pearance, sizes and locations due to geometric constraints

in 3D space. Such a 3D geometric context plays an im-

portant role in resolving visual ambiguities and achiev-

ing coherent object detection. In this paper, we develop

a RANSAC-CRF framework to detect objects that are geo-

metrically coherent in the 3D world. Different from existing

methods, we propose a novel generalized RANSAC algo-

rithm to generate global 3D geometry hypotheses from local

entities such that outlier suppression and noise reduction is

achieved simultaneously. In addition, we evaluate those hy-

potheses using a CRF which considers both the compatibil-

ity of individual objects under global 3D geometric context

and the compatibility between adjacent objects under local

3D geometric context. Experiment results show that our ap-

proach compares favorably with the state of the art.

1. Introduction

When we look at the two image patches shown in the

lower-left corner of Figure 1, it is hard to tell what is con-

tained in the green box, yet it is likely that the red box en-

closes a pedestrian dressed in black. However, when we

look at the entire image and obtain a sense of the 3D scene

layout behind the image, we can tell for sure that the green

box actually contains a car, since it rests on the road with

the right pose, size, and location. Also, the red box cannot

contain a pedestrian, since our sense of 3D geometry tells us

that the content in the red box would have been too short for

a pedestrian. This example illustrates the importance of 3D

geometric context in resolving visual ambiguities encoun-

tered in object detection.

While the majority of existing research focuses on 2D

context such as object co-occurrences and relative loca-

tions in the 2D image plane [11, 7, 19, 2, 4], some re-

searchers have done pioneering works on utilizing 3D ge-

ometric context in object detection and have shown promis-

ing results [14, 3, 18]. The general idea is when 3D geom-

Figure 1. 3D geometric context explains away visual ambiguities.

etry is recovered together with object detection, the joint

optimal solution would enforce 3D geometric coherence

among detected objects and therefore improve object detec-

tion performance. Our work follows this line of research,

yet with several important differences in multiple aspects.

To handle 3D geometric context, the first issue to con-

sider is modeling the 3D geometry of the scene (a.k.a.

global 3D geometry). Hoiem et al. represents the scene

geometry with a ground plane parameterized by its pitch

angle (i.e. horizon position) and height with respect to the

camera [14]. The ground plane is more flexible in [3] and

[18] where it is allowed to have a non-zero roll angle (i.e.

horizon could be tilted in the image). In all those works,

ground plane parameters are quantized into a small number

of bins for tractability.

Different from the existing works, we also model grav-

ity direction in addition to the ground plane (please see

Figure 3), so that scenes like sloped streets can be repre-

sented as well. In addition, our approach does not require

the quantization of continuous parameters, allowing for a

much larger value range and a higher precision.

The second issue is relating the 2D appearance of in-

dividual objects to the global 3D geometry. Hoiem et al.

derives an approximate relationship between ground plane

parameters and the position and height of object bounding

box in the image [14]. As only bounding box information is

used, the simplified geometric relationship is effective only

when ground plane roll is zero and ground plane pitch is

small. The methods proposed in [3] and [18] use object 2D

appearance to estimate its pitch angle with respect to the

camera, and compute the ground plane from at least 3 ob-

jects.



In our proposed approach, we use object 2D appearance

to estimate a richer set of properties (both pitch and roll

angles as well as landmark locations), such that each indi-

vidual object is able to establish the ground plane or grav-

ity direction, removing the restriction that at least 3 objects

must be present.

The third issue is jointly estimating global 3D geom-

etry and detecting objects. Hoiem et al. build a Bayes

net in which every object candidate is attached to the

common global 3D geometry (i.e. ground plane pitch and

height) [14]. Inference over the Bayes net gives the opti-

mal ground plane parameters and the validity of each can-

didate. To make the inference tractable, the ground plane

is assumed to have zero roll angle, and the quantization

of the ground plane parameters is relatively coarse. Bao

et al. propose to enumerate all possible quantized ground

planes within a predefined range [3]. For each enumerated

ground plane hypothesis, the validity of object candidates

are checked against it, and the ground plane with the highest

compatibility is chosen. As this approach performs exhaus-

tive search, the search space has to be confined in a narrow

range (2 degrees in pitch and 20 degrees in roll). An im-

proved method is presented in [18], where all object candi-

dates cast votes for the ground plane parameters in a Hough

voting space, and the peak in the voting space is regarded as

the optimal ground plane. A weakness of this approach is

that when object detection is noisy, which is often the case,

false detections would corrupt the votes.

We propose a novel way to generate global 3D geometry

hypotheses using a generalized RANSAC algorithm that a)

does not require quantization or exhaustive search over lim-

ited range, b) suppresses corruption of hypotheses caused

by false detections, and c) improves accuracy of hypothe-

ses by reducing the noise of inaccurate estimates obtained

from true detections (please see Figure 6). Another novelty

of our approach is that surface regions are also involved in

generating and evaluating global 3D geometry hypotheses.

In addition, different from the aforementioned works that

only consider the constraints of global 3D geometry im-

posed on each individual object candidate, we also intro-

duce local 3D geometric constraints between object candi-

dates, and integrate the global and local 3D geometric con-

straints in a Conditional Random Field(CRF) [16] (please

see Figure 8). Experiments on 422 challenging outdoor im-

ages from the LabelMe dataset [17, 14] confirm the effec-

tiveness of our RANSAC-CRF framework.

The rest of this paper is organized as follows. After an

overview of our algorithm in Section 2, we describe in Sec-

tion 3 how we generate the hypotheses of global 3D ge-

ometry in a way that suppresses outliers and reduces noise

simultaneously. Evaluation of those hypotheses that incor-

porates both global and local 3D geometric constraints is

detailed in Section 4. We present our experiment results in

Figure 2. The overall scheme of our algorithm. Here, gravity di-

rection w.r.t. camera is represented by the orange horizon line, and

the ground plane is represented by the blue mesh.

Section 5, and conclude the paper in Section 6.

2. Overview

The overall scheme of our algorithm is illustrated in Fig-

ure 2. We start by generating object/surface candidates

(including cars, pedestrians, vertical and horizontal sur-

face regions) using state-of-the-art object detectors (e.g. De-

formable Part Model [8, 9]) and surface segmentation al-

gorithms (e.g. Surface Layout Model [13, 12]). Each ob-

ject/surface candidate gives an estimate of the global 3D

geometry (i.e. gravity direction and ground plane parame-

ters) based on their 2D appearance. Those noisy estimates

are then pooled together using an generalized RANSAC al-

gorithm to generate a set of global 3D geometry hypothe-

ses. Given each hypothesis, we compute the compatibility

of each object/surface candidate and infer their validity ac-

cording to global and local 3D geometric context. The qual-

ity of each hypothesis is obtained as a result of the inference

procedure. Finally the hypothesis with the highest quality is

selected as the optimal estimate of the global 3D geometry,

and the inference result of object candidate validity associ-

ated with the best hypothesis gives the final object detection

result.

3. Generating global 3D geometry hypotheses

3.1. Modeling the scene and objects in it

In our work, we use exclusively the camera coordinate

system illustrated in Figure 3. Aside from the focal length

f , we categorize all the variables in Figure 3 into two

groups. The first group contains global variables depict-

ing the global 3D geometry: (inverse) gravity direction ng,

ground plane orientation np, and ground plane height hp.

The second group contains local variables specific to indi-

vidual objects: object vertical orientation nv, object pitch

angle θ, object roll angle γ, object depths dt and db for top

and bottom landmarks , locations xt and xb of the top and

bottom landmarks in the image, real world height H of the



Figure 3. Modeling scene and objects in the camera coordinate

system. The orange and purple lines in the image plane are ground

horizon and gravity horizon, respectively.

top landmark, and object vertical viewing angle α.

Now we list all the geometric relationships that exist

among those variables:

dt = H sin θ/ sinα; (1)

db = H(sin θ/ tanα+ cos θ); (2)

nv = m{dtr{xt, f} − dbr{xb, f}}; (3)

nv = g{−r{xb, f}, θ, γ}; (4)

α = arccos{< r{xt, f}, r{xb, f} >}; (5)

hp = −db < np, r{xb, f} >; (6)

nv =

{

np for cars

ng for pedestrians.
(7)

Here, function r{x, f} computes the unit vector pointing

from the camera center towards pixel location x in the im-

age plane. Function m{v} normalizes a vector v to unit

length. Function g{v, θ, γ} rotates a unit vector v by pitch

angle θ and roll angle γ. Function < v1,v2 > computes

the inner product of two vectors.

In addition, we could also estimate the distributions of

object pitch and roll angles given object appearance I and

category c:

θ ∼ p1(I, c); (8)

γ ∼ p2(I, c). (9)

Another cue we could use is the prior knowledge that

predicts the distribution of object height given its category

c:

H ∼ p3(c). (10)

Among all the geometric variables, only xt and xb are

directly observable. When multiple object candidates are

present, we are faced with a large set of equations con-

taining non-linear and even non-deterministic constraints.

Moreover, many false detections would produce invalid

equations. Therefore, instead of attempting to directly solve

them, we use those equations to propose hypotheses of the

global 3D geometry (ng,np, hp), and to evaluate those hy-

potheses.

Figure 4. Algorithm for generating a non-parametric distribution

of the vertical orientation of an object candidate. The space under

consideration covers the entire upper dome of unit sphere.

3.2. Each object/surface candidate gives an estimate
of global 3D geometry

For each object candidate: Using the constraints from

the equations listed above, we estimate a non-parametric

distribution of the vertical orientation nv of each object can-

didate from the appearance of the image patch enclosing it.

Instead of resorting to a multi-view object detector that re-

turns only a handful of discrete object poses, we directly

estimate the mean/variance of the pitch and roll angles of a

detected object by applying a regressor trained using the Hi-

erarchical Discriminant Regression model (HDR) [15] with

HoG features [6] on the LabelMe training dataset [14, 17].

We also estimate the mean/variance of the 2D positions of

the landmarks using the HDR regressor. Here, the top and

bottom landmarks for a car are the top and bottom loca-

tions of the wheel closest to the camera (which are stabler

and better-defined), and for a pedestrian, they are the head

and foot locations. The pitch and roll angles, together with

landmark locations, produce a non-parametric distribution

of object vertical orientation nv, according to the algorithm

summarized in Figure 4. Following constraint 7, the verti-

cal orientation distributions obtained from cars are regarded

as the estimations of the ground plane orientation np, and

those from pedestrians are for the gravity direction ng.

In addition to estimating ng and np, given the vertical

orientation, each object candidate also provides cues for

the ground plane height hp according to its size and loca-

tion. The algorithm for using an object candidate to gen-

erate a non-parametric distribution of hp is summarized in

Figure 5.

For each surface candidate: Given a vertical surface

region like a building facade, we extract long edges within

it and compute vertical and horizontal vanishing points (VP)

using Gaussian sphere [1]. To account for uncertainty, each

vanishing point is represented by a set of circle-intersection

points on the Gaussian sphere. The vertical direction of

the surface nv can be estimated directly from the vertical



Figure 5. Algorithm for using an object candidate to generate a

non-parametric distribution of the ground plane height. The range

under consideration covers 50m.

VP, or from the cross-product of a pair of horizontal VPs.

Therefore, for the vertical VP, it directly yields a set of nv

samples from its constituent circle-intersection points. For

each pair of horizontal VPs, we compute the cross product

of their respective constituent circle-intersection points and

generate a set of nv samples. The nv samples from the

vertical VP and all pairs of horizontal VPs are pooled to-

gether to generate a non-parametric distribution of nv over

the dense grid Gn using Kernel Density Estimation (KDE).

Estimating the vertical direction of a horizontal surface

region (e.g. a road) is similar, except that its vertical VP is

highly unreliable and therefore not used.

In outdoor street scenes, vertical surfaces usually corre-

spond to building facades which typically agree with the

gravity direction, while horizontal surfaces usually fall on

roads which relate to the ground plane orientation. There-

fore, we have nv = ng for vertical surfaces and nv = np

for horizontal surfaces.

An example of each object/surface candidate giving an

estimate of the global 3D geometry is shown in Figure 6a

and b. The estimates look messy, partly due to the existence

of several false detections, and partly due to the estimation

noise in true detections. In the next subsection, we discuss

how to generate at least one good hypothesis from those

messy estimates.

3.3. Generating hypotheses of global 3D geometry
with generalized RANSAC

One of the keys for RANSAC to succeed is that at least

one hypothesis should be close to the ground truth. In

our case, a single object/surface candidate (i.e. observation)

alone can generate a hypothesis of the global 3D geome-

try. Ideally, we could simply use a single observation (i.e.

the minimal set) to generate a hypothesis. However, as sin-

gle observations (even if they are true detections) tend to

be noisy, it is likely that none of the hypotheses generated

by the minimal set is close to the ground truth. On the other

hand, if we use all the observations with equal weights, false

Figure 6. Generate hypotheses of global 3D geometry from ob-

ject/surface candidates. a) Object/surface candidates. Here, red

and green shades indicate vertical and horizontal surface candi-

dates, respectively. b) Estimates of global 3D geometry given by

individual object/surface candidates. Here, magenta lines repre-

sent gravity horizons, and yellow grids indicate ground planes,

where the grid size is 1m. For display purposes, only the mode

of each non-parametric distribution is shown. c) A bad hypothe-

sis. d) A good hypothesis.

detections would corrupt the hypothesis. Therefore, we pro-

pose a generalized RANSAC algorithm to both inhibit out-

liers and reduce noise.

After each object/surface candidate has estimated a dis-

tribution of the global 3D geometry, we generate a set of

mixed distributions by mixing individual distributions to-

gether with randomly generated weights. For each mixed

distribution, we find its modes using the mean-shift algo-

rithm [5] and take those modes as hypotheses. When the set

of mixed distributions is large enough, at least one of them

would mostly come from valid object/surface candidates.

Furthermore, by finding modes of their mixed distribution

(which is equivalent to averaging) we also reduce the noise

level.

To verify this claim, we perform experiments on the 100

images that are provided with the ground truth horizon in

Hoiem’s dataset [14], and the results are plotted in Fig-

ure 7. Here, we compare the error of hypothesis generation

in there cases: 1) obtaining hypotheses by directly using the

modes from each individual distribution estimated by each

object/surface candidate (red circle); 2) obtaining hypothe-

ses by computing the modes of the average distribution over

all the distributions estimated by object/surface candidates

(magenta square); 3) obtaining hypotheses using our gen-

eralized RANSAC approach (blue curve). The error of hy-

pothesis generation is defined as the difference between the

ground truth and the best hypothesis among all the hypothe-

ses generated.



Figure 7. Comparing different methods of generating hypotheses.

The unit of the y-axis is degree. Please see text for details.

We can see that the generalized RANSAC approach has

the smallest error. Also, as the size of the set of random

mixtures grows, the error decreases. This is expected, be-

cause the ground truth is more likely to be covered when

we try more combinations. In our experiment, generating

50 random mixtures is sufficient.

Two qualitative examples of bad and good hypotheses

from the hypothesis set are shown in Figure 6c and d.

4. Evaluating global 3D geometry hypotheses

Given a global 3D geometry hypothesis (ñg, ñp, h̃p), we

evaluate its quality by measuring how well it is supported

by object/surface candidates after excluding the influence of

outliers. For this purpose, we evaluate the global and local

geometric compatibilities of each object/surface candidate,

and employ a CRF to infer the validity of each candidate.

The optimal score of the objective function used in the CRF

inference is regarded as the quality of the current global 3D

geometry hypothesis.

4.1. Global geometric compatibility

Global geometric compatibility refers to the compatibil-

ity of an individual object/surface candidate w.r.t. the global

3D geometry such as ground plane and gravity. An illus-

trative example is given in Figure 8 where the red objects

violate global geometric constraints.

Individual object candidate: We use two sources of

geometric constraints to compute the global compatibility

of an individual object candidate. In both the two sources,

landmark locations xt and xb take the mean value produced

by the landmark regressor. The first source compares the

pitch and roll angles predicted by the pose regressor (using

constraints 8 and 9) with those directly computed from the

current hypothesis of the global 3D geometry (using con-

straint 4 where nv = ñg for pedestrians and nv = ñp for

cars). The resulting compatibility score is

sg1 = exp{−
(θ̃ − θ0)

2

2σ2
θ

} · exp{−
(γ̃ − γ0)

2

2σ2
γ

} − 0.5, (11)

where θ0, γ0 and σ2
θ , σ2

γ are the mean and variance of the

pitch and roll regressor outputs, respectively. θ̃ and γ̃ are

computed according to constraint 4.

Figure 8. Different types of geometric context. Here, cubes repre-

sent cars and ellipsoids represent pedestrians. Blue dots indicate

ground touching points.

The second source of geometric constraints involves the

real-world height of the object. Given the ground plane hy-

pothesis ñp and h̃p, we compute the bottom landmark depth

db using constraint 6. This gives us the 3D coordinate Xb of

the bottom landmark. According to constraint 3, we search

for the optimal 3D coordinate Xt of the top landmark along

its line of sight using gradient descent, such that the direc-

tion of Xt −Xb has the best match with ñv (which equals

ñg for pedestrians or ñp for cars). The length of Xt −Xb

is checked against the prior knowledge of the real-world

height H of the top landmark. Denote the angle between

ñv and the direction of Xt − Xb as δ, then the resulting

compatibility score is

sg2 = exp{−
δ2

2σ2
} · exp{−

(‖Xt −Xb‖ −H0)
2

2σ2
H

} − 0.5,

(12)

where σ2
H is the variance of H according to prior knowl-

edge, and σ is a parameter set as 20 degrees.

The final compatibility score sg for an individual object

candidate is the average of sg1 and sg2.

Individual surface candidate: The compatibility of a

surface candidate also comes from two sources. Firstly,

we check how well the vertical orientation distribution pro-

duced by the surface candidate agree with the current hy-

pothesis ñg (for vertical surface) or ñp (for horizontal sur-

face). This produces a compatibility score sg1 with range

between -0.5 and 0.5. Secondly, we check the plausibil-

ity of the location of the surface candidate with respect to

the ground horizon in the image. For the horizontal surface

candidate, denote the proportion of the surface region above

the ground horizon as rh, then the compatibility score sg2 is

−rh with range between -1 and 0. For the vertical surface

candidate, this type of compatibility does not apply, as it

usually straddles across the horizon. The final compatibil-

ity score sg is the average of sg1 and sg2 for the horizontal

surface candidate, and is sg1 for the vertical surface candi-

date.

4.2. Local geometric compatibility

Local geometric compatibility refers to the compatibility

between nearby object candidates. Inspired by [10] (yet in



a totally different setting), we examine two types of local

geometric compatibility. Firstly, if the bounding boxes of

two candidates i and j overlap and the bounding box of the

farther candidate j is located mostly or completely within

the bounding box of the closer candidate i, then they are

unlikely to co-exist due to the occlusion conflict resulting

from the depth ordering, as is illustrated by the lower pair of

orange cubes in Figure 8. Therefore, we define the pairwise

compatibility score s
(dep)
ij related to depth ordering as

s
(dep)
ij = −(|Rij |/|Rj |)

λ, (13)

where |Rij | is the overlapping area of candidates i and j,

|Rj | is the area of candidate j, and λ is a parameter set as 5.

Secondly, if the footprints of the two object candidates

on the ground plane significantly overlap, they are unlikely

to co-exist due to space occupancy conflict, as is illustrated

by the upper pair of orange cubes in Figure 8. The pair-

wise compatibility score s
(ocp)
ij related to space occupancy

is therefore defined as

s
(ocp)
ij = −|Ri ∩Rj |/|Ri ∪Rj |, (14)

where |Ri ∩ Rj | and |Ri ∪ Rj | are the intersection and

union areas of the footprints of candidates i and j, respec-

tively. The footprint of an object candidate is obtained by

mapping several ground-touching landmarks in the image

to the ground plane. Those landmarks are estimated by a

HDR regressor.

4.3. Inferring candidate validity with CRF

We construct a CRF over the object/surface candidates to

infer their validity. Each candidate forms a node, and two

object candidates have an edge between them if their bound-

ing boxes and/or footprints overlap. The objective function

that the CRF attempts to maximize is

V (o) =
2

∑

k=1

ω
(s)
k (o

(s)
k ) +

∑

i

ωi(oi) +
∑

(i,j)∈E

ϕij(oi, oj).

(15)

Here, o is the binary validity indicator. ω
(s)
1 (o

(s)
1 ),

ω
(s)
2 (o

(s)
2 ), and ωi(oi) are the unary potentials for the verti-

cal surface candidate, horizontal surface candidate, and ob-

ject candidate i, respectively. Their values are defined as

ω(o = 1) = sg +(sd − 0.5) and ω(o = 0) = 0, where sg is

the compatibility score defined in the previous section, and

sd is the segmentation confidence or detection confidence

returned from the surface segmentation algorithm or object

detection algorithm. ϕij(oi, oj) is the pairwise potential be-

tween object candidates i and j. Its value is sij when both

oi and oj are 1; otherwise its value is 0. Here, sij could

either be s
(dep)
ij or s

(ocp)
ij depending on the type of the edge.

If both of them exist, then sij is the smaller of the two.

After the inference is complete, the quality of the current

global 3D geometry hypothesis is the maximum value V ∗

of the objective function. After all the hypotheses are evalu-

ated, the one with the highest quality is selected. This opti-

mal hypothesis is further refined by the valid object/surface

candidates associated with it.

5. Experiment

We evaluate our approach on the test dataset compiled

by Hoiem et al. [14] which contains 422 random outdoor

images from the LableMe dataset [17]. Those images cover

a multitude of outdoor urban scenes and include a wide va-

riety of object pose and size, making the dataset very chal-

lenging. The dataset contains 923 cars and 720 pedestrians

in total.

Hoiem et al. also collects a training dataset containing

51 images. We use this set to train our pose and landmark

regressors. The prior distribution of pedestrian height in our

experiment follows N(Hp; 1.7, 0.09), and the prior distri-

bution of wheel height is N(Hw; 0.6, 0.25). When propos-

ing hypotheses from distributions, 50 random mixtures are

usually enough, and the total number of hypotheses to eval-

uate is in the hundreds. We run our algorithm under mul-

tiple focal lengths and the one that yields the highest value

of V ∗ is adopted. It takes less than 10 minutes to process a

640-by-480 image with Matlab code.

Comparison with the state of the art: Using the top-

notch Deformable Part Model (DPM) [8] as the baseline

detector, we compare the object detection performance of

our approach with Hoiem’s algorithm in [14]. The result of

Hoiem’s algorithm is generated by running their published

codes with the DPM detector outputs. The ROC curves are

plotted in Figure 9a. The average precision (AP) of our

approach is 50.5%, achieving a boost of more than 10%

over the AP of the baseline detector at 40.1%. Surprisingly,

Hoiem’s algorithm performs worse than the baseline in the

realm of lower false positive rates, yielding an AP of 30.8%.

We observe that Hoiem’s model is not effective for car can-

didates returned by the DPM detector. This is probably be-

cause Hoiem’s algorithm takes the bounding box height as

the object height in the image. This approximation is poor

when a non-planar object, such as a car, is viewed from a

non-zero pitch angle. As our algorithm explicitly estimates

the landmark locations in the image, it does not have this

problem.

In addition to comparing object detection, we also eval-

uate global geometry estimation. The dataset provides the

ground truth of horizon in the form of the row index where

the horizon is located. It does not distinguish between grav-

ity and ground horizons, since the two are almost the same

for most of the images in the dataset. After converting the

row index of a horizon to the corresponding orientation vec-

tor, we compute the error of an estimated gravity direction

(or ground plane orientation) by measuring the angle be-

tween it and the ground truth orientation vector. The re-



Figure 9. Comparison of object detection performance. a) Com-

parison with state of the art. The baseline detector is DPM [6].

Our algorithm significantly boosts the performance over the base-

line detector. It also outperforms Hoiem’s algorithm [14] while

making fewer assumptions. b) Contribution of individual compo-

nents. Here, ”Det” shows the result of the DPM baseline detec-

tor; ”Det+GlbGeo” shows the result of including global geometric

context alone; ”Det+LocGeo” shows the result of including local

geometric context alone; ”Det+FullGeo” shows the result of our

full system using both types of context.

sults are shown in Figure 10. Despite not using any prior,

our method has a smaller error in horizon estimation than

Hoiem’s algorithm. The estimated ground plane height by

our method is centered around 1.5 meters, close to the typi-

cal eye level.

It is worth noting that, unlike Hoiem’s algorithm, we do

not assume the ground plane is perpendicular to the grav-

ity direction and has zero roll and small pitch. Even with

a greater flexibility, our approach still outperforms Hoiem’s

algorithm both in object detection and global geometry es-

timation, on the test dataset that largely satisfies those as-

sumptions.

As we do not have access to the codes of the algorithms

proposed in [3] or [18], we are not able to directly com-

pare with their performance. Yet according to what the au-

thors report in [3], their method does not perform as well as

Hoiem’s algorithm on a subset of the 422-image test dataset.

In [18], the authors use their own baseline detector and a

different subset of images. As a result, we could only com-

pare the performance gain over the baseline. The algorithm

in [18] achieves a gain of 5.1% in average precision, while

our approach achieves a gain of 10.4%.

Global and local 3D geometric context: Different from

existing works, we use both global and local 3D geomet-

ric context when inferring the validity of object candidates.

The benefit of doing so can be seen in Figure 9b. Both the

global and local 3D geometric context enhance detection

performance, and the highest gain is achieved when they

are applied simultaneously.

Benefit is mutual: Not only does 3D geometric con-

text enhance object detection performance, but coherent ob-

ject detection in turn improves the estimation of gravity and

ground horizons. To verify this argument, we estimate the

gravity direction and ground plane orientation from vertical

Figure 10. Comparison of global 3D geometry estimation perfor-

mance. The first row shows the distributions of gravity direc-

tion error, ground orientation error, and ground height from our

algorithm. The second row shows the results of Hoiem’s algo-

rithm [14]. Our algorithm has a smaller error in horizon estima-

tion. We are not able to compute the error of the ground plane

height estimation due to the lack of ground truth. However, both

the algorithms peak at around 1.5 - 1.6 meters, roughly corre-

sponding to the eye level. Best view on screen to zoom in.

and horizontal surfaces alone. The median estimation error

is 2.62 degrees for gravity direction and 4.85 degrees for

ground plane orientation. By contrast, the errors of our full

system are 2.05 and 2.21 degrees, respectively.

Qualitative evaluation: Several examples of the object

detection results of our algorithm are shown in Figure 11.

Please refer to the figure caption for the meanings of differ-

ent types of boxes and some discussions about the results.

6. Conclusion

We have presented an object detection algorithm that

ensures geometric coherence in the 3D world. Compared

with existing approaches, the major contributions of our

work include 1) a more flexible modeling of the scene that

treats gravity direction and ground orientation separately, 2)

a more systematic representation of the geometric relation-

ships between scene and objects, 3) a generalized RANSAC

algorithm that enables both outlier suppression and noise

reduction in hypothesis generation, 4) incorporating both

global and local 3D geometric context with a CRF, 5) in-

cluding surface regions in estimating and evaluating global

3D geometry. Due to these factors, our algorithm achieves a

superior performance on a challenging dataset. Future work

would focus on 3D geometric constraints between surfaces

and objects.
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