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We present a mechanism by which a metamaterial surface, or metasurface, can act as an ideal phase-controlled

rotatable linear polarizer. Using coupled-mode theory and the idea of coherent perfect absorption into auxiliary

polarization channels, we show how the losses and near-field couplings on the metasurface can be balanced

so that, with equal-power linearly polarized beams incident on each side, varying the relative phase rotates the

polarization angles of the output beams while maintaining zero ellipticity. The system can be described by a

non-Hermitian effective Hamiltonian which is parity-time (PT ) symmetric, although there is no actual gain

present; perfect polarization conversion occurs at the eigenfrequencies of this Hamiltonian, and the polarization

rotating behavior occurs at the critical point of its PT -breaking transition.

DOI: 10.1103/PhysRevA.92.043826 PACS number(s): 42.25.Bs, 42.25.Ja, 78.67.Pt

I. INTRODUCTION

In photonics, optical loss is commonly regarded as an

unwanted nuisance. However, some recent advances have

shown that loss can be an interesting control parameter in

its own right. A case in point is the phenomenon of coherent

perfect absorption (CPA): when the loss in an optical structure

is tuned to an appropriate (noninfinite) level, a specific incident

wavefront is absorbed without scattering [1–11]. This is a

generalization of the phenomenon of “critical coupling” [1],

and in a multichannel system, like a metamaterial surface,

or “metasurface” [12], with waves incident from both sides,

it provides a way to control light with light without optical

nonlinearity [5–7]: varying part of the incident wavefront, such

as the phase of one input beam, can switch the whole wavefront

between perfect and near-zero absorption. Another example of

loss as a control parameter comes from the field of parity-time

(PT ) symmetric optics, which deals with structures containing

spatially balanced gain and loss [13–27]. Such devices exhibit

a form of non-Hermitian symmetry breaking [13], whose

“critical point” or “exceptional point” [15] can produce

extraordinary behaviors such as unidirectional invisibility [16–

19,24–27]. Intriguingly, several links have been found between

PT symmetry and CPA: PT -symmetric scatterers can simul-

taneously exhibit CPA and lasing [20,22,23], and in some

metasurfaces the occurrence of CPA can be mapped to the

PT -breaking transition of an effective Hamiltonian [28].

The theory of CPA is agnostic about the nature of the

loss [1], which can be some combination of Ohmic loss,

fluorescence, or radiation into other coherent channels [29,30].

At first glance, treating radiative loss using the language of

CPA may seem pointless, for the “absorption” of light from

one input channel into another channel occurs in so simple a

system as a nonscattering waveguide. However, when multiple

scattering channels are present, it provides an interesting way

to control optical polarization [31–33].

*mingkang@mail.nankai.edu.cn
†yidong@ntu.edu.sg

Several groups have recently implemented polarization-

manipulating metasurfaces [34–37] based on the idea of

varying structural elements at different spatial positions in

order to generate anomalous phase responses in the reflected

and/or transmitted beams. Since the polarization state is

determined by the structural features of the metasurface,

however, achieving dynamic control is a challenging task.

One promising alternative approach was explored in recent

experiments by Mousavi et al. [32,33]. They showed that when

two equal-power linearly polarized beams are incident on a

chiral metasurface, varying the relative phase φ between the

beams can induce a complete rotation of each output beam’s

polarization angle, with ellipticity �15◦. The metasurface thus

acts as a polarization rotator controlled by φ. However, the

underlying physical mechanism has not yet been analyzed

in detail. Mousavi et al. noted that, for one input beam,

the transmission is approximately circularly polarized, say,

left-circularly polarized (LCP). To rotate the polarization, the

reflection of the input beam incident from the opposite side

must be right-circularly polarized (RCP). This implies, by

mirror symmetry along the beam axis, that for each input beam

the reflection and transmission have the same handedness,

which is counterintuitive since a mirror-symmetric chiral

resonance emits to each side with opposite handedness.

As we shall see, this simple explanation is incomplete. A

metasurface can generate rotatable output beams with exactly

zero ellipticity but only when tuned to a certain CPA-like

condition, and the polarization under single-sided illumination

is typically elliptical rather than circular.

Here, we present a theoretical study of an ideal two-sided

polarization-rotating metasurface, which reveals deep ties to

the concepts of CPA [1–11] and PT symmetry [13–28].

The metasurface contains pairs of resonators radiating into

different linear polarization channels, subject to dissipation

and near-field coupling. Using coupled-mode theory (CMT)

[38–44], we show that it can perform “perfect polarization

conversion” (PPC) of two linearly polarized input beams (i.e.,

90◦ rotation with zero ellipticity). PPC requires a specific

balance between the radiative loss rates, dissipation rates, and

near-field coupling rates of the metasurface resonators. This

is analogous to ordinary CPA, which occurs at discrete loss
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levels [1]. The coupled-mode analysis also shows that the fre-

quencies for PPC are eigenvalues of an effective Hamiltonian

which is PT symmetric, although the metasurface itself is gain

free. (Similar mappings to PT -symmetric Hamiltonians have

been explored for CPA [28] and for polarization conversion

under one-sided transmission [45].) For “critical” solutions to

the PPC conditions, corresponding to PT transition points

of the effective Hamiltonian, the metasurface acts as an

ideal polarization rotator: as we vary the relative input phase

φ, the output beams remain linearly polarized, and their

polarization angles undergo complete rotations. The efficiency

approaches 100% when the radiative loss and coupling rates

dominate the dissipation. Under one-sided illumination, the

reflected and transmitted beams have equal handedness due

to interference between direct and indirect transmissions, but

the critical metasurface is generally not a perfect circular

polarizer under one-sided illumination; the above-mentioned

explanation involving RCP and LCP components [32,33]

holds only for zero dissipation. For nonzero dissipation,

the reflection and transmission on each side are elliptically

polarized but can nonetheless combine to ensure zero total

ellipticity. With other parameters choices, we can also switch

the outputs between circular and linear polarization by varying

φ. Full-wave simulation results verify the predictions of the

CMT.

II. THEORETICAL MODEL

Consider the plane metasurface depicted in Fig. 1(a). It

is mirror symmetric along the normal ẑ and contains pairs

of modes described by complex amplitudes �q ≡ [qx,qy]T ,

radiating in the x̂ and ŷ linear polarizations, respectively. Plane

waves are normally incident on each side, with amplitudes �a =
[ah+, ah−, av+, av−]T , where + (−) denotes incidence from

the top (bottom) and h(v) denotes linear polarization parallel to

x̂(ŷ). The outputs are described by �b = [bh+, bh−, bv+, bv−]T ,

with ± denoting waves exiting to ±ẑ. This system can be

described by coupled-mode equations [38–44]:

− i � �q = K �a, (1a)

KT �q + C �a = �b, (1b)

where

� =
(

δx − i
(

γ s
x + γ d

x

)

−κ

−κ δy − i
(

γ s
y + γ d

y

)

)

, (2a)

K =
(√

γ s
x

√
γ s

x 0 0

0 0
√

γ s
y

√

γ s
y

)

, (2b)

C =
(

σ1 0

0 σ1

)

, σ1 ≡
(

0 1

1 0

)

. (2c)

Here, δμ (where μ ∈ {x,y}) is the frequency detuning from the

μ-oriented resonance, γ s
μ is the radiative scattering rate, γ d

μ is

the dissipation rate, and κ is the near-field coupling between

the modes; all these parameters are real. K is the radiative

coupling between the metasurface and the input and output

waves, while C is the direct coupling. These matrices are

constrained by the mirror symmetry, the definitions of energy

and power, and optical reciprocity [39]. The scattering matrix

FIG. 1. (Color online) (a) Schematic of the input and output

wave amplitudes �a and �b. (b) Output power S0 = |bh+|2 + |bh−|2
vs relative phase φ ≡ arg(ah−/ah+ ) of the input beams. The critical

metasurface parameters are κ = Ŵ = 0.3 and γd = 0.2. Each input

beam has unit power. The efficiency depends on the choice of γd/Ŵ;

here, ∼80% is absorbed at φ = 0 for γd/Ŵ = 0.667, whereas in

Fig. 4, ∼20% is absorbed for γd/Ŵ = 0.07. (c) Polarization angle

ψ = tan−1(S2/S1)/2. The outputs are linearly polarized (S3 = 0) for

all φ. (d) Ellipticity parameter S3/S0 vs detuning δ of a single input

beam, transmitted from ±ẑ to ∓ẑ (solid curve) and reflected from ±ẑ

to ±ẑ (dashed lines). Note that neither beam is circularly polarized at

δ = 0.

S, defined by S �a = �b, is

S = C + i KT
�

−1K ≡
(

Sx D

D Sy

)

. (3)

Sx (Sy) describes how light incident in the h(v) polarization

scatters into the same polarization, while D describes the cross-

polarized scattering.

We now assume that the metasurface is designed so the

resonances have the same dissipation rates and frequencies:

γ d
x = γ d

y ≡ γd , δx = δy ≡ δ. (4)

(The radiative scattering rates, however, can and will

differ.) Furthermore, we consider h-polarized incident

illumination, with amplitudes �ah = [ah+,ah−]T , so the

outputs are �bh = Sx �ah and �bv = D �ah. Due to the mirror

symmetry, Sx has eigenvectors [1,1]T and [1,−1]T ; the latter,

with eigenvalue −1, corresponds to a node on the plane

experiencing zero total loss.

By varying the metasurface parameters and input ampli-

tudes, we can arrive at a situation where �bh = 0, i.e., all the

h-polarized incident light is reemitted in the v polarization

and/or dissipated. We call this perfect polarization conversion.

It corresponds to CPA with v-polarized emission as an

“absorption” channels (it would be ordinary CPA if γ s
y = 0).
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For PPC to occur, the symmetric eigenvector of Sx must have

eigenvalue zero; this occurs if and only if

γ s
x − γd = γ s

y + γd ≡ Ŵ, (5a)

δ2 = κ2 − Ŵ2. (5b)

If |κ| > Ŵ, Eq. (5b) can be satisfied at two distinct frequencies.

But if |κ| < Ŵ, it cannot be satisfied for any δ.

We can interpret Eqs. (5a)–(5b) in terms of an effective

Hamiltonian [28]. Starting from Eq. (3), we can write

det(Sx) = det (Hx − δ · I)/ [−det(�)], where

Hx =
(

i
(

γd − γ s
x

)

κ

κ i
(

γd + γ s
y

)

)

. (6)

The eigenvalues of Hx are detunings for which PPC occurs.

These should be real, but Hx is non-Hermitian. However, Hx

becomes PT symmetric [13], with P = σ1 and T being the

complex conjugation operation, when Eq. (5a) is satisfied.

Then the eigenvalues become ±
√

κ2 − Ŵ2, which are the

solutions to Eq. (5b) and are real for the PT -unbroken phase

of Hx , |κ| > Ŵ. In the PT -broken phase, |κ| < Ŵ, PPC cannot

occur for any real δ. At κ = ±Ŵ, which are the critical points of

Eq. (5b) and the PT transition points [15] of Hx , PPC

occurs only at δ = 0. As in Ref. [28], we can also think of

the metasurface as a platform for realizing PT -symmetric

Hamiltonians.

Now suppose the metasurface is tuned to one of the critical

points, satisfying Eqs. (5a)–(5b) with κ = Ŵ, δ = 0. For

h-polarized inputs, the coupled-mode equations give

bh± = ∓1

2
(ah+ − ah−), (7)

bv± = − i

2

√

Ŵ − γd

Ŵ + γd

(ah+ + ah−). (8)

The outputs have equal power and third Stokes parameters

S±
3 ≡ −2Im[bh±b∗

v±] = ±
√

Ŵ − γd

Ŵ + γd

|ah+|2 − |ah−|2
2

. (9)

Hence, for equal-power inputs (|ah+|2 = |ah−|2), both outputs

are exactly linearly polarized (S±
3 = 0).

Part of this result is easy to understand: the outputs are

v polarized for symmetric inputs (PPC) and h polarized for

antisymmetric inputs (node on the plane). But Eq. (9) goes

further and states that the output beams are linearly polarized

for all input beam phases. Varying the relative phase rotates

the output beams’ polarization angles between [0,π/2]. This

behavior is specific to the critical metasurface. (At the other

critical point, κ = −Ŵ, the polarization rotates in the opposite

direction; κ 
= 0 implies broken left-right symmetry.)

The action of the critical metasurface as a rotatable linear

polarizer is shown in Figs. 1(b) and 1(c). The efficiency

is characterized by the ratio of total output to input power

at φ = arg(ah−/ah+ ) = 0 (peak dissipation, coinciding with

PPC). This ratio is (Ŵ − γd )/(Ŵ + γd ), so for γd ≪ Ŵ the loss

is ≈4γd/Ŵ, and the polarization angle is ψ ≈ (π ± φ)/2 for

the ±ẑ outputs. Here, the efficiency is low because we have

chosen relatively large γd/Ŵ = 0.667 to clarify the relative

contributions of dissipation and radiative scattering; we will

shortly consider a more efficient case. (For Ŵ/γd = 1, the

ŷ resonance is dark, and the system reduces to the CPA

metasurface of Ref. [28].)

Consider the reflection and transmission of a one-sided

h-polarized input beam at the critical point. As shown in

Fig. 1(d), S3 > 0 for reflection and S3 < 0 for transmission

for either choice of input direction; that is, reflection and

transmission have the same handedness. The coupled-mode

analysis clarifies why this happens: the transmitted beam

consists of both direct transmission and chiral reemission

from the resonances. At the critical point, the total transmitted

beam has handedness opposite to its reemitted component

and the same as the reflected beam. The transmission and

reflection are not circularly polarized, except when γd → 0.

Under two-sided illumination, the elliptical beam components

combine to form linearly polarized output beams.

Away from the critical point, the metasurface ceases to act

as a linear polarizer, but a remnant of the critical behavior

persists. At the critical point, one cycle of φ winds each output

amplitude along the equator of the Poincaré sphere, as shown in

Figs. 2(a) and 2(b). Away from the critical point, the trajectory

no longer follows the equator exactly, but one cycle of φ still

induces one winding of 2ψ ≡ tan−1(S2/S1) and hence a full

cycle of the polarization ellipse’s semimajor axis. This holds

as long as the loops do not cross the poles, which occurs at

δ2 = κ2 − Ŵ2 ± 2κ

√

Ŵ2 − γ 2
d . (10)

FIG. 2. (Color online) Poincaré sphere trajectories for the

(a) +ẑ and (b) −ẑ output beams. Input beams are h polarized with

equal power and relative phase φ = arg(ah−/ah+). Arrows indicate

the direction of increasing φ. Trajectories I, II, and III have κ, δ

parameters given by the matching points in (c); the other parameters

are Ŵ = 0.3 and γd = 0.05. (c) Phase diagram of the metasurface. L

indicates solutions to Eq. (5b), corresponding to perfect polarization

conversion, i.e., real eigenvalues of the PT -symmetric matrix (6).

C± indicate solutions of Eq. (10), for which the output are circularly

polarized. The κ < 0 region, not shown here, has a similar form.
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For κ > 0, the + (−) sign corresponds to an RCP (LCP)

+ẑ output and an LCP (RCP) −ẑ output. Hence, we obtain

the “phase diagram” shown in Fig. 2(c). The curves C±
indicate solutions to Eq. (10), where varying φ switches the

output between linear and circular polarizations, as shown in

Figs. 2(a) and 2(b). In the region between these curves, 2ψ

undergoes a complete winding with φ. The phase diagram for

κ < 0 is similar.

III. NUMERICAL RESULTS

The CMT is quite general, given the assumptions that (i)

the metasurface resonances can be decomposed into a pair of

qx and qy components, (ii) the system is mirror symmetric

along the ẑ axis, and (iii) the scattering in the absence

of the resonances can be described by Eq. (2c). To verify

it, we design an exemplary plasmonic metasurface, shown

in Fig. 3(c). Each unit cell contains a silver strip antenna

radiating in the x̂ direction and a silver split-ring resonator

(SRR) radiating in ŷ. The cells are arranged in a square

lattice with period d = 600 nm, and the entire metasurface

is freestanding in vacuum. No high-order diffraction mode

exists below 500 THz. The dielectric function of silver is

modeled by a Drude formula εm = ε∞ − f 2
p/(f 2 + iγpf ),

where fp = 2230 THz, γp = 5.09 THz, and ε∞ = 5. To

extract the coupled-mode parameters for each resonator, we

perform full-wave (finite-difference time-domain) numerical

simulations with single-sided incident illumination in the

absence of the other resonator, with the appropriate linear

FIG. 3. (Color online) Design of the critical metasurface.

(a) Reflectance of a strip antenna with a = 434.25 nm and w =
50 nm. (b) Reflectance of a split-ring resonator (SRR) with w =
50 nm, b = 355 nm, h = 105 nm. Both antennas are freestanding,

with thickness t = 30 nm and lattice period d = 600 nm; incident

light is linearly polarized parallel to their main axes. Solid lines show

full-wave simulation results, and dashed lines show least-squares

fits to coupled-mode predictions. (c) Schematic of the unit cell.

(d) Full-wave results for S3/S0 vs resonator separation g and operating

frequency f for the +ẑ output beam with symmetric equal-power

inputs. The dashed line show where Eq. (5b) is satisfied using fitted

coupled-mode parameters; the solid line shows where S3 = 0 in the

simulation results.

FIG. 4. (Color online) Intensity S0, ellipticity parameter S3/S0,

and polarization angle ψ for the +ẑ output beam vs the relative

phase φ of the input beams. The metasurface is at the critical point

indicated in Fig. 3(d). Solid curves show full-wave simulation results,

and dashed curves show coupled-mode predictions using best-fit

parameters.

polarization. The reflectance spectrum is fitted to the the-

oretical curve R = γ s 2
μ /[(f − fμ)2 + (γ s

μ − γ d
μ )2] obtained

from Eqs. (1b)–(2c) for κ = 0. Using the structure parameters

stated in Fig. 3, each resonator has fx = fy = 206.3 THz and

γ d
x = γ d

y = 1.3, satisfying Eq. (4). The radiative decay rates

are γ s
x = 19.8 THz and γ s

y = 17.2 THz, satisfying Eq. (5a).

We now include both resonators, separated by distance

g. Varying g, with all other structural parameters fixed,

alters the near-field coupling κ , as well as (weakly) the

resonant frequency f0 (see Appendix A). A nonlinear

least-squares fit yields κ ≈ (28.32 − 0.51g + 0.0026g2)

THz and f0 ≈ (200.48 + 0.073g) THz, with g in units of

nanometers. The fitted CMT agrees well with simulation

results for all output Stokes parameters. For instance, Fig. 3(d)

shows S3/S0. The locus of S3 = 0 according to the simulation

(black line) closely matches the coupled-mode prediction

(white dashed line). Based on Eq. (5b), the critical point occurs

at g ≈ 22 nm, f ≈ 202 THz. Figure 4 shows the critical

behavior, which agrees well with the CMT, particularly with

the fact that S3 ≈ 0 for all φ. The peak absorption is less than

20% and could be further reduced by designing antennas with

larger radiative decay rates relative to γd .

We have focused on a simple metasurface with two

antennas per unit cell since that can be easily mapped to

the CMT. In particular, the amplitudes qx,y are excitations

of the individual antennas. However, the CMT can also be

applied to more complicated metasurfaces, such as those in

previous experiments [32,33]. In such cases, qx,y would be

the decompositions of some spatially complex resonances

into eigenmodes radiating into exclusive linear polarization

channels, so the mapping between the metasurface parameters

and the coupled-mode parameters would be more complicated.

In Appendix B, we show that a variant of the theory can

describe a “complementary” metasurface consisting of air slits

on a metal film.

IV. CONCLUSION

We have shown that the principles of CPA and PT

symmetry can be used to analyze metasurfaces that can
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manipulate optical polarization with two input beams. This

is an example of an emerging class of photonic devices

which exploit the properties of “critical” or “exceptional”

points [24,27,46,47]. Here, the critical behavior gives rise

to exactly zero-ellipticity output beams; devices performing

other types of polarization control, such as switching between

circular and linear polarization, might also be interesting to

study.
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APPENDIX A: FITTING CMT PARAMETERS TO

NUMERICAL SIMULATIONS

In order to verify the CMT, we perform finite-difference

time-domain (FDTD) simulations of the metasurface with a

normally incident plane wave on one side, polarized such that

the E field is parallel to the metallic strip shown in Fig. 3 (i.e.,

the ±x̂ direction). Figure 5 plots the intensities reflected into

each linear polarization channel, |rxx |2 [Fig. 5(a)] and |ryx |2
[Fig. 5(c)], for frequency f ranging from 150 to 250 THz and

interresonator distance g ranging from 10 to 80 nm. All other

geometry parameters are fixed at the previous values.

We use these results to fit two CMT parameters: the near-

field coupling κ and the resonator frequency f0. The other

CMT parameters, Ŵ and γd , are assumed to be the same as

for the isolated (noncoupled) resonators, and their values have

been extracted using a separate set of FDTD simulations (see

Fig. 3). We find it necessary to treat f0 as a function of g

because each resonant antenna in the hybridized metasurface

undergoes a slight frequency shift, possibly arising from a

small scattering response in the crossed polarization direction.

For each value of g, we perform nonlinear least-squares fits for

κ and f0 using the numerical reflection spectra. Next, we use

least-squares polynomial fits to obtain the CMT parameters as

functions of g. The results are

κ ≈ 28.32 − 0.51g + 0.0026g2, (A1)

f0 ≈ 200.48 + 0.073g, (A2)

where both κ and f0 are given in units of terahertz and g is in

nanometers. Using these fitted parameters, the CMT results are

shown in Figs. 5(b) and 5(d) and agree well with the full-wave

simulations. The fitted κ and f0 parameters are plotted in

Figs. 5(e) and 5(f).

Next, we study the intensity and polarization characteristics

of the output beams under two-sided illumination, with

symmetric and h-polarized input beams. From Eqs. (2a)–(4),

FIG. 5. (Color online) (a) Reflectance into the h channel |rxx |2
for a one-sided h-polarized input beam vs interresonator distance

g and frequency f . (b) CMT results using best-fit parameters.

(c) Reflectance into the v channel |ryx |2. (d) CMT results for |ryx |2
using the best-fit parameters. (e) and (f) Variation of the CMT

parameters κ and f0 vs g.

the Stokes parameters for the +ẑ output beam are

S0 = 1

|det �|2
[

(δ2 + Ŵ2)2 + 2
(

Ŵ2 − δ2 − 2γ 2
d

)

κ2 + κ4
]

,

(A3)

S1 = 1

|det �|2
[

(δ2 + Ŵ2)2 − 2
(

3Ŵ2 + δ2 − 2γ 2
d

)

κ2 + κ4
]

,

(A4)

S2 = 0, (A5)

S3 = 1

|det �|2 4κ

√

Ŵ2 − γ 2
d (δ2 + Ŵ2 − κ2). (A6)

Figure 6 plots the normalized Stokes parameters (S0, S1/S0,

S2/S0, and S3/S0) for the +ẑ output beam versus g and

f . The full-wave simulation results agree well with the

CMT predictions, which are obtained using the same fitted

parameters discussed in the previous paragraph. In Fig. 6(g),

along the indicated locus of points where S3 = 0, Eq. (5) is

satisfied; that is, the incident h-polarized input beams are

perfectly converted to the v polarization (as well as partly

lost to dissipation). In Figs. 6(e) and 6(f), note that S2 = 0

throughout the investigated parameter range, as predicted in

Eq. (A5). Hence, the locus of points indicated in Fig. 6(c),

where S1 = 0, corresponds to the C+ curve as described in
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FIG. 6. (Color online) Normalized Stokes parameters for the +ẑ

output beam vs g and f . In (c) and (g), solid black curves indicate

where the Stokes parameter vanishes, and white dashed curves show

best-fit CMT predictions.

Eq. (10), where the outputs become circularly polarized for

symmetric input beams. (In the investigated metasurface, the

other pole crossing does not occur, as κ does not meet the

requirements for C−.)

By tuning the metasurface to the critical point of the C+
line, we can switch the outputs between circular and linear

polarization by varying the relative phase of the inputs φ.

The determination of this critical point is quite similar to the

L critical point. Using the full-wave simulation results, we

locate the C+ critical point at f = 204.75 THz, g = 58 nm.

Figure 7(a) plots the output power of the +ẑ output beam

versus φ. The polarization conversion is relatively efficient,

with a maximum of ∼22% dissipation loss at φ = 0, where

FIG. 7. (Color online) (a) Normalized intensity S0 of the +ẑ

output beam at the C+ critical point vs relative input phase φ. FDTD

simulation results (red dashes) and best-fit CMT results (blue line)

are shown. (b) The Poincaré sphere trajectory touches the C+ pole as

well as the equator.

the output beams become exactly circularly polarized. The

Poincaré sphere trajectory of the normalized Stokes parameters

as φ is varied is shown in Fig. 7(b).

APPENDIX B: NUMERICAL STUDY OF A

COMPLEMENTARY METASURFACE

The CMT we have developed is a quite general one and

should be applicable to a range of metasurface designs.

We demonstrate this by applying it to a structure which is

complementary to the one previously discussed. As shown

schematically in Fig. 8(g), the structure consists of air holes

in a metal surface. The structural parameters are defined in

FIG. 8. (Color online) (a)–(d) Reflectance for a one-sided v-

polarized input beam, plotted against the interresonator distance

g and operating frequency f , using FDTD results and CMT fits.

(e) and (f) Variation of the CMT parameters κ and f0 vs g. (g)

Schematic of the air-hole structure. (h) and (i) Normalized S3 Stokes

parameters under two-sided symmetric v-polarized input beams.
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the same way as in the original freestanding metasurface

structure.

Using the same process to fit the CMT parameters described

in Appendix A, we find the dissipation rates are in the form

γ d
x = γ d

y = 1.2 THz, thus satisfying Eq. (4). Furthermore, the

radiative decay rates are γ s
x = 21.2 THz and γ s

y = 23.6 THz,

still satisfying Eq. (5a). For each value of g, the fitted

CMT parameters are κ ≈ 35.0128 − 0.6336g + 0.0033g2 and

f0 ≈ 204.125 + 0.15g, where both κ and f0 are also given

in units of terahertz and g is in nanometers. Using these

fitted parameters, the CMT results are shown in Figs. 8(b)

and 8(d) and agree well with the full-wave simulations. The

fitted κ and f0 parameters are also plotted in Figs. 8(e) and

8(f).

Figures 8(h) and 8(i) show the normalized S3 Stokes

parameter for the output under symmetric v-polarized input

beams. The full-wave simulation results again agree well with

the CMT predictions using fitted parameters. Using Eq. (5b),

we find that this structure has a critical point occurring at

g ≈ 22.5 nm, f ≈ 207.5 THz. We find that S2 = 0 throughout

the investigated parameter range, meeting the requirement of

Eq. (A5).
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