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mechanical resonators
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Coupled nanomechanical resonators have recently attracted
great attention for both practical applications and funda-
mental studies owing to their sensitive sympathetic oscilla-
tion dynamics1–10. A challenge to the further development of
this architecture is the coherent manipulation of the coupled
oscillations. Here, we demonstrate strong dynamic coupling
between two GaAs-based mechanical resonators by periodi-
cally modulating (pumping) the stress using a piezoelectric
transducer. This strong coupling enables coherent transfer of
phonon populations between the resonators, namely phonon
Rabi oscillations11–13. The nature of the dynamic coupling can
also be tuned from a linear first-order interaction to a nonlinear
higher-order process in which more than one pump phonon
mediates the coherent oscillations (that is, multi-pump phonon
mixing). This coherent manipulation is not only useful for
controlling classical oscillations14 but can also be extended to
the quantum regime11–13, opening up the prospect of entangling
two distinctmacroscopicmechanical objects15,16.

The mechanical motion of two harmonic oscillators can interact
if the oscillators are geometrically interconnected. Such coupled
oscillations were first observed in paired pendulum clocks in the
mid-seventeenth century and were extensively studied for their
novel sympathetic oscillation dynamics17,18. In this era of nan-
otechnologies, coupled oscillations have again emerged as sub-
jects of interest when realized in nanomechanical resonators ow-
ing to their potential applications in highly precise sensors1–3,
high-quality-factor band-pass filters4, signal amplifiers5 and logic
gates6. However, a key obstacle to the further development of
this platform is the ability to coherently manipulate the cou-
pling between different mechanical oscillations. This limitation
arises as a consequence of the usually weak vibration coupling
between the constituent nanomechanical elements. In this Let-
ter, we demonstrate dynamic coupling between two geometrically
interconnected GaAs doubly-clamped beams by using piezoelec-
trically induced parametric mode mixing (pumping)19,20. This
technique enables coherent manipulation of phonon popula-
tions as well as strong vibration coupling in frequency-different
mechanical resonators in which the energy exchange between
the two resonators is intrinsically inefficient owing to the fre-
quency mismatch.

The dynamic coupling is developed in paired GaAs-based me-
chanical beams, as shown in Fig. 1a, in which the piezoelectric effect
is exploited to mediate all-electrical displacement transduction19,20.
Application of the gate voltage causes piezoelectric stress along
the beam, resulting in modulation of its tension and the creation
of a bending moment. This effect enables both harmonic driving
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and parametric pumping, where the mechanical motion can be
detected by the voltage induced by the piezoelectric effect. All
the measurements were done by setting the sample in a vacuum
(5×10−5 Pa) and cooling it to 1.5 Kwith a 4He cryostat.

The frequency response of beam 1 measured by harmoni-
cally driving it while the parametric pump is deactivated ex-
hibits two coupled vibration modes (Fig. 1b), where mode 1
(ω1 = 2π×293.93 kHz) is dominated by the vibration of beam
1 while mode 2 (ω2 = 2π × 294.37 kHz) is dominated by the
vibration of beam 2. The amplitude of mode 2 is much smaller
than that of mode 1, reflecting the energy exchange due to the
structural coupling via the overhang is inefficient because of the
eigenfrequency difference between the two beams. The quality
factor of these modes is Q∼ 14,000 with a frequency-Q product of
4×109 (ref. 21). The major contribution to the energy dissipation
(1/Q) arises from the clamping losses22, while the thermoelastic
dissipation is negligible at cryogenic temperatures23.

The frequency difference between the two modes can be
compensated by activating the parametric pump, which results
in mixing between the two vibration modes. This is induced by
piezoelectrically modulating the spring constant of beam 1 with the
pump frequency ωp at around the frequency difference between the
two modes, 1ω ≡ ω2 − ω1 (Fig. 1c). The resulting dynamics can
then be expressed by the following equations ofmotion:

ẍ1 +γ1ẋ1 +[ω2
1 +Ŵ1cos(ωpt )]x1 +3cos(ωpt )x2 = F1cos(ωd t +φ)

(1a)

ẍ2 +γ2ẋ2 +[ω2
2 +Ŵ2cos(ωpt )]x2 +3cos(ωpt )x1 = F2cos(ωd t +φ),

(1b)

where xi (i = 1,2) is the displacement of the i-th mode, ωi is the
mode frequency, γi (= ωi/Qi) is the energy dissipation rate, Fi is
the drive force (F1 ≫ F2), ωd is the drive frequency and Ŵi and 3

are the intra- and inter-modal coupling coefficients respectively.
When the frequency mismatch between mode 1 and mode 2
is compensated by activating the pump at ωp ≃ 1ω, the terms
containing3 transfer phonons (oscillations) from one mode to the
other (Fig. 1d). This inter-modal coupling can also be explained by
the mixing of mode 1 (2) and the Stokes sideband, ω2 −ωp (the
anti-Stokes sideband, ω1 +ωp) of mode 2 (1) leading to normal-
mode splitting in the strong-coupling regime19,24–26 (Fig. 1d). The
equations also include terms proportional to Ŵi. These terms
lead to intra-modal coupling, which becomes significant for
the higher-order couplings shown later. The above model can
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Figure 1 | Paired mechanical resonators and the parametric pumping scheme. a, Schematic of the sample, the measurement and a false-colour scanning

electron micrograph. The two doubly clamped beams are structurally interconnected by the 25-µm coupling overhang. b, Frequency response of beam 1

measured at gate M1 by driving it with Vd = 1.5mVp−p at gate D while the pump is deactivated (Vp =0Vp−p). The mode shapes at ω1 and ω2 obtained by

finite element method calculations are also shown (exaggerated for clarity). c, Schematic of the parametric pumping protocol in an equivalent spring

model. k1, k2, and kc are respectively the spring constant of beam 1, beam 2, and the coupling overhang. Ŵ represents the parametric pump amplitude. d,

Schematic of the parametric pumping protocol in an energy diagram.

reproduce all the experimental results and is described in detail in
Supplementary Information.

The normal-mode splitting for modes 1 and 2 was experimen-
tally confirmed by applying a pump with voltage Vp at ωp in addi-
tion to theweak harmonic driving atωd to beam1 (Fig. 1a). Probing
the modes via beam 1 while the parametric pump is activated shows
that mode 1 splits into two when ωp ≃1ω = 2π×0.44 kHz, clearly
demonstrating strong coupling (Fig. 2a–c). The transfer of phonons
from mode 1 to mode 2 can also be confirmed in the response
of beam 2 which was detected at frequency ωd + ωp (Fig. 2d–f).
This measurement indicates the creation of a vibration in mode 2
that is excited by the parametric pump. A phonon reaction picture
can help to understand this elementary process, where phonons
are created in mode 2 at the expense of probe phonons in mode 1
and pump phonons, that is, via the one-pump phonon absorption
process, h̄ω1+ h̄ωp → h̄ω2 (Figs 1d and 3h). The strong coupling in
the large pump regime also results in the reverse emission process,
h̄ω2 → h̄ω1+ h̄ωp (Fig. 1d).

The Vp dependence of the mode splitting at ωp = 1ω shows
that the coupling strength is highly controllable (Fig. 2i). The linear
Vp dependence is due to the fact that the inter-modal coupling
coefficient, 3, is proportional to Vp, which can be theoretically
reproduced by equations (1a) and (1b) (Fig. 2k). The separation
between the split peaks provides the coupling rate, g , which can
become so large that it can exceed the intrinsic energy dissipation
rate of the two modes (γ1 ≃ γ2 = 2π×21Hz) by more than a factor
of four (g =2π×90Hz forVp =1.0 Vp−p).

More remarkably, additional mode splittings in which the pump
frequency does not correspond to the frequency difference between
the two modes can also be observed. For example, the splitting
occurs when ωp ≃ 1ω/2 = 2π× 0.22 kHz for both modes 1 and
2 (Fig. 2c). This splitting is caused by a second-order coupling
via a two-pump phonon absorption/emission process, that is,
h̄ω1 + 2h̄ωp ↔ h̄ω2, which leads to the coupling between mode

1 (2) and the second Stokes sideband, ω2 − 2ωp (the second
anti-Stokes sideband, ω1+2ωp) of mode 2 (1). The Vp dependence
of this mode splitting indicates that it has a parabolic dependence
(Fig. 2j). This is because the second-order process requires a
two-step phonon excitation path from mode 1 to mode 2, and
vice versa, through the intermediary energy level (ω1 +ω2)/2 via
both the intra-modal coupling (Ŵi ∝ Vp) and the inter-modal
coupling (3 ∝ Vp), therefore, [Ŵi ×3] ∝ V 2

p , as shown in Fig. 3i.
The corresponding mode splitting shows good agreement with
the theoretical simulations (Fig. 2l). Consequently, the additional
mode splittings observed in Fig. 2c correspond to even higher order
coupling processes, requiringmore than two pumpphonons.

The strong dynamic coupling between the two mechanical
resonators opens up a path to coherent control of the coupled
mechanical oscillations. The time-domain measurements using the
pulse sequence shown in Fig. 3a enable us to observe coherent
and periodic energy exchange between the two beams/modes.
The pump frequency dependence of the time-domain response
of beam 2 at ω2 clearly shows the periodic amplitude oscillations
at ωp ≃ 1ω for the first-order (n = 1) coupling (Fig. 3b), which
corresponds to a one-step phonon process (Fig. 3h). The Vp

dependence at ωp = 1ω shows that the vibration energy of mode
1 (beam 1) can be transferred to mode 2 (beam 2) and back eight
times before energy relaxation at Vp = 1.0Vp−p (Fig. 3d). Coherent
energy exchange for the second-order (n = 2) coupling can also
be observed at ωp ≃ 1ω/2 (Fig. 3b), where up to five oscillation
periods are observed in the range of Vp ≤ 1.0Vp−p (Fig. 3e). The
coupling rate, g , extracted from the Fourier transforms of the
time-domain response, is proportional to Vp for the first-order
coupling and V 2

p for the second-order coupling (Fig. 4). These
coupling rates correspond perfectly to the mode splitting observed
in the frequency response measurements.

The time-domain measurements also enable us to ob-
serve higher-order coupling, that is, n ≥ 3. Figure 3f,g show
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Figure 2 |Dynamic mode coupling induced by parametric pumping. a–c, The drive frequency (ωd) and the pump frequency (ωp) response of beam 1

detected at frequency ωd for three different pump voltages, Vp =0, 0.5 and 1.0 Vp−p. In these measurements, beam 1 was driven by a continuous a.c.

voltage (Vd = 1.5mVp−p) applied to gate D while the frequency, ωd, was swept around the two modes. A continuous a.c. pump voltage (Vp) was

simultaneously applied to gate P while its frequency, ωp, was also swept. The response of beam 1 at frequency ωd was monitored via gate M1 with a

pre-amplifier and a lock-in detector (see Supplementary Information). d–f, The ωd and ωp response of beam 2 measured via gate M2 at frequency ωd+ωp

for Vp =0, 0.5 and 1.0Vp−p. g,h, Simulation results for c and f, which were performed for the theoretical model expressed by equations (1a) and (1b).

i,j, The Vp dependence of the splitting of mode 1 induced by the first- and second-order coupling at ωp = 1ω and 1ω/2, respectively. The broken curves in

i,j represent the theoretical values of the mode splitting, which are proportional to Vp and V2
p respectively. The mode splitting corresponds to the coupling

rate, g. k,l, Simulation results for the splitting of mode 1 for ωp = 1ω and 1ω/2, respectively. Colour scale applies to all figure parts.

the coherent energy exchange between the two modes for
ωp = 1ω/3= 2π×0.147 kHz and ωp = 1ω/4 = 2π × 0.11 kHz,
respectively. These coherent oscillations are caused by the n-pump
phonon absorption/emission processes, that is, h̄ω1+nh̄ωp ↔ h̄ω2,
through the intermediary energy levels via intra- and inter-modal
coupling, for example, [Ŵ1 ×Ŵ1 ×3] and [Ŵ1 ×Ŵ1 ×Ŵ1 ×3], as
shown in Fig. 3j,k. The Fourier transforms of the time-domain
response reveal that the coupling rate exhibits a V n

p dependence
even for n ≥ 3 (Fig. 4), which again shows good agreement with
the theoretical model.

The present results show that electromagnetic pulse techniques,
which are commonly used to coherently manipulate quantum
two-level systems11,27, can also be applied to coherently control
mechanical systems. By tuning the parametric-pump frequency,
multi-wave phonon mixing involving an arbitrary number of
pump phonons can be achieved in an analogous fashion to

multi-wave photon mixing28. The parametric pumping allows
highly controllable time-domain manipulation of phonon popu-
lations in the two modes simply by the adjustment of the pump-
pulse duration, thus permitting π and π/2-pulse operations on
the Bloch sphere11 (see also independent experiments at LMU
with a single mechanical resonator29). This coherent control fur-
ther expands the applications of mechanical resonators, includ-
ing the high-speed operation of high-Q mechanical resonators14

and mechanical logic operations30. Although the system demon-
strated here is in the classical regime with large mode occupation,
where the decoherence is governed by the energy relaxation29,
these techniques could also be extended to the quantum regime
with vibration modes at sufficiently high frequency11. This in
turn leads to the exciting possibility of quantum-coherent cou-
pling and entanglement between two distinct macroscopic me-
chanical objects15,16,27.
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Methods
The sample was fabricated by photolithography from a heterostructure consisting
of 300-nm-thick Al0.25Ga0.75As, 100-nm-thick Si-doped n-GaAs, 400-nm-thick
undoped i-GaAs and 2-µm-thick Al0.65Ga0.35As sacrificial layers grown on a
GaAs(001) substrate by molecular beam epitaxy. AuGeNi was deposited on
the supporting part to obtain an ohmic contact to the conductive n-GaAs
layer, while 60-nm-thick Au gates were formed on the top of the beams. The
suspended structure was completed by a deep mesa and isotropic sacrificial
layer etching, where the 40-µm-separated beams were electrically isolated
by the shallow mesa etch. Details of the measurements are described in
Supplementary Information.

The simulations were carried out by solving equations (1a) and (1b) with
Mathematica 8.0 (Wolfram Research). The derivation of equations (1a) and (1b)
and the simulation details are described in Supplementary Information. In the
simulation, the only adjustable parameter was the piezoelectric detuning coefficient
(δ�1/δVp = 2π×0.69 kHzV−1), which determines the relation between Vp and 3

(Ŵi), and all the remaining parameters were experimentally determined.
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