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A two-level system coupled to a one-dimensional continuum is investigated. By using a real-space model
Hamiltonian, we show that spontaneous emission can coherently interfere with the continuum modes and
gives interesting transport properties. The technique is applied to various related problems with different
configurations, and analytical solutions are given. © 2005 Optical Society of America

OCIS codes: 270.0270, 290.0290.

Spontaneous emission is fundamental in the interac-
tions of electromagnetic fields with atoms. Two re-
gimes of spontaneous emission have been extensively
explored. In a weak coupling regime, for instance, an
excited atom in free space, the excited atom decays
exponentially due to the ample photon phase space to
which the atom couples. The spontaneous emission is
generally treated as a loss, and a decoherence mecha-
nism and is included as part of the absorption coeffi-
cient of the system. On the other hand, in the strong
coupling regime, as is the case when an excited two-
level system is placed in a microcavity,l’2 the atom
undergoes Rabi oscillation, since the photonic mode
spectrum is now discrete.

Here we explore a different regime of spontaneous
emission. We consider two-level atoms coupled to a
one-dimensional continuum. Such a continuum can
act as a line defect waveguide in a complete photonic
bandgap crystal (Fig. 1). The atom can either be in
the waveguide or side coupled to the waveguide. In
this case, the excited two-level system will decay ex-
ponentially. However, in the reduced dimensionality,
when a single photon is incident upon the two-level
system with a frequency on resonance, the wave
function of the spontaneously emitted photon inevita-
bly interferes coherently with that of the incident
wave, because the forward and backward direc-
tions are the only directions in phase space. Such
interference can result in the photon’s being com-
pletely reflected with no loss. This occurs in spite of
the fact that the physical dimension of the two-level
system is typically far smaller than the wavelength
of light. Thus spontaneous emission can be exploited
to influence the coherent transport properties of a
single photon. Interesting transport properties result
from this coherent interference and can be utilized in
the design of various quantum optoelectronic de-
vices, such as ultranarrow bandwidth filters and
nanomirrors.

The interaction between the photons and the two-
level atoms is described by a Dicke Hamiltonian®:

1
H=> haopa,'ay + EﬁQSZ + 2 Vi(a, +a,)(S, +S.),
k k

(1)

where w;, is the frequency of the mode of the radia-
tion field corresponding to wave vector & (i.e., the dis-
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persion relation), a,' (a;) is the creation (annihila-
tion) operator of the photon, () is the resonance
energy of the atom, V,=(27#/w;,)/? OD-e; is the cou-
pling constant, D is the dipole moment of the atom,
e, is the polarization unit vector of the photon, S,
:aeTag (S_:agTae) is the creation (annihilation) op-
erator of the atomic excited state, and @, (a;) is the
creation operator of the ground (excited) state of the
electron.

In one dimension, when the resonance energy of
the atom is away from the cutoff frequency of the dis-
persion relation, we rewrite the Hamiltonian of the
system in real space as

H=fdx —ivgcR'(x)icR(x)+ngcL'(x)&cL(x)

+ V)[ep (0)S_ + cpx)S, + ¢ (x)S_ +cr(%)S,]

+E.a,'a,+Eg,'a,, (2)

where v, is the group velocity of the photons and
cg (x) [cLT(x)] is a bosonic operator creating a right-
going (left-going) photon at x. E,—E,(=()) is the en-
ergy difference between the atomic excited state and
the ground state. In deriving Eq. (2), we assume that
the dispersion relations are nondegenerate, linearize
the dispersion relation of the photons in the wave-
guide, and replace V), with a constant V.
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Fig. 1. Schematics of the systems: (a) An atom embedded

in a one-dimensional waveguide. (b) An atom surrounded
by two partial reflectors denoted by black vertical bars. (c)
A chain of atoms. (d) An atom couples to two parallel
waveguides. The waveguide is denoted by two horizontal
black lines. The light shaded region denotes the photonic
bandgap crystal. The atom is indicated by the black dot.
The arrow indicates the direction of the input light.
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This Hamiltonian is similar to the s-d model
(Anderson model) in condensed matter physics,
which describes the S-wave scattering of electrons off
a magnetic impurity in three dimensions.>® A similar
one-mode Hamiltonian has also been investigated.7
Here, we apply this Hamiltonian to the photon sys-
tems shown in Fig. 1.

Case (1): A single atom in a waveguide. Consider
an optical system consisting of an atom embedded in
a one-dimensional waveguide, as shown in Fig. 1(a).
Assume that a photon is coming from the left with
energy E;=v,k. The stationary state of the system is

By = f dx  g(x)cg (x) + f 1 (x)e, ()]]0,-)
+ ekaeTag|01_ >7 (3)

where |0, —) is the vacuum state with zero photons
and the atom being unexcited and e, is the probabil-
ity amplitude of the atom in the excited state. Equa-
tion (3) represents a complete basis for the system.
For a photon incident from the left, ¢ z(x) and

¢}, 1(x) take the forms
&1 p(x) = [exp(ikx) 0(— x) + ¢ exp(ikx) f(x)],

&p,,1(x) =1 exp(- ikx) 6(- x), (4)

where ¢ and r are the transmission and reflection am-
plitude, respectively.

From the eigenvalue equation HI|E,)=E,|E,), to-
gether with the usual commutation relations be-
tween the creation and annihilation operators, we ob-
tain v
¢ = cos be®, r =i sin be®®, e,=-— Vg sin be'®, (5)
where the phase shift is b=arctan{V?/ [v,(Q-E}) ]}

The reflection coefficient is given by

V2
R = |r|? = sin? arctan[—]
Ug(Q—Ek)
V2\2
2

— V2 2,
(Q—Ek)2+ <_)

Ug

(6)

which shows a Lorentzian line shape.
From Eq. (5) it follows that the transfer matrix for
one atom has the following form:

) iV? iv?
(a’) 0 Q-E)  u(Q-Ep (a)
b') " e iV2 ) 7
+—— 1l+————
v,(Q - Ep) V() — Ep)

The transfer matrix relates incoming and outgoing
wave amplitudes a and b on one side of the atom to
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outgoing and incoming wave amplitudes a’ and b’ on
the other side.

Figure 2 shows typical transmission and reflection
spectra. At resonance, the photon is completely re-
flected. While the form of the transfer matrix is the
same as when the waveguide is side coupled to a
single-mode cavity,®'® we note that here a single
atom behaves as a mirror, and the size of the atom is
at least 4 orders of magnitude smaller than the
smallest microcavity structure. The width of reflec-
tion peak is proportional to VZ/v,~2mhQe?/
(hvg)(al N2, where ¢ is the size of the atom and \ is
the wavelength of light with energy equal to Q. For a
quantum dot with a size of 10 nm, the width is esti-
mated to be of the order of 0.04 meV at incident light
of 10'® Hz, which can be very narrow in the weak
coupling regime. Within this limit, the atom serves as
an ultranarrow filter. The notable feature of this re-
sult is that the spontaneous emission directly gives
rise to the reflection, rather than to losses that de-
grade performance.

Case (2): Fano interference. A more general Fano
line shape can be created if there are partial reflec-
tions in the waveguide such that the photon modes
are no longer purely forward or backward propagat-
ing. As an example, consider a case where the atom is
surrounded by a pair of thin dielectric slabs [Fig.
1(b)]. The response function of the system can be cal-
culated by combining the transfer matrix of each in-
dividual element in the system. For the partially re-
flecting dielectric slab, the transfer matrix can be
described as'®!!

- 1 {— 1 - 7} ®)
i iN1-r2L 1 1
where r is the amplitude reflectivity of the slab. The
shape of the transmission spectrum strongly depends
on the value of r. Figure 3 shows the transmission
spectrum of the total optical system for different r.
For smaller r (=0.4), the spectrum consists of reso-
nant features superimposed upon a background de-
fined by the Fabry—Perot oscillations [Fig. 3(a)l.
When r is increased to 0.9, the transmission spec-
trum shows tunneling peaks [Fig. 3(b)]. The presence
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Fig. 2. Transmission spectrum (solid curve) and the reflec-
tion spectrum (dashed curve) for an atom in a one-
dimensional waveguide as shown in Fig. 1(a). VZ/Qvg
=0.05.



August 1, 2005 / Vol. 30, No. 15 / OPTICS LETTERS

@
o ’ \\ u
0.6 AN
c 0.4
% 0.2
2 b 0.2 0.3 0.4 0.5
E® |
(CU 0.8
|: 0.6
0.4
0.2 L
0.2 0.3 0.4 0.5

Frequency (2rc/L)

Fig. 3. Transmission spectra through the optical system
as shown in Fig. 1(b). V2/Ug=0.002(27TC/L). The resonance
energy is (1=0.325(2mwc/L). 2L is the distance between the
two partially reflecting elements. (a) r=0.4. The dashed
curve represents the transmission spectrum through the
two partially reflecting elements, without the presence of
the atom. (b) r=0.9.
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Fig. 4. Dispersion relation between frequency » and Bloch
wave vector K. \,=2mv,/() is the wavelength at resonance
for a single atom. v,=1. (a) d/\,=3.4X 1073, (b) d/\,=3.4
X102, (¢) d/\,=6.8X 1072, (d) d/\,=3.4X 1071, The line at
w/Q=1is a visual aid.

of the partially reflecting elements, as dielectric slabs
in this case, introduces a background phase shift, in
addition to the phase shift experienced by the photon
due to the atom. These two phase shifts correspond to
the direct and the resonance-assisted indirect path-
ways, respectively.12 The Fano line shape of the
transmission spectrum results from the interference
between these two phase shifts.!

Case (3): A linear chain of atoms in a waveguide
[Fig. 1(c)]. By cascading the transfer matrices, we can
study the transport properties of a chain of any
length of resonant atoms, periodic or disordered.
Figure 4 shows the dispersion relations between fre-
quency o and Bloch wave vector K for an infinite pe-
riodic chain. For any value of lattice constant d, an
energy gap always opens up around resonance en-
ergy (). The size of the gap decreases with increasing
d. Note that a very large bandgap (>V?/ v,) emerges
even when the spacing between the atoms is an order
of magnitude smaller than the resonance wave-
length.
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The appearance of a large bandgap is rather differ-
ent from the case where the waveguide is side
coupled to a chain of optical resonators. In that case,
because the resonators are of the size of the optical
wavelength, the resonance-induced bandgap has a

size comparable to the coupling constant.’* In con-
trast, in our case, since the atoms are small, many at-
oms can be accommodated within a wavelength, and
the chain of atoms can be considered as continuous
with a linear density distribution. The amplitudes of
the photon wave at two adjacent atoms are essen-
tially in phase and interfere constructively to give a
large bandgap. We have also simulated a disordered
chain of atoms where the distances between two ad-
jacent atoms fluctuate by a few percent, and the pres-
ence of such a large gap appears robust against such
subwavelength disorders.

Case (4): An atom couples to two waveguides. As a
final example, we consider two parallel waveguides
coupled to each other through an atom between
them, as shown in Fig. 1(d). A calculation shows that,
when the atom couples equally to the two
waveguides, the forward and backward transmission
in each waveguide is 1/4 at resonance. This situation
can be shown to be mathematically equivalent to a
case where there is only one waveguide present but
with two degenerated modes, for example, two or-
thogonal polarizations.

As a final remark, we note that the proposed real-
space Hamiltonian also applies to multiport systems
and can be used to study the time evolution of the
one-photon wave function. The study of one-photon
dynamics would find applications in fields such as
quantum communication and quantum computing.

S. Fan acknowledges discussions with M. F. Yanik.
This work is supported in part by National Science
Foundation grant ECS-0134607 and by a Packard
Fellowship. J. T. Shen’s e-mail address is
jushen@stanford.edu.

References

1. S. John, Phys. Rev. Lett. 58, 2486 (1987).

2. E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).

3. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H.
M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G.
Deppe, Nature 432, 200 (2004).

. R. H. Dicke, Phys. Rev. 93, 99 (1953).

. P. W. Anderson, Phys. Rev. 124, 41 (1961).

. P. B. Wiegmann and A. M. Tsvelick, J. Phys. C 16, 2281
(1983).

7. V. 1. Rupasov and V. I. Yudson, Sov. Phys. JETP 60, 927
(1984).
8. H. A. Haus and Y. Lai, J. Lightwave Technol. 9, 754
(1991).
9. Y. Xu, Y. Li, R. K. Lee, and A. Yariv, Phys. Rev. E 62,
7389 (2000).
10. S. Fan, Appl. Phys. Lett. 80, 908 (2002).
11. H. A. Haus, Waves and Fields in Optoelectronics
(Prentice-Hall, 1984).
12. S. Fan, W. Suh, and J. D. Joannopoulos, J. Opt. Soc.
Am. A 20, 569 (2003).
13. U. Fano, Phys. Rev. 124, 1866 (1961).
14. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, Opt. Lett.
24, 711 (1999).

O U



