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Summary. We apply our general formalism for coherent curvature radiation
to the radio emission of pulsars. We adopt the magnetospheric model of
Ruderman & Sutherland. The electrostatic streaming instability dominates
all other plasma modes. The beam—plasma instability they envisioned does not
grow rapidly enough to produce appreciable coherence, and thus cannot
explain the observed radiation. Nonetheless, we derive an expression for
pulsar luminosity, L(») « ¥"2'%, with features which should be shared by a
general class of simple, instability-driven radiation models. The electrostatic
instabilities make the electron—positron plasma into a phased array, like an
antenna. This proves much more efficient than the usual, local picture of
coherence which extends only over one wavelength. We also conjecture that
the high-frequency steepening of L(vr) derives from linear growth near the
pulsar, and that the low-frequency turnover may arise when relativistic
plasma energy density exceeds the dipolar field energy density, rather than
from self-absorption. In Tables 1 and 2 we give convenient conversions from
observed radiation properties to pulsar parameters in hopes that these will
prove useful to observers.

1 Introduction

It is widely assumed that radiation from pulsars comes from coherent relativistic processes.
There are at least two good reasons to believe this: the brightness temperature in the radio
wavelengths is ~ 103°K, and the signal displays erratic behaviour on a scale far faster than
the pulse width. (For a review, see Ginzburg & Zheleznyakov 1975). Gradually, more
detailed models of the pulsar magnetosphere have emerged (Holloway 1975) until at the
moment, the most convincing picture is that afforded by the work of Ruderman & Suther-
land (1975). They ascribe the radiation to coherence induced by a specific beam -plasma
instability in the pulsar magnetosphere, following ideas of Sturrock (1971).

Recently we have developed a general formalism for coherent emission (Buschauer &
Benford 1976) for any plasma system moving along curved trajectories, assuming the plasma
is perturbed by a plane wave of wave number k and coherence length |s,. This longitudinal
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electrostatic wave causes particle bunching, which orders the phases of emitting particles.
When kso>1 the emitted radiation peaks strongly at the plasma wave frequency. Only when
the plasma wave is at rest in the plasma frame — that is, the wave is not convective in that
frame — does the coherent spectrum factor into a form which is often assumed, i.e. a
product of the single particle spectrum and a resonance function in ks, times the square of
the number of coherent particles, N2 When the plasma wave is convective, as is the case for
many streaming instabilities, no simple functional form emerges. This is precisely the case
for the radiation picture touched upon, but not worked out, by Ruderman & Sutherland.

They ervision an electron—positron plasma of density n, ~ 10" cm™ near the pulsar
surface, which streams outward after it is created above a magnetospheric gap at the pulsar
pole. A distribution of faster positrons (ny, ~ 7 x 10°cm™, 1, ~ 10) streams through this
electron—positron plasma, causing a convective beam—plasma instability. This situation is
covered by the convective case in our theory. Within the framework of the Ruderman—
Sutherland model as it stands, this is the most obvious source of instability.

However, we shall find that this mode cannot yield appreciable radiation because the
growth rate given by Ruderman & Sutherland contains an algebraic error. Compare our
growth time 7 of Table 1, (m) with Ruderman & Sutherland’s equation (55); they differ by a
factor of yY2. Since y. ~ 800, this is an important difference. Also, T varies with distance
from the pulsar, 7, to find the total e-foldings of a wave we must integrate over r; Ruderman
& Sutherland simply took the maximum 7. We find that the combined effect of the yY2 and
averaging over 7 reduces total growth by ~ 1072 from the Ruderman—Sutherland result. The
correct form appears in the exponential of equation (11). The correct 7 is far too low to
give appreciable bunching before the plasma escapes from the pulsar magnetosphere. Thus
this beam—plasma mode cannot yield appreciable radiation unless the plasma wave is stimu-
lated very near the pulsar — that is, a large-amplitude wave must be launched from near the
polar cap region. There appears to be no clear reason why such a large-amplitude wave
should arise and indeed, to advocate one is to go athwart the basic motive — i.e. looking for
unavoidable waves which grow spontaneously from background noise. Thus, the Ruderman—
Sutherland picture must be wrong in some facet; it cannot explain the coherent radiation.

This does not mean the overall Ruderman—Sutherland dynamical processes are wrong,
though. The formation of a gap above the pulsar pole, and the resultant sparking, seems a
reasonable picture. It may be possible to allow some additions to the Ruderman—Sutherland
picture, for example ion beams — which make some types of beam-—plasma instability
very rapid. These instabilities may provide the necessary particle coherence for radiation.

Thus, in this paper we shall use the basic picture of Ruderman & Sutherland to derive an
expression for the luminosity of radio pulsars, assuming their beam—plasma mode grows
from noise. The formalism displays several features which must be shared by any reasonably
simple instability-driven radiation. Our radiation formulae differ significantly from the
single-particle form because the plasma wave is relativistic in the frame of the emitting
plasma; the added acceleration from this wave oscillation alters the radiation pattern. We
picture the dense plasma, which is rippled by the passing plasma wave, as a phased array like
an actual antenna. An electromagnetic wave launched along the (very nearly straight) array
finds, after it has travelled a wavelength, that the plasma electrons near it are still in phase
with it, because they are driven by the electrostatic wave of the same wavelength. Thus all
emissions add coherently.

Our aim in this paper is to follow through a particular plasma instability as far as possible,
calculating the luminosity, and show how much can be extracted from basic plasma physics.
Though the particular instability fails to explain the data because it does not grow rapidly
enough, the development of the problem gives a programmatic way to modify the calcula-
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Coherent pulsar radio radiation by antenna mechanisms 191
Table 1.
R-S
Physical quantity Analytic expression equation no.
(a) Radius of curvature of dipolar
field lines; the equality applies p =14 Xx10%,P"*cm 46 10°cm
to last open field lines
(b) Maximum primary positron energy _ 6 4/
normalized to its rest mass Ymax = 3 X 1045 PYTBYT 22+42 3x10°
¢) Maximum primary (beam) number B¢ (r,\?
©) donsity p y ( ) ny =F;% (;E) 50 7 X 10 (10%/r)% cm™2
(d) Relativistic factor of electron— ps/1 o
positron plasma with respect to v+ = 840 B—37:_P3’_7 — 840 g
pulsar 12 §
Q.
(e) Relativistic factor of primarys < . o
with respect to pulsar o < Tmax — 10 g
i condary (plasma B¢ (r, ¥V =
O Mo oty 0Dt 7 () s v
271 eckP 4 5
Q
(g) Relation of beam number densities , _ i , : ol
in pulsar and plasma frames LI b S4c np=6Xx10"n, S
- o
(h) Relation of electron—positron 1 g
number densities in their rest np =— np S4a n,=12x107np g
and pulsar frames bE: %
(i) Relation of beam relativistic 1 §
factor in plasma and pulsar T = 5—7— Yo 54b Yo=6X10"yp &
frames * 5
[¢]
(i) Plasma frequency in plasma ‘“i? = 4””1362)”2 53b 2 X lolo(loslr)a/zsg
frame m N
[0
©
(k) Beam plasma frequency in plasma wh = 47’{‘1)62 - 53¢ 3 X 104(10%/7)*2 s 2
frame B m o
eBg 7 \3 g
(I) Cyclotron frequency in plasma we=— (2 — 2 x 10 (10%/)3s o
frame c\r §
(m) Growth time of fastest growing va e 2 [y o2 S
mode of the unstable beam—plasma 7 = Yoref Tx mek —]— 5X 107 (/106) 328
2 d i4 (r/10°) >
spectrum = 1/T"(k*) Ymax/ eB§ P 2
C
(n) Relation of growth time (see m) &
i T=YsT 55 7=8007 S
in plasma and pulsar frames £ N
N
3
(0) Dipole field strength B9 =pd (ﬁ?) — 102 (10%/r)®
r
Notes to Table 1.
Where

rg = distance (in units of 10® cm) from pulsar centre to observation point.
P = pulsar period/s.
P = radius of curvature (in units of 10° ¢cm) of field lines near pulsar surface.
rp = pulsar radius ~ 10° cm.
Bg = surface component of dipole field at cap ~ (1-3) X 10'2G.
B, EB?lO‘“.
Primed quantities refer to plasma frame whereas unprimed quantities refer to pulsar frame.
In expression (1) we set B4 = (B9)’ since the magnetic field is locally along the direction of motion
of the beam plasma column (Jackson 1962).
To obtain numerical values we set P=1s, Bg =10"2G.
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tion, once a better instability is known. Thus, for example, should an ion streaming instabi-
lity eventually prove reasonable after a detailed study of the sparking phenomena, our
methods can be applied with straightforward modifications to yield the luminosity and other
spectral features.

2 Unstable beam—plasma modes in a strong magnetic field

Consider a cold, relativistic electron beam propagating along a magnetic field through a cold,
stationary plasma. The system is assumed to be charge and current neutral. If we confine
ourselves to the strong field (w, > 3wp), weak beam (ny,/ynp < 1) case, then there are four
unstable modes in the electrostatic approximation (Godfrey, Shanahan & Thode 1975). We
have defined w, = |e|By/mec, w?, = 41rnpe2/m, np = plasma density, n, =beam density,
v= (1~ V&am/c®) V. A crude criterion for the dominance of the two stream is that its
linear growth rate exceed that of the other instabilities by at least a factor of 3/2. Using the
well-known maximum growth rates (Godfrey et al. 1975) we write the conditions for domi-
nance of the two stream over the hybrid two stream, electron cyclotron and upper hybrid
instabilities, respectively, as

w

<> 3,

Wp

we 1 ) np 1/3

;J—p > A V3312 Y (;;) ’ (1)
W, g \/3 (nb)1/6.

Py -] .

wp, 2% " \n,

Numerical solution of the full electromagnetic dispersion relation (Godfrey et al. 1975)
for the above system confirms the frequencies and growth rates predicted by the electro-
static analysis with one exception: the two-stream spectrum is much narrower in angle; it
is essentially one dimensional.

In a later section we shall find that the two stream dominates the others in pulsar environ-
ments. Therefore, we now briefly summarize a few of its salient features. The one-dimen-
sional electrostatic dispersion relation, 1— wj/w?— wWi/y*(w —kVp)*=0 admits a
spectrum of unstable solutions in k. We have used w} = 4nnpe?/m and Vieam = Vo. The
fastest growing mode has wavenumber k* = w, /¥, and growth rate

N L
_24/37 np wp.

3 Dominance of the two-stream instability in pulsars; single wave model
3.1 PULSAR MODEL

We adopt the Ruderman—Sutherland (1975) model for pulsars. In view of Holloway’s criti-
cisms of other models (1975), it seems the Ruderman—Sutherland model is probably the
only reliable detailed view currently available.
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The radio-emitting region is the volume occupied by the section of open field lines
between the pulsar surface and r~ 5 x 10°cm from the surface. (We present a detailed
discussion of the inner and outer boundaries in a later section.) For calculational simplicity
we assume the magnetization and rotation axes are nearly antiparallel. Within the above
volume, columns of relativistic (7. ~ 800) electron—positron plasma of length d ~ 3 x 10°cm
move out along tubes of curved, open field lines. Each column is pervaded by a stream of
high-energy (1, ~ 10°) positrons. The perpendicular temperature is assumed small because:
(1) the charged particles radiate away their perpendicular energy quickly in the strong
ambient B-field by the synchrotron mechanism; (2) the system cools transversely as it moves
along the field lines due to the adiabatic invariant (W,/B?). Table 1 presents a list of com-
monly used quantities and their numerical values. Primes denote the plasma frame whereas
unprimed quantities are taken in the pulsar frame.

3.2 UNSTABLE MODES IN PULSARS

The environment described above is a beam—plasma system subject to the instabilities
described previously. Equation (1) defines the conditions for the dominance of the two-
stream mode. We apply these conditions in the plasma rest-frame, use the values listed in
Table 1, and let B, =1, pg= 1 and 9, = 10°. The two stream dominates if

. (rY? 1
(a)3x10>;; I—)i/’;,

r 3/2
(b) 5x 106> (-) P,
Tp

r 3/2
(c) 7.6x10%> (—) p1A,
o

For the fastest pulsar P~ 10725 and condition (a) is trivially satisfied for all r of
interest. Similarly (b) holds for r < 2.5 x 10'°cm (when P = 45) which includes the entire
range of interest. For the slowest pulsar the last condition (that the two-stream growth rate
dominate the electron—cyclotron growth rate) is only satisfied out to 7 ~ 10°cm. However,
consider the following arguments: (1) For most pulsars P < 4s so condition (c) is satisfied
to larger 7. (2) Ruderman & Sutherland assert that » ~ 5 x 10°cm is the maximum distance
to which beam—plasma instabilities can be excited. The actual distance may be significantly
smaller. Therefore, the two stream may dominate over the entire unstable range in r. (3) The
reader is reminded that the equality in (c) simply means that the growth rate of the two
stream is 3/2 times as large as that of the electron cyclotron. Since the two stream has grown
faster than the cyclotron mode for r < r. = 1.8 x 10°P™2%/S, the amplitude of the former
will continue to dominate the latter to distances greater than .. This argument is strength-
ened by the fact that the growth rates decrease with time because the system is following
diverging field lines, and plasma densities decline as r>. This increases the time required for
the electron—cyclotron instability to catch up to the two stream. (4) The electron—cyclotron
instability is probably more sensitive to transverse beam temperature stabilization than is the
two stream (Thode 1973). In the spirit of the above discussion we consider only the charge
bunching due to the two-stream instability in what follows. Furthermore, since w'c/w;, >3
the linear interaction will be effectively one dimensional.

7
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194 G. Benford and R. Buschauer
3.3 COHERENCE LENGTH AND SINGLE WAVE MODEL FOR PULSARS

Section 3.2 shows that the electron—positron plasma charge bunching is due primarily to the
presence of one-dimensional electrostatic waves. A detailed knowledge of the genesis of the
unstable spectrum is lacking. However, there may exist a preferential excitation of modes in
the plasma near the fastest growing two-stream wavenumber, k*, due to the two-stream elec-
tric fields of nearby sparks. Under such circumstances we describe the evolution of the wave
spectrum by solving the linearized fluid and Poisson equations for a one-dimensional, beam—
plasma system, as an initial value problem. Following the technique of Mikhailovskii (1974)
and assuming the initial density perturbations of the beam and plasma to be proportional to
exp (—z'%/4b'?) exp(ik*'z") in the plasma rest frame, we find that so long as b > 20cm/
Vk*(cm™) (which is not unduly restrictive),

(1) The peak of the wave-packet envelope moves only a small fraction of the effective
length of the packet during the time, z, = p/y:c, required to emit radiation in the direction
of a distant observer;

(2) The fractional change in the width of the packet is small during radiation time 7, :

(3) The growth time of the fastest growing instability is long compared to ;

(4) The phase of the wave packet departs negligibly from that of a pure harmonic wave
over the effective extent of the packet.

Therefore, we are led to consider the following ‘idealized wave-packet’ model.

The electric field in the plasma frame is represented by a simple harmonic wave of length
so whose frequency and wavenumber are those of the fastest growing mode of the one-
dimensional two-stream spectrum:

El(Z, )=} sin[k*¥7 — w¥ £] for |Z|< 529 @
Since the amplitude of a longitudinal electric field and the phase of a plane wave are both
Lorentz invariants, we have in the pulsar frame

s s
E\(z, £) = Eysin(k*z — wit); ut——29<z< ut+5°. 3)

At present the only lower bound on sq is that set by the condition so> 20/A/k* cm. How-
ever, other factors such as radiation reaction or different initial conditions from the ones
considered may increase s¢. Furthermore, unless so > A* the concept of a plasma wave ceases
to be meaningful. Finally, the high radio brightness temperatures of pulsars (~ 103°K) imply
the existence of an efficient coherent emission mechanism, so plasma charge bunching is
extensive and s, is large.

4 Spectral power distribution from pulsars
‘4.1 FORMAL SPECIFICATION OF THE SYSTEM

The maximum radial width of a monoenergetic plasma column (for the emission of coherent
curvature radiation) is limited by corotation effects. The position lag along the direction of
motion between two highly relativistic monoenergetic particles travelling along adjacent
curved field lines is As = (cAt/p) Ap, where Ap is the radial separation of the trajectories, p
is the average radius of curvature, and Atz is the time over which the lag As occurs. The
particles remain coherent over a radiation time At = t, = p/vy.c if As/\ < 1, where A is the
observed radiation wavelength. This implies that Ap ~ . A is an upper bound on the effec-
tive radial width.

© Royal Astronomical Society ¢ Provided by the NASA Astrophysics Data System

220z ¥snBny 0z uo 15nB AQ 12600 L/681/2/6.L L/2101E/SEIUW/ WO dNO DlWapEesE//:SA)Y WOl POPEOjUMOQ


http://adsabs.harvard.edu/abs/1977MNRAS.179..189B

FI977ONRAS. 1797 “189B!

Coherent pulsar radio radiation by antenna mechanisms 195

The physical system we consider, then, is as follows: a beam—plasma column moves along
a tube of curved field lines (whose local radius of curvature is pg), above a pulsar polar cap.
The length of the column is 3 x 10°cm, the radial width &, < 800X and the third dimen-
sion, ng, simply satisfies the condition ng < po. The unstable spectrum is dominated by the
fastest growing mode of the one-dimensional, two-stream interaction. This mode causes
plasma charge bunching and thus coherent curvature radiation. We therefore represent the
electric field in the plasma rest frame by equation (2). The density and radius of curvature
vary along the system trajectory because the system follows diverging dipolar field lines.
However, these quantities do not change appreciably over a radiation time ,; so we calcu-
late the radiation emitted in the direction of a distant observer assuming constant p, I, np,
np etc. Later, when we sum the contribution of many plasma columns it will be necessary to
consider the effects of spatial variations in p and n.

To calculate the coherently emitted radiation by a bunched plasma column we require an
expression for the perturbed current density in the pulsar frame. The current and charge
densities of the plasma (in the plasma frame) due to the single wave are

r_ ! r -, r_ '
J = Z Qo NaoVors o = Z Qo Nai
plasma plasma
species species

where n&; and V,, are found from the linearized fluid and Poisson equations.
After carrying out the transformation to the laboratory frame, J =, [J' + cp'], we find

s 3
J=2Jysin [k*z — w,(k*)¢]; ut—5°<z<ut+3°, @
where
_2|ePEonyy. exp(V)

me, (k*")

0:

and w,(k*') is the real part of the mode frequency in the plasma frame, N is the number of
e-foldings that occurrs since onset.

If the centre of momentum of the cold plasma moves along a curved trajectory of radius
Po, then equation (4) becomes

. a Q
J=9@Josin(e* pod — w*1); go— S<B< ot =, )
where aq is the angular width of the column, ¢ is the conventional cylindrical coordinate,
and ¢o = ut/p,.

4.2 COHERENT RADIATION FORMALISM

Recently, we have given a detailed formalism describing the coherent curvature radiation
from the current density expression equation (5) (Buschauer & Benford 1976). Fig. 1
describes the system under consideration. The centre of momentum moves in the x, y plane
along a curve of radius py; 7 is a unit vector in the direction of observation and lics in the
x, z plane. The radial width of the system is &,; the height is no and the length as observed in
the x, y, z (pulsar) frame is so=aopo. The plasma moves with relativistic factor
Ye=(1—u?cH V25 1.

If d2lsing,e tube/dw dSY is the energy radiated per unit solid angle dS2 in the direction of 7,
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PLASMA COLUMN

Figure 1. Geometry for performing coherent curvature radiation calculation.

per unit frequency dw, by a single plasma column, then

dz[ fw 46 dz[single tube

didw ) dwdQ) ©)

is the energy radiated per unit plane angle in the xy plane around the x axis per unit fre-
quency interval as the relativistic plasma column passes by. For the streaming instability the
phase velocity of the wave in the plasma frame is about ¢, so (Buschauer & Benford 1976)

d’I(w) _ 1 JosoEano)? sin?[(k* — k) so/2] K2 033
dtdw 23V30(5) Uosokomo) [(k* —k)so2]* ¢

valid if kno/2 < v+ /10, k* po/y2 < 50.

We now use (7) to calculate the spectral energy distribution emitted from a pulsar polar
cap.

Initially, we consider the idealized situation in which the spin angular momentum (£2)
and magnetization axes are antiparallel. Hence the polar cap is circular and there is rotational
symmetry about these axes. Furthermore, we assume that the magnetic field lines are strictly
dipolar over the radiating region. In reality we expect that M and §2 are not aligned and the
polar cap is not circular. We discuss this matter later.

Choose a unit vector 7 =X sin g +Z cos i fixed in the pulsar, to define the direction in
wiich to monitor the emitted radiation (see Fig. 2).

First we sum the contributions to the energy emitted into a solid angle d<2 along # by all
tubes of field lines characterized by the same value of D = r/sin?a, where 7 is the distance

; (7

Plg,a)

(a) X (b)

Figure 2. Dipolar tubes of force emanating from pulsar polar cap. The pulsar is at the origin.
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? /e B($=0,D,,0,)
b(¢=0, D/, a,)

Figure 3. Illustration of field lines with different values of D.

from the pulsar centre and « is the corresponding polar angle (see Figs 2 and 3). The result
of a simple calculation is

d*Ip _ sinag 7 (JoSo£omo)® sin® [(k* — k) so/2] k"3 pg?
dwdQ (i) sin wg no(r, ap) 2.3V30(Ye)  [(k*—k)so/2]> 2

®)

where o= 320y if g, pg < 1; otherwise cos o = (1 — 32 sin® ap)/(1 — % sin® ap)"'?. We have
also assumed that the radiation from the various tubes adds incoherently; this is certainly
reasonable on physical grounds since there is no obvious phase relationship between
particles in different tubes. In fact, the beam—plasma columns corresponding to different
tubes may be ejected at appreciably different times. A serious discussion of such matters
would entail more detailed understanding of the nature of the spark discharges.

Finally, we sum the contributions to the radiation along 7 at frequency w from field lines
with different D. A straightforward calculation yields the following intermediate result for
the total energy radiated per unit solid angle along 7 per unit frequency

d? Lot f” sin (o — @) d*Ip
dwd ey Eo(r, o) dwdS

In the regime of strong coherence, kso > 10 which is of interest to us, the integration is
simple and yields

d? Ly - 47 ny {RZJOZ(R) so(R) Mo(R) £0(R) 05> (R, 1y.) )
dwdQ 31931 (Ys) c3k*3 ’
where R = (k¥)*3|(k*?)r,, k¥ = k*(r=r,), and n,, = sin uo. Using
(1) the definition of J, from equation (4) expressed in pulsar frame variables,
(2) the expression po= ¥3r(1 — % sin?a)*'2/sin a(1 — % sin*@) ~ Y3r/a when a < 1,
(3) the facts that (no£o) = 10(p) £0(rp) (7/rp)® and ny(r) = nyp(ry) (rp/r)?,
(4) the definition of R in terms of k¥, in equation (9) we find

Phoy _29n2? [vt lel? Es*1p (rp) A(rp) 5o(R) rg”(k;*‘)“‘”] exp(2N) 10
dwdﬂ 38/3F(1/3) mC3 k20/9 .

The number of e-foldings between onset and time =(R — ry)/c, N is
1 [‘r:R dr
r=r, T()

where ry is onset position.
Using (m) of Table 1 to calculate &, and expressing k¥ in terms of more fundamental

C
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pulsar parameters, we write equation (10) as

d* Loy (4) (3)”3 n23 {'yi le|?Eg*np(rp) A (rp) so(R) r;’,/3} 1 [161re2np(rp) 7i]7/9

dwdQ \9/\2/ T'(Ys) mc® k%/° mc?
X‘exp { 87'3/2 ('Ymax)1/6 (ﬂeBg)llz [l _ (r_o )1/2]} (11)
WA erd® \ v/ VmeP R/ AV

In the Appendix we describe the origin of the factor ™2 in more detail.

Equation (11) describes the spectral distribution of energy emitted into dS2 at # when
one column of plasma moves along each tube of dimension £,7,. The average power radiated
into d2 and dw is

d?(power) _ ( d? Loy
dw dS dwdf2

)(number of columns emitted per tube per unit time).

For continuous emission from all tubes,

d?(power) ¢ ( o A )

dwdQ L \dwdf

where L is the average length of a plasma column.

Equation (12) gives the power radiated along 7, which is assumed fixed in the pulsar
frame when M and £ are antiparallel. In a practical situation we require an expression for
the average power spectrum radiated along a vector 71, fixed in space when M and £ are not
parallel. We assume 2 is fixed in space and M makes a constant angle £ with respect to £
(see Fig. 4). The observation vector 71, is fixed in space and makes an angle § with 2. For
simplicity, assume that the polar cap remains circular and the rotational symmetry of field
lines around M is unbroken. Hence, we need specify only 8, the angle between 71, and M.
As M sweeps around £ at angular speed 2, 8 varies ascos § = (sin § sin ) cos £2¢ +cosf cos Z.
When 0 S Umax (= angular width of emission region), then equation (12) with u=40
describes the pulsed emission toward a distant observer along 71,.

(12)

~t2/3
OBSERVER'S POWER [ f
LINE OF AT w

c

o

{ AT w
PULSAR

(a)

OBSERVER'S

INE OF
LSIGHT POWER AT w

a é Ct
(c) (d)

Figure 4. Trajectory of observer’s line of sight (a), and (b) observed power — from equation (12) — for
uniform density of radiators. If density declines at the edge of the cone, (c), power profile is smoothed in
time (d).
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5 Discussion of results and comparison with observations

The argument of the exponential in equation (11) is twice the number of e-foldings that
occurred between onset of the instability and » = R. Using Table 1, letting P=1s, 7= r, and
R =0, we find the maximum number of e-foldings to be ~ Y10. Therefore, the differential
emission is expected to be low unless

(a) the initial excitation level of the wave (denoted by E, and so(rp)) is large or

(b) other instabilities with much higher growth rates are present. A serious discussion of
(a) would require more detailed knowledge of the electrodynamics in the near magneto-
sphere than is currently available; case (b) we shall discuss in a future work.

5.1 LUMINOSITY

For the present we assume Eg and s, are large. As the observer’s line of sight sweeps across
the pulsar, uo and ag(Uo) vary from a maximum value (determined by the emission cone at
frequency w) to a minimum, and back to the maximum — see Fig. 4(a). An observer fixed in
space detects a pulse (at frequency w) whose form is similar to that shown in Fig. 4(b). If
the line of sight passes through the pulsar axis then the power falls to zero at ¢ = 0. The
sharp cutoffs in Fig. 4(b) arise if we assume a sharp boundary between open and closed field
lines. Actually, we expect smearing to occur near the points * ¢y if the magnetospheric
structure departs from the ideal model considered here. The diagram in Fig. 4(b) crudely
explains the double-humped envelopes often observed, but does not explain the single-
humped envelopes. However, if np(r,), say, had a significant surface angular dependence
that decayed sufficiently fast toward the edge of the polar cap, then both the single and
double-humped envelopes can be easily explained. Another source of smoothing in density,
possibly more common, comes from noticing that field lines near the boundary between
open and closed lines can be deformed by plasma pressure near the light cylinder. This may
lead to lowered density along these lines and, when plasma ‘loading’ of these lines is
included, there may indeed be no sharp boundary between the open and closed regions.

Fig. 4(c) shows a double-peacked pulse which is smoothed by the gradual decline in den-
sity toward the edges of the emitting cone.

Nevertheless, we now compare the frequency and period dependence of equation (12)
with observations. We define the average differential energy observed per pulse by an
observer who subtends an angle dS2 as

ao_ (4 ) (3)1’3 1 {n Ye P B np(rp) A (rp) so(R) rll® }‘ [16ﬂe2np(rp) ¥ ]7/9

dw 9 r'(s) mc*L mc?

2

8r3/2 y 1/6 ,n,eBd 1/2 Yo 1/2 1
X eXp { 1/5 12 ( maX) ( . ) [l —("") ]’ 3079 H [uo(H)] dt (13)
Yo¥e Cro” N Vs mcP R, K" Jouise

where H[uo(#)] is the correct angular factor, considered to be a function of time as the
observer:s line of sight sweeps across the radiating region. The frequency dependence of
equation (13) (neglecting any contribution from the integral) is

da<) 20
— ~ w © where a= 5 (14)

Experimentally (Groth 1975), the spectral index o of known pulsars falls in the range
0.7 < a < 3.3 with an average value of 1.62 near v = w/27 ~ 400 MHz; for the Crab pulsar
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a=2.5. These values are quite consistent with equation (14) given the possible frequency
dependence of sq and Ey. At higher frequencies (~ GHz) some pulsar spectra steepen. Such a
high-frequency cutoff is implicit in the exponential factor of equation (11) since R « k™23,
This exponential cutoff arises because the instability has not grown appreciably near the
pulsar where the emitted frequencies are high.

Cavallo & Ventura (1972) have argued that the luminosity—period relationship can be
expressed as

1
= 1.6 x 10%® ————— ergls. 15
L=1.6x10 P1363) erg/s (15)

Integration of equation (12) over solid angle and frequency allows us to estimate the
luminosity—period dependence

4\ (3Y? 1 fvlelPEgny(rp) A(rp) so(R) rp "3\ [16me? ny(rp) 1= ]""°
Power= 5 - 2

2 r'(Ys) mcL me
kmax dk (Mo max(k:P)

X 2m aors sin po H (Mo) dMo- (16)
K min Ke=0

We discuss the low- and high-frequency cutoffs, ki and kmayx, later. Using Table 1 and
ignoring the period dependence of the integrals, we find Power « P~2 which is higher than
Cavallo’s value but almost equal to the Ruderman—Sutherland estimate of P™!5/7,

High frequencies are emitted most efficiently near the star, so conditions in the near
magnetosphere limit K,y

(2) A decisive cutoff is provided by the onset of the instability. Until the conditions for
growth of the plasma wave are met, for 7 > ryne¢, there is no coherence. This may be the
simplest explanation for the observed high-frequency steepening in the luminosity of some
pulsars. Exponential growth of the plasma  wave makes the pulsar visible at high radio
frequencies, and as growth proceeds the wave moves into regions further from the pulsar,
for which the plasma frequency is lower. In our formulation, this appears as an exp (— k")
dependence in equation (11). Because our particular beam—plasma instability is too weak to
explain the high coherence necessary, we cannot take such a detail as the exp(—k"?)
dependence too seriously, but it does display a fall off in frequency faster than the power
law at lower frequencies as required. When the instability, whatever its detailed nature,
reaches nonlinear saturation, the level of coherence will be fixed and we expect then a
»2% dependence in L (v), providing so(¥) has no frequency dependence. The fact that not
all pulsars display high-frequency steepening may imply that not all have the same plasma
instability, or their plasma densities, streaming velocities, etc. may differ substantially. If
growth is very rapid there would be no steepening. Instead, the fully developed instability
would appear at the highest observable frequencies. As an example, consider PSR 0950+08,
which has a steepening of luminosity between 2 and 10 GHz (Sieber 1973). The 10-GHz
point corresponds to emission from r = 120r, above the pulsar, assuming the parameters of
Table 1. This is far above the gap, and may correspond to:

(i) One species of particle overtaking another in the magnetosphere so that, when they
interpenetrate, instability becomes possible.

(ii) Slow growth from the gap region outward, which becomes visible at r=1207,,.

(iii) Significant departure from dipolar fields below 1207y, so that no steady conditions
exist and long coherence lengths are impossible.

Deciding on (i), (ii), (iii), or some other effect depends on a better knowledge of the
relevant plasma instabilities.
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(b) The coherence length, s¢, is expected to be shorter near the star (for at least two
reasons) thereby providing another high-frequency cutoff:

(1) As the unstable two-stream spectrum evolves, the width 8§k in k space narrows, and
the length of the ‘single wave’ (in configuration space) increases. Near the star (and onset)
we expect 6k to be relatively large and so small.

(2) Two particles can be coherent only if their separation is < po/y.. Near the star
po ~ 10°cm and therefore s is severely limited.

Possible limits on k

The problem of predicting k i, is equivalent to determining r,,,,, the maximum distance
from the pulsar at which the coherent radiation mechanism is effective.

(a) Ruderman & Sutherland predict that the beam stops feeding the instability near
r ~ 5 x 10°cm, because it outruns the plasma. However, bunching may persist because of the
decay time of the mode and radiation reaction. Indeed, Goldreich & Keeley (1971) have
shown that, for conditions similar to those of the Crab pulsar, appreciable particle bunching
occurs solely because of radiation reaction.

(b) Onset and growth of the filamentary instability.

Beyond a certain distance from the star (to be determined below) the beam—plasma
system is unstable to the filamentary instability (Benford 1976). It is a purely growing mode
(Re w=0) with k=k,. The appropriate dispersion relation can be found from the full
electromagnetic dispersion tensor in the laboratory frame (Ignat & Hirshfield 1970)

2 2 2 2 2 2
lepwpl leb Wy |

b
(W = wip) (@~ wip)

(17)

0=kic*— W+ wf +

where

) _47rnpe2. , . 2_@_)?,: w%L' _lelB _lelB
Wpi = > Whyi T s W)= 5 2 Wep = sy Web T .
Y= M Tom T+ Yo Y= mc Yo MC
The onset condition is found by setting w =0 and letting ny,, #, and B vary as (rp/r)’ in
equation (17). This gives onset of instability at

N (87 N wf (rp)]”.

,
o [47rmc2 [np(rp) v« + np(rp) Wl (ke)?

(18)

Onset depends on the net transverse pressure-like term nymc? from both beam and plasma.
In fact, since np, = ny (yp/27+), the beam pressure dominates by a factor of two. The growth
rate, however, is dominated by the plasma term. From equation (17),

[(wp1 — wip) +oflwps ( 1 )}”2. (19)
K*c? k*c*
This represents the way plasma begins to move across the magnetic field lines once the net
plasma energy density exceeds the field energy density. The plasma forms filaments of
electrons and positrons, which grow very quickly. The k = modes onset first and grow
most quickly. A realistic estimate is that A must be less than the diameter of the plasma
column, d. Then (wp/kminc) ~ 3 x 1077d and for d <107cm we can neglect the k depend-
ence of equation (19). The growth rate of (19) is r-dependent, and by integrating it from the
_onset point we find that the number of e-foldings N ~ ¥3 x 10* (s/7onset)’’> Where s is the

w=i{(w%l—w§p)—
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distance moved out from rype;. Thus the instability becomes nonlinear before the plasma
has moved very far. Using X = r/r,

g 1/3
wep (7p) ]> .

2 (20)
wpl("p) [1 +nb')’b/np')’i

Xonset = {

From Table 1, ny, v, /npv: < 2. The observed coherent radiation frequency at Fonget is

Y+ 1
Vobs (Fonset) = — wpl(rp) 3/2
™ onset

- 107p%/7P_8/7B{2”7/S, (21)

and

Yonset = rp 6.8 x 1033182/21})8/21 pg4/21

when ¥, = Ymax-

For pulsars with P < 0.2s, vy, falls into the 100-MHz range. We cannot, though, take
equation (21) as a precise calculation of the frequency at which the radio luminosity should
turn over and begin its decline, because (1) radiation may not cease quickly after filaments
form, and (2) the field lines are pushed about by the plasma pressure, so the radius of curva-
ture of the lines and the plasma density may change quickly after onset. Reason (1) follows
because electrostatic bunching with k = k, may not be immediately disturbed by magneto-
static pinching (k = k), since coupling occurs only through the perturbations on the particle
orbits.

There is a further difficulty. Thus far we have not considered the orientation of the
angular momentum vector § and B. If § is parallel to B the field pattern is undisturbed
high over the polar cap, and the radio radiation and filamentation occur before the field lines
curve over to intersect the light cylinder (6 < 1). But if £ is normal to B, at a distance
Ry = cP/2m above the cap the light cylinder destroys the dipolar field. Using equation (20)
and Table 1, we find

r(;renset =142 P—13/213182/21 p-64/21_ (22)
L

Taking
Bl2 =1, Pe= 1, Fonset < RL when P> 1.76s.

If we knew the Ruderman—Sutherland model were very accurate we could conclude that
only long-period pulsars in the £ 1L B mode can show turnover. But allowing for uncertain-
ties, it is probable that equation (22) gives no true test. The same may be said of the period
dependence of equation (21). Sieber’s data (1973) show only a slow decline in P(« P7V2).
For a discussion of the nonlinear and other aspects of filamentary instabilities, see Benford
(1973, 1976).

The conventional explanation of the low-frequency turnover is self-absorption (Sieber
1973). This view has not been explored for coherent radiation; existing models apply to
incoherent emission in weak magnetic fields. Simply assigning a brightness temperature
of §nyy.mc? will give a turnover and a power-law slope v2. Deciding between the filamenta-
tion explanation and self-absorption depends on a better fix on magnetospheric quantities.
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5.2 RADIATION DAMPING

We have used the two-stream growth rate without including the effect of the electromagnetic
radiation back upon the beam—plasma system. This neglects the radiation instability of
Goldreich & Keeley (1971) and the assertion by Hinata (1976) that the radiation losses
completely damp the two stream instability.

The Hinata argument rests on his energy balance equation, which assumes that the wave
energy grows at the linear growth rate and is damped by the total loss rate of the beam—
plasma system through curvature radiation. But this is only true if the energy for radiation
is provided solely by the electrostatic waves. This is not so. Instead, the process resembles a
laser, in which an incoherent emission process is ordered by a stimulus. The energy invested
in the coherence-producing effect can be quite small; it merely triggers the amplification of a
pre-existing incoherent mechanism, and thus taps a much larger energy reservoir. The point
here is that the electrostatic wave grows because of the free energy available in the beam,
and the electromagnetic radiation is emitted by the plasma; there are two different agencies
involved. Equating loss and gain rates only makes sense when these rates apply to the same
physical system.

Further, Hinata’s calculation assumes the appropriate radiation rate is proportional to
Y+, When in fact the plasma particles which are emitting do not have the same energy factor
as the electrostatic wave (7. ~ 800, vy, ~ vp ~ 10°).

Finally, the study by Goldreich & Keeley (1971), which treats the electromagnetic field
precisely and uses linearized fluid equations, shows that the net effect of radiation can
augment instability. Their growth rate,

c( Nye? )”2
YE¢x—~ 5
2.3
p \mc2yip

where N, is the number of particles along a field line, can give a growth rate ~ 10%¢/p for
reasonable pulsar parameters, and thus could conceivably be the principal agency producing
coherence. We hope to include the effects treated by Goldreich & Keeley in a more detailed
model of the pulsar magnetosphere in a future work, to determine whether this radiation
instability can dominate over the effects of the electrostatic streaming instability.

Our conclusion is that, rather than damping instabilities, radiation may enhance it. In this
sense our result for the luminosity may be a conservative estimate, as long as we use only the
conventional plasma growth rates. Since electrostatic modes are typically rapidly growing,
we must be sure none exist before we invoke the somewhat slower Goldreich—Keeley
mechanism.

6 Conclusions

We have pursued a model of coherent emission based on the arranging of particles by an
instability, so that radiation was correlated over many wavelengths. This depends on the
single-wave model, i.e. a sharp peak in k,-space. This phased array picture, in which the
plasma becomes an extended antenna, is much more efficient than the conventional view of
coherence. When the single-wave model breaks down, the free energy available for the
instability will remain, forcing coherence in local groupings. We contrast the two pictures
with a simple scaling argument. For the phased array, the number of cooperating particles
is the number of bunched particles within a wavelength, N, times the number of such lengths
in the ‘antenna’ of length sy, so/A. Then the coherent power for the antenna model is
P, = (Nso/N)*. When the single-wave model fails, the localized clumps will be correlated only
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over distances of size A. If we suppose the number of particles in a wavelength is still V, then
the radiation power is proportional to N? times the number of bunches, N*. Just after the
phased array has broken up, it seems reasonable to guess that N* ~ so/\. Then the power
from these bunches is P* « N%sq/\ and

P, (Nso/>\)2 So
=—3 1.

P*  NZso/A A
Thus the phased array produces much more power than a turbulent wave spectrum. The
transition from P, to P* may be the cause of low-frequency turnover in spectra, perhaps
hastened by onset of filamentation instability. If decay of single-wave coherence occurs
early, it could be that all the pulsar radiation comes from localized modes. If so, the lumi-
nosity function, equation (11) will be altered by a reduction of magnitude ~ \/s,.

Because the beam—plasma instability of Ruderman & Sutherland fails to yield significant
coherence, some (perhaps extensive) changes will be necessary to explain the radiation. This
paper’s formalism will still apply, with suitable alterations, so long as the plasma wave
velocity is relativistic in the plasma frame.

If this is not so, our alternate forms for the luminosity, involving the customary single-
particle functions, should be used (Buschauer & Benford 1976). Before such cases can be
worked out, though we must have a better understanding of the pulsar magnetosphere.

Table 2.
Quantity Relation
Filamentation onset point* _9.8x10°

= 8/21 py¥21 ,-4/21
(1+e)? 7o Bt PR A

Distance from pulsar where frequency R () = 3.2 X 10%r,v™%'2 pg/?' BY]7 P~/
v is emitted

14

Observed v in terms of plasma density _i? (47rnpe2)” 2

™ m

Frequency at onset of filamentation v=10.4p "B} P87 MHz

Notes.

* € = npyp/np v+ is not completely determined in the model; 2/3 S € S 2.

We have tried to make our results accessible to the observing community by providing
Tables 1 and 2, which give convenient conversions from observed radiation properties to
pulsar parameters (7, B, n,, etc.). We hope these will ease comparison with observations.
However, since the basis for these tables is the Ruderman—Sutherland model, which is
probably invalid at least in detail, the overall success of our radiation formulae cannot be
equated with the tables.

The principal observational consequences of our calculations are:

(1) Equation (11) for the luminosity, which awaits a better (and larger) expression for
the growth rate in the exponential. The v"*? dependence can be modified if 5o = 5o(¥), as
seems likely (see Appendix). Also, the 6%'3 dependence differs from the single-particle result.
Fig. 6 displays some of our ideas about how plasma mechanisms influence the lumino-
sity.

(2Q)L(P) = P2

(3) Low-frequency turnover in the spectrum may arise when, at a point > 10’ cm from
the pulsar, the relativistic plasma energy density exceeds the dipolar field energy density.
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® turbulent region

® pressure balance
point (onset of
filamentation)

@ radio emission
region

L(v)

14

Figure 5. Relation between spatial regions and frequency spectrum. The pressure balance point corre-
sponds to turnover in luminosity, L (v).

Field-plasma pressure
balance point

L W)~ 2%9% 5o £8 () (theory)

vl

~v10-T<a<33(a)16

Breakup of coherence ?
self-absorption ?

Luminosity, £ (v)

Linear growth
of instability ?

| |
|00 MHz | GHz

Frequency, v

Figure 6. Analysis of a ‘typical’ pulsar luminosity spectrum. Observed « lies between 0.7 and 3.3 for the
middle power law region, and observed (o) ~ 2 for the steepening.
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(Table 2, equations (17) to (22), and Fig. 5). This may explain some features of 25-MHz
radiation. It would be interesting to see if similar structure prevails over a broader range of
very low frequencies.
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Appendix
Frequency dependence of the luminosity

In this Appendix we consider the contributions to the frequency dependence of equation
(10). In the regime of strong coherence and angle ag<1, radiation at wavenumber X is
emitted from the vicinity of r = R = (k¥)?’3r, k™*'%. This relation allows us to replace the R
dependence in equation (9). A factor kV3p¥3ak*R"3 ak? comes from the single particle
radiation term in equation (7). However, if the phase velocity of the wave in the plasma
frame is < ¢, the above k'/° dependence would be replaced by k3 times the k-dependence
of a Bessel function (Buschauer & Benford 1976). The integration over tubes ( integration)
contributes a term proportional to R?/k = k7' and the diverging tubes themselves contri-
bute a term £3M¢),=r « EoNo)yr= ,pR3 « k2. Therefore, the k dependence which is independ-
ent of the exact form of the instability (except for the weak wave phase velocity effect dis-
cussed above) is kY2 k72,73 = k™%, The precise form of the instability defines J§ and for
the streaming instability J& « n,(R) « R™3 « k2. The total k dependence is, of course,
k738/9*2= 7208 Note that we have ignored the k dependence of the exponential factor in
equation (10) and so. The former is proportional to exp (—A4k'’?) where Ak'/> <1 due to the
slow growth of the instability. Presumably, for a rapidly growing mode which reaches satura-
tion, E%, will have some k dependence which can be calculated. Suppose the saturated
amplitude is of the form

E?=Qny v, mc?,

where Q is a constant independent of k. This is a fairly common form (Thode, private com-
munication). Then since n, (R) « R™* « k?, the luminosity will scale as k™2%'* s4(k).

Of course, s, is an average property of the coherence. Many complicated effects are
buried in it, so making a simple choice which reliably ‘predicts’ observations is probably
impossible.
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