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Quantum simulation has emerged as a valu-
able arena for demonstrating and understanding
the capabilities of near-term quantum comput-
ers [1–3]. Quantum annealing [4, 5] has been
used successfully in simulating a range of open
quantum systems, both at equilibrium [6–8] and
out of equilibrium [9–11]. However, in all pre-
vious experiments, annealing has been too slow
to simulate a closed quantum system coherently,
due to the onset of thermal effects from the en-
vironment. Here we demonstrate coherent evo-
lution through a quantum phase transition in
the paradigmatic setting of the 1D transverse-
field Ising chain, using up to 2000 superconduct-
ing flux qubits in a programmable quantum an-
nealer. In large systems we observe the quan-
tum Kibble-Zurek mechanism with theoretically
predicted kink statistics, as well as characteris-
tic positive kink-kink correlations, independent
of system temperature. In small chains, excita-
tion statistics validate the picture of a Landau-
Zener transition at a minimum gap. In both
cases, results are in quantitative agreement with
analytical solutions to the closed-system quan-
tum model. For slower anneals we observe anti-
Kibble-Zurek scaling in a crossover to the open
quantum regime. These experiments demon-
strate that large-scale quantum annealers can be
operated coherently, paving the way to exploit-
ing coherent dynamics in quantum optimization,
machine learning, and simulation tasks.

Quantum phase transitions (QPTs) describe the sud-
den macroscopic change of a system’s ground state driven
by quantum fluctuations [12]. An important aspect
of phase transitions is the divergence of the correla-
tion length ξ at the critical point, resulting in univer-
sal behavior: macroscopic properties become indepen-
dent of Hamiltonian details. The growth of the correla-
tion length happens within the response time τ , which
also diverges at the critical point due to critical slow-

ing down. For a finite system, the correlation length is
limited by the system size. Therefore, a slow quench
through a QPT, i.e., within a time longer than τ , can
transition the system adiabatically into its new ground
state [13]. Outside the adiabatic regime, the correlation
length remains shorter than the system size, leading to
defects, i.e., boundaries between domains with different
order. The average distance between defects is set by the
correlation length, which itself is a function of quench
velocity. The defect density scales polynomially with the
speed at which the critical point is traversed. This phe-
nomenon, known as the Kibble-Zurek mechanism (KZM)
[14], has its origins in early universe cosmology but has
since been observed in various experimental platforms
such as Bose-Einstein condensates [15], Rydberg atoms
[3, 16], and trapped ions [17].

The quantum Ising chain is a popular testbed for
studying the KZM [3, 18–22] in part because it can
be solved exactly using fermionization via the Jordan-
Wigner transformation [19]. We implement this model
using a programmable superconducting quantum an-
nealer [5]. The Hamiltonian of this system is given by

H(s) = −Γ(s)

L∑
i=1

σxi + J (s)

L∑
i=1

Jσzi σ
z
i+1, (1)

where σzi and σxi are Pauli operators on the ith qubit, and
J is a dimensionless programmable coupling. For anneal
time ta the annealing parameter s = t/ta ranges from 0
to 1, controlling the transverse field Γ(s) and Ising energy
scale J (s) according to the schedule depicted in Fig. 1a
[23]. We use periodic boundary conditions (σαL+1 = σα1 )
and program all couplers with the same value J , which
can be either positive (antiferromagnetic) or negative
(ferromagnetic).

In the paramagnetic phase, when s ≈ 0, the system
is dominated by quantum fluctuations and the ground
state is an approximately uniform superposition of com-
putational basis states (eigenstates of the σzi ). At the
end of the anneal, when s = 1, the system is diagonal in
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FIG. 1. Quantum phase transition in an annealed Ising
chain. a, Quantum annealing of the transverse-field Ising
chain. Using a dimensionless annealing parameter s to control
Hamiltonian (1) with J = 1, the system is tuned through its
QPT at Γ(sc) = J (sc) for sc ≈ 0.36. The critical point
separates a quantum paramagnet (s < sc) from an ordered
ground state (s > sc). b, Response time diverges at the
quantum critical point, as a function τ ∝ |s−sc|−zν for critical
exponents z and ν. Consequently, a finite-time traversal of
the QPT results in kinks separating ordered domains after
annealing. c, Example QA output states for a chain of L =
2000 qubits with J = −1.4, whose alternating domains of up
(red) and down (blue) spins have correlation length ξ = 1/n̄,
where n̄ is the average kink density.

the computational basis, with frozen dynamics. This or-
dered phase has a ferromagnetic ground state; these two
phases are separated by a quantum critical point (QCP)
at s = sc such that Γ(sc) = J (sc)|J | (see Fig. 1b).

To probe kink density scaling in the thermodynamic
limit, we anneal chains of L = 512 and L = 2000 qubits
for varying ta, at operating temperatures between 10 mK
and 30 mK, and for several values of J ranging in magni-
tude from 0.12 to 1.4. Fig. 1c shows examples of ex-
perimental data from the quantum annealer (QA) for
ta = 4.8 ns and ta = 49 ns with J = −1.4. As expected
from the KZM, the longer anneal exhibits fewer kinks.

We define the kink operator

Ki =
[
1 + sign(J)σzi σ

z
i+1

]
/2. (2)

At the end of the anneal, when all qubits are measured
in the computational basis, Ki = 1 if there is a kink

between qubits i and i+1, and Ki = 0 otherwise. We
define the kink density operator as

n =
1

L

L∑
i=1

Ki. (3)

The average kink density n̄ = 〈n〉 is obtained by running
the experiment many times and averaging over the out-
comes. Measurements of n̄ are summarized in Figure 2a.
To test the ability of L = 512 to represent the thermo-
dynamic limit, we confirmed consistency with L = 2000
at 10 mK. For ta ≥ 1 µs, n̄ decreases monotonically as
a function of ta, consistent with previous experiments
in the same regime [10]. For the previously unexplored
region ta < 1 µs, n̄ is non-monotonic, particularly for
high temperature and weak coupling. This “anti-Kibble-
Zurek” behavior is a result of coupling to a thermal envi-
ronment, which generates additional excitations and thus
increases n̄; such behavior has been seen in classical sim-
ulations of open-system quantum Ising chains [10, 21] as
well as 2D systems in a quantum annealer outside the
coherent regime [11].

For the shortest anneals, kink densities at all temper-
atures collapse on a common curve. This temperature
independence is evidence of coherent evolution, wherein
the system traverses the QCP faster than the environ-
ment’s response time. In this case the system is unable to
exchange energy with the environment. The exactly solv-
able coherent (closed-system) quantum model predicts
[19] (see Supplementary Materials (SM))

n̄ =
t
−1/2
a

2π
√

2b
, b =

Γ(sc)/~
J ′(sc)/J (sc)−Γ′(sc)/Γ(sc)

. (4)

This theoretical kink density (dashed lines in Fig. 2a)
is in quantitative agreement with the experimental mea-
surements in the fast-anneal regime, with no fitting pa-
rameters.

Kink distributions in the quantum Ising chain have
been characterized theoretically beyond just average den-
sities. The number of kinks follows a binomial distribu-
tion [22], and when the number of kinks is large, this
distribution is well approximated by a Gaussian distri-
bution. This clearly differentiates the data from a Boltz-
mann distribution describing thermal equilibrium (see
Fig. 2b). Unlike a Gaussian distribution, the binomial
kink distribution is expected to skew slightly away from
zero, and therefore have a positive third cumulant. More-
over, the first three cumulants of the kink distribution,
κ1=n̄, κ2=〈(n−n̄)2〉, and κ3=〈(n−n̄)3〉, are expected to

be proportional to t
−1/2
a , at fixed ratios [22]

κ2/κ1 = 2−
√

2 ≈ 0.586, (5)

κ3/κ1 = 4(1− 3/
√

2 + 2/
√

3) ≈ 0.134. (6)

Measurements of these cumulants are shown in Fig. 2c.
Lines in the figure are derived from theory, showing good
agreement with the experimental data.
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FIG. 2. Kink density scaling and distribution. a, Shown are QA data for weak coupling (J = 0.12) and strong coupling
(J = −1.4, used for b–c) for a range of temperatures and anneal times. The weak coupling regime exhibits anti-Kibble-
Zurek behavior, with a local minimum in n̄. For strong coupling and fast anneals, n̄ is unaffected by temperature and agrees
quantitatively with closed-system coherent quantum theory (dotted green lines, following Eq. (4)). b, A best-fit thermal
(Boltzmann) model is significantly broader than measurement results, which are better described by a Gaussian model, as
expected given the predicted binomial form. c, First three cumulants of the kink distribution. Lines indicate coherent theory.
All error bars represent 95% statistical confidence intervals.

Although single-point QA statistics agree with the
closed-system quantum model, some aspects of the kink
distribution can be reproduced by classical models [24].
For example, the scaling exponent −1/2 (Eq. (4)) is iden-
tical to that of a purely classical diffusion/annihilation
model [25]. We therefore investigate two-point statistics
[26, 27]. We define the normalized kink-kink correlator
as

CKK
r =

1

L

L∑
i=1

〈KiKi+r〉 − n̄2

n̄2
. (7)

In Fig. 3a we plot CKK
r against the normalized lattice

distance r/ξ = n̄r. For multiple annealing times, the
data collapse on a curve with a positive peak around
r/ξ ≈ 0.6, as predicted in [27]. QA data are compared
against the solution of the fermionized model (Fig. 3b),
which exhibits a similar but higher peak.

The suppression of the peak in QA is expected from
coarsening dynamics [26] or other mechanisms such as
dephasing [27] or kink diffusion outside the regime of va-
lidity of the adiabatic/impulse description of KZM. In-
deed, CKK

r does become purely negative for longer an-
neals (SM, Fig. S13). However, thermal effects do not
appear to play a role (SM, Fig. S12). To probe potential
effects of entanglement and disorder, we employ a tensor-
network dynamics method known as time-evolution block
decimation (TEBD) [28]. Reducing TEBD bond dimen-
sion D to 20 provides a heuristic model of limited entan-
glement entropy S, given that S ≤ 2 log(D) [29]; this low-
ers the peak slightly (Fig. 3c), but makes it ta-dependent,
inconsistent with the experimental data. Further lower-
ing D worsens the agreement with QA (see Fig. S8), but
combining D = 20 with disorder in the QA Hamilto-
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to closed-system quantum models. b, Exact time-evolution of
the fermionized model. c, TEBD with limited bond dimension
D = 20. d, TEBD with D = 20 and σ = 0.05 Gaussian dis-
order added to longitudinal fields and couplings. All models
have CKK

r → −1 as r/ξ → 0. Error bars in a and d indi-
cate 95% statistical confidence intervals across experiments
and disorder realizations, respectively.
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nian improves it (see SM). Combining these effects gives
a close match to QA results for J = −1.4 (Fig. 3d) and
other coupling strengths (cf. Fig. S9). Moreover, we find
that D = 20 is a lower bound on the bond dimension, in
the sense that our QA data displays an opposite trend
with the anneal time ta (for short ta) to that of TEBD for
D < 20, but our QA data and TEBD agree for D ≥ 20
(cf. Fig. S14).

Next, we investigate finite size effects. When ta is suf-
ficiently large as a function of L, the dynamics are domi-
nated by a single Landau-Zener (LZ) transition [30], and
the ground state probability PGS follows the adiabatic
theorem [31]. The LZ transition probability is expected
to decay exponentially in the annealing time, in contrast
to the power-law dependence in the Kibble-Zurek regime.
For 1D spin chains, it is possible obtain an analytical so-
lution [19] (see SM):

1− PGS = e−ata , a = 2π3bL−2, (8)

where b is defined in Eq. (4).
Fig. 4a shows QA measurements for ferromagnetic and

antiferromagnetic chains of equal coupling magnitude
(J = ±0.95). Since L is even, the two Ising Hamiltonians
are gauge-equivalent and we expect similar experimental
outcomes. We plot data in the range 5 ns ≤ ta ≤ 40 ns
and 0.1 ≤ PGS ≤ 0.9 for values of L ranging from 8
to 32. Fig. 4a also shows results of exact simulation of
coherent Schrödinger dynamics for the fermionized sys-
tem (squares; see SM) together with the analytical re-
sult of Eq. (8) (dashed lines), in remarkable agreement
with the experimental data. To test the agreement with
closed-system theory for different J values, Fig. 4b shows
that a as extracted from the empirical PGS data as per
Eq. (8) remains consistent with the theoretical prediction
a ∝ L−2 (solid lines).

Although all of the above experimental results agree
well with coherent quantum dynamics, an important
question is whether they can also be explained by classi-
cal models. It is clearly impractical and even impossible
to rule out every classical explanation; instead we con-
sider the most plausible Monte Carlo methods that have
been suggested as emulators for QA. In Appendix B, we
consider simulated annealing, simulated quantum anneal-
ing based on path-integral Monte Carlo, and spin-vector
Monte Carlo simulations. We find that some of these
models can reproduce some aspects of the experimen-
tal data, but none of them can explain all experimental
features. We therefore conclude that only the coherent
quantum model successfully explains all experimental re-
sults, and this view is strengthened considerably by the

fact that we have not used any fitting parameters.
In conclusion, by tuning the parameters of a pro-

grammable quantum annealer, we have simulated quan-
tum critical phenomena in 1D chains of up to 2000 spins.
For fast anneals, we observe quantum Kibble-Zurek scal-
ing in long chains and Landau-Zener scaling in short
chains. In both regimes, kink densities are in quanti-
tative agreement with coherent Schrödinger dynamics—
remarkably, with no free parameters. In contrast, leading
classical models can only reproduce some aspects of the
experimental data—no single classical theory reproduces
them all. These results represent strong evidence for co-
herent evolution, with a significantly larger system and
longer correlation length than previous quantum Kibble-
Zurek demonstrations in a 1D system using Rydberg ar-
rays [3]. In addition, at longer anneal times we observe a
crossover to the thermal regime, with anti-Kibble-Zurek
behavior as theoretically predicted [10].

We have used QA as a quantum simulator, producing
results that are challenging to simulate classically, even
in this widely-studied and simple model. Path-integral
Monte Carlo can simulate systems near thermal equi-
librium [32], but cannot be used to describe or simu-
late quantum dynamics [33–35]. Likewise, open-system
quantum simulations such as master equations [36] be-
come computationally intractable beyond system sizes of
around 40 qubits. Thus, our results pave the way to co-
herent quantum simulation on a previously unattainable
scale. Moreover, the ability to program both signs and
magnitudes of Hamiltonian terms in a coherently evolved
system is a key ingredient in the simulation of frustrated
models such as quantum spin glasses, and ultimately in
quantum optimization. The results reported here repre-
sent an important step toward this goal.
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METHODS

Quantum annealing experiments

Quantum annealing is performed on a D-Wave 2000Q
lower noise (LN) processor using multiple randomly-
generated embeddings (one for L = 2000, three for
L = 512, up to 100 for L = 8) in parallel. Each data point
represents data taken over 300 iterations for L = 2000
and L = 512, and 50 iterations for smaller values of L.
In each iteration the qubits are annealed 100 times, pro-
viding 100 spin states. Each spin state consists of values
{si}Li=1, where si = ±1 is the qubit readout state in the
computational basis.

For each data point in the plots, we refine the general-
purpose calibration by fine-tuning individual Hamilto-
nian terms based on trivial symmetries of the chain:
We tune per-qubit linear flux biases to bring qubits
to degeneracy (〈si〉 ≈ 0), and tune two-qubit couplers
to homogenize average correlations across chain bonds
(〈sisj〉 ≈ (

∑
〈k,`〉 〈sks`〉 /L), as in previous studies of

degenerate systems [7, 8]. To mitigate desynchroniza-
tion of annealing schedules between different qubits for

the fastest anneals, we additionally refine anneal offsets
based on annealing lines, although in this case there is
little effect. We describe these methods in the SM.

To generate error bars, a statistical bootstrap is per-
formed. For individual data points, the method treats
each QPU call as an individual trial and resamples with
replacement. In particular, estimates of CKK

r are com-
puted for each QPU call, then bootstrapped, so each es-
timate of n̄ represents a QPU call, not an overall average.
To compute QA exponents a for Fig. 4b), we treat every
ta as a trial, and generate a distribution of fit slopes based
on bootstrapped sets of annealing times. Data markers
and error bars represent the median and 95% confidence
interval of the resampling median.

Annealing schedule

The annealing schedule depicted in Fig. 1 is based
on qubit parameters extracted through averaged single-
qubit measurements. Since qubits are actually multi-
level objects rather than perfect two-level Ising spins,
we convert the qubit Hamiltonian to an effective Ising
Hamiltonian following the method laid out in recent
studies of geometrically frustrated lattices [34, 37]. We
perform approximate diagonalization of the s-dependent
eigenspectrum of a 12-qubit periodic chain Hamiltonian.
We simplify the computation by dividing the qubits into
four chains of three qubits each, and retaining only the 12
lowest energy levels of each three-qubit chain. Once this
eigenspectrum is computed for a given coupling strength
J , we perform a two-parameter fit on Γ(s) and J (s)|J |
in equation (1), minimizing a weighted average of the
differences in the first eight eigengaps between the qubit
Hamiltonian and the transverse-field Ising Hamiltonian.
Effective qubit temperatures were measured using single-
qubit susceptibility measurements, as described in Sec-
tion II.D of the Supplementary Information of Ref. [5].

Fermionized models and TEBD

Calculations using the fermionized system were per-
formed on the same number of spins as in QA, i.e.,
L = 512 in Fig. 3 and a range of L for Fig. 4. TEBD
data in Fig. 3 were produced using L = 256 to reduce
computation time. This has a negligible effect on results
since this is much larger than the correlation length at
the values of ta investigated, as we confirmed by solving
the fermionized model at both L = 256 and L = 512.
The average and error bars representing 95% statistical
confidence in TEBD data were obtained for 300 realiza-
tions of disorder.
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Appendix A: Quantum annealing methods

1. Extracting annealing schedules

We follow the method used in recent experiments [34, 37] to extract an effective transverse-field Ising Hamiltonian
from a qubit model based on single-qubit measurements. The first task is to generate an eigenspectrum capturing the
energy of fundamental local excitations. This was previously done by making a small representative “gadget” that
shares the general local structure of the larger system, while being small enough to diagonalize approximately. In this
case, our gadget is a periodic 12-qubit chain. We account for more than two energy levels per rf-SQUID flux qubit,
so even at this scale the computation is nontrivial. To make the computation simpler we divide the chain into four
subchains of three qubits each, compute the spectrum of each subchain as a four-level object, and then compute the
spectrum of the full 12-qubit chain.

After computing the spectrum of the 12-qubit chain, we determine a best-fit transverse-field Ising Hamiltonian
using Γ(s) and J (s)|J | as fitting parameters at each value of s. The objective function for the fit is a weighted sum
of the first eight eigengaps. The resulting schedules, which we use in our software simulations, are shown in Fig. S1.
Note that the schedules are not computed all the way to s = t/ta = 1, because when J (s)|J | � Γ(s) we can safely
presume that qubit dynamics have ceased, and the numerical methods used to extract the schedule become unstable.

2. Calibration refinement shim

We can refine the QA calibration, suppressing disorder that may arise from calibration imperfections and crosstalk,
by exploiting two trivial symmetries of the Ising chain that hold everywhere in the phase diagram:

1. All qubits have average magnetization zero, i.e.,

∀i, 〈σzi 〉 = 0. (A1)

2. All couplers have the same average correlation, i.e.,

∀i, 〈σzi σzi+1〉 =
1

L

L∑
j=1

〈σzjσzj+1〉. (A2)



9

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

t/ta

E
n
er
g
y
(G

H
z)

0 0.2 0.4 0.6 0.8 1

10−2

10−1

100

101

t/ta

E
n
er
g
y
(G

H
z)

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

t/ta

E
n
er
g
y
(G

H
z)

0 0.2 0.4 0.6 0.8 1

10−2

10−1

100

101

t/ta

E
n
er
g
y
(G

H
z)

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

t/ta

E
n
er
g
y
(G

H
z)

0 0.2 0.4 0.6 0.8 1

10−2

10−1

100

101

t/ta
E
n
er
g
y
(G

H
z)

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

t/ta
E
n
er
g
y
(G

H
z)

0 0.2 0.4 0.6 0.8 1

10−2

10−1

100

101

t/ta

E
n
er
g
y
(G

H
z)

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

t/ta

E
n
er
g
y
(G

H
z)

0 0.2 0.4 0.6 0.8 1

10−2

10−1

100

101

t/ta

E
n
er
g
y
(G

H
z)

linear scale

log scale

J = 0.12 J = 0.24 J = 0.48 J = 0.95 J = 1.40

Γ(s)

J (s)|J|

FIG. S1. Extracted annealing schedules. For each coupling magnitude J , we extract an effective transverse-field Ising
model using a qubit model and single-qubit measurements. These are shown in linear (top) and log (bottom) energy scales.

Any behavior that systematically violates these symmetries indicates a bias, which we suppress using the iterative
methods described here.

Let si indicate an output state for qubit i, i.e., a measurement of σzi at s = 1. If we measure 〈si〉 as being
systematically nonzero, the qubit is biased. In this case we compensate by adding a per-qubit flux bias to qubit i,
which we denote by Φi. Similarly, if we measure correlation between two coupled qubits 〈sisi+1〉 that is systematically
different from the average over all i, we compensate by making the coupler Ji,i+1 either slightly stronger or slightly
weaker. These two approaches, shown in Fig. S2a, have become an important and standard ingredient of simulations of
degenerate systems [7, 8, 34, 37, 38]. Here we give a more detailed description of these methods than in previous works.
Furthermore, we introduce an additional element of per-qubit anneal offsets, which are important for synchronizing
qubits during fast anneals.

The qubits in the D-Wave 2000Q LN processor are controlled by four annealing lines, such that each eight-qubit unit
cell has four qubits on each of two lines, and no two coupled qubits are annealed by the same line. When annealing
fast (ta � 20 ns), desynchronization between these lines can become significant. In principle, if a qubit is delayed in
its annealing schedule relative to other qubits, the couplers incident to that qubit will be expressed relatively weakly,
leading to the couplers being frustrated more often than other couplers, i.e., hosting more kinks than on average.
This desynchronization can be compensated using the “anneal offset” feature [39], which allows the definition of s
to be shifted slightly forwards or backwards for qubit i, by Oi. To compute appropriate anneal offsets, we compute
an average frustration term for each annealing line. For ` from 1 to 4, let F` denote the empirical probability that a
coupler between two qubits, one of which is on the annealing line indexed `, is frustrated. Note that the average over
all lines, i.e., 1

4

∑4
j=1 F` is equal to n̄. Similar to the flux-bias and coupler-tuning refinements, if F` < n̄, we advance

the qubits on line ` using anneal offsets, by increasing Oi for any qubit i on line `.
We now formalize these ideas. We define three constants: αΦ, αJ , and αa which define step sizes for the flux offset,

coupler tuning, and anneal offset adjustments respectively. We further define two damping constants δJ and δa for
the latter two adjustments, to prevent erratic iterative behavior, since these two adjustments can affect one another
significantly.

For fixed L, J , and ta, we run multiple iterations; each iteration consists of a call to the QA processor that draws
100 samples.

Upon receiving the output samples, we compute the following statistics for the 100 samples:

• magnetization mi = 〈si〉 for each qubit i

• correlation cij = 〈sisj〉 for each coupled pair of qubits i, j

• frustration fij = (sign(J)cij + 1)/2 for each coupled pair of qubits i, j

• average line frustration F` =
∑
{i,j}∈V`

fij/|V`| where V` is the set of coupled pairs {i, j} such that either qubit

i or qubit j is on annealing line `.
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a .
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FIG. S3. Calibration refinement shim for slower anneal. Data analogous to Fig. S2a are presented for ta = 40 ns,
indicating that the required calibration tuning decreases significantly as anneals become slower.

• overall average frustration n̄.

We then adjust QA Hamiltonian terms as follows:

• for each qubit i, Φi ← Φi − αΦmi

• for each coupler ij, Jij ← Jij + αJ(fij − n̄)

• for each annealing line `, O` ← O` + αa(F` − n̄)

Finally we damp the two latter adjustments:

• for each coupler ij, Jij ← (1− δJ)Jij + δJJ

• for each annealing line `, O` ← (1− δa)O`.
We demonstrate these methods in Fig. S2, showing an example of this calibration refinement shim using L = 2000,

J = −1.4, and ta ranging from 4.8 ns to 40 ns. The first 100 iterations are run with αΦ = αJ = αa = 0. We then
turn on αΦ = 5e − 6 for 300 iterations. We then turn on αJ = 0.2, δJ = 0.02 for 400 iterations. Finally we turn on
αa = 0.02, δa = 0.002 for 400 iterations.

With no calibration refinement (Fig. S2b), crosstalk and other biases—which can arise from calibration imperfections
and time-dependent noise—lead to qubit magnetizations that are far from the desired value of zero. Similarly, when
flux biases have balanced the qubits (Fig. S2c), coupling inhomogeneity can lead to a broad distribution of frustration
among the couplers in the chain. When couplings are additionally tuned (Fig. S2d), kink distributions look much
more uniform, but at ta = 4.8 ns there still remains a visibly bimodal distribution of coupler frustrations; this is
mitigated with the additional tuning of anneal offsets (Fig. S2e). This experimental protocol, in which shim parts
are activated in sequence, is shown for illustrative purposes only, and does not reflect actual experimental methods.
In the main experiments we activate all parts of the shim immediately. Furthermore, since the compensations vary
smoothly as functions of T , J , and ta, we do not need to compute them from scratch for each data point.

One can see in (Fig. S2a) that the anneal offsets saturate for some qubits; this is due to limited per-qubit range in
the anneal offset parameter. The compensations required at ta = 4.8 ns are large compared to required compensations
at slower anneals; we show data for ta = 40 ns in Fig. S3 for comparison.

In this work the anneal offsets have only a small impact on observables. However, we expect them to be an important
aspect in future work on fast anneals.

Appendix B: Monte Carlo methods

As mentioned in the main text, certain behaviors of the quantum Ising chain can be reproduced in classical models.
While we have shown quantitative agreement between QA and the quantum model for the kink density distribution
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FIG. S4. Kink densities and kink-kink correlators in SA. a, Kink scaling is shown for a range of anneal times, with
diffusive scaling n̄ ∝ 1/

√
ta indicated with a gray line. b, Kink-kink correlators are shown, with no positive peak.

in the Kibble-Zurek regime and success probability in the Landau-Zener regime, it is also useful to determine which
behavior, if any, of the quantum system can be emulated with classical Monte Carlo approaches. Here we consider
three classical Monte Carlo approaches, and compare their behavior to that of QA.

In this section, as with QA data for L = 512, error bars represent 95% bootstrap confidence intervals, using
resampling on a set of 300 experiments, each experiment consisting of 300 samples.

1. Simulated annealing

Simulated annealing (SA) [40] involves gradually lowering the temperature of a spin system in the Metropolis-
Hastings algorithm, and is a purely thermal method. In the setting of a 1D chain, we expect the scaling of kink
densities to resemble diffusive scaling, i.e., n̄ ∝ 1/

√
ta, since at low temperatures the kinks follow random walks along

a locally degenerate energy landscape until they meet and annihilate pairwise with another kink.
The SA we study generates a new random ordering of variables to update for each Monte Carlo sweep, and we

follow a geometric schedule from the high-temperature limit β = 0.1 to the low-temperature limit β = 100.
In Fig. S4 we show kink density scaling and kink-kink correlators for SA. While SA does closely follow the n̄ ∝ 1/

√
ta

scaling that is characteristic of both the quantum KZM and classical diffusion, there is no positive peak in the
correlator. This is consistent with a diffusive picture.

2. SQA-PIMC

Path-integral Monte Carlo (PIMC) is a method of simulating finite-temperature quantum systems at thermal
equilibrium using the Suzuki-Trotter decomposition [32]. We use a variant that approaches the continuous imaginary
time limit and employs Swendsen-Wang cluster updates [41]. By running PIMC along an annealing schedule we can
simulate equilibrium aspects of quantum annealing; we call this method SQA-PIMC [42]. We use the QA annealing
schedule for J = 1.4. To make the energy scales dimensionless we divide by the intersection point Γ(sc) = J (sc)|J |.
Monte Carlo sweeps are performed at equally spaced points in the schedule from s = 0 to s = 0.44, at which point
Γ/J = 0.004 and we assume the dynamics to be frozen.

In Fig. S5a–b we show kink density scaling and kink-kink correlators for a range of inverse temperatures in SQA-
PIMC. Unlike SVMC-TF, which we describe in the next section, there are significant differences between β = 16
and β = 32 in terms of kink density scaling. Generally speaking, kink density deviates downwards from n̄ ∝ 1/

√
ta,

before plateauing at a kink density roughly proportional to 1/β, then again trending downward towards n̄ ∝ 1/
√
ta.

This is different from our QA data, and similar to the situation seen in Ref. [43] Fig. 3A, with the main distinctions
being that their results are in the setting of Gaussian 2D spin glasses and for M = 64 Trotter slices, away from the
continuous-time limit. The kink-kink correlator results are also different from our QA data (Fig. 3 of the main text):
there is no positive correlator peak except very weakly at β = 8, and at high β values the correlator develops a sharply
rising positive tail with decreasing normalized distance, which is not seen in our QA data either.
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FIG. S5. Effect of temperature on SQA-PIMC and SVMC-TF. Inverse temperatures β = 4, 8, 16, and 32 are used in
SQA-PIMC (a–b) and SVMC-TF (c–d).

3. SVMC-TF

Spin-vector Monte Carlo (SVMC) [44] is a semiclassical model of quantum annealing wherein qubits are modeled
by two-dimensional rotors and dynamics proceed via Metropolis-Hastings updates. The model has had mixed success
in reproducing results from previous QA experiments [45, 46]. SVMC-TF [47] is an improved variant of this model
with “transverse field” updates, in which proposed update angles are chosen from a region around a rotor’s current
angle, and the region’s width depends on Γ(s)/(J (s)|J |). To test the ability of SVMC-TF to mimic the behavior
of coherent quantum annealing, we ran SVMC-TF for a range of anneal lengths using the QA schedule. We set the
inverse temperature to β = 32, meaning that at the quantum critical point (QCP) we have Γ(sc) = J (sc)|J | = 32 in
terms of dimensionless temperature.

In Fig. S5c–d we show kink density scaling and kink-kink correlators for a range of inverse temperatures in SVMC-
TF, using the QA schedule for J = 1.4 normalized at the QCP, as in SQA-PIMC. The results confirm that we are
running SVMC-TF in the low-temperature limit, and do not expect significant changes to scaling for even lower
temperatures. For significantly smaller β, the positive peak in the normalized kink-kink correlator CKK

r disappears.

SVMC-TF is the only one of the three MCMC methods investigated that shows a positive peak in kink-kink corre-
lation. We are therefore interested in probing the robustness of the kink density scaling, which deviates significantly
from the quantum KZM. We test adjustments to the annealing schedule and the addition of disorder to individual
h and J terms, with results shown in Fig. S6. In Fig. S6a we test three schedules. In addition to the QA schedule
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FIG. S6. Effect of annealing schedule shape and disorder on SVMC-TF kink density scaling. a, We probe kink
densities for linear and quadratic annealing schedules, in addition to the J = 1.4 QA schedule, at β = 32. b, We probe the
addition of disorder to the QA schedule and its effect on kink density scaling.

for J = 1.4 (see Fig. S1), we test two others: a linear schedule, for which Γ(s) = β(1 − s) and J (s)|J | = β · s and
a quadratic schedule, for which Γ(s) = 4β(1 − s)2 and J (s)|J | = 4βs2. Note that all schedules are normalized so
the crossing of Γ(s) and J (s)|J | occurs at 1. In Fig. S6b we test the effect of adding disorder. Neither modifications
to the schedule nor Hamiltonian disorder improve the agreement in kink density scaling between SVMC-TF and the
quantum model.

Appendix C: Analytical solutions

Previous theoretical papers [18, 19, 22, 27] have studied quantum spin chains using the fermionization technique
and obtained analytical solutions for kink density statistics and the Landau-Zener probability. To use those results
we need to convert our Hamiltonian into the form used in those papers.

Hamiltonian (1) can be written as

H(s) = −
∑
i

(
Γ(s)σxi − J (s)Jσzi σ

z
i+1

)
, (C1)

where s = t/ta, with t ∈ [0, ta] being time and ta being the annealing time. For simplicity, we assume J (s)J < 0, i.e.,
ferromagnetic coupling. This is to be compared to the dimensionless Hamiltonian (e.g., Eq. (5) in Ref. [27]):

H̃ = −
∑
i

(gσxi + σzi σ
z
i+1). (C2)

The parameter g is given as

g = − t̃

τQ
, (C3)

where t̃ ∈ (−∞, 0] is the dimensionless time and τQ characterizes the time it takes to traverse the critical point. Our
goal is to find τQ in terms of the Hamiltonian parameters in Eq. (1), which we rewrite as

H(s) = J (s)J
∑
i

([
− Γ(s)/J (s)J

]
σxi + σzi σ

z
i+1

)
. (C4)

Comparing with (C2), we define

g(s) =
Γ(s)

|J (s)J | , (C5)

and (C4) becomes

H(s) = −|J (s)J |
∑
i

[
g(s)σxi + σzi σ

z
i+1

]
. (C6)
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Hamiltonian (C2) is dimensionless, with Schrödinger equation

i
d

dt̃
|ψ(t̃)〉 = −

∑
i

(gσxi + σzi σ
z
i+1) |ψ(t̃)〉 . (C7)

Hamiltonian (C6), on the other hand, is dimensionful with an overall energy scale |J (s)J | that is time dependent.
The corresponding Schrödinger equation reads

i~
d

dt
|ψ(t)〉 = −|J (s)J |

∑
i

[
g(s)σxi + σzi σ

z
i+1

]
|ψ(t)〉 . (C8)

We would like the two Hamiltonians to lead to the same dynamics near the critical point s = sc defined by

Γ(sc) = J (sc)|J |. (C9)

We therefore expand the schedule near the critical point:

Γ(s)=Γ(sc) + Γ′(sc)(s− sc) (C10)

J (s)=J (sc) + J ′(sc)(s− sc). (C11)

We also linearly expand g(s) as

g(s) =
Γ(sc)

|J (sc)J |
+

Γ′(sc)J (sc)− Γ(sc)J ′(sc)
J 2(sc)|J |

(s− sc). (C12)

Let us write (C8) as

i~
|J (t)J |

d

dt
|ψ(t)〉 = −

∑
i

[
g(t)σxi + σzi σ

z
i+1

]
|ψ(t)〉 . (C13)

For this to agree with (C7), we need

t̃ =
1

~

∫ t

|J (t′)J |dt′ =
ta|J |
~

∫ s

J (s′)ds′. (C14)

Substituting (C11) into (C14), near the critical point t̃c we obtain the linear expansion

t̃ = t̃c +
ta|J |
~
J (sc)(s− sc). (C15)

Substituting (C15) into (C3) and equating the coefficient of s with that in (C12), we get

− ta|J |
~τQ
J (sc) =

Γ′(sc)J (sc)− Γ(sc)J ′(sc)
J 2(sc)|J |

. (C16)

Solving for τQ and using (C9), we obtain

τQ =
Γ(sc)ta/~

J ′(sc)/J (sc)− Γ′(sc)/Γ(sc)
= b ta. (C17)

where

b =
Γ(sc)/~

J ′(sc)/J (sc)− Γ′(sc)/Γ(sc)
. (C18)

Equation (C17) is used to generate the data given as “coherent theory” in Fig. 2, with [19]

n̄ =
1

2π
√

2τQ
=

t
−1/2
a

2π
√

2b
. (C19)

For small chains the minimum gap is large and excitation is dominated by a single Landau-Zener transition, with
probability [19]

1− PGS ≈ e−2π3τQ/L
2

= e−ata , (C20)

where

a = 2π3b/L2. (C21)
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Appendix D: Efficient simulation by fermionization

At zero temperature and in the absence of coupling to an environment, the uniform and disordered transverse-field
Ising models (1) are efficiently diagonalizable, and annealing dynamics can be analyzed [19, 48, 49]. These three
papers cover the numerical methods employed. Aside from some details concerning the specific statistics evaluated,
we only give a brief overview of these methods in this appendix. For the general case we might write our Hamiltonian
of interest as

H = −
∑
i

γiσ
x
i +

∑
i

Jiσ
z
i σ

z
i+1 . (D1)

When translated to a fermionic model via the Jordan-Wigner transform σzi = −(ai + a†i )
∏
l<i[1 − 2a†l al] and σxi =

2a†iai − 1 [50], and restricting the basis for consistency with the initial condition (so called anti-periodic boundary
conditions) in quantum annealing, one obtains

H = −
∑
i

γi(2a
†
iai − 1) +

∑
i

Ji(a
†
i − ai)(a†i+1 + ai+1), (D2)

where a and a† are the standard annihilation and creation fermionic operators respectively.
For the disordered case we can simulate dynamics as evolution of complex coefficients, exploiting the Bogoliubov

transformation of ai in the Heisenberg representation:

ai(s) =
∑
m

uim(s)bm + v∗im(s)b†m, (D3)

where b and b† are time-independent fermionic operators that diagonalize the Hamiltonian at the beginning of the
anneal (Ji = 0); s is the normalized anneal duration. The Heisenberg equation for ai(s) leads to the Bogoliubov-de
Gennes equation of the complex coefficients uim and vim:

i~
d

ds
uim(s) = ta

∑
j

(Aijujm(s) +Bijvjm(s)) , (D4)

i~
d

ds
v∗im(s) = ta

∑
j

(
Aijv

∗
jm(s) +Biju

∗
jm(s)

)
, (D5)

where Aij = −2Γiδi,j + Jiδj,i+1 + Ji−1δj,i−1, Bij = Jiδj,i+1 − Ji−1δj,i−1 and AL1 = A1L = BL1 = −B1L = −JL. The
initial condition for uim(s) and vim(s) is given so that H(s = 0) is diagonalized by bm and b†m.

Our main interest in this paper is the evaluation of kink statistics for a smooth evolution of the Hamiltonian with
γi = Γ(s) and Ji = +J (s)J per (1). We also consider the impact of quenched disorder in J as shown in Fig. 3;
disorder in the transverse field is not thought to explain a dominant portion of the deviation between experiment
and theory. The kink operator at site i is Ki = (1 + sign(Ji)σ

z
i σ

z
i+1)/2. For a chain of L couplers, with periodic

boundary conditions as studied in this paper, the operator yielding the density of kinks is n = 1
L

∑
iKi. The full

kink-kink correlation operator at distance r is given by the operator χr = 1
L

∑
iKiKi+r. All of these can be efficiently

represented via the Jordan-Wigner transformation. In practice, assuming the ground state of H(0) as the initial state,
the expectation values of σzi σ

z
i+1 and σzi σ

z
i+1σ

z
i+rσ

z
i+r+1 at time s are given by

〈ψ(s)|σzi σzi+1|ψ(s)〉 = ηi
[
Q(s)P †(s)

]
i i+1

, (D6)

〈ψ(s)|σzi σzi+1σ
z
i+rσ

z
i+r+1|ψ(s)〉 = ηiηi+r

[
−
[
Q(s)P †(s)

]
i i+r+1

[
P (s)Q†(s)

]
i+1 i+r

+
[
Q(s)Q†(s)

]
i i+r

[
P (s)P †(s)

]
i+1 i+r+1

+
[
Q(s)P †(s)

]
i i+1

[
Q(s)P †(s)

]
i+r i+r+1

]
, (D7)

where we define P (s) = u(s) + v(s), Q(s) = v(s)− u(s), ηi = 1 for i = 1, 2, · · · ,L− 1, and ηL = −1. We assume the
periodicity of the site index, i.e., i+ L = i.

For the pure model, or per realization of disorder, we determine the kink rate as n̄ = 〈ψ(s = 1)|n|ψ(s = 1)〉. n̄ can
be compared to experimentally evaluated quantity (3). Similarly we define the kink-kink correlator as

CKK
r =

〈ψ(s = 1)|χr|ψ(s = 1)〉 − n̄2

n̄2
, (D8)
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which is to be compared to the experimentally determined quantity (7). It should be noted that it is sufficient to
approximate the s = 1 result by annealing to the final calibrated schedule point (at s < 1), as shown in Fig. S1;
dynamics at larger s do not lead to evolution of the statistics. Disorder averages of each quantity, after inclusion of
any additional normalization in (D8), are taken by simulating many instances drawn from the disordered distribution
(see Appendix E 2). Disorder in either the transverse field or couplings can be accommodated by the fermionized
model, whereas disorder in the longitudinal field can only be modeled using tensor network methods as described in
Appendix E.

We can efficiently simulate transverse-field Ising model kink statistics and ground state probability throughout the
annealing dynamics, including cases of quenched transverse-field and coupler disorder. These results are found to
be consistent with TEBD (Appendix E), a method relying on a controlled bond-dimension approximation, which is
typically slower but allows generalization for inclusion of longitudinal field perturbations either in the form of quenched
noise or a bosonic bath at finite or zero temperature.

Appendix E: Tensor network methods: Time-evolution block decimation

Matrix product states are an efficient means to represent and evolve quantum Ising spin states subject to local
interactions, and are closely tied to density matrix renormalization group methods, which extend insights to the large
system limit and phase transition phenomena [51–53]. In these frameworks quantum states are represented efficiently
by a sequence of tensors, and system symmetries are exploited when possible.

The evolution of quantum states from a prepared initial condition can involve the growth of quantum correlations.
Using, for example, time-evolution block decimation (TEBD) [54, 55], the tensor size required for exact dynamics can
grow to a scale exponential in the system size. However, it is understood that quantum correlations can be captured
by finite bond dimension in gapped one-dimensional systems, and as such it is possible to represent quantum states
efficiently by bounding the size of the tensors [51]. The parameter bounding the size of the tensors is called the bond
dimension D, and the complexity of a TEBD algorithm scales with this bond dimension. We simulate finite systems
where the gap is finite throughout the anneal, but potentially very small. Nevertheless, we can observe a convergence
of statistics at practically accessible bond dimensions.

Matrix product state and density matrix renormalization group methods have recently been employed for the
modeling of annealing dynamics in one dimensional systems consisting of a transverse-field Ising model coupled to a
bosonic bath at both zero and finite temperatures, for both finite systems and the infinite system limit [28, 56–59].
Coupling to the bosonic bath is handled by use of a quasi-adiabatic path integral (QUAPI) method [60, 61]. Bosonic
degrees of freedom are integrated out and have the effect of inducing a memory in the system, which must itself be
controlled with a second time parameter, as with bond dimension (which can also be bounded at practically accessible
scales). This, in combination with an extension of TEBD called infinite-TEBD (iTEBD), was recently used to simulate
the quantum Ising chain [10, 28]. Statistics may be evaluated at the end of the anneal per the discussion of Appendix
D, where the disorder average is taken where necessary by an average over sampled instances.

1. Simulation without disorder

Let us consider the periodic quantum Ising chain. To apply TEBD, we map the periodic chain to a linear chain
with next nearest neighbor interactions and nearest neighbor interactions at both edges, as shown in Fig. S7. The
corresponding Hamiltonian for the linear chain is given by

H(s) = −Γ(s)

(
L∑
i=1

σxi

)
+ J (s)J

(
σz1σ

z
2 +

L−2∑
i=1

σzi σ
z
i+2 + σzL−1σ

z
L

)
= h12(s) +

L−2∑
i=1

hii+2(s) + hL−1L(s), (E1)

where hij is defined, for convenience, as

hij(s) = −Γ(s)
1

2

(
σxi + σxj

)
+ J (s)Jσzi σ

z
j . (E2)

In order to simulate the unitary time evolution of a quantum Ising chain within the framework of matrix product
states, we discretize the time as t = l∆t with a small time width ∆t and decompose the time-evolution operator from
t = 0 to t = ta = M∆t into a product of Trotter slices:

U(ta, 0) ≈ e−iH((M−1)∆t/ta)∆t · · · e−iH(∆t/ta)∆te−iH(0)∆t. (E3)
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FIG. S7. Mapping of a periodic chain to a linear chain. Dots and solid lines show spins and bonds between spins, respectively.
A periodic chain with nearest neighbor interactions is mapped to a linear chain with next nearest neighbor interactions and
nearest neighbor interactions at both edges.

Each Trotter slice is decomposed into a product of local operators:

e−iH(l∆t/ta)∆t ≈ U12U13 · · · UL−2LU2
L−1LUL−2L · · · U13U12, (E4)

where Uij ≡ e−ihij(l∆t/ta) ∆t
2 . Note that the (l∆t/ta)-dependence in Uij is omitted to simplify the notation. We

consider the time evolution of the state from |ψ〉 to |ψ′〉 = e−iH(l∆t/ta)∆t|ψ〉 by using Eq. (E4). We apply the local
operators Uij one by one from the rightmost U12 to the leftmost U12. The right and left half parts of Eq. (E4) lead
the right- and left-ward moves, respectively. For the right half part, let

|ψ(1)
→ 〉 = U13U12|ψ〉, |ψ(k)

→ 〉 = Ukk+2|ψ(k−1)
→ 〉 for k = 2, 3, · · · ,L− 2, and |ψ(L−1)

→ 〉 = UL−1L|ψ(L−2)
→ 〉. (E5)

and for the left half part,

|ψ(L)
← 〉 = UL−1L|ψ(L−1)

→ 〉, |ψ(k)
← 〉 = Uk−1k+1|ψ(k+1)

← 〉 for k = 2, 3, · · · ,L− 1, and |ψ′〉 = U12|ψ(2)
← 〉, (E6)

where the arrows indicate a right or left move.
We now introduce a matrix product representation of |ψ〉. Using the computational basis |σ1σ2 · · ·σL〉 diagonalizing

σzi ∀i, we write |ψ〉 =
∑
σ1,σ2,··· ,σL

ψσ1σ2···σL
|σ1σ2 · · ·σL〉 with

ψσ1σ2···σL
=

∑
q2,··· ,qL−1

ψσ1q2v
(2)
q2;σ2q3v

(3)
q3;σ3q4 · · · v(L−1)

qL−1;σL−1σL
. (E7)

As mentioned above, the bond dimension D corresponds to the size of matrices v
(l)
q;σq′ for a fixed σ and can be kept

finite even for L→∞ in the ground state of a one-dimensional gapped spin chain. On the basis of this expression, we
apply the slice of time-evolution operator in Eq. (E4) to |ψ〉. First, we focus on |ψ(2)

→ 〉 = U24|ψ(1)
→ 〉 = U24U13U12|ψ〉.

This can be wrtten as

|ψ(2)
→ 〉 =

∑
σ1,σ2,··· ,σL

∑
q5,··· ,qL−1

Ψ(2)
σ1σ2σ3σ4q5v

(5)
q5;σ5q6 · · · v(L−1)

qL−1;σL−1σL
|σ1σ2 · · ·σL〉, (E8)

where Ψ(2) is defined as

Ψ(2)
σ1σ2σ3σ4q5 :=

∑
σ′1,σ′2,σ′3,σ′4

∑
q2,q3,q4

[U24U13U12]σ1σ2σ3σ4;σ′1σ
′
2σ
′
3σ
′
4
ψσ′1q2v

(2)
q2;σ′2q3

v
(3)
q3;σ′3q4

v
(4)
q4;σ′4q5

(E9)

with [O]σ1σ2σ3σ4;σ′1σ
′
2σ
′
3σ
′
4

denoting a matrix element of an operator O. Regarding Ψ(2) as a rectangular matrix with

the column index (σ1,σ2) and the row index (σ3,σ4, q5), the singular value decomposition of Ψ(2) yields

Ψ(2)
σ1σ2σ3σ4q5 =

∑
p

u(2)
σ1σ2;pλ

(2)
p v(2)

p;σ3σ4q5 , (E10)

where u(2) and v(2) are unitary matrices, and λ
(2)
p stands for the singular value. Letting ψ

(2)
pσ3σ4q5 := λ

(2)
p v

(2)
p;σ3σ4q5 , one

obtains a matrix product representation of Eq. (E8):

|ψ(2)
→ 〉 =

∑
σ1,σ2,··· ,σL

∑
p2,q4,··· ,qL−1

u(2)
σ1σ2;p2ψ

(2)
p2σ3σ4q5v

(5)
q5;σ5q6 · · · v(L−1)

qL−1;σL−1σL
|σ1σ2 · · ·σL〉. (E11)
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Repeating the application of Uii+2 and the singular value decomposition, one obtains a matrix product state of the
form:

|ψ(L−1)
→ 〉 =

∑
σ1,σ2,··· ,σL

∑
p2,p3,··· ,pL−2

u(2)
σ1σ2;p2u

(3)
p2σ3;p3 · · ·u(L−2)

pL−3σL−2;pL−2
ψ(L−2)
pL−2σL−1σL

|σ1σ2 · · ·σL〉. (E12)

The leftward move can be calculated using the same procedure. Repeating the application of Ui−2 i and the singular
value decomposition, one arrives at

|ψ′〉 =
∑

σ1,σ2,··· ,σL

∑
q3,q4··· ,qL−1

ψ′σ1σ2q3v
(3)
q3;σ3q4v

(4)
q4;σ4q5 · · · v(L−1)

qL−1;σL−1σL
|σ1σ2 · · ·σL〉, (E13)

where we note that v
(k)
q;σq′ is a unitary matrix yielded by the singular value decomposition and is different from the

one in Eq. (E7) in general. We remark here that the range of p and q in the matrices u
(k)
pσ;p′ and v

(k)
q;σq′ is bounded by

the bond dimension D we provide in the simulation. This means that, assuming a descending order of the singular
values, we keep at most the largest D singular values to express the wavefunction.

In the present work, we studied L = 256 chains by the present TEBD method with the bond dimension ranging
from D = 8 to 32. The width of the Trotter slice is fixed at ∆t = 0.01.

2. Simulation with disorder

To add disorder to the Hamiltonian (1) we first reformulate the Hamiltonian more explicitly as

H(s) = −Γ(s)

(∑
i

σxi

)
+ J (s)

(∑
i,j

Jijσ
z
i σ

z
j +

∑
i

hiσ
z
i

)
, (E14)

where nominally (i.e., with no disorder) the coupling terms Jij are all identical and the local longitudinal field terms
hi are all zero. We apply a naive model of disorder in the classical part of the Hamiltonian, in which the terms are
perturbed:

Jij ← J +N (0,σ) (E15)

hi ← N (0,σ) (E16)

where N (µ,σ) is a Gaussian variable with mean µ and standard deviation σ. In Fig. 3 we used J = −1.4 and σ = 0.05.
To model the same absolute level of noise with smaller coupling strength, for other values of J we use σ = 0.05∗1.4/J .
We thus expect disorder to increase with J decreasing below 1.4.

Fig. S8 shows kink-kink correlators from TEBD with 5% and 10% disorder at J = −1.4, with varying bond
dimension.

Fig. S9 shows kink-kink correlators generated using TEBD with these levels of disorder, with bond dimension
D = 20. Although this is only a naive model of the effects of noise in the QA processor, it shows good agreement
with QA experiments shown in Appendix F.

Appendix F: Additional QA data

All data shown in this section are for L = 512.
Fig. S10 shows kink densities n̄ for a range of coupling strengths, temperatures, and anneal times. Theoretical

values for T = 0 are calculated using Eq. (C19).
Fig. S11 shows the first three cumulants of the kink probability distribution, as in Fig. 2c, for a range of parameters.
Fig. S12 shows kink-kink correlators for QA at a range of J and T , generalizing the data shown in Fig. 3. Temper-

ature has minimal impact on correlations, but coupling strength has a significant impact. This suggests that disorder
plays a major role in suppressing the correlator peak, while temperature does not.

Fig. S13, with J = −1.4, shows correlators for longer anneal times, where the positive peak disappears. Since
temperature has very little impact on these results, it is unlikely that decoherence drives this peak suppression.
Among the likely contributing factors are disorder and diffusion. Disorder will play an increasingly important role for
slow quenches because correlation length grows. Diffusion is likely to occur late in the anneal, between the critical
point and the freezing of qubit dynamics.
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FIG. S8. Kink-kink correlators for varying bond dimension. TEBD is run on systems with no disorder (top) and with
σ = 0.05 (middle) and 0.10 (bottom) disorder added to h and J with J = −1.4; see Eqs. (E15) and (E16). Bond dimension
varies from 32 to 12. As in QA experiments, error bars represent 95% confidence intervals from a bootstrap across 300 disorder
realizations per experiment.

Fig. S14 shows correlators for a range of bond dimensions at two short anneal times, as well as the QA data for
these anneal times at different temperatures. The QA data at ta = 4.8 ns are slightly above ta = 7.3 ns. The TEBD
results exhibit a reversal in this trend at D = 20 and 5% disorder. For D < 20 the ta = 4.8 ns TEBD curve is
below the ta = 7.3 ns curve, opposite from the QA data. Hence we conclude that D = 20 is a lower bound on the
bond dimension appropriate for describing the QA data. While bond dimension only provides an upper bound on the
entanglement entropy, it is not unreasonable to conclude that this result also sets a lower bound on entanglement in
the experiment, since the bond dimension is also an estimate of the Schmidt number of the state [62].
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