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Transferring quantum states efficiently between distant nodes of an information processing circuit is of

paramount importance for scalable quantum computing. We report on an observation of a perfect state transfer

protocol on a lattice, thereby demonstrating the general concept of transporting arbitrary quantum information

with high fidelity. Coherent transfer over 19 sites is realized by utilizing judiciously designed optical structures

consisting of evanescently coupled waveguide elements. We provide unequivocal evidence that such an approach

is applicable in the quantum regime, for both bosons and fermions, as well as in the classical limit. Our results

illustrate the potential of the perfect state transfer protocol as a promising route towards integrated quantum

computing on a chip.

DOI: 10.1103/PhysRevA.87.012309 PACS number(s): 42.50.Ex, 03.67.Lx, 05.60.Gg, 42.82.Et

Quantum computers promise unprecedented levels of

computational power over those anticipated from classical

systems [1–3]. To fulfill this potential, a key milestone in the

development of quantum computing is the coherent transfer

of states between numerous qubits in an extended circuit. A

major challenge therein is that typically the actual carriers of

information do not physically move, irrespective of whether

the computational devices are implemented in ionic [4–6],

solid state [7,8], or superconducting systems [9,10]. Although

there are suggestions for moving ions [11], this concept usually

leads to substantial complications and may not be feasible in

many settings. Hence, the transfer of quantum states across a

static information system is nowadays considered by many as

the protocol of choice on these platforms.

The efficacy of any transfer procedure is measured by the

fidelity F, with perfect transfer corresponding to F = 1. In a

classical (incoherent) protocol, the best transfer possible can

be achieved by first measuring the state, and subsequently

communicating the result, thus allowing reconstruction of the

initial state at a distant site. In this case, the fidelity can

never exceed the well-known limit of 2/3 or 67%. In order

to surpass this bound, the transport protocol must demand

that coherence should be maintained throughout the transfer

process. A straightforward approach to satisfy this latter

requirement is to use a sequence of gates capable of switching

adjacent qubits (so called SWAP gates) [12]. In theory, the

short-range interaction in such architectures is sufficient to

support long-range coherent transport. In reality however,

apart from practical issues pertaining to the control of a large

number of distinct SWAP gates, the effects from even minute

imperfections tend to accumulate, thus resulting in a drastic

degradation of the quality of the input state. To illustrate the

*These authors contributed equally to this work.
†demetri@creol.ucf.edu

extent of the aforementioned challenge, even if the efficiency

of a single gate is 98%, after a sequence of only twenty such

gates, the quality of the input state will be degraded below the

classical threshold.

Recent theoretical advances have demonstrated that if

coherence can be maintained across many qubits, the transfer

of quantum states can be obtained much faster, more robustly,

and with less active intervention [12]. Indeed, such a protocol

can achieve high-fidelity transfer by merely manipulating the

coupling mechanism between adjacent qubits in a chain. In

such an architecture, it is sufficient to pre-engineer the inter-

action Hamiltonian so that the intrinsic dynamics themselves

facilitate the transfer of the state. The only action one needs to

impose on the system can be performed ahead of the transfer

process, thus enabling the minimization of detrimental cou-

plings to the environment. In other words, after supplying the

state at the input port, it just has to be retrieved from the output.
Initial proposals concentrated on evaluating the efficacy of

a chain of spins subject to a uniformly coupled Heisenberg
Hamiltonian [13]. For such Hamiltonians, perfect quantum
state transfer is only possible for two or three qubits [14].
Subsequently it was found that perfect state transfer can
be achieved even for arbitrarily long chains provided the
couplings between neighboring sites can be appropriately en-
gineered [15]. Thereafter, a plethora of theoretical results have
described how these transfer protocols could be implemented
in every conceivable scenario (see, for example, [16,17] and
references therein). However to date, experimental realizations
of such schemes have only been reported in the token case of
a chain of three qubits using magnetic resonance [18].

Here, we report an experimental demonstration of a genuine

long-range coherent transport. We generalize the perfect

quantum state transfer to another physical platform: light in

evanescently coupled waveguides, so-called photonic lattices

[19]. In fact, different configurations of optical waveguides

have been employed in several investigations for the re-

alization of quantum circuits and simulations of quantum
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walks [20–22]. Our proposed mechanism has a one to one

correspondence with that in a spin chain; each qubit is

represented by a distinct lattice site, in our case the individual

waveguides, and the presence or absence of a photon at a

given site corresponds to the |1〉 and |0〉 states of the qubit.

Importantly, the carriers of information, in our arrangement

the individual waveguide elements, remain static during the

transport process. A major advantage of our approach is that

the time evolution of the qubits is mapped onto a spatial

coordinate along the waveguides, allowing a direct observation

of evolution dynamics. We measure a transfer fidelity of 84%

through a system of 19 waveguides, thus proving the existence

of long-range coherence in this optical array network. Even

though no information is encoded in the photons themselves

or in their quantum statistics, the underlying dynamics in

these fully photonic lattices are formally identical to those

occurring in a spin state transfer configuration. In addition,

we study two-photon correlations, exhibiting bunching and

antibunching behavior, thereby highlighting the differences

between a bosonic and a fermionic state transfer system arising

in the quantum regime.

In general, perfect coherent quantum transport requires

a lattice of coupled qubits described by the fermionic spin

Hamiltonian [13]:

H =
1

2

N−1
∑

n=1

Jn(XnXn+1 + YnYn+1), (1)

where Xn and Yn represent the Pauli matrices acting on qubit

n, N is the total number of sites or qubits involved in the

spin chain, and the hopping parameter Jn denotes the rate

at which an excitation could couple from one site to another

[see Fig. 1(a)]. In this spin system, the probability amplitude

α(t) associated with qubit n evolves in time according to the

FIG. 1. (Color online) Parallel correspondence between

(a) Heisenberg spin chains and (b) waveguide arrays. In (a)

spin-1/2 particles in the state | ↑↓ . . . ↓〉 involving nearest-neighbor

interactions Jn. In (b) an array of optical waveguides with evanescent

nearest-neighbor coupling Jn. In (a) the vertex spin has been flipped

up whereas in the waveguide system (b) it is represented by photons

being launched into the first waveguide element.

Schrödinger equations

i
dα1

dt
= J1α2,

i
dαn

dt
= Jnαn+1 + Jn−1αn−1, (2)

i
dαN

dt
= JN−1αN−1,

(h̄ = 1). The condition for perfect state transfer after time tf
implies that |αN+1−n(tf )| = |αn(t0)| and can only be achieved

provided that JN−n = Jn [16]. In fact, equidistant spacing of

the eigenvalues of the Hamiltonian by integer multiples of

π/tf is a direct consequence of this latter requirement [16].

Based on these fundamental principles, one can relate the spin

Hamiltonian of Eq. (1) to the x component of the angular

momentum rotation matrix of a spin (N − 1)/2 particle, re-

sulting in the coupling condition Jn = π
√

n(N − n)/2tf [15].

Any initial one-site excitation state is perfectly transferred

from qubit n to N − n + 1 after a time tf , and experiences

perfect revivals after 2tf , up to a global phase. This specific

set of hopping parameters has been considered in numerous

contexts [15,17,23,24], with potential applications outlined in

yet more [25,26]. Even more importantly, it also turned out

that the Hamiltonian (1) along with the coupling condition is

the quintessential example of a perfect state transfer since it

optimizes a variety of parameters [16,27]. For instance, the

transfer in this chain is robust to imperfect timing, that is, the

fidelity of the transport is only marginally degraded at some

deviation from tf . This robustness makes this arrangement

superior to SWAP gates, where the fidelity can drop to zero

even at a small deviation from the transfer time. Additionally,

for a given maximum coupling strength, a chain designed

based on the Jn coupling condition is known to exhibit the

shortest possible transfer time, which is twice as fast as a

sequence of SWAP gates of the same maximum strength [27].

A perfect state transfer in such a time unequivocally proves the

presence of long-range coherence for timescales on the order

of tf .

Although the Hamiltonian (1) was originally proposed for

fermionic qubits, its structure suggests that it could also be

physically realizable in bosonic chain arrangements. In this

work, we have implemented such a system using photonic

lattices, where the coherent transport of light exhibits identical

intrinsic dynamics as in fermionic spin chains. The formal

analogy between these two systems is illustrated in Figs. 1(a)

and 1(b). To this end, we use the aforementioned array

of evanescently coupled waveguides obeying the parabolic

distribution for the coupling coefficients between nearest-

neighbor elements. In these waveguides, each photon evolves

independently along the waveguides [28], obeying a set of

Heisenberg equations that are entirely analogous to equations

(2) except that here the creation operators a
†
n (as opposed

to probability amplitudes) now evolve along the spatial

propagation coordinate Z in every waveguide. Hence, in order

to achieve perfect state transfer in this configuration, the corre-

sponding coupling matrix must follow the angular momentum

rotation matrix, i.e., (Jx)m,n = f (n)δn,m+1 + f (n − 1)δn,m−1

with f (n) = π
√

n(N − n)/2zf , whereby in our case zf

represents the distance for perfect transfer.

012309-2
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The eigenvectors of this particular Heisenberg spin lattice

can be analytically obtained and are given by

um
n =

(

2zf

π

)− 1
2

(N+1)+n
√

(n − 1)! (N − n)!

(m − 1)! (N − m)!

×P
(m−n,N−m−n+1)
n−1 (0) , (3)

where the functions P
(m−n,N−m−n+1)
n−1 (0) represent Jacobi

polynomials of order (n − 1), evaluated at the origin. The

eigenvalues λm are distributed equidistantly within the interval

[−π (N − 1)/2zf ,π (N − 1)/2zf ] in steps of π/zf . Using

the eigenvectors and the corresponding eigenvalues, one can

then obtain the probability amplitudes, over the entire lattice

at distance Z, for any single photon excitation, �(Z) =
∑N

r=1 Cru
(r) exp(iλrZ), where Cr = (u(r))† · �(0). In general,

the input-output states are related through the evolution

matrix, a
†
p(0) =

∑N
n=1 T ∗

p,n(Z)a
†
n(Z), with T ∗

p,n(Z) denoting

the Hermitian conjugate of the (p,n) matrix element within

the unitary transformation

Tp,q (Z) =
N

∑

r=1

u(r)
q u(r)

p exp (iλrZ) . (4)

The probability of detecting a photon at waveguide p, when

launched at q, is given by the photon density Pp,q(Z) =
〈a†

pap〉 = |Tp,q(Z)|2. Since at integer values of revival dis-

tances Z = 2zf s (s being an integer) the matrix elements

collapse to Tp,q = eiφδp,q , then Pp,q indicates that revivals

of probability will periodically occur in these systems irre-

spective of the total number of waveguide elements contained

in the array or the initial site of excitation. On the other hand, at

Z = 2zf the unitary transformation leads to Tp,q(Z = 2zf ) =
±δp,q , with the upper sign +1 corresponding to N being an

odd number while the lower sign −1 to N being even. In other

words, if the eigenvalues are odd multiples of π/2zf (N even)

any initial state will exhibit perfect revivals at distances that

are multiples of Z = 4zf , whereas for eigenvalues being even

multiples of π/2zf (N odd) the states will spatially revive at in-

teger multiples of Z = 2zf . Therefore, any one-site excitation

state |ψin〉 = |0, . . . ,1n, . . . ,0〉 will be perfectly transformed

(or transferred) into the state |ψout〉 = |0, . . . ,1N−n+1, . . . ,0〉
after a distance zf . For example, when a single photon is

launched into waveguide n = 1, Eq. (4) implies that the fidelity

of detecting it at waveguide n is given by

F1,n =
(

N − 1

n − 1

)[

cos

(

πZ

2zf

)]2(N−n) [

sin

(

πZ

2zf

)]2n−2

.

(5)

Interestingly, the single-photon approach even works in the

regime of many photons—each photon must independently

be transferred through the lattice provided that long range

coherence is present in the system. In this vein, perfect state

transfer for optical excitations can therefore be achieved also

in the case of purely classical light.

In order to perform our experiments, we have implemented

such spin-inspired waveguide arrays in bulk fused silica

by employing direct femtosecond-laser inscription [29]. The

coupling coefficients Jn depend directly on the interwaveguide

separation dn. Hence, the required parabolic coupling distri-

bution can be achieved by choosing dn accordingly. Using the

parameters given in Appendix A, we inscribed a photonic

lattice with N = 19 waveguide elements, having a length

of L = 10 cm. Linearly polarized light at λ = 633 nm was

injected into the lattice and was indirectly observed in the

sample using fluorescence microscopy (Fig. 2).

In Fig. 3(a) we present the experimental demonstration

of perfect state transfer over 19 lattice sites, when light is

launched into waveguide n = 1 and coupled out of waveguide

n = 19. The simulations [Fig. 3(e)] fully confirm our observa-

tions. These results clearly demonstrate the coherent character

of the long-range transport of photon-encoded qubits which

are initialized into the relevant waveguide elements (acting

as qubits). Quantitatively, the transfer fidelity [30] over the

entire lattice is found to be 82% at a transfer distance of

zf = 94 mm, i.e., 82% of the output light is observed in the

intended waveguide. This value is below that anticipated from

perfect transfer due to a variety of effects, but is nevertheless

well in excess of the classical probability of success, 67%

(see Appendix B for an error analysis). In this vein, transfers

over arbitrarily long distances can be implemented just by

increasing the transverse size of the array. As all waveguides

are identical, and merely the coupling varies across the

lattice, an increase of the system size has no influence on

FIG. 2. (Color online) Experimental setup: Light from a 633 nm laser source is coupled into the waveguide array. The intensity evolution is

observed from the top via fluorescence from color centers, whereas the output intensity distribution is directly imaged onto a charged-coupled

device (CCD).
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FIG. 3. (Color online) Transfer of a single-site excitation. (a)–(d) Experimental fluorescence images of the intensity evolution and near-field

images of the output facet after cleaving the device at zf = 94 mm from light injected into the 1st, 2nd, 18th, and 19th waveguide elements,

and (e)–(h) the corresponding theoretical dynamics.

the single-mode property of the individual guides. A striking

feature of perfect state transfer offered by the spin Hamiltonian

is that an input state not only can be transferred from qubit 1 to

N , but also from any other qubit n to N − n + 1, i.e., perfect

transport is not necessarily constrained to the two boundaries

of the lattice. We experimentally demonstrate this process in

Figs. 3(b) to 3(d) where light is launched into waveguides 2,

18, and 19 and is retrieved from the output at waveguides 18, 2,

and 1. For the nonboundary excitation the transfer fidelity was

found to be 72% and 74%, respectively, whereas it reaches 84%

for the 1 ↔ 19 excitation, surpassing the classical threshold

in each case. In all cases, our experimental data is fully

supported by simulations, shown in Figs. 3(f) to 3(h). Note

that the primary physical reasons for the observed deviations

from the ideal behavior are merely due to positioning and

excitation inaccuracies, whereas full coherence is maintained

(see Appendix B). Furthermore, since propagation losses in our

system are approximately 0.5 dB/cm and because they can be

as low as 0.05 dB/cm [31], such waveguide configurations are

actually suitable for single photon experiments.
A notable difference between an actual spin chain exper-

iment and our optical implementation lies in the exchange
symmetry of the excitations. In the present case we are

dealing with bosonic entities whereas the excitations of a
spin Hamiltonian are fermionic in nature. This fundamental
difference is reflected in the arrival statistics of multiparticle
experiments. To this end, we examine the correlation function

Ŵm,n = 〈a†
ma

†
nanam〉 [28] which measures the probability for

a pair of excitations arriving on sites m and n, with each
one being initialized at the extreme channels 1 and N . We
here focus our attention on a distance corresponding to half
the state transfer length zf /2, i.e., when the effect is most
marked since both excitations are expected to “collide.” The
qualitative pattern of the correlation distribution depends
on the parity of the chain (whether N is even or odd);
therefore we compare the cases N = 21, 22. Figures 4(a)
and 4(b) present the calculated correlations for a fermionic
spin chain, whereas the corresponding results for photons
are shown in Figs. 4(c) and 4(d). As clearly visible, the
only difference in their respective correlations lies in their
exchange statistics: Spin excitations can only be registered in
output configurations where the difference of their positions
is odd,

Ŵm,n =

{

1
22N−4

(

N−1

m−1

)(

N−1

n−1

)

n − m : odd

0 n − m : even,
(6)

012309-4
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FIG. 4. (Color online) Correlation matrices Ŵm,n corresponding

to lattice systems having an odd (left) or even (right) number of

elements. Theoretical comparison between (a), (b) fermionic and (c),

(d) bosonic correlations when the two edge sites are excited. (e),

(f) Experimentally obtained correlations using classical randomized

sources emulating separable single photon states injected at the two

edge sites of these arrays. All results are obtained at zf /2.

whereas for bosons it must be even,

Ŵm,n =

{

0 n − m : odd

1
22N−4

(

N−1

m−1

)(

N−1

n−1

)

n − m : even.
(7)

Experimentally, the bosonic interference can be emulated

by the interference of classical light beams with a random

relative phase [32]. In our setup, we launch two mutually

coherent laser beams of equal amplitude and random rel-

ative phase into the waveguides and measure the classical

intensity correlation or degree of second-order coherence

Ŵc
m,n = Ŵm,n + Im,1In,1 + Im,NIn,N , where In,1 is the intensity

of light output from waveguide n when input to waveguide

1 and so on. The last two terms in this expression can be

experimentally measured and subtracted in order to obtain

the bosonic correlation matrix Ŵn,m. While these two-photon

correlations are independent of the phase 
, the intensities

I are not, and the sought after correlation can be observed

only after averaging over 
 [32]. In this experiment, we

used coherent light with λ = 800 nm and averaged over 60

realizations of 
. The results of this experiment are depicted

in Figs. 4(e) and 4(f), where the statistics clearly reflect the

bosonic nature of the excitations used.

In conclusion we have shown that by appropriately exploit-

ing the internal quantum dynamics of such a spin-inspired

optical lattice, quantum states can be coherently transported

across the functional region of an information processing

device. This in turn yields significant advantages over previous

strategies and provides an essential cornerstone for developing

larger quantum computing devices. In this experimental work,

we have explored the general concept of corruptionless

quantum state transfer, and we have demonstrated a high

fidelity transfer through a large chain. Our results indicate

that perfect state transfer protocols can provide a promising

avenue towards distributed and integrated quantum computing

on a chip.

A.S. thanks the German Federal Ministry of Science ad

Education (Center for Innovation Competence Program, Grant

No. 03Z1HN31) and the German Research Foundation. R.K. is

supported by the Abbe School of Photonics. A.K., L-C.K., and

B.M.R-L. acknowledge support from the National Research

Foundation and Ministry of Education of Singapore.

APPENDIX A: IMPLEMENTATION OF THE WAVEGUIDE

ARRAY AND THE COUPLING DISTRIBUTION

The waveguide lattices were inscribed using femtosecond

laser techniques [29]. To produce the state transfer array

sample, the coupling parameters must be determined. To this

FIG. 5. (Color online) Measured coupling-distance dependence used for the state transfer experiment at 633 nm. The data points in (a)

show the waveguide separations as programed into the fabrication stage, while the points in (b) were obtained by measuring the actual positions

with a microscope.
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TABLE I. Comparison of intended waveguide separations dI on the state transfer system with those actually fabricated dF . All distances

are in μm.

Left-most waveguide Dummy 1 2 3 4 5 6 7 8 9

dI 17 18.12 16.59 15.76 15.22 14.85 14.59 14.42 14.3 14.25

dF 16.6 18.3 18.8 15.8 14.6 14.3 15 14.3 14 14

Left-most waveguide 10 11 12 13 14 15 16 17 18 19

dI 14.25 14.3 14.42 14.59 14.85 15.22 15.76 16.59 18.12 17

dF 14.9 13.7 14 14.9 15.1 14.5 15.1 16.7 18.1 17.3

end, a series of optical directional couplers were fabricated

using a laser pulse energy of 200 nJ, at a repetition rate of

100 kHz, using a pulse duration of 140 fs and a writing

velocity of 90 mm/min. Figure 5(a) shows the measured

coupling strengths Jn at a wavelength of λ = 633 nm and

for light polarization in the chip plane vs the interwaveg-

uide distance dn programed into the positioning system.

We fitted this dependence with the following exponential

distribution Jn = J1 exp(−[dn − d1]/κ), where the required

constants were found to be d1 = 18.1 μm and κ = 4.81 μm

at J1 = 0.67 cm−1. The above value for J1 was chosen to yield

an ideal transfer in a waveguide lattice with N = 19 elements

and of length L = zf = 10 cm. The distance distribution

dn = d1 − κ ln(
√

n(N − n)/(N − 1)) was then imposed on the

transfer lattice fabricated with the same parameters in order to

obtain the required coupling distribution for the spin photonic

lattice.

APPENDIX B: ERROR ANALYSIS

The experimental setup which is used to inscribe the

waveguides in silica (which in the actual transfer lattice

will be separated by distances within the range 14–18 μm)

has a positioning accuracy of about 0.5 μm. This affects

our results in two stages: The interwaveguide spacing of

the directional couplers used to obtain the coupling-distance

dependence deviates from the intended values resulting in

slightly biased distance parameters for the fabrication process.

Second, the waveguide positions in the state transfer lattice

deviate again from the calculated values, thus affecting the

coupling. Postmanufacture, the waveguides can be examined

under a microscope, and the true separations can be determined

more accurately. For the directional couplers, this yields a

clean exponential fit for the coupling vs distance dependence

[Fig. 5(b)]. With these updated values one can determine the fit-

ting values κ = 4.63 μm and d1 = 18 μm at J1 = 0.67 cm−1.

Given that we implemented our system based on these values,

this leads to a reduction in fidelity of approximately 5.7%. The

accuracy in positioning the waveguides in the state transfer

lattice itself is shown in Table I, which compares the intended

separations with those produced. This effect is associated

with an additional error of 4.6%. With this understanding of

the occurring positioning imperfections, amounting to a total

fidelity reduction of about 10%, we expect that in principle

these effects could be compensated for in future attempts. An

examination of the waveguide separation indicates that, within

the measurement precision of 0.2 μm, the spacing between

the waveguides did not change along the Z length of the

sample (which would translate into a time-varying coupling

strength).

Due to fabrication induced stress fields in the host material,

the outermost waveguides of the array were found to exhibit

slightly different coupling properties. In order to minimize

these effects, we inscribed one additional, “dummy” waveg-

uide at either end of the array, which was significantly detuned

from the other waveguides. Hence, the interaction with these

dummy elements was in fact negligible. From fluorescence

readings, we were able to extract the degree of detuning to be

8.7 cm−1, which is much larger than the coupling strengths in

FIG. 6. (Color online) Comparison of experimental data (lower

curve) with theoretical predictions for both an ideal system (upper

curve) and the one produced (middle curve, utilizing postproduction

identification of system parameters) in selected waveguides. In

each case, intensity is plotted as a function of the position along

the sample, Z, which corresponds to time in a spin chain. Light

was injected in waveguide 1. The intensity is normalized, with

unity indicating that all the light is contained in the corresponding

waveguide. The vertical line depicted on the second column, lowest

row symbolizes the optimum transfer distance zf = 94 mm. Note

that in every case the middle curve and the upper curve have an

offset of 0.1 and 0.2, respectively.
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the lattice, but nevertheless finite. In isolation, this remaining

interaction reduces the transfer fidelity by 2%. The laser used to

illuminate the waveguides had a Gaussian profile. Therefore,

while most of the incident light impinged on the intended

waveguide, a fraction was incident on neighboring waveguide

channels, also affecting the fidelity of the system. A theoretical

fit of the experimental results shows that this amounts for

4.7% of the incident light. We emphasize that this is not a

fundamental limitation of the state transfer system itself, but

a practical issue related to preparing the initial state. These

three effects combined account for about a 17% loss in fidelity

for an excitation of the boundary and are the major sources of

imperfections in our system.

Our choice of the 633 nm wavelength laser enabled the use

of fluorescence schemes in order to observe from the top the

light intensity along the length of the sample, instead of just

detecting it at the output. While this benefits our comparison

to the theoretical results (including the error analysis), it also

implies that a substantial amount of photon loss is present

throughout the sample.

In subsequent data processing, we have therefore renor-

malized the system so that the light intensity per unit distance

in the Z direction is constant. The postselection upon arrival

does not detract from the realization of the spin chain which

is meant to be lossless. However, the fluorescence information

exhibits saturation effects (particularly at large intensities) and

is relatively susceptible to background noise, making the data

obtained from the near-field images of the intensity pattern at

the end of the sample the most reliable for calculating transfer

fidelities. From the output of the 100 mm long sample, we

have initially obtained a transfer fidelity of 76% from port to

port (74% in the reverse direction).

Timing errors can also potentially have a large impact—the

arrival intensity in the outermost waveguides (in the ideal case)

can be expressed as

F1N = FN1 =
[

sin

(

πZ

2zf

)]2(N−1)

, (B1)

which is tightly focused at zf for large N . Having originally

made the sample slightly too long, we were able to cut back

along Z in order to find the optimal point of transfer, at 94 mm

(see Fig. 6). Cleaving the sample, and measuring the output

intensities there, yielded an improved transfer fidelity of 82%

for the transfer occurring from site 1 to N = 19 whereas in the

opposite direction the fidelity reached 84%. This illustrates one

of the many benefits of premanufacturing a state transfer chain

rather than dynamically generating the same effect. In other

words one can perform these tests and determine the optimum

length in view of the other experimental imperfections that

have arisen in the system. In Fig. 6, we compare the (renormal-

ized) experimental data with the simulated evolution based on

subsequent measurements that determined more accurately the

positioning of the waveguides and their interaction strength.

Clearly, this good agreement bodes well for future experiments

in which these errors can be better controlled. Indeed, our

theoretical model suggests that even in the current system,

with perfect initial state preparation, at the optimum length, it

will be possible to achieve a fidelity in excess of 93%.
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