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Abstract. The category of left modules over right coherent rings of finite
weak global dimension has several nice features. For example, every left mod-
ule over such a ring has a flat cover (Belshoff, Enochs, Xu) and, if the weak
global dimension is at most two, every left module has a flat envelope (Asensio,
Mart́ınez). We will exploit these features of this category to study its objects.

In particular, we will consider orthogonal complements (relative to the
extension functor) of several classes of modules in this category. In the case
of a commutative ring we describe an idempotent radical on its category of
modules which, when the weak global dimension does not exceed 2, can be
used to analyze the structure of the flat envelopes and of the ring itself.

1. Introduction

Throughout this paper, R is an associative ring with identity and module means
left R-module. Flat covers and flat envelopes of modules have been extensively
studied since they where introduced in [6], although the determination of the rings
for which each module possess a flat cover (resp. envelope) is still an open problem.
Nevertheless, we know that flat covers exist over right coherent rings of finite weak
global dimension [3] and, restricting the value of that dimension to at most two, we
have also guaranteed the existence of flat envelopes with the additional property
that the associated diagrams can be completed in a unique way [2].

In Section 2, we use some properties of these covers and envelopes to study the
modules M such that Ext1R(M,−) (resp. Ext1R(−,M)) vanishes over the class F of
all flat modules. The modules M with Ext1R(F,M) = 0, called cotorsion, have been
successfully used in the study of flat covers ([3],[14]), and our main concern in this
paper will be with the condition Ext1R(M,F) = 0 and its relation to flat envelopes.
In this way, we consider in Section 3 the modules M such that HomR(M,F) = 0
and Ext1R(M,F) = 0 (called ϕ-torsion modules). For commutative coherent rings
of finite weak global dimension, they form a torsion class which is shown to be
hereditary when the weak global dimension does not exceed 2. This is done in
Section 4, where we use this fact to show that monomorphic flat envelopes must be
essential. If the ring is furthermore local, a description is given of the flat envelopes
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of ideals in terms of greatest common divisors of their elements, which, together
with the previous results, is employed to give some light in the description of the
structure of such rings.

Troughout the paper we write wd(R) for the weak global dimension of the ring
R and fdR(L) for the flat dimension of the module L. Also, we shall denote the
category of left R-modules by RMod and write ExtR(A,B) instead of Ext1R(A,B).

2. Orthogonal complements

Let M be a module. A flat preenvelope ofM is a homomorphism f : M → F such
that the module F is flat and, for any other homomorphism g : M → G with G flat,
there exists a third homomorphism h : F → G such that g = h ◦ f . If, moreover,
any endomorphism h of F such that f = h ◦ f is an automorphism of F , then f is
said to be a flat envelope of M . A flat envelope need not be a monomorphism; when
it is one, we speak about a monomorphic flat envelope. Dually, one can define a
flat (pre)cover of M , which must be an epimorphism. These concepts were defined
in [6].

If C is a class of modules such that HomR(M,C) = 0 (resp. HomR(C,M) = 0)
for all C ∈ C, then we shall write HomR(M, C) = 0 (resp. HomR(C,M) = 0).
Similar conventions will be used for the bifunctor ExtR(−,−). The class of all
modules M with ExtR(M, C) = 0 (resp. ExtR(C,M) = 0) will be denoted by ⊥C
(resp. C⊥). This is usually called the left (resp. right) orthogonal complement
(relative to the functor ExtR(−,−)) of the class C.

When F is the class of all flat left R-modules, the objects of F⊥ are the cotorsion
modules as defined in [7]; these were later used by Belshoff, Enochs and Xu in the
determination of two wide classes of rings over which each module has a flat cover
([3],[14]). The relevant class of modules in this paper, however, is a subclass of ⊥F
which is intimately related with flat envelopes. Its study will be carried out in the
next section, while the present one is devoted to preliminary results and to a brief
discussion of the double orthogonal classes ⊥(F⊥) and (⊥F)⊥.

We start with a result (Corollary 2.2) dual to [7, Lemma 2.2] that is deduced
here from the more general Proposition 2.1, which may have independent interest.

Proposition 2.1. Let f : M → F be a flat envelope, G a flat module, and suppose
that the following diagram is commutative with exact row:

M
f

//

g

��

F

h

��

0 // G // N p
// N/G // 0

Then there exists a homomorphism q : F → N such that p ◦ q = h and q ◦ f = g.

Proof. The pull-back {P ; p′, h′} of p, h gives a commutative diagram with exact
rows

0 // G //

id

��

P
p′

//

h′

��

F //

h

��

0

0 // G // N p
// N/G // 0
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which shows that P is a flat module. By the universal property of pull-backs there
is a map s : M → P such that h′ ◦ s = g and p′ ◦ s = f . Since f is a flat envelope
of M , we have t : F → P such that t ◦ f = s. Hence p′ ◦ t ◦ f = f , and thus p′ ◦ t is
an automorphism. The desired homomorphism is then q = h′ ◦ t ◦ (p′ ◦ t)−1.

Corollary 2.2. If f : M → F is a flat envelope then Coker(f) ∈ ⊥F.

Proof. Let π : F → C be the cokernel of f and let p : N → C be an epimorphism
with flat kernel. Then, by Proposition 2.1, there exists a homomorphism q : F → N
such that p ◦ q = π and q ◦ f = 0. Thus p is a retraction and hence ExtR(C,F) =
0.

Next we consider the double orthogonal classes ⊥(F⊥) and (⊥F)⊥, which clearly
lie between F and RMod. We discuss here the two extreme possibilities for them, i.e.
when they coincide with F or with RMod. In this direction we have the following.

Proposition 2.3. Let R be a ring such that each left R-module has a flat cover.
Then ⊥(F⊥) = F.

Proof. Let M ∈ ⊥(F⊥) and let f : F → M be a flat cover of M ; from [7, Lemma
2.2] we see that K = Ker(f) ∈ F⊥, and so f is split and M is flat.

Corollary 2.4. If R is a ring such that each left R-module has a flat cover, then
⊥(F⊥) = RMod if and only if R is von Neumann regular.

It is easy to see that (⊥F)⊥ = RMod if and only if ⊥F = P (the class of projective
modules). In particular, this occurs when the weak global dimension of R is at most
1. For the case (⊥F)⊥ = F, we recall that a left IF-ring is a ring whose injective left
modules are flat, and that a module G is said to be FP-injective if, for every exact
sequence 0 → L → M → N → 0 with N finitely presented, each homomorphism
L→ G can be extended to M [12, p. 28].

Theorem 2.5. The following conditions hold:

(1) If every left R-module has a monomorphic flat envelope or if R is a two-sided
IF-ring, then (⊥F)⊥ = F.

(2) If (⊥F)⊥ = F, then R is a right coherent left IF ring (equivalently, a ring
whose left modules have monomorphic flat preenvelopes).

Proof. (1) The first part is dual to Proposition 2.3, by Corollary 2.2. For the second,
if R is IF in both sides, then the class of all flat modules coincides with the class
of all FP-injective modules [8, Proposition 2.3], and hence the class FP of finitely
presented modules is contained in ⊥F, whence (⊥F)⊥ ⊆ (FP)⊥ = F.

(2) It is clear that R is left IF, while the right coherence of R follows from
the isomorphisms ExtR(C,ΠFα) ∼= ΠExtR(C,Fα). The statement in parentheses
follows from [6, Proposition 5.1].

In case our ring is commutative, we get that (⊥F)⊥ = F if and only if R is
an IF-ring. But, in general, neither of the implications in (1) admits a converse,
since we know of examples of rings with monomorphic flat envelopes which are not
two-sided IF [9, Example 2] and of (commutative) IF-rings without flat envelopes
[1, p. 435]. It remains as an open question whether the converse of (2) is valid.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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3. ϕ-torsion modules

We know that cokernels of flat envelopes are in ⊥F, although the converse is
clearly not true (as any nonzero projective module shows). Our main interest in
what follows will be on right coherent rings of weak global dimension at most 2,
that is, rings for which every left module has a flat envelope where the associated
diagrams can be completed in a unique way [2, Proposition 2.1]. The following
result is the motivation for our definition of ϕ-torsion modules.

Lemma 3.1. For a module T the following conditions are equivalent:

(a) HomR(T,F) = 0 and ExtR(T,F) = 0;
(b) T is the cokernel of a (monomorphic) flat envelope which completes the dia-

grams in a unique way.

Proof. Assume (a) and let 0 → M → F → T → 0 be any exact sequence with F
flat. We get an induced isomorphism HomR(F, F ′) → HomR(M,F ′) for each flat
module F ′, from which (b) follows. Conversely, if (b) holds and f : M → F is the
given envelope, then HomR(f, F ′) is monic for each F ′ flat and so HomR(T,F) = 0,
while ExtR(T,F) = 0 follows from Corollary 2.2.

We call a module M ϕ-torsion if it satisfies the equivalent conditions of Lemma
3.1. Over a right coherent ring of weak global dimension at most 2 the ϕ-torsion
modules are exactly the cokernels of flat envelopes.

Remark 3.1. The classical torsion modules over a domain R are those modules T
that satisfy HomR(T,F) = 0, and thus every ϕ-torsion module is torsion, but the
converse is not true in general. For example, if wd(R) ≤ 1, then 0 is the only
ϕ-torsion module. If R = k[[x, y]] with k a field, then since the inclusion of the
maximal ideal (x, y) into R is a flat envelope, R/(x, y) is ϕ-torsion. Hence all
artinian R-modules are ϕ-torsion. But R/(x) is torsion but not ϕ-torsion, since (x)
is flat and the exact sequence 0 → (x) → R→ R/(x) → 0 does not split.

For an arbitrary ring R, it is clear that the class of ϕ-torsion modules is closed
under extensions, direct summands and direct sums. We recall that a class T of
modules is a torsion class if it is closed under extensions, direct sums and factor
modules. In this sense, note that if 0 → C ′ → C → C′′ → 0 is an exact sequence
with C ϕ-torsion and F is a flat module, then we see from the exact sequence

0 → HomR(C ′′, F ) → HomR(C,F ) → HomR(C ′, F )

→ ExtR(C ′′, F ) → ExtR(C,F )

that

HomR(C ′′, F ) = 0 and HomR(C ′, F ) ∼= ExtR(C ′′, F ),

so that the ϕ-torsion modules form a torsion class if and only if HomR(C ′,F) = 0
for any submodule C ′ of a ϕ-torsion module. Next we look for rings satisfying this
condition.

Proposition 3.2. Let R be a commutative ring such that, for each maximal ideal
P of R, the injective envelope (as R-module) of each flat RP -module is flat, and
let C be an R-module such that HomR(C,F) = 0. Then HomR(C ′,F) = 0 holds for
every submodule C′ of C.
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Proof. Let C′ be a submodule of C and let F be a flat R-module; we must show

that HomR(C ′, F ) = 0. Now, for a maximal ideal P of R, the injective envelope F̂P
of FP is flat and hence HomR(C, F̂P ) = 0, whereas HomR(C ′, F̂P ) = 0 and hence

HomR(C ′, F ) ⊆ HomR(C ′,
∏

FP ) ⊆ HomR(C ′,
∏

F̂P ) ∼=
∏

HomR(C ′, F̂P ) = 0,

where the product runs over all the maximal ideals P of R.

Corollary 3.3. Over a commutative ring R satisfying the conditions of Proposition
3.2, the ϕ-torsion modules form a torsion class.

Remark 3.2. Gorenstein rings and rings whose localizations at maximal ideals are
domains satisfy the conditions of Proposition 3.2. In particular, all commutative
coherent rings of finite weak global dimension do [13, Theorem 5.1].

4. Coherent rings of weak global dimension two

Troughout this section, R will be a commutative and coherent ring of weak
global dimension at most 2. We plan to show that the class of ϕ-torsion modules
is hereditary, and derive from this that all monomorphic flat envelopes over R are
essential monomorphisms (in this case we speak about essential flat envelopes).
Also, an instance of local coherent rings of weak global dimension 2 whose prime
spectrum looks like the spectrum of an umbrella ring will be presented.

We shall use results about torsion theories and the associated (noncommutative)
localization in RMod. The required background, as well as the notation employed,
will be introduced as needed. For details, we direct the reader to [12].

Let φ be an idempotent radical in RMod, that is, a subfunctor of the identity
functor in RMod such that φ◦φ = φ and φ (M/φ (M)) = 0 for each module M . The
modules T for which φ (T ) = T are called φ-torsion, and the class T (φ) of all φ-
torsion modules is a torsion class. The modules L with φ (L) = 0 are φ-torsionfree,
and the class F(φ) of all φ-torsionfree modules is a torsionfree class, i.e. it is closed
under extensions, direct products and submodules. T (φ) determines F (φ) in the
sense that L ∈ F (φ) if and only if HomR(T (φ) , L) = 0, and also determines φ
since φ (M) =

∑
{T ≤M | T ∈ T (φ)} for each module M .

Consistently with the above, we shall write ϕ for the idempotent radical associ-
ated to the class T (ϕ) of all ϕ-torsion modules. We get:

Proposition 4.1. F(ϕ) = {L ∈ RMod : fd(L) ≤ 1}.

Proof. We show that fd(L) ≤ 1 if and only if HomR(T (ϕ), L) = 0. Fix an exact
sequence 0 → K → F → L → 0 with F flat. If fd(L) ≤ 1 and h : T → L is
a homomorphism with T ∈ T (ϕ), then the upper row of the following diagram
(in which the right-hand square is a pullback) splits, so that h factors through a
homomorphism T → F and therefore must be zero:

0 // K

id

��

// X //

��

T //

h

��

0

0 // K // F // L // 0
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On the other hand, if HomR(T (ϕ), L) = 0, take a flat envelope K → G of K with
cokernel T and complete the diagram below with g:

0 // K

id

��

// G

��

// T

g

��

// 0

0 // K // F // L // 0

As T ∈ T (ϕ), we must have g = 0, so the upper row splits and K is flat.

The following result clearly shows that it is enough to study the left exactness
of ϕ for local rings. Note that the assumptions on R are preserved by localization.

Proposition 4.2. For any R-module T the following conditions are equivalent:

(a) T is a ϕ-torsion R-module;
(b) TP is a ϕ-torsion RP -module for each prime ideal P of R;
(c) TM is a ϕ-torsion RM -module for each maximal ideal M of R.

Proof. (a) ⇒ (b). Let T be a ϕ-torsion R-module, P a prime ideal, and take an
exact sequence 0 → M → F → T → 0 in which M → F is a flat envelope. It is
then routine to check that the induced map MP → FP is a flat envelope of MP as
an RP -module, and thus its cokernel TP is ϕ-torsion.

(b) ⇒ (c). This is trivial.
(c) ⇒ (a). Let T be as in (c) and let L be an R-module with fdR(L) ≤ 1; then

fdRM (LM ) ≤ 1 for each maximal ideal M , and so HomRM (TM , LM ) = 0, which
clearly implies HomR(T, L) = 0, so that T is ϕ-torsion by Proposition 4.1.

Next, we study how to construct the monomorphic flat envelopes of modules.
Later on, it will be shown that these are in fact essential monomorphisms.

Proposition 4.3. Let M be a submodule of a flat module F ′. Then there exists
a unique minimal flat submodule F of F ′ containing M , and the inclusion map
M ↪→ F is a flat envelope.

Proof. As inverse limits of flat R-modules are flat [12, p. 100], F is just the inter-
section of all flat submodules of F ′ containing M . Now take a flat envelope M → G
of M and complete the diagram with exact rows below with α and β:

0 // M

id

��

// G

α

��

// G/M

β

��

// 0

0 // M // F // F/M // 0

Then Ker(α) ∼= Ker(β) is flat and hence its inclusion into G/M splits, so that
Ker(α) = 0; and thus, by the minimality of F , α is an isomorphism.

If R is a local ring then, by [13, Theorem 5.21], it is a GCD-domain, that is a
domain in which each finite set of elements a1, . . . , an possess a greatest common
divisor [a1, . . . , an]. We can describe the flat envelopes of ideals of R as follows:

Proposition 4.4. Let R be local. Then:

(1) An ideal F of R is flat if and only if [a1, . . . , an] ∈ F for all a1, . . . , an ∈ F .
(2) The flat envelope of an ideal I of R is its inclusion into the direct union of

the principal ideals of the form R [a1, . . . , an], where a1, . . . , an ∈ I.
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(3) The flat envelope of the ideal Ra1+···+Ran is its inclusion into R [a1, . . . , an].

Proof. By [11, Corollary 1.3] the flat ideals of R are exactly the directed unions of
principal ideals, and (1) follows easily from this observation. For (2), note that the
set of principal ideals {R [a1, . . . , an] : a1, . . . , an ∈ I} is directed by inclusion, and
so its direct union F (I) is flat; it is the flat envelope of I by Proposition 4.3 since,
for any flat ideal G containing I, we get [a1, . . . , an] ∈ G for all a1, . . . , an ∈ I by
(1) and hence F (I) ⊆ G. (3) is now obvious.

Given an idempotent radical φ in RMod, we say that a (left) ideal I of R is
φ-dense if the cyclic module R/I is φ-torsion; the set G(φ) of all φ-dense ideals is
a filter in the lattice of left ideals of R. We have:

Corollary 4.5. If R is local then G(ϕ) has a basis of finitely generated ideals.

Proof. From Proposition 4.3 and the proof of Lemma 3.1 it follows that I ∈ G(ϕ)
if and only if I ↪→ R is a flat envelope. In this case, by Proposition 4.4, we must
have [a1, . . . , an] = 1 for some a1, . . . , an ∈ I, and thus Ra1 + · · ·+Ran ∈ G(ϕ).

An idempotent radical φ is a left exact functor (then called a left exact radical)
if and only if T (φ) is hereditary, i.e. closed under submodules. G (φ) is then (the
filter associated to) a Gabriel topology in R (see [12, p. 146]). Gabriel topologies
and left exact radicals in RMod determine each other. When R is commutative,
G(φ) is a Gabriel topology in R even if φ is not left exact [4, p. 88].

We introduce now two left exact radicals in RMod related to ϕ (which, a pos-
teriori, will coincide with it). One of them is the unique left exact radical τ such
that G(τ) = G(ϕ); this is the biggest left exact radical smaller than ϕ. The other
is the radical σ whose associated torsion class is generated by the submodules of
ϕ-torsion modules; this is the smallest left exact radical bigger than ϕ.

Associated with each idempotent radical φ in RMod we define

Z(φ) = {P ∈ Spec(R) : R/P is φ-torsion} = G(φ) ∩ Spec(R),

K(φ) = {P ∈ Spec(R) : R/P is φ-torsionfree} .

If φ is left exact they constitute a partition of the prime spectrum Spec(R) and
K(φ) is generically closed, that is, P ∈ K(φ), Q ∈ Spec(R) and Q ⊆ P imply
Q ∈ K(φ). Conversely, for any generically closed subset Ω of Spec(R) we find a left
exact radical ξΩ whose torsion class is

T (ξΩ) = {M ∈ RMod : MP = 0 for all P ∈ Ω} .

In general we have K(ξΩ) = Ω, and ξK(φ) = φ holds when G(φ) has a basis of
finitely generated ideals [5, Corollary 3.17].

Lemma 4.6. If R is local with flat maximal ideal M , then R is a valuation domain.

Proof. If M is flat, R/M is ϕ-torsionfree (Proposition 4.1) and hence τ -torsionfree;
this means that K(τ) = Spec(R) and hence τ = ξSpec(R) = 0, which implies ϕ = 0,
and thus R is a valuation domain by Proposition 4.1 and [13, Proposition 1.2].

Corollary 4.7. K(ϕ) = K(σ).

Proof. Clearly K(σ) ⊆ K(ϕ). For the converse inclusion note that if P is a non-flat
prime ideal and P ↪→ F is a flat envelope with F ⊆ R, then PRP ↪→ FP = RP is

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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a flat envelope over RP , so that PRP is not RP -flat. This, together with Lemma
4.6, shows that

K(ϕ) = {P ∈ Spec(R) : P is flat} = {P ∈ Spec(R) : RP is a valuation ring}
and thus K(ϕ) is generically closed. Now if T is a ϕ-torsion module and P is flat
then TP , as the cokernel of a flat envelope over RP , is zero, and so T is ξK(ϕ)-
torsion. As σ is the smallest left exact radical bigger than ϕ, we get σ ⊆ ξK(ϕ) and
therefore K(ϕ) = K(ξK(ϕ)) ⊆ K(σ).

Theorem 4.8. Let R be a commutative coherent ring with wD(R) ≤ 2. Then ϕ is
a left exact radical.

Proof. By Proposition 4.2 we may assume that R is local. As Z(ϕ) = Z(τ) and
K(ϕ) = K(σ), we just have to show that Z(ϕ) ∪ K(ϕ) = Spec(R), for then K(τ) =
K(σ) and σ ⊆ ξK(σ) = ξK(τ) = τ , which implies τ = ϕ = σ. So let P be a
nonflat prime ideal. We may find a1, . . . , an ∈ P such that d = [a1, . . . , an] /∈ P by
Proposition 4.4 (indeed we may take n = 2), but then each bi = ai/d belongs to P
and [b1, . . . , bn] = 1, so that Rb1 + · · ·+Rbn is a ϕ-dense ideal and P ∈ Z(ϕ).

As a consequence of Theorem 4.8 we give a new description of the monomorphic
flat envelopes of R-modules. We say that a module G is ϕ-injective if, for every
exact sequence 0 → L → M → N → 0 with N ϕ-torsion, each homomorphism
L → G can be extended to M . And G is ϕ-closed whenever it is ϕ-torsionfree
and ϕ-injective; by Theorem 4.8, each flat module is ϕ-closed. Associated to each
module M we find a ϕ-closed module Mϕ (the module of quotients of M) and a
map λ : M → Mϕ such that each homomorphism from M to a ϕ-closed module
factors through λ in a unique way (see [12, Chapter IX]).

Proposition 4.9. Let M be a submodule of a flat R-module. Then the canonical
map λ : M →Mϕ is an essential flat envelope.

Proof. By hypothesis, M has a monomorphic flat envelope f : M → F which
extends to a homomorphism fϕ : Mϕ → F such that fϕ ◦ λ = f . As M is ϕ-
torsionfree, λ is an essential monomorphism, and hence fϕ is monic; this leads to
a commutative diagram with exact rows:

0 // M

λ

��

f
// F

id

��

// F/M

q

��

// 0

0 // Mϕ
fϕ

// F // f/Mϕ
// 0

Since F/M is ϕ-torsion and q is epic, F/Mϕ is ϕ-torsion; but then the ϕ-injectivity
of Mϕ forces fϕ to be split and essential, so that it is an isomorphism.

Remark 4.1. We now have a way to construct the ϕ-torsion submodule of any
module M : Let 0 → K → F → M → 0 be any exact sequence with F flat, and
let K → G be a flat envelope of K with cokernel T ; then we find monomorphisms
G→ F and T →M which give rise to the commutative diagram with exact rows

0 // K

id

��

// G

��

// T

��

// 0

0 // K // F // M // 0
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As T ∈ T (ϕ) and M/T ∼= F/G ∈ F(ϕ), T must be the ϕ-torsion submodule of M .

We next investigate the structure of local coherent rings of weak global dimension
2. In [13], Vasconcelos showed that a commutative local ring of global dimension
2 (which is a coherent GCD-domain) must be a valuation domain, a regular local
ring or, if neither of these, a so-called umbrella ring, which may be realized as the
pull-back of two rings of the former types. For a local coherent ring R with maximal
ideal M and weak global dimension 2 the situation is not so clear, although it is
known that the dimension k of the (R/M)-vector space M/M2 can only take the
values k = 0, 1, 2, and that in case k = 2, M is generated by a regular sequence of
length 2 [13, p. 54]. We present here a situation in which a sort of umbrella ring
appears. Some of the ideas in the proof are taken from [13].

Theorem 4.10. Let R be a coherent non-noetherian local ring of weak global di-
mension 2. If all non-flat prime ideals of R are finitely generated, then there exists
a prime ideal P 6= 0 such that P = PRP , RP is a valuation domain and R/P is a
regular local ring of dimension 2.

Proof. As wd(R) = 2, M cannot be flat by Lemma 4.6 and hence it is finitely
generated but not principal, so that we are in the case k = 2.

Now let Q be a finitely generated prime ideal of R. We claim that each non-
finitely generated prime ideal is contained in Q. First note that Q is either principal
or non-flat, and in both cases all proper ideals strictly containing it are non-flat, so
that R/Q is a Noetherian ring by Cohen’s theorem. Now let P be a non-finitely
generated prime; there exist p1, . . . , pn ∈ P such that P +Q = Rp1 + · · ·+Rpn +Q
and, as P is a directed union of principal ideals, we find p ∈ P with Rp1+···+Rpn ⊆
Rp and thus P + Q = Rp + Q. We shall show that p ∈ Q, and this will prove the
claim. As Rp 6= P , there exist r ∈ M and p′ ∈ P such that p = rp′; on the other
hand, p′ must be of the form p′ = tp+ q for certain t ∈ R and q ∈ Q, and therefore
p = (1− rt)−1rq ∈ Q.

Now pick an element a ∈M \M2, which is prime since R is a GCD-domain, and
set Q = Ra. Since RQ is a valuation domain by Corollary 4.7 and Q contains all
non-finitely generated primes, these are linearly ordered and its direct union P 6= 0
is still a flat prime ideal, so that RP is a valuation ring. It is also clear that R/P
is a noetherian ring of Krull dimension at least 2, as shown by the chain of primes
P ⊂ Q ⊂ M , and the images in R/P of a regular sequence of length 2 generating
M form a regular sequence generating R/M , which shows that R/P is a regular
local ring of dimension 2.

Remark 4.2. The prime spectrum of the ring R of Theorem 4.10 looks like the
prime spectrum of an umbrella ring, but note that if the global dimension of R is
n > 3 (or if it is n = 3 and the projective dimension of RP /P as an R/P -module
is not 2), then RP is a valuation domain of global dimension n, and hence the
non-finitely generated primes can be ℵn−2-generated by [10].

An instance of this case is given in [13, Example 4.12]: let A be the localization of
the polynomial ring C [X,Y ] at the maximal ideal generated by the indeterminates,
Q the quotient field of A, and R the subring of the power series ring Q [[t]] consisting
of those power series whose constant term lies in A. Then R is as in Theorem 4.10,
but it is not an umbrella ring since its global dimension is 3.
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