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Abstract. Formal analyses of social action for Distributed A.I. (DAI)
have focussed, almost exclusively, on scenarios in which participat-
ing agents have a joint intention to act. While such scenarios are
significant, there are many examples of artificial and natural social
systems in which joint intention not only does not occur, but is not
even a practical possibility. This paper proposes that a deep theory
of social action should account for the whole spectrum of social ac-
tion types within the same framework. It is argued that coherence
is an attribute which unifies different types of social action, and is
therefore a possible starting point for a deep theory. A discussion
and subsequent formalisation of coherence is then presented. This
model of coherence is used as the foundation upon which to build
a new formalisation of team action. The framework in which these
formalisations are presented is a new quantified multi-modal logic.

1 INTRODUCTION

Over the past decade, many accounts of social action have appeared
in the literature of DAI, philosophy, and the social sciences (see [6]
for a recent review). Most of these accounts have focussed on the
phenomenon of team action, in which a close-knit, highly organised
collective cooperates to achieve some common goal. Although ac-
counts differ on details, a common theme is that this type of social
action is characterised by a mental state, shared among participat-
ing agents, which is variously referred to as mutual-, we-, or joint-
intention.

While team action is undoubtedly important, there are many other
important types of social action that team action theories cannot ac-
count for. There are several reasons for this. First, ‘mutual’ mental
states, a feature common to most accounts of team action, are not
realisable in practice [4]; even approximations to them are likely to
entail heavy communication overheads. Secondly, there are many
examples of social actions in which the actors do not have the com-
plex beliefs and goals implied by theories of collective intention. For
example, consider driving in ordinary automobile traffic: this is not
team action, (in the sense of [7]), but it is, nevertheless, a social activ-
ity of interest to DAI. There are even extreme examples of artificial
and natural social actions in which the actors apparently have no
cognitive state. For example, Steels demonstrated that a network of
cognitively simple agents could achieve near-optimal performance
in a non-trivial cooperative task [12]. Steels’ agents do not have any
explicitly held beliefs or goals, and are thus literally indescribable
by most accounts of collective intentions2. The same is true of many
natural examples of swarm intelligence and emergent functionality.
So team actions, characterised by some form of collective intention,
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2 We ignore knowledge implicit in the state of Steels’ agents, à la situated
automata theory [9]; it is at least clear that Steels’ agents do not have ex-
plicitly represented beliefs and goals.

represent just one point in a broad spectrum of different types of
social action. What distinguishes these different action types is the
cognitive state of the actors, and in particular the amount and com-
plexity of the beliefs and goals that agents have relating to their role
in the social action, and how this role relates to that of others. At one
extreme, (team action), agents have many mutual beliefs, goals, and
expectations about their role and that of others; at the other extreme,
there are social systems in which agents do not even appear to have
beliefs or goals.

This paper argues the case for a deep theory of social action,
which accounts for the whole spectrum of social action types within
the same general framework. Since current models of team action
cannot function as deep theories, we are forced to look elsewhere. It
is proposed that coherence is a possible starting point for a deep the-
ory, as the notion of coherence runs through the whole social action
spectrum. For example, when we view Steels’ Mars explorer system,
we do not see a group of agents acting in a random manner. Instead,
we see that the actions are related, and that the global behaviour of
the system emerges from the individual behaviours. In short, we see
coherent action. Similarly, a group of complex reasoning agents co-
operating on some task will use their communication, reasoning and
representation abilities to ensure that they are acting coherently; if
the collective action ever starts becoming incoherent, then the group
will take steps to correct this. The difference is simply that in the
latter case, agents have complex internal models of the task at hand
and the agents they are working with, whereas in the former case,
the agents have no such models.

The remainder of this paper represents some first steps towards a
deep theory of social action, based on the notion of coherence. The
following section presents a new logic for representing the beliefs,
goals, and actions of agents and groups of agents. Following a dis-
cussion, this logic is used in §3 to formalise the notion of coherence.
This formalisation is then used as the basis upon which to develop
a new model of team action. Some conclusions are presented in §4.
Finally, it is worth commenting on the aims of this work. It is inten-
ded to contribute to the theoretical foundations of DAI, by providing
a model which can be used to help researchers understand what is
involved in social action. But the work is not intended to be social
science research; while such research is often of use in DAI, it is not
the case that DAI theory must be social science theory.

2 A FORMAL FRAMEWORK

This section develops a many-sorted quantified multi-modal logic
for representing the beliefs, goals, and actions of agents and groups
of agents. This logic both draws upon and extends the formalisms
of [2, 8, 13, 14]. Note that although the logic is completely defined,
space restrictions mean the presentation must be somewhat terse, and
a discussion of the logic’s properties is unfortunately not possible
here.
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Informally, the operators of the language have the following mean-
ings. The operator true is a logical constant for truth. (Bel i ϕ) and
(Goal i ϕ) mean that agent i has a belief, or goal of ϕ respectively.
The = operator is first-order equality. The ∈ operator allows us to
relate agents to groups of agents; it has the expected set-theoretic in-
terpretation, so (i ∈ g) means the agent denoted by i is a member of
the group denoted by g. The

�
operator defines a partial ordering on

action terms: (α � α′) means that the actions referred to in α are a
subset of those referred to in α′. The (Agts α g) operator means that
the group denoted by g are precisely the agents required to perform
the actions referred to in α . The A operator is a path quantifier: Aϕ
means that ϕ is a path formula that is satisfied in all the futures that
could arise from the current state3. The operators ¬ (not) and ∨ (or)
have classical semantics, as does the universal quantifier ∀; the re-
maining classical connectives and existential quantifier are assumed
to be introduced as abbreviations. (Happens α) is a path formula that
means that the action α happens next; α ; α′ means action α imme-
diately followed by α′; α|α′ means either α or α′ happen next; ϕ?
is a test action, which occurs if ϕ is satisfied in the current state; α∗
means the action α iterated.

Readers that are unfamiliar with quantified modal logics, or that
do not wish to read the formal definition of the logic, might wish to
skip the remainder of this section, and move directly to §3.

Definition 1 The language contains the following symbols: the pro-
positional connectives ¬ (not) and ∨ (or), and universal quantifier
∀; the operator symbols Bel, Goal, Happens, Agts, ∈, =,

�
, and A;

the action constructor symbols ;, |, ?, and ∗; a countable set Pred
of predicate symbols --- each symbol P ∈ Pred is associated with
a natural number called its arity, given by arity(P); a countable
set Const of constant symbols, the union of the mutually disjoint
sets ConstAg (agent constants), ConstAc (action sequence constants),
ConstGr (group constants), and ConstU (other constants); a countable
set Var of variable symbols, the union of the mutually disjoint sets
VarAg, VarAc, VarGr and VarU; the punctuation symbols ), (, ‘⋅’ and
comma ‘,’.

Definition 2 A term is either a constant or a variable; the set of
terms is Term. The sort of a term is either Ag, Ac, Gr or U; if s is a
sort then Terms = Consts ∪ Vars; thus τs ∈ Terms.

The syntax of (well-formed) formulae is constructed from these sym-
bols according to the rules presented informally above. Note that we
demand that a predicate P is applied to arity(P) terms.

It is assumed that the world may be in any of a set S of states.
A state transition is caused by the occurrence of a primitive action
(or event): the set of all primitive actions is DAc. From any state,
there is at least one — and perhaps many — possible actions, and
hence resultant states. The binary relation R on S is used to repres-
ent all possible courses of world history: (s, s′) ∈ R iff the state s
could be transformed into state s′ by the occurrence of a primitive
action that is possible in s. Clearly, R will branch infinitely into the
future from every state. A labelling function Act maps each arc in R
to the action associated with the transition. The world is populated
by a non-empty set DAg of agents. A group over DAg is simply a
non-empty subset of DAg; the set of all such groups is DGr. Agents
and groups may be related to one-another via a simple (typed) set

3 There is a distinction made in the language between path and state formulae:
state formulae are evaluated with respect to the ‘current state’ of the world,
whereas path formulae are evaluated with respect to a course of events.
The well-formed formulae of the language are identified with the set of
state formulae [3, 8].

theory. Agents have beliefs and goals, and are (idealised) reasoners.
The beliefs of an agent are given by a belief accessibility relation
on S in the usual way; similarly for goals. Every primitive action
α is associated with an agent, given by Agt(α). Finally, the world
contains other individuals (e.g., chairs, pints of beer) given by the
set DU. A complete definition of the language semantics will now be
given. First, paths (a.k.a. fullpaths) will be defined: a path represents
a possible course of events through a branching time structure.

Definition 3 If S is a non-empty set and R is a total binary relation
on S then a path over S, R is an infinite sequence (su : u ∈ IN) such
that ∀u ∈ IN, su ∈ S and (su, su+1) ∈ R. The set of all paths over
S, R is given by paths(S, R). The head of a path p = (s0, …) is its first
element s0, and is given by hd(p).

Next, we present the technical apparatus for dealing with the denota-
tion of terms.

Definition 4 The domain of quantification, D, is DAg ∪(D∗
Ac)∪DGr ∪

DU , (where S∗ denotes the set of non-empty sequences over S). If
n ∈ IN, then the set of n-tuples over D is Dn. An interpretation for
constants, I, is a sort-preserving bijection I : Const → D. A variable
assignment, V, is a sort-preserving bijection V : Var → D.

The function [[ ]]I,V gives the denotation of a term relative to I, V.

Definition 5 If τ ∈ Term, then [[τ]]I,V is I(τ) if τ ∈ Const, and
V(τ) otherwise. Reference to I, V will usually be suppressed.

Definition 6 A model, M, is a structure:

�
S, R, DAg, DAc, DGr, DU , Act, Agt, B, G, I, Φ �

where: S is a non-empty set of states; R ⊆ S × S is a total binary
relation on S; DAg is a non-empty set of agents; DAc is a non-
empty set of actions; DGr is the set of groups over DAg; DU is a
non-empty set of other individuals; Act : R → DAc associates a
primitive action with each arc in R; Agt : DAc → DAg gives the agent
of each primitive action; B : DAg → powerset(S × S) associates a
transitive, euclidean, serial belief accessibility relation with every
agent in DAg; G : DAg → powerset(S × S) associates a serial goal
accessibility relation with every agent in DAg, such that ∀i ∈ DAg,
G(i) ⊆ B(i); I : Const → D is an interpretation for constants; and
finally Φ : Pred×S → � n∈IN Dn gives the extension of each predicate
symbol in each state, such that ∀P ∈ Pred, ∀n ∈ IN, ∀s ∈ S, if
arity(P) = n then Φ(P, s) ⊆ Dn (i.e., Φ preserves arity).

The semantics of the language are defined via the satisfaction rela-
tion, ‘|=’, which holds between interpretation structures and formu-
lae. For state formulae, an interpretation structure is a triple

�
M, V, s � ,

where M is a model, V is a variable assignment and s is a state. For
path formulae, an interpretation structure is a triple

�
M, V, p � , where p

is a path. The rules defining the satisfaction relation are given in Fig-
ure 1. The rules make use of some syntactic abbreviations. First, we
write occurs(α , u, v, p) if action α occurs between ‘times’ u, v ∈ IN
on the (possibly finite) path p:

Distributed AI 280 M. Wooldridge



occurs(α ,u, v, (s0, …)) iff [[α]] = (α1, … , αn), n ≤ v − u,
and ∀w ∈ � 1, … , n � ,
Act(su+w−1, su+w) = αw

(where α ∈ TermAc)
occurs(α ;α′, u, v, p) iff ∃w ∈ � u, … , v � s.t.

occurs(α ,u, w, p) and
occurs(α′,w, v, p)

occurs(α|α′, u, v, p) iff occurs(α ,u, v, p) or
occurs(α′, u, v, p)

occurs(ϕ?,u, v, p) iff
�
M, V, hd(p) � |= ϕ

occurs(α∗, u, v, p) iff ∃w1, … , wx ∈ IN s.t. (w1 = 0)
and (w1 < ⋅ ⋅ ⋅ < wx)
and ∀y ∈ � 1, … , x � ,
occurs(α ,wy , wy+1, p)

Two functions are required, that return all the primitive actions re-
ferred to in an action sequence, and the agents required for an action
term, respectively.

actns((α1, … , αn)) def
= � α1, … , αn �

agents(α) def
= � i | ∃α′ ∈ actns([[α]]) s.t. Agt(α′) = i �

(where α ∈ TermAc)

Some Derived Operators. A number of derived operators will
now be introduced. First, the usual connectives of linear temporal
logic: ϕ � ψ means ϕ is satisfied until ψ becomes satisfied; � ϕ
means ϕ is eventually satisfied; ϕ means ϕ is always satisfied.
These connectives are used to build path formulae. The path quanti-
fier E is the dual of A; thus Eϕ means ϕ is a path formulae satisfied
on at least one possible future.

ϕ � ψ def
= (Happens (¬ψ ?; ϕ?)∗; ψ ?)

� ϕ def
= true � ϕ

ϕ def
= ¬ � ¬ϕ

Eϕ def
= ¬A¬ϕ

The next operator allows us to relate agents and groups of agents:
(Singleton g i) means g is a singleton group with i as the only member.

(Singleton g i) def
= ∀j ⋅ (j ∈ g) ⇒ (j = i)

The Prim operator defines the conditions under which an action term
denotes a primitive action; � has the obvious meaning; and (Agt α i)
means i is the only agent of α .

(Prim α) def
= ∀α′ ⋅ (α′ � α) ⇒ (α′ = α)

(α � α′) def
= (α � α′) ∧ ¬(α = α′)

(Agt α i) def
= ∀g ⋅ (Agts α g) ⇒ (Singleton g i)

Finally, the mutual belief of ϕ in a group of agents g is (M-Bel g ϕ);
the mutual goal of ϕ in g is (M-Goal g ϕ). Mutual mental states are
defined as fixed points.

(M-Bel g ϕ) def
= ∀i ⋅ (i ∈ g) ⇒ (Bel i ϕ ∧ (M-Bel g ϕ))

(M-Goal g ϕ) def
= ∀i ⋅ (i ∈ g) ⇒ (M-Bel g (Goal i A � ϕ))

3 COHERENCE IN SOCIAL ACTION

This section begins by discussing and subsequently formalising co-
herent social action, using the language developed in §2. This form-
alisation is then used as a foundation upon which to build a new
model of team action.

Coherent Social Action. Coherence in DAI is a measure of ‘how
well … [a] system performs along some dimension of evaluation’ [1,
p19]. It follows that coherence may be evaluated in many different
ways: in terms of solution quality, efficiency, or conceptual clarity,
for example. In this paper, however, the specific interpretation given
to the term will be: the effectiveness with which the primitive ac-
tions in a complex action conspire to bring about a particular goal.
Note that this definition is neutral on the subject of cognitive state:
it does not require that agents have complex internal models. It does
not even require that agents have any conception of the goal they
are acting coherently to achieve. Coherence merely requires that we,
as external observers of a system, judge that the agents appear to be
acting effectively to achieve the goal. This definition is thus applic-
able both to systems of cognitively simple agents (e.g., Steels’ Mars
explorer system [12]), and to systems with agents capable of com-
plex representation and reasoning tasks (as in [7]). Coherence, as we
have defined it, is therefore an external concept, relying only on the
actions that agents perform in the world, as opposed to an internal
one, defined in terms of mental state [11, 6].

So, when may an arbitrary conglomeration of primitive actions
be said to be coherent with respect to a goal? We propose that the
actions must satisfy at least the following two conditions: (i) the ac-
tions should actually achieve the goal; and (ii) the actions should, in
a sense to be explained shortly, be minimal with respect to the goal.
To understand the first condition, consider that if the goal is not true
after the actions are performed, then the actions could hardly be said
to effectively conspire to achieve the goal. Moreover, it is not suf-
ficient simply to require that the goal is a possible consequence of
the actions. The goal must be a necessary consequence, in that every
time the actions are performed, the goal state is subsequently satis-
fied. This notion of an action α achieving a goal ϕ is formalised as
follows.

(Achieves α ϕ) def
= A((Happens α) ⇒ (Happens α ; ϕ?))

The reader may like to compare this definition with the dynamic logic
[α]ϕ (see, e.g., [5]).

The purpose of the second condition is to ensure that each of
the primitive actions contributes something to the achievement of
the goal. This requirement may be best illustrated through a simple
example. Suppose I have a goal of owning a pint of beer; then the
‘primitive’ action of ordering a beer is a good candidate for my next
action, since it has the goal as a necessary consequence. Now add to
this primitive the action of ordering a packet of peanuts. The result-
ing conglomerate action still has owning a pint of beer as a necessary
consequence, and yet it includes an action that is clearly redundant
with respect to the goal; ordering peanuts contributes nothing to own-
ing a pint of beer. For this reason, we would say that the conglomer-
ate action was incoherent with respect to the goal. Formally, we shall
call the second property minimality, and say that an action sequence
α is minimal with respect to a goal ϕ if there is no sub-action of α
that has ϕ as a necessary consequence. If α is minimal with respect
to ϕ, we write (Min α ϕ).

(Min α ϕ) def
= ¬(∃α′ ⋅ (α′ � α) ∧ (Achieves α′ ϕ))

In mathematical terms, a minimal action is a least fixed point. Co-
herent social action can now be informally defined.

Coherent social action: Group g perform social action α that
is coherent with respect to ϕ iff: (i) the agents required to per-
form α are just those in g; (ii) the agents actually do α ; (iii) α
achieves ϕ; and (iv) α is minimal with respect to ϕ.
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State Formulae Semantics�
M, V, s � |= true�
M, V, s � |= (P τ1, … , τn) iff

�
[[τ1]], … , [[τn]] � ∈ Φ(P, s)�

M, V, s � |= (Bel i ϕ) iff ∀s′ ∈ S, if (s, s′) ∈ B([[i]]) then
�
M, V, s′ � |= ϕ�

M, V, s � |= (Goal i ϕ) iff ∀s′ ∈ S, if (s, s′) ∈ G([[i]]) then
�
M, V, s′ � |= ϕ�

M, V, s � |= (Agts α g) iff agents(α) = [[g]]�
M, V, s � |= (τ1 = τ2) iff [[τ1]] = [[τ2]]�
M, V, s � |= (i ∈ g) iff [[i]] ∈ [[g]]�
M, V, s � |= (α � α′) iff actns([[α]]) ⊆ actns([[α′]])�
M, V, s � |= Aϕ iff ∀p ∈ paths(S, R), if hd(p) = s then

�
M, V, p � |= ϕ�

M, V, s � |= ¬ϕ iff
�
M, V, s � ⁄|= ϕ�

M, V, s � |= ϕ ∨ ψ iff
�
M, V, s � |= ϕ or

�
M, V, s � |= ψ�

M, V, s � |= ∀x ⋅ ϕ iff
�
M, V † � x 	
 d � , s � |= ϕ
for all d ∈ D s.t. x and d are of the same sort

Path Formulae Semantics�
M, V, p � |= (Happens α) iff ∃u ∈ IN s.t. occurs(α ,0, u, p)�
M, V, p � |= ϕ iff

�
M, V, hd(p) � |= ϕ (where ϕ is a state formula)�

M, V, p � |= ¬ϕ iff
�
M, V, p � ⁄|= ϕ�

M, V, p � |= ϕ ∨ ψ iff
�
M, V, p � |= ϕ or

�
M, V, p � |= ψ�

M, V, p � |= ∀x ⋅ ϕ iff
�
M, V † � x 	
 d � , p � |= ϕ
for all d ∈ D s.t. x and d are of the same sort

Figure 1. Semantics

Formally, the conditions of satisfaction for the performance of a co-
herent social action α by group g with respect to ϕ are:

(CSA g α ϕ) def
= (Agts α g)∧(Happens α)∧(Achieves α ϕ)∧(Min α ϕ).

Let us now look at the implications of this definition. First, consider
some possible objections to it. The most obvious objection may be
illustrated through the following scenario, due to Searle [10]. A group
of people in a park suddenly run to a tree. If the people are dancers,
and the choreography calls upon them to converge on the tree, then
this action could be viewed as being cooperative. But if it has just
started raining, and the people are trying to avoid getting wet by
running for shelter, so that their actions are motivated by individual
desires, then Searle argues that this is not cooperation. Both cases
would be recognised as coherent social action by the definition we
have just presented. But a distinction can only be made by appealing
to an internal perspective, and any system which did not lend itself to
such an analysis would presumably not be regarded as cooperative.
Thus, systems such as Steels’ Mars explorer would not be regarded
as cooperative [12]. This seems unreasonable: although a designer
might find it useful to build systems that have internalised beliefs
and goals, it is possible to build efficient DAI systems that do not
have such internal models, as Steels’ work demonstrates. Internalised
beliefs and goals are not necessary for efficient social action.

Secondly, it could be argued that the requirements for coherence
are too strong. Consider again Steels’ Mars explorer system. The
agents in this system walk in random directions as part of their pro-
gramming: it is therefore inevitable that they will perform redundant
actions, and as a result they will be incoherent by this definition. But
from the point of view of a designer, the definition recognises those
actions that do not include redundancy. In general, it is precisely
such behaviour, (that does not include redundancy), that we desire
of DAI systems [1]. So the definition captures an important and use-
ful, if idealised, design concept. Note that although minimality is an

ideal, which comparatively few systems might achieve in practice,
it is nevertheless a useful concept for analysis — consider the wide-
spread use of other idealised concepts (such as mutual belief) in the
analysis of multi-agent systems.

To the best of the author’s knowledge, no other attempts to form-
alise coherence have appeared in the literature. However, other au-
thors have considered similar notions. Probably the closest is the
work of Singh, who used the necessary consequence property in his
definition of group intentions [11]; the distinction between internal
and external views is also due to Singh. Werner used a somewhat
similar idea to capture the notion of a group planning to do an ac-
tion [13]; in an earlier paper, we also used a related idea to try to
capture a notion of joint goals [14]. However, the intention in all
these accounts is quite different to that here.

It was suggested above that coherence should form the centrepiece
of a deep theory of cooperative action; the next step is therefore to
investigate how the concept fits into a general framework for describ-
ing social actions.

Team Action. This type of social action is characterised by a
strong pattern of mental states loosely corresponding to the joint-
intentions of [7]. The participants in a TeamAction must have know-
ledge of the group that is acting, with mutual beliefs in the group
about aspects of the action. Team action also requires that parti-
cipants care about the status of the team activity, and in particular
must ensure that the group is kept informed about their beliefs con-
cerning its likely outcome. Informally, team action can be defined as
follows.

Team action: Group g perform team action α with respect to
ϕ iff g have a joint intention of performing the coherent social
action α with respect to ϕ.
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Team action thus requires joint intention, which in turn requires some
subsidiary concepts. (These definitions are adapted from [7].)

First, we write (W-Goal g ϕ) iff every agent in group g either
(i) believes that ϕ is not true, but that ϕ is possible, and has a goal
that ϕ is eventually true, or (ii) believes that ϕ is true, and has a goal
that this becomes mutually believed in g, or (iii) believes that ϕ is
impossible, and has a goal that this becomes mutually believed in g.

(W-Goal g ϕ) def
= ∀i ⋅ (i ∈ g) ⇒

(((Bel i ¬ϕ) ∧ (Bel i E � ϕ) ∧ (Goal i A � ϕ)) ∨
((Bel i ϕ) ∧ (Goal i A � (M-Bel g ϕ))) ∨
((Bel i A ¬ϕ) ∧

(Goal i A � (M-Bel g A ¬ϕ))))

(W-M-Goal g ϕ) means it is mutually believed in g that g have a weak
goal (W-Goal) of ϕ.

(W-M-Goal g ϕ) def
= (M-Bel g (W-Goal g ϕ))

We write (J-P-Goal g ϕ) iff (i) it is mutually believed in g that ϕ is not
true, and (ii) g have a mutual goal of ϕ, and (iii) until it is mutually
believed in g that either ϕ is true or ϕ is impossible, g have a weak
mutual goal (W-M-Goal) of ϕ.

(J-P-Goal g ϕ) def
= (M-Bel g ¬ϕ) ∧ (M-Goal g A � ϕ) ∧

((W-M-Goal g ϕ) �
((M-Bel g ϕ) ∨ (M-Bel g A ¬ϕ)))

Finally, we write (J-Intend g α) iff (i) it is mutually believed in g that
g are the agents of α , and (ii) g have a joint persistent goal (J-P-Goal)
that eventually, g mutually believe they are about to do α , and then
α happens.

(J-Intend g α) def
=

(M-Bel g (Agts α g))∧
(J-P-Goal g A � (Happens (M-Bel g A(Happens α))?; α))

The conditions of satisfaction for the performance of a team action
α by group g with respect to ϕ, written (TeamAction g α ϕ), are then:

(TeamAction g α ϕ) def
= (J-Intend g A(Happens (CSA g α ϕ)?))

This definition ensures that the group not only intend to do the action,
they intend to do it coherently. Thus, if any agent in g no longer
believes that (i) the action will be performed, or (ii) that the action no
longer achieves the goal, or (iii) that the action is no longer minimal,
in that it includes some redundant actions, then that agent must have
a goal of bringing this to the attention of the group. Thus TeamAction
is much stronger than simply jointly intending to do the action.

4 REMARKS

This paper began by proposing that team action theories, typically
based on some model of collective intention, fail to account for many
important and interesting examples of cooperative action that occur
in real social systems. It was argued that a deep theory of social ac-
tion should account for the whole range of social action types in the
same general framework; coherence was proposed as a principle that
unifies different types of social action. A discussion and subsequent
formalisation of coherence was then presented. This formalisation

was used as the starting point from which to develop a new formal-
isation of team action. The framework in which the formalisations
were presented was a new quantified multi-modal logic, which was
rigorously defined in §2.

Future work will focus on two key areas. First, the logic presen-
ted in §2 will be extended, for example to allow quantification over
complex actions. Secondly, the model of coherence will be refined,
in order to make it more fine grained. Our ultimate goal is to form-
alise a model of coherence that can be directly used in the analysis
of implemented DAI systems.
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