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Collisions in a thermal gas are perceived as random or

incoherent as a consequence of the large numbers of initial

and final quantum states accessible to the system. In a

quantum gas, for example, a Bose–Einstein condensate

or a degenerate Fermi gas, the phase space accessible

to low-energy collisions is so restricted that collisions

become coherent and reversible. Here, we report the

observation of coherent spin-changing collisions in a gas

of spin-1 bosons. Starting with condensates occupying

two spin states, a condensate in the third spin state is

coherently and reversibly created by atomic collisions.

The observed dynamics are analogous to Josephson

oscillations in weakly connected superconductors and

represent a type of matter–wave four-wave mixing. The

spin-dependent scattering length is determined from these

oscillations to be −1.45(32) bohr. Finally, we demonstrate

coherent control of the evolution of the system by

applying differential phase shifts to the spin states using

magnetic fields.

Bose–Einstein condensation is a well-known phenomenon in
which identical bosons occupy the same quantum state below
a certain critical temperature. A hallmark of Bose–Einstein

condensation is the coherence between particles—every particle
shares the same quantum wavefunction and phase. Although
textbook discussions of Bose–Einstein condensation typically focus
on non-interacting (ideal) particles, elastic collisions are essential
in order for a quantum degenerate gas to equilibrate. The inclusion
of collisions also modifies the quantum ground state of the gas,
although it does not change the nature of the coherence of
the condensate—indeed it has been pointed out that collisional
interactions are in fact required to keep the condensate from
fragmenting into multiple nearby quantum states1.

Collisional coherence is an important theme in quantum
degenerate gases. For single-component condensates, such as
spin-polarized atomic condensates confined in a magnetic trap,
the coherence of the collisional interactions has been well
demonstrated in early measurements of condensate mean-field
energy2 and correlations3, as well as in demonstrations of
matter–wave interference4 and superfluid behaviour5–7. Collisional
coherence in more complicated systems has led to remarkable
demonstrations, including reversible atom–molecule formation
across a Feshbach resonance for both bosonic and fermionic8,9

atoms, and coherent collisions in optical lattices10,11.
In this work, we show that the collisional coherence extends

to the internal spin degrees of freedom of a spin-1 Bose gas
by observing coherent and reversible spin-changing collisions.
Atomic Bose condensates with internal spin, so-called spinor
condensates12–20, in some cases are predicted to coherently inter-
convert in a process known as spin mixing, driven solely by internal
interactions in the system21–26. In a spin-1 condensate, two atoms
with spin components −1 and +1 can coherently and reversibly
scatter into final states containing two atoms with spin component
0, and vice versa (Fig. 1a). We observe this process in a gas of spin-1
87Rb bosons confined in an all-optical trap. The coherent spin
mixing leads to oscillations of the spin populations, from which we
determine the spin-dependent interaction strength. This is the first
direct measurement of this important quantity. The observed spin
mixing is an internal-state analogue to Josephson oscillations in
weakly connected superconductors27, and, exploiting this analogy,
we demonstrate control of the coherent spinor dynamics using
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phase and population engineering. Finally, we use this technique
to drive the spinor condensate to and away from its spin ground
state, which allows us to measure the spin-coherence time21.

Stimulated by the seminal theoretical works of Ho12 and
Ohmi and Machida13 and early experiments by the JILA14,28 and
MIT15 groups, much study has been done on spinor condensates.
Theoretical work has covered ground-state structure12,13,20,21,29,
coherent spinor dynamics21–26, rotating spinor condensates30 and
many other topics. Spin mixing has been observed in both spin
F = 1 and F = 2 condensates15,18,19,31, although the coherence of this
process has not yet been demonstrated conclusively. Observations
thus far have revealed mostly incoherent relaxation of initially non-
equilibrium spin populations to lower energy configurations from
which the sign of the spin interaction parameter c2 was determined.
Although overdamped single oscillations in spin populations have
been observed in experiments by us and others, their interpretation
has been limited because the initial spin configurations in these
experiments were metastable, and evolution from these states is
noise driven15,18,19,31. Nonetheless, from these observations, as well
as studies of spin domain formation, it was possible to determine
the magnetic nature of the ground states.

At the microscopic level, the interactions in spinor Bose gases
are determined by spin-dependent two-body collisions. In the case
of two colliding spin-F identical bosons, the available collision
channels are restricted by symmetry to those with total spin
Ftot = 2F,2F − 2,...,0 characterized by s-wave scattering lengths
aFtot at low energies. We focus on the F = 1 case here, and, in the
framework of mean-field theory, the interaction energy including
spin can be written as U(r) = δ(r)(c0 + c2Fa ·Fb), refs 12,13, where
δ(r) is the Dirac delta function, r is the distance between two atoms
a,b and c0 =4πh̄2

(a0+2a2)/3m and c2 =4πh̄2
(a2−a0)/3m, where h̄

is the reduced Planck constant, m is the atomic mass and a0,2 are the
s-wave scattering lengths for the total spin-0, 2 channels. For 87Rb
atoms in the F = 1 hyperfine state, the scattering lengths a0,2 are
nearly equal, and hence the spin-dependent mean-field energy
c2n is very small (only 200 pK, refs 32,33, for typical densities
n ∼ 1014 cm−3) compared with both the scalar mean field, c0n, and
the estimated temperature of the gas, ∼50 nK. Nonetheless, the
small spin-dependent mean-field couplings are non-negligible and
lead to qualitatively different ground-state structures depending
on the sign of c2, being ferromagnetic (c2 < 0) for 87Rb (refs 18,
19,32,33) or anti-ferromagnetic (c2 > 0) for 23Na (refs 15,34).
Moreover, these spinor interactions yield a rich variety of coherent
and incoherent phenomena including coherent spinor mixing,
spin squeezing and entanglement21,35, spin domain formation and
spinor vortices.

A single-component (scalar) atomic condensate with a large
number of atoms is well described within a mean-field treatment
by an order parameter (condensate wavefunction) governed by the
nonlinear Schrödinger or Gross–Pitaevskii equation. For an F = 1
spinor condensate, the three Zeeman components with magnetic
quantum numbers mF = 1,0,−1 are described by a vector order
parameter ψψψ(r,t) = (ψ1,ψ0,ψ−1), which is governed by a set of
three coupled Gross–Pitaevskii equations12,21:

ih̄
∂ψ1

∂t
= L1ψ1 + c2(n1 +n0 −n−1)ψ1 + c2ψ

2
0ψ

∗
−1, (1)

ih̄
∂ψ0

∂t
= L0ψ0 + c2(n1 +n−1)ψ0 +2c2ψ

∗
0ψ1ψ−1, (2)

ih̄
∂ψ−1

∂t
= L−1ψ−1 + c2(n−1 +n0 −n1)ψ−1 + c2ψ

2
0ψ

∗
+1, (3)

where L±1,0 = (−h̄2∇2/2m+Vt +E±1,0 +c0n−μ),Vt,E±1,0 and n±1,0

are the optical trapping potential, Zeeman energies and densities
for the corresponding Zeeman projections, μ is the chemical
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Figure 1 Coherent spin mixing of spin-1 Bose condensate in an optical trap.
The F= 1, mF = 1,0,−1 spin states of 87Rb condensates confined in an optical
trap start from a superposition of spin components at t= 0. They are allowed to
evolve freely to initiate coherent spin mixing, which results in oscillations of their
populations. a, The schematic indicates the fundamental spin-mixing process.
b, Absorptive images of the condensates for different evolution times. In this
example, the initial relative populations are ρ (1,0,−1) � (0,3/4,1/4). The
condensates are probed 18 ms after release from the trap and, to separate the spin
components for imaging, a weak magnetic field gradient is applied for 3 ms during
expansion of the condensates. The field of view is 600 μm×180 μm. c, Spin
populations versus evolution time for the same initial population configuration
showing four clear oscillations. The damping of the oscillations is due to the
breakdown of the SMA readily apparent in the t= 140 ms absorptive image. Here
the dotted, solid and dashed lines represent the populations in the mF = 1,0 and
−1 states, respectively. The inset shows the measured oscillation period versus the
initial population of the 0 state for different initial superpositions of mF = 0,−1
states, which compares well with the theoretical prediction23. The (typical) error bars
shown are the standard deviation of three repeated measurements.
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potential, n = n1 +n0 +n−1 is the total density. The coherent spin
mixings of the internal populations responsible for oscillations
of the spin populations are determined by the last terms
in equations (1)–(3). However, the interplay of this process with
the particle exchange collisions, represented by the penultimate
terms in equations (1)–(3), poses challenging problems both in
theory and in experiment. This is because both types of spinor
dynamics occur with the same timescale (typically <10 Hz for 87Rb)
and they are both very sensitive to the external magnetic fields
and field gradients represented in E±1,0 (refs 15,18,20,26,31,36,37).
Hence, in general, the dynamics described by these equations
reveal a rich coupling between the internal and external degrees
of freedom of the condensate components resulting in a variety
of observed phenomena, including spin mixing15,18,19, spin domain
formation15 and spin textures30,38.

Although the internal and external dynamics are generally non-
separable, under certain conditions they can be decoupled. In
particular, when the available spin interaction energy is insufficient
to create spatial spin structures in the condensates, then the external
dynamics will be suppressed. This occurs when the spin healing
length ξs = 2πh̄/

√
2m|c2|n is larger than the size of the condensate.

In this case, ψ1, ψ0 and ψ−1 share the same spatial wavefunction√
n(r)e−iμt/h̄, which allows for a considerable simplification of

equations (1)–(3). This is known as the single-mode approximation
(SMA), with which the order parameter reduces to

√
n(r)e−iμt/h̄χ ,

where χT = (
√

ρ1eiφ1 ,
√

ρ0eiφ0 ,
√

ρ−1eiφ−1) and ρi and φi represent
the fractional population and phase of the ith Zeeman state. With
this approximation, the internal dynamics take on a particularly
simple form determined by just two dynamical variables: ρ0(t),
the fractional population of the 0 state, and φ(t) ≡ φ+ +φ− −2φ0,
the relative phase of the spinor components23. The populations of
the other states are directly determined by ρ±1 = (1 −ρ0 ± M)/2,
where M = (N+1 − N−1)/N is the global magnetism, which is a
constant of the motion, and Ni is the number of atoms in the ith
Zeeman projection with N = N−1 + N0 + N1. The internal energy
(hamiltonian) of the system in a uniform magnetic field then takes
the following simple form25,26:

E = cρ0[(1−ρ0 +
√

(1−ρ0)2 −M2 cosφ)]+δ(1−ρ0), (4)

where c = c2N
∫ |ψ(r)|4dr is the effective spin-mixing rate, and

δ = (E+1 + E−1 − 2E0)/2 � 2πh̄ · (72B2 Hz) is the difference in
energies of the magnetic Zeeman levels in a field of B gauss. Within
the SMA, the ground-state spin populations and relative phase are
readily found for arbitrary magnetization and magnetic field by
minimizing equation (4). In particular, for c(c2) < 0, the energy of
the system is minimized at low fields for relative phases φ = 0 and
population ρ0 = (1−M2)/2 (refs 23,26). For other non-equilibrium
populations or phases, the system will have excess spin energy that
can drive a coherent evolution of the spinor system.

The evolution of the system will follow hamiltonian equations
of motion derived from equation (4), ref. 26:

ρ̇0 = 2c

h̄
ρ0

√
(1−ρ0)2 −M2 sinφ, (5)

φ̇= −2δ

h̄
+ 2c

h̄
(1−2ρ0)+ 2c

h̄

(1−ρ0)(1−2ρ0)−M2

√
(1−ρ0)2 −M2

cosφ. (6)

These coupled equations are nonlinear Josephson-type equations
and point to the equivalency of spin mixing in a spin-1 condensate
to Josephson systems realized in superconductors27 and other
superfluids11,14,39–44. The nonlinearity of these equations provides
a rich manifold of dynamical trajectories that can be accessed
experimentally by choice of initial populations and phases of the
spin components and the strength of the applied magnetic field.

To investigate the coherent dynamics of this system, we begin
with 87Rb condensates created using an improved version of the
all-optical trapping technique we have previously reported16,19.
Using a dynamical compression technique and just a single focused
laser beam45, condensates with up to 300,000 atoms are created
after 2 s of evaporative cooling. The condensates created in
this optical trap are generally in a mixture of all F = 1 spin
states and reveal complicated spatial domains. To create a well-
characterized initial condition, we first prepare a condensate in the
|F = 1,mF =−1〉 state by applying a magnetic field gradient during
the evaporative cooling.

To initiate spin dynamics, a coherent superposition of spin
states with non-equilibrium spin populations is created by applying
a sequence of phase-coherent microwave pulses tuned to the
F = 1 ↔ F = 2 transitions. Following this state preparation, the
condensate is allowed to evolve freely in the optical trap. A typical
evolution is shown in Fig. 1c for an initial spin configuration
of ρ(1,0,−1) � (0,3/4,1/4). Up to four distinct oscillations are
observed in this example before the spin populations damp to a
steady state. These oscillations demonstrate the coherence of the
spin-mixing process.

We have measured the spin oscillation frequency for different
initial spin populations. These data are shown in the inset of
Fig. 1c and show good agreement with theoretical predictions
where c

√
1−ρ2

0 (refs 23,26), which can be derived from
equations (5) and (6). These measurements provide a direct
determination of the magnitude of the spin interaction energy21,
|c|/h̄ = 2π × 4.3(3) rad s−1 for our system. These oscillation
frequencies at low magnetic field do not determine the sign
of c(c2); however, it was established by previous studies of
the nature of the ground state (and confirmed in the present
study by the results shown later in Fig. 3) that c2 < 0 for the
F = 1 manifold of 87Rb. This value of c, combined with the
measured condensate density n = 2.1(4)× 1014 cm−3, determined
from the rate of the condensate expansion during time-of-flight,
permits determination of c2 or, equivalently, the difference in
scattering lengths a2 − a0 = −1.45(32)aB, where the Bohr radius
aB = 0.529 Å. This is the first direct measurement of this important
quantity, and our value agrees with the theoretical determination of
a2 −a0 =−1.40(22)aB derived from photo-associative spectroscopy
and Feshbach resonance data32,33.

The oscillations are observed to damp with a time constant of
250 ms, and the damping coincides with the appearance of spatial
spin structures apparent in the images in Fig. 1b. These structures
indicate the invalidation of the SMA underlying equations (5) and
(6) and lead to a complicated interplay of the internal and external
dynamics that ultimately transfers the internal spin energy into
spatial domain structures23. A detailed study of these structures will
be the focus of future work.

The large-amplitude oscillations observed in Fig. 1c are in
the nonlinear regime of equations (5) and (6). It is also
possible to access the linear regime more typical of the standard
Josephson effect by tuning the parameters of the system. In
particular, for large applied magnetic fields such that δ 
 c
and appropriate initial populations, the phase evolution is
dominated by the quadratic Zeeman effect of the external field,
and equation (6) reduces to φ̇ ∼= −2δ/h̄. For these conditions,
the system shows small oscillations analogous to a.c. Josephson
oscillations, ρ0(t) � Aδ−1 sin2δt, where A is determined by the
initial populations. We have observed these oscillations as shown in
Fig. 2 for different applied magnetic fields. Up to 12 fast oscillations
are observed at the highest fields that were studied, where the
timescale of the internal spinor dynamics is much shorter than
the timescale for the formation of the spatial spin structures. The
frequency of the measured oscillations versus the magnetic field
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Figure 2 Coherent spin mixing versus magnetic field. An initial non-equilibrium
spin-population configuration of ρ (1,0,−1) � (0,1/2,1/2) is created and allowed to
evolve in a field of 15 mG for 70 ms to allow for maximum spin mixing. At this point,
the magnetic field is ramped to different levels. Subsequently, the system shows
small-amplitude oscillations analogous to the a.c. Josephson effect,
ρ0 (t ) ∝ δ−1 sin2δ t. The typical error bars shown are the standard deviation of three
repeated measurements.

matches within 10% the prediction Ω = 2δ, whereas the δ−1 scaling
for the amplitude is seen only for higher fields, presumably because
of the invalidity of the SMA for larger amplitude oscillations. In the
future, being able to tune the system to the linear regime provides
a path to study many analogous effects previously observed in
Josephson systems, such as Shapiro levels27,36,41,46, by including a
time-varying component to the applied magnetic field.

Beyond controlling the system by the initial conditions, the
dynamical evolution of the system can be controlled in real time
by either changing spin populations and/or changing the spinor
phase φ. We demonstrate that we can coherently control the
dynamical evolution of the spinor by applying phase shifts, and, in
particular, we drive the systems to the ferromagnetic spinor ground
state using this technique. In this experiment, an initial non-
equilibrium spin configuration is created and allowed to evolve for
a fraction of an oscillation until ρ0(t) reaches the ground-state ratio
ρ0,gs = (1 − M2)/2 (refs 23,29). At this point, the system is not in
the ground state because φ �= (φgs = 0); and it is still oscillating.
At this moment, we briefly pulse on a magnetic field of 0.6 G to
apply a phase shift to the spinor, �φ = ∫

δ(t)dt. The evolution of
the system is recorded in Fig. 3a for different pulse durations. We
find that, for particular applied phase shifts, the spinor condensate
is brought to its ground state, demonstrated by the subsequent lack
of population oscillation. For other applied phase shifts, the system
is driven to different points in the phase space of the system, for
which the subsequent evolution of the system is markedly different
and shows oscillations.

It is possible to reconstruct the dynamical trajectories of
the system using the measured ρ0(t), along with the known
applied phase shifts and the equations of motion, equations (5)
and (6). Although the damping evident in the measurement is
owing to the spatial dynamics coupled to the internal spin-mixing
dynamics, a phenomenological phase-damping term may be added
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Figure 3 Coherent control of spinor dynamics. a, An initial spin configuration of
ρ (1,0,−1) � (0,1/2,1/2) is allowed to evolve in a field of 15 mG for 14 ms at which
point the populations reach the values corresponding to the ferromagnetic ground
state at this magnetization: ρ (1,0,−1) � (1/16,3/8,9/16). Then, a pulse of 600 mG
field is applied to shift the spinor phase. The dashed, solid and dotted curves
represent pulse widths of τ1 = 20,24.4 and 30 ms, respectively. For certain applied
phase shifts, the coherent spin mixing can be halted. This occurs for τ1 = 24.4 ms
corresponding to the phase shift �φ =−2.5π, and for τ1 = 5.3 ms corresponding
to �φ =−0.5π. b, Reconstructed dynamical trajectories of the system determined
by fitting the experiment data to equations (3) and (4) including a phenomenological
phase-damping term. The free parameters of the fit are the damping coefficient and
the unknown (but reproducible) initial spinor phase resulting from the state
preparation, which depends on the applied microwave pulse width and the duration
in the upper hyperfine manifold. The contours show curves of equal energy. c, To
investigate the spin coherence of the ground-state spinor created by the first pulse
with τ1 = 24.4 ms, a second pulse is applied at 300 ms to re-establish the
oscillations. The solid, dashed and dotted curves correspond to τ2 = 0,10 and
20 ms, respectively. The typical error bars shown are the standard deviation of three
repeated measurements.

to equation (6) to represent the spatial varying spin-mixing
rate that is responsible for damping the population oscillation.
The reconstructed trajectories show good qualitative agreement
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with the measurements in the time domain and are plotted on
the phase-space diagram of the system (Fig. 3b). Also shown in
the figure are the contours of equal energy of the spinor given by
equation (4). The trajectories clearly show that the system tends to
damp to the minimum energy points (that is, the ferromagnetic
spinor ground state), which is ρ0 � 3/8,φgs = 0 mod (2π) for
M = 1/2, c < 0 and δ ≈ 0. For the case of antiferromagnetic
interactions, such as in 23Na, c > 0, the energy contours differ
only in sign, and the system would instead relax to ρ0 = 1,
φgs =π mod (2π) within the validity of the SMA23,29.

To demonstrate explicitly the coherence of the spinor ground
state, we impart a second phase shift to the system at later times
to displace the system to a different point in phase space. As
anticipated, the second phase shift is found to re-initiate the spin-
mixing dynamics (Fig. 3c) when �φ �= 0 mod (2π). We have used
this technique to determine the ground-state spinor decoherence
time by measuring the amplitude of the subsequent oscillations for
different delay times of the second pulse. The spinor decoherence
time is found to be 3 s, which is approximately the lifetime of the
condensate and is much longer than the damping time of spin-
population oscillations.

As noted, the damping of the spin oscillations coincides with
the appearance of spin wave-like spatial structures in the spinor
wavefunction (see the images in Fig. 1b). Hence it is clear that
the SMA is not strictly valid for our system. These waves derive
their energy from the internal (spin) degrees of freedom, and it is
this energy transfer that ultimately damps the spin mixing. On the
other hand, if the spinor condensate is driven to its ferromagnetic
ground state, as shown in Fig. 3b, there is no internal (spin)
energy available for the motional degrees of freedom, and spatial
spin structures cannot form. Indeed, in this case, the three spin
components are observed to have the same spatial wavefunction
and seem to be miscible.

The observation of coherent spinor dynamics in a ferromagnetic
spin-1 system reported here paves the way for a host of future
explorations. These systems are predicted to manifest complex
quantum correlated states showing entanglement and squeezing,
and, in general, it will be very interesting to explore the regime
of small atom number less than 1,000, where subshot noise effects
should become important21. Viewing the spin-mixing dynamics
as a type of internal-Josephson effect, many future explorations
and manipulations of the system can be foreseen following along
the path of superconducting weak links. Finally, the coupling of
the internal dynamics to the spatial wavefunction can be avoided
in future experiments by either decreasing the condensate radii
relative to ξs and/or operating at high magnetic fields where
the timescales for mixing and damping are separated further. In
contrast, the coupling of the internal and external degrees of
freedom in this system provide a system for exploring nonlinear
atom optical phenomena such as spatial–temporal dynamics of
four-wave mixing47.

We note that a group in Mainz, Germany has independently
observed coherent spin-mixing oscillations in a Mott state of atoms
on a lattice48. Their experiment involves a system of many copies of
two atoms in each lattice site. In contrast, our system involves a few
hundred thousand atoms and the observed coherence reflects the
presence of macroscopic quantum fields.

METHODS
To create the condensates, we begin by collecting up to 5×108 cold atoms in a
simple vapour cell 87Rb magneto-optical trap, which is overlapped with an
optical trap formed by a single CO2 laser beam of 70 W focused to a waist of
60 μm. Up to 3.7×107 atoms are loaded into the optical trap, at a density of
4×1013 cm−3. To achieve higher densities for efficient evaporation, the trap is
compressed immediately after loading by smoothly changing the laser focus to

26 μm over 600 ms using a zoom lens. Simultaneously, the laser power is
ramped down over 1.8 s to lower the trap depth and force evaporative cooling.
Using this technique, mostly pure condensates containing up to 3×105 atoms
are created. This technique is not only simple and fast, but also produces
condensates ten times larger than in our previous methods16,19. The
condensates created in this optical trap are generally in a mixture of all F = 1
spin states and reveal complicated spatial domains. To create a
well-characterized initial condition, we apply a magnetic field gradient during
the evaporative cooling19, which results in pure mF =−1 condensate
containing 150,000 atoms—this state is stable against both local and global spin
dynamics owing to the conservation of angular momentum. The trap
frequencies are 2π(190,170,17) rad s−1, and the condensate density and the
Thomas–Fermi radii are estimated to be 2.1×1014 cm−3 and (3.2, 3.6, 36) μm,
respectively. The lifetime of the condensate is measured to be 3 s. Coherent spin
state superpositions are created from the pure mF =−1 condensates by
applying a sequence of phase-coherent microwave pulses tuned to
F = 1 ↔ F = 2 transitions. The pulses are applied at a field of 420 mG to
separate out the transitions between the different Zeeman sublevels. Following
the pulse sequence, the magnetic field is ramped from 420 to 15 mG in 10 ms.
Typical pulse lengths are 20 μs for a F = 1 ↔ F = 2 pulse.
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