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Optical communication channels are ultimately quantum mechanical in nature, and we must therefore look
beyond classical information theory to determine their communication capacity as well as to find efficient
encoding and decoding schemes of the highest rates. Thermal channels, which arise from linear coupling of the
field to a thermal environment, are of particular practical relevance; their classical capacity has been recently
established, but their quantum capacity remains unknown. While the capacity sets the ultimate limit on reliable
communication rates, it does not promise that such rates are achievable by practical means. Here we construct
efficiently encodable codes for thermal channels which achieve the classical capacity and the so-called Gaussian
coherent information for transmission of classical and quantum information, respectively. Our codes are based on
combining polar codes with a discretization of the channel input into a finite “constellation” of coherent states.
Encoding of classical information can be done using linear optics.

DOI: 10.1103/PhysRevA.95.062343

I. INTRODUCTION

Optical communication channels such as glass fibers are
the workhorses of state-of-the-art communication networks,
and they are also of particular importance in quantum com-
munication theory. First, in our quest to squeeze ever more
data through existing communication infrastructure, we are
gradually reaching the realm of quantum effects and hence
need to consider their influence on data transmission. Second,
optical channels are the most promising candidate to establish
quantum links between distant locations and possibly a
quantum internet. Hence developing communication schemes
for such noisy quantum channels is of central importance in
quantum information.

The quantum effects of noise in such electromagnetic
systems are well modeled by linear coupling of the field modes
to additional Bosonic fields by quadratic Hamiltonians. This
leads to the class of Gaussian channels, the action of which can
be described by linear operations in phase space [1,2]. Mixing
of a single mode with thermal noise is a particularly relevant
Gaussian channel, called the thermal channel. The ultimate
capacity for transmitting classical information over thermal
channels, and indeed any phase-insensitive channel, has been
recently established in [3]. Less is rigorously established about
their quantum capacity, but it is widely believed to be given by
the regularized coherent information [2]. Restricting attention
to Gaussian inputs, the most practically relevant case of states
defined by their first and second moments, [1] showed that
thermal states with ever larger mean photon number optimize
the coherent information. For degradable channels, e.g., pure
loss channels in which the thermal noise of the channel is at
zero temperature, Gaussian inputs to the coherent information
are in fact optimal, that is, they maximize the coherent
information [4].

While capacity is an important property, it does not address
the practical limitations of high-rate communication, such
as the efficiency of encoding and decoding operations, or
their implementability using linear optics. In this paper we
construct explicit codes that achieve the classical capacity as
well as (likewise explicit) quantum codes that achieve the
Gaussian coherent information of thermal channels. On the

way to the latter, we construct codes for private information
transmission that also achieve the coherent information. All
codes have efficient encoding operations and explicit decoders,
though their decoding efficiency is unknown. In the case of
transmitting classical information, private or not, the encoding
operations require only the generation of coherent states.
Superpositions of coherent states are used for transmission
of quantum information.

Our code constructions are based on discretizing the optimal
channel input to a finite “constellation,” and then using a polar
code on the induced channel. Both are concepts originating
in classical information theory. Finite constellations of input
signals have always been used for continuous-input classical
channels, e.g., the additive white Gaussian noise channel
(AWGN), and several particular constellations are known to
achieve the AWGN capacity (see [5]). Meanwhile, polar codes
are a recent breakthrough, the first explicitly constructed codes
with efficient encoding and decoding that achieve the classical
capacity of discrete-input channels [6]. Polar coding was
adapted for classical communication over finite-dimensional
quantum channels by Wilde and Guha [7] and for quantum
communication by one of the authors [8].

We construct constellations for the thermal channel from
AWGN constellations. The thermal input state can be viewed
as a Gaussian-weighted mixture of coherent states, i.e., its
Glauber-Sudarshan P function is a two-dimensional Gaussian.
The optimal AWGN input is a one-dimensional Gaussian
distribution, and we can therefore use AWGN constellations
for the real and imaginary parts to give a finite constellation of
coherent states. The difficulty is to show that the constellation
achieves essentially the same rate as does the thermal input.
After all, the discretized input only resembles the ideal
Gaussian input in a very weak sense (specifically, in their
lower-order moments), and it is not immediate that these
limited similarities are enough to ensure similar rates. Luckily,
Wu and Verdú [5] have recently established precisely this result
for the AWGN, and we adapt this to the quantum case. Not
having to very strictly emulate the optimal input state frees us
considerably in designing coding protocols and should have
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application to other settings, such as two-way protocols or
quantum repeaters.

II. THERMAL CHANNELS

We consider single-mode thermal-noise channels [3], de-
noted Ek,N0 , which describes an input mode interacting with a
thermal state with mean photon number N0 at a beamsplitter
of transmittivity k < 1. The channel action can be described
by the following transformation of the annihilation operators
a and b of the input (signal) and auxiliary (ancilla) modes,
respectively:

a → a′ = ka +
√

1 − k2b, (1a)

b → b′ = kb −
√

1 − k2a, (1b)

where the ancilla mode is initially in the thermal state
with mean photon number N0. Equivalently, defining Nc =
(1 − k2)N0, Ek,N0 describes the composition of an attenuation
channel (N0 = 0 in Ek,N0 ) with coefficient 0 � k � 1 and a
channel adding Gaussian-distributed noise to each quadrature
with identical variance

√
Nc [9]. Indeed the case k = 1 requires

the latter formulation; see [[9], Sec. IV].
For a fixed maximum input mean photon number N , the

classical capacity C(N ) of the thermal-noise channel has
been shown [3] to be the Holevo information of the channel,
evaluated for a Gaussian ensemble of mean photon number N

of coherent states.
More precisely, we have the following. Let Z be a random

variable over C with probability density PZ(z) = ψN (z) for

ψN (z) := (πN )−1 exp(−|z|2/N ), (2)

|z〉 the coherent state centered at z ∈ C, and θB
z =

EA→B
k,N0

(|z〉〈z|A). Here A denotes the input mode and B the
output mode. We denote by E the output ancilla mode, so that
the joint output produced by the channel is the bipartite state
θBE
z . The capacity can then be expressed as [3]

C(N ) = I (Z : B)ρ, (3)

where ρZB is the classical-quantum state corresponding to the
ensemble {PZ(z),θB

z }z∈C, and I (Z : B)ρ is defined as

I (Z : B)ρ = H (ρB) −
∫
C

dz PZ(z)H
(
θB
z

)
, (4)

with ρB = ∫
C dz PZ(z)θB

z . Here H (ρ) is the von Neumann
entropy, H (ρ) = − Tr[ρ ln ρ], and we use the natural log-
arithm throughout. The marginal state of the input is then
just the thermal state τN having average photon number N :∫
C dz PZ(z)|z〉〈z| = τN , with

τN := 1

N + 1

∞∑
n=0

(
N

N + 1

)n

|n〉〈n|, (5)

where {|n〉}∞n=0 is the number basis. Observe that PZ is the
P function of the input state τN , while for given z the above
description of the channel implies that the P function of the
output θB

z in B is simply PθB
z

(w) = ψNc
(w − kz). Similarly,

the output θE
z in the auxiliary mode has P function PθE

z
(w) =

ψk2N0 (w + √
1 − k2z).

In establishing the formula for the classical capacity, [3]
relies on random coding arguments. For the pure loss case
(N0 = 0), Guha and Wilde constructed polar codes for a
constellation of two coherent states (binary phase-shift key-
ing) [10] the optimal rate of which approaches the capacity in
the limit of vanishing input mean photon number.

Compared to the case of classical data transmission, less
is known about the best rate to transmit quantum data,
which is set by the quantum capacity of the thermal noise
channel (we refer the reader to the book [11] for the precise
definitions and an introduction into these concepts). This is
related to the fact that we currently do only have a limited
understanding of quantum coding in the infinite-dimensional
setting, especially when taking physical limitations such as
precision restrictions into account. For example, Devetak’s
proof [12] that the coherent information and its regularization
are achievable rates of quantum communication does not
deal with infinite-dimensional channels. Although it seems
straightforward to extend his method by suitably truncating
the input and output spaces (as carried out for entanglement
distillation in [[13], Appendix I]), this proof technique would
lead to random codes involving superpositions of products
of number states. These encodings are arguably very hard to
realize experimentally.

It is thus interesting to determine possible rates of noiseless
communication if we restrict to Gaussian encodings. Adding
another simplification, namely, disregarding the fact that the
coherent information needs to be regularized in order to give
the ultimate quantum capacity of a channel, leads to single-
letter Gaussian quantum capacity Q

(1)
G . This quantity is given

by maximizing the coherent information over Gaussian input
states,

Q
(1)
G = max

ρ
H (B)ω − H (E)ω, (6)

where ωABE = V A′→BR
Ek,N0

(ξAA′
) for ξAA′

is a purification of the

Gaussian state ρA at the channel input and V is a Stinespring
dilation of the channel. In [1], Holevo and Werner showed that
this optimization problem can be solved explicitly in the case of
the thermal noise channel, and that the unique maximizer is the
state τN for N → ∞. The corresponding output is given by τN ′

where N ′ = k2N + Nc. They also showed that Q
(1)
G remains

finite in this limit, that is, in the limit of infinite energy. This
is in sharp contrast to the classical case, where the capacity
is infinite in the absence of an energy bound. The difference
between the classical and the quantum case may be argued for
by the fact that the quantum uncertainty principle prevents
us from arbitrary dense packing of quantum information,
but a satisfactory analytic understanding of this point is still
missing. In addition, a finite-energy bound is of course also of
practical interest, even in the quantum-mechanical case, due
to implementation limitations.

Nevertheless, the quantity (6) is a lower bound on the
quantum capacity, because it is restricted to Gaussian inputs
which are moreover not entangled in the case of multiple chan-
nel uses. Hence, the construction of communication schemes
which achieve this rate is a necessary first step for advancing
our understanding of the limitations of quantum communica-
tion via the thermal noise channel. Moreover, in the case of

062343-2



COHERENT-STATE CONSTELLATIONS AND POLAR CODES . . . PHYSICAL REVIEW A 95, 062343 (2017)

(a) ρ

τN0

E(ρ)
k

Thermal channel

(b) Mj |zj〉M

Modulator

(c) Mj E(|zj〉〈zj |)M

Effective channel

(d)

en
co

d
er

d
eco

d
er

··
·

FIG. 1. (a) The thermal channel E mixes the input state ρ with the thermal state of mean photon number N0 on a beamsplitter of transmittivity
k. (b) The modulator taking classical input j to the j th coherent state |zj 〉 in the constellation. (c) The effective channel resulting from combining
the modulator with the thermal channel. (d) The classical coding scheme using the effective channel. In the quantum scheme the encoder
accepts a quantum state and the modulator must be able to output superpositions of constellation coherent states.

degradable channels such as pure loss, Wolf et al. have shown
that Gaussian inputs are provably optimal among all inputs [4]
(and moreover entangled inputs are not necessary [14]).

The first communication schemes which achieve the rate (6)
were constructed by Harrington and Preskill for the case k = 1
in [15]. Their construction is not based on discretization, but
rather embedding an appropriate number of qubits directly
into the state space of a larger number of modes, using the
method of [16]. The practicality of this method is, however,
limited, even disregarding the nonexplicit nature of the code,
as it ostensibly requires codewords which are superpositions
of highly squeezed states.

Here, we construct new encoding schemes which are based
on coherent states and are thus more feasible experimentally.
As already explained in the introduction, our results are
based on constellations, or discretizations of continuous input
distributions.

III. NEW CODING SCHEMES

Any given constellation defines a mapping, or modulation,
from a discrete set of m inputs (indexing the particular input
state) to the coherent states in the constellation. Combining this
mapping with the thermal channel then defines an “effective”
discrete-input Bosonic-output channel, as depicted in Fig. 1.

The methods of polar coding can then be applied to this
channel to yield a high-rate block code. As we show in the two
subsequent sections, this results in classical codes with rates
achieving the capacity C(N ) and quantum codes with rates
achieving the Gaussian coherent information Q

(1)
G . The use of

polar codes also ensures the encoding operation is efficient,
though it is not known if efficient decoding is possible when
the channel outputs noncommuting states.

In classical information theory, channel constellations are
designed to emulate the optimizer of the channel mutual
information, as this gives a means for showing that the overall
coding scheme can approach the capacity. Here we take the
same approach, and aim to emulate τN , the optimizer in both
the Holevo information and coherent information.

As depicted in Fig. 2, several useful constellations are
known for the AWGN. The equilattice is simply m equally
spaced points with equal probability the variance of which
matches that of the optimizer of the channel mutual informa-
tion [17]. The quantile constellation chooses points based on
the quantile (inverse of the cumulative distribution) [18], while
the random walk is precisely the distribution of positions of
a suitably rescaled random walk of length (m − 1). Finally,
the Gauss-Hermite constellation is based on Gauss-Hermite
quadrature. This discretizes the Gaussian distribution to m

points in R such that the first 2m − 1 moments of the Gaussian

Gauss-Hermite Random Walk Quantile Equilattice

FIG. 2. Four constellations of m = 7 points which approximate a normally distributed random variable. The random-walk and equilattice
constellations consist of equally spaced points, while the quantile and equilattice have equal probabilities. Gauss-Hermite quadrature has
neither, but precisely reproduces the largest number of moments of the Gaussian distribution, the first 2m − 1. The others have only the same
mean and variance.
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FIG. 3. Achievable rates for classical and quantum information transmission with increasing constellation size m, for the pure loss channel
(N0 = 0) with k = 0.8 and input state τN with N = 7. Although the Gauss-Hermite constellation (straight line) is optimal as m → ∞, it is
inferior for small m. For practical purposes, the random-walk constellation (dashed line) is best, rising very quickly to rates quite close to
capacity.

are correctly reproduced. Indeed, Gauss-Hermite quadrature is
optimal in that it reproduces the largest number of moments
for fixed m. This constellation and the random walk were
introduced in [5].

As noted in [5], the equilattice has a minimal gap to capacity
of roughly 0.25 bits, while the gap closes in the m → ∞
limit for the quantile, random walk, and Gauss-Hermite
constellations. The latter closes exponentially in m in the
asymptotic limit, but only polynomially in the other two cases.
Nonetheless, the capacity of the random-walk constellation is
already quite close to the optimal value even for modest m,
while the Gauss-Hermite constellation only becomes optimal
for larger m. We observe the same behavior for the thermal
channel, as depicted in Fig. 3.

IV. COHERENT-STATE CONSTELLATIONS

For the thermal channel we can apply any of these constel-
lations in phase space, to the P function of τN . As described
above, this is a circularly symmetric complex Gaussian, and we
use the AWGN constellations to mimic the real and imaginary
parts separately. Specifically, the constellation is described by
the distribution QN,m(z), supported on m2 points, such that

N

2
QN,m

[√
N

2
(x + iy)

]
= PXm

(x)PXm
(y), (7)

where PXm
is one of the four constellations considered in [5]. In

terms of random variables, Zm =
√

N
2 (Xm + iX′

m), where Xm

and X′
m are independent realizations of the given constellation.

The factor
√

N ensures that the resulting P function has
variance N , while the 1/

√
2 factor takes care of the conversion

from two real variables to one complex variable.
Define the associated ensemble

ρZA
N,m = {QN,m(z),|z〉〈z|}z∈C. (8)

As for the classical Gaussian channel, for m � 2 the first two
moments of ρA

N,m match those of the thermal state τN .
Now we sketch how to upper bound the gap between the

coherent information and the rate of the polar code applied to
the induced discretized channel. A simpler version of the same
argument yields the analogous result for the classical capacity.

Let us denote the target rate without using modulation as R,
and the associated rate using the modulation with m points Rm.
The former is the coherent information of the channel, while
the latter is the same entropic expression, but evaluated for the
input state given by the discretization scheme. The coherent
information may be written as R = I (Z : B) − I (Z : E) for
PZ as in Eq. (2), and Rm is the same expression, evaluated
with Z ∼ QN,m. Here E is the output of the channel to the
environment. This follows because θBE

z , the state of BE given
the input Z = z (or Zm = z), is pure and hence H (B|Z) +
B(E|Z) = 0.

We would like to find an upper bound on 	 = R − Rm,
which can be written as 	 = 	B − 	E for 	B = I (Z :
B) − I (Zm : Bm) and similarly for 	E . Here, Bm is the
channel output for the input Zm. Clearly, we need not consider
	E for the problem of classical information transmission.
These quantities can be written as relative entropies. More
specifically, let ρZBE and ρZmBmEm

m be ensembles of the state
θBE
z with distributions ψN as in Eq. (2) and QN,m as in Eq. (7),

respectively. Then

	B := I (Z : B) − I (Zm : Bm) = D
(
ρBm

m

∥∥ρB
)
, (9a)

	E := I (Z : E) − I (Zm : Em) = D
(
ρEm

m

∥∥ρE
)
, (9b)

where the relative entropy is defined as D(ρ‖σ ) = Tr[ρ(ln ρ −
ln σ )].

To see this, consider the claim for 	B ; the following
argument will also work for 	E . Expanding out the mutual
information, we obtain 	B = H (B) − H (B|Z) − H (Bm) +
H (Bm|Zm). Since P functions of the output states θB

z are all
identical up to translation, it follows that their entropies are also
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identical, and therefore H (B|Z) = H (Bm|Zm). This leaves
	B = H (B) − H (Bm). Using the form of the relative entropy,
it is apparent that the claim is equivalent to the statement
Tr[ρBm

m ln ρB ] = Tr[ρB ln ρB]. Since the channel is Gaussian,
ρB is a zero-mean Gaussian state, equivalent up to symplectic
unitary conjugation to a tensor product of thermal states [1,2].
It follows that ln ρB is a second-order polynomial q(r,r†) of
the output creation and annihilation operators r and r†. We
thus have

Tr
[
ρB ln ρB

] = Tr[EA→B
k,N0

(ρA)q(r,r†)] (10a)

= Tr
{
ρAEA→B†

k,N0
[q(r,r†)]

}
(10b)

= Tr[ρAp(a,a†)], (10c)

where E†
k,N0

is the channel adjoint and, since the channel
is Gaussian, p(a,a†) is a second-degree polynomial in the
input creation and annihilation operators. Similarly, we have
Tr[ρBm

m ln ρB ] = Tr[ρA
mp(a,a†)]. Finally, since the first two

moments of ρA
m match those of ρA, this also holds for the

outputs ρB
m and ρB , and we indeed have Tr[ρBm

m ln ρB] =
Tr[ρB ln ρB].

As the relative entropy is non-negative, we immediately
have 	E � 0, and we need only an upper bound for 	B . A
convenient choice is the χ2 distance, given by χ2(ρ,σ ) =
Tr [(ρσ−1/2)2] − 1, since D(ρ‖σ ) � χ2(ρ,σ ) [19,20].

In [5] Wu and Verdú obtain a bound on the χ2 distance
between the optimal output state and the discretized version
for the case of the AWGN. They relate χ2(PYm

,PY ) directly to
the moments of Xm, specifically the moments of the Hermite
polynomials of Xm. (These all vanish for standard normal
X, save the zeroth-order polynomial.) Indeed, they show the
following slightly more general statement [[5], Sec. V.A]. First
denote the AWGN with signal-to-noise ratio s by Ws ; it has the
action Ws(X) = √

sX + G, where G is a normally distributed
random variable with unit variance. Then for X ∼ N(0,1), X′
an arbitrary random variable with density PX′ , and Y = Ws(X)
and Y ′ = Ws(X′),

1 + χ2(PY ′ ,PY ) =
∞∑

k=0

1

k!

(
s

1 + s

)k

|E[Hk(X′)]|2. (11)

We can use their result to bound χ2(ρBm
m ,ρB). In

particular, with QN,m[
√

N
2 (x + iy)] as in Eq. (7), s =

k2N/(
√

N ′(N ′ + 1) − k2N ), and Ym = Ws(Xm),

	B �
[
1 + χ2(PYm

,PY

)]2 − 1. (12)

This bound is a consequence of the χ2 upper bound on
the relative entropy described above, and finding tractable
expressions for quantum and classical χ2 quantities relies
on the fact that the second argument to the relative entropy
is a thermal state or a Gaussian probability distribution,
respectively. The inequality (12) is an instance of a more
general statement relating the quantum and classical χ2

quantities in this setting for general factorizable P functions.
The proof involves somewhat intricate Gaussian integration
and is given in the Appendix.

Hence, per ([5], Sec. VII), using the quantile or random-
walk constellations will lead to 	B decaying as the inverse of

the number of points in the coherent-state constellation m2,
while the Gauss-Hermite quadrature leads to 	B � O(e−cm)
for c = 2 ln 1+s

s
. Using the above expression for s, one obtains

c ≈ 2 1−k2

k2
N0
N

for N � N0. If we wish to increase N but fix the
gap to capacity or coherent information, this implies that the
number of constellation points must scale linearly with N .

V. POLAR CODES FOR THE THERMAL CHANNEL

The polar code construction can be used for classical,
private classical, and quantum coding. Here we provide
only the essential details for the present case and will not
attempt to provide a background on polar coding. One could
also appeal to other capacity-achieving schemes for the task
of transmitting classical information, e.g., spatially coupled
low-density parity-check codes [21] (after showing these work
for channels with quantum output), but no explicit quantum
coding schemes besides polar codes are known to achieve the
coherent information. Common to all our coding scenarios
is a truncation of the output space to finite dimensions, as
described at the end of Sec. II. This ensures that we may apply
existing results on the construction and properties of polar
codes. It appears that all the necessary statements also hold for
channels with infinite-dimensional outputs, but we have not
shown this definitively.

A. Classical coding

Wilde and Guha [7] show how to construct polar codes
to transmit classical information over channels with binary
classical input and finite-dimensional quantum output. Re-
cently, one of the present authors extended the construction
to arbitrary input alphabets [22]. Here, the modulator selects
a coherent-state input for the Bosonic Gaussian channel, but
the choice of which input to make is classical. Both [7] and
[22] only considered the case of uniformly random channel
input (befitting the equilattice or quantile constellations), but
this restriction can be lifted by the construction of Honda and
Yamamoto [23] (using modified polarization statements found
in [24]), so as to apply to random-walk or Gauss-Hermite
constellations.

Thus, a rate of I (Zm : Bm) is achievable. Both [7] and
[22] appeal to Arikan’s original encoder, hence encoding is
efficient. The quantum version of the successive cancellation
decoder is likewise explicit, but its implementation complexity
is unknown.

B. Private coding

For private coding, the task is not only to transmit
information reliably but also to hide it from an eavesdropper.
Codes to do so are constructed by Renes and Wilde in [25],
where it is shown that the “naive” wiretap rate I (Zm :
Bm) − I (Zm : Em) is achievable. Generally, the code requires
secret-key assistance at nonzero rate, but not if the channel is
degradable [4], e.g., for pure loss (N0 = 0).

Crucial to the construction is the observation that the
channels to the legitimate receiver Bob and to the eavesdropper
Eve are related by an entropic uncertainty relation. Eve’s
information about the actual classical message must be small
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if the code is constructed so that it could send complementary
“phase” information to Bob. The construction in [25] is
again for uniform channel inputs, but can be extended as
just described above. The uncertainty principle argument is
unaffected by having nonuniform channel inputs.

C. Quantum coding

For quantum coding, we proceed as in the case of private
coding, except we use the channels to send quantum states.
Now we regard the modulator as mapping the kth basis state
of an m2-dimensional quantum system to the kth coherent
state in the constellation. Since this mapping is not unitary, the
coherent information of the modulator composed with Ek,N0

is lower than that of Ek,N0 itself. This implies that we cannot
employ the method of Devetak [12] to upgrade a private code
to a quantum code (at least, not at the same rate).

Instead, we employ a scheme based on one-way en-
tanglement distillation, combining it with teleportation to
enable transmission of arbitrary states [26]. Recall that in
entanglement distillation Alice and Bob use local operations
and classical communication to transform many copies of a
bipartite mixed state into a number of maximally entangled
states. The mixed state in question is that obtained by Alice
transmitting the state in Eq. (8) through the channel to Bob,
while keeping its purification. Abusing notation and denoting
by QN,m(j ) the probability of the j th coherent state |zj 〉, the
state at the input to the channel can be written

|ξ 〉A′A =
m2∑
j=1

√
QN,m(j ) |bj 〉A′ |zj 〉A , (13)

where the |bj 〉 are an orthonormal basis for an m2-dimensional
space A′. Here we are interested in using stabilizer codes
for entanglement distillation, where Alice makes stabilizer
measurements on A′ and sends the outcomes (the syndrome) to
Bob. Bob then uses this side information to execute a decoding
operation on his system. By choosing a suitable stabilizer
code, Alice and Bob end up with copies of a maximally
entangled state. As shown in [8,24], by using a polar code
the scheme has rate equal to I (Zm : B) − I (Zm : E) which
approaches Q

(1)
G (Ek,N0 ) as m → ∞. The former construction

is simpler, yet may require entanglement assistance, while
the latter is somewhat more complicated but does not require
entanglement assistance. In either case Alice’s stabilizer
measurements can be done efficiently, since the requisite
quantum circuit is just the polar coding circuit.

This scheme can be converted into a quantum code
involving no classical communication as follows. Consider
a particular syndrome, selected in advance and known to Bob
(since the final state is entangled, the distribution of syndromes
is essentially uniform). Instead of preparing many copies of
the state |ξ 〉A′A and making the stabilizer measurement, Alice
could just create the bipartite state that results when the given
syndrome is observed. After receiving the channel output Bob
proceeds with his decoding operation. By the properties of
stabilizer codes, each logical codeword will correspond to a
superposition of tensor products of coherent states. The catch
in this construction is that we no longer have any guarantee
that the codewords are efficiently constructable except by

the tedious protocol of performing the procedure above and
keeping the state only when the desired syndrome is obtained.

VI. CONCLUSIONS AND OUTLOOK

We have constructed three classes of codes for the thermal
noise channel, all based on concatenation of polar coding with
suitable discretizations of the channel into a constellation of
input coherent states. For transmitting classical information,
this leads to explicit codes with efficiently implementable
encoders that achieve the single letter channel capacity if
restricted to Gaussian inputs. Moreover, the encoder need
only prepare products of coherent states. For transmitting
classical information privately, our codes naively achieve the
unoptimized wiretap rate I (Z : B) − I (Z : E), but this could
presumably be improved by preprocessing exactly as in the
classical wiretap scenario.

In the fully quantum case, we have shown how to employ
a one-way entanglement distillation scheme in order to send
quantum information at a rate given by the Gaussian coherent
information. Alice’s operations are efficiently implementable
in this scheme, but it is not clear how to efficiently generate the
corresponding quantum codewords for use in a standard error-
correction scenario. From a more technical perspective, this
construction provides a rigorous proof taking the subtleties of
the infinite-dimensional setting into account that the Gaussian
coherent information is a lower bound on the quantum capacity
of the thermal channel and equal to it for pure loss.

While our results thus provide explicit and efficiently
implementable encodings, the question of how to construct
efficient and experimentally realizable decoders is still wide
open. Although an explicit decoder is known for classical
information transmission, the successive cancellation decoder
of [7], it is not known how to implement it efficiently for
noncommuting channel outputs. Moreover, recent results by
Winter and coworkers even suggest that, while Gaussian
encodings are sufficient to achieve the capacity, Gaussian
decoders seem not to be sufficient [27]. This again shows
that much further work is needed to understand the limitations
of data transmission through Gaussian quantum channels.
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APPENDIX: THE RELATIVE ENTROPY UPPER BOUND

Equation 12 follows from Eq. (9a), the upper bound
D(ρ||σ ) � χ2(ρ,σ ), and the following.

Lemma 1. Let X ∼ N(0,1) and X′
1,X

′
2 be arbitrary real

random variables with densities PX′
1

and PX′
2
. For Z =√

N
2 (X′

1 + iX′
2) with density Q(z) and arbitrary N > 0, de-

fine ρ = ∫
C dz Q(z) θz. Then, with Y = Ws(X) and Y ′

j =
Ws(X′

j ), N ′ = k2N + Nc, and s = k2N/(
√

N ′(N ′ + 1) −
k2N ),

1 + χ2(ρ,τN ′ ) = [1 + χ2(PY ′
1
,PY )] [1 + χ2(PY ′

2
,PY )].

We prove Lemma 1 by establishing two intermediate results
which give explicit expressions for the classical and quantum
χ2 quantities. First, define the real Gaussian density

ϕs(x) := 1√
2πs

exp

[
−x2

2s

]
, (A1)

for x ∈ R and s > 0; recall that the corresponding complex
density ψs is defined in Eq. (2). Observe that ϕs(x) =

1√
s
ϕ1( x√

s
) and ψs(x + iy) = ϕs/2(x)ϕs/2(y). We will make use

of the following Gaussian integral formula. For A an arbitrary
n × n complex matrix with positive definite Hermitian part,
i.e., 1

2 (A + A†) � 0, and arbitrary u,v ∈ Cn we have [[28],
Eq. 3.18]∫

Cn

dw e−w̄T Aw+ūT w+w̄T v = πn det A−1eūT A−1v. (A2)

Now we give the expression for the relevant classical χ2

quantity, χ2(PY ′ ,PY ) with an arbitrary input X′. To this end
define, for s � 0 and x,x ∈ R,

Ks(x,x ′) := 1+s√
1+2s

exp

{
− s

2(1+2s)
[s(x−x ′)2 − 2xx ′]

}
.

(A3)

Lemma 2. For random variables X,X′, Y , and Y ′ as in
Eq. (11),

1 + χ2(PY ′ ,PY ) =
∫
R2

dx dx ′ PX′ (x)PX′(x ′)Ks(x,x ′).

(A4)

Proof. First observe that PY (y) = ϕ1+s(y), while

PY ′ (y) =
∫
R

dx PX′ (x)ϕ1(y − √
sx). (A5)

Computing 1 + χ2(PY ′ ,PY ), we find

1 + χ2(PY ′ ,PY ) =
∫
R

dy
PY ′ (y)2

PY (y)
(A6)

=
∫
R

dx

∫
R

dx ′ PXm
(x)PX′ (x ′)Is(x,x ′),

(A7)

where

Is(x,x ′) =
∫
R

dy ϕ1+s(y)−1ϕ1(y − √
sx)ϕ1(y − √

sx ′).

(A8)

This is a simple Gaussian integral, and using Eq. (A2) we
find Is(x,x ′) = Ks(x,x ′). �

Next we turn to the expression for the quantum χ2 quantity.
Lemma 3. Let ρ be a state with positive P function (a

probability density P ). For any N > 0,

1 + χ2(ρ,τN ) =
∫
C2

dz dz′ P (z) P (z′) CN (z,z′), (A9)

where, for tN =
√

N+1
N

,

CN (z,z′) := (N + 1) exp[−|z|2 − |z′|2 + tn(zz̄′ + z̄z′)].

Proof. Computing the trace in the number basis, we get

1+χ2(ρ,τN ) =
∞∑

n=0

〈n| ρ τ
−1/2
N ρ τ

−1/2
N |n〉

= (N+1)
∞∑

n,n′=0

tnN tn
′

N 〈n| ρ |n′〉 〈n′| ρ |n〉

= (N+1)
∞∑

n,n′=0

tnN tn
′

N

∫
C

dz ′P (z′) 〈n′|z′〉 〈z′|n〉

=
∫
C2

dz dz ′P (z)P (z′)SN (z,z′) ,

where

SN (z,z′) = (N + 1)
∞∑

n,n′=0

tnN tn
′

N 〈n|z〉 〈z|n′〉 〈n′|z′〉 〈z′|n〉 .

Computing SN (z,z′), we find

SN (z,z′)
N + 1

=
∞∑

n,n′=0

tnN tn
′

N e−|z|2 znz̄n′

√
n!

√
n′!

e−|z′ |2 z′n′
z̄′n

√
n′!

√
n!

= e−|z|2−|z′ |2
∞∑

n=0

1

n!
(tNzz̄′)n

∞∑
n′=0

1

n′!
(tNz′z̄)n

′

= CN (z,z′)
N + 1

.

This completes the proof. �
With these two intermediate results, we are ready to

establish Lemma 1.
Proof of Lemma 1. Using the form of θz as described in

Sec. II, it is apparent that the P function of ρ is simply

Pρ(w) =
∫
C

dz Q(z)ψNc
(w − kz). (A10)

Now applying Lemma 3 with number parameter N ′, we have

1 + χ2(ρ,τN ′ ) =
∫
C2

dz dz′ Q(z) Q(z′)RN ′(z,z′) , (A11)

where RN ′ (z,z′) is just∫
C2

dw dw′ ψNc
(w−kz)ψNc

(w′−kz′)CN ′(w,w′) .

Recalling Eq. (2) and using AN = ( 1 tN
tN 1 ) to express the

argument to the exponential in CN ′(w,w′) in matrix form, we
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obtain a Gaussian integral for RN ′ (z,z′):

RN ′(z,z′) = N ′ + 1

π2N2
c

e− k2

Nc
(|z|2+|z′|2)

∫
C2

dw exp

[
−w̄T AN ′w − 1

Nc

w̄T w + k

Nc

(z̄T w + w̄T z)

]
. (A12)

Here z = (z,z′) and similarly for w. The integrand has the form e−w̄T Aw+ūT w+w̄T v where A = AN ′ + 1/Nc and u = v = k/Ncz.
Applying Eq. (A2) to Eq. (A12), we obtain

RN ′ (z,z′) = N ′ + 1

N2
c

det(A−1) exp

[
k2

Nc

z̄T

(
1

Nc

A−1 − 1

)
z
]

(A13)

= N ′(N ′ + 1)

N ′ + 2N ′Nc − N2
c

exp

[
−k2 (N ′ − Nc)(|z|2 + |z′|2) − √

N ′(N ′ + 1)(zz̄′ + z̄z′)
N ′ + 2N ′Nc − N2

c

]
. (A14)

To simplify this expression, let c = N ′ − Nc and d = √
N ′(N ′ + 1); these are the prefactors of the first and second terms in the

argument of the exponential, absent the denominator. Observe that the denominator itself is simply d2 − c2. Now notice that s as
defined in the statement of the lemma is such that s/(1 + s) = c/d. By direct substitution it is easy to show that the prefactor of
the exponential in Eq. (A14) simplifies to

N ′(N ′ + 1)

N ′ + 2N ′Nc − N2
c

= (1 + s)2

1 + 2s
. (A15)

Therefore,

RN ′(z,z′) = (1 + s)2

1 + 2s
exp

{
−k2

c

s

1 + 2s
[s(|z|2 + |z′|2) − (1 + s)(zz̄′ + z̄z′)]

}
. (A16)

As c = k2N , we obtain

RN ′

(√
N

2
z,

√
N

2
z′

)
= (1 + s)2

1 + 2s
exp

{
− s

2(1 + 2s)
[s(|z|2 + |z′|2) − (1 + s)(zz̄′ + z̄z′)]

}
, (A17)

and thus, finally,

RN ′

(√
N

2
(x + iy),

√
N

2
(x ′ + iy ′)

)
= Ks(x,x ′)Ks(y,y ′). (A18)

Returning to Eq. (A11) and changing variables z →
√

N
2 (x + iy) yields

1 + χ2(ρ,τN ′ ) =
[∫

R
dx dx ′ PX′

1
(x) PX′

1
(x ′)Ks(x,x ′)

][∫
R

dx dx ′ PX′
2
(x) PX′

2
(x ′)Ks(x,x ′)

]
. (A19)

Appealing to Lemma 2 completes the proof. �
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