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Abstract

We introduce and study the properties of a class of coherent states for the group SU(1,1)

X SU(1,1) and derive explicit expressions for these using the Clebsch-Gordan algebra for the

SU(1,1) group. We restrict ourselves to the discrete series representations of SU(1,1). These

are the generalization of the 'Barut Cirardello' coherent states to the Kronecker Product

of two non-compact groups. The resolution of the identity and the analytic phase space

representation of these states is presented. This phase space representation is based on the

basis of products of 'pair coherent states' rather than the standard number state canonical

basis. We discuss the utility of the resulting 'bi-pair coherent states' in the context of four-

mode interactions in quantum optics.

1 FORMULATION

1.1 Coupling of Pair coherent states in the fock state basis

For two mode systems the traditional SU(1,1) coherent states which have been extensively studied

in the context of squeezing have been the Caves-Schumaker states [1], defined by the relation

I_ >= exp(_ atbt -_*ab)lO, O >, (1)

In addition to these states many authours [2] [3] have considered the SU(1,1) coherent states of

two mode systems or the 'pair coherent states' which were simultaneous eigenstates of ab and

ata -btb

abJ_,q > = ¢l¢,q >,

Q,l_,q > = ql]_,q > .

These can be mapped onto the SU(1,1) group by means of the two Boson realisation:

1 t
I(_+ = atb t , t(; = ab , I(; = -_(a a + bib + 1) ,

(2)

(3)
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which form an SU(1,1) algebra with the commutation relations

[nt,KC]: -2K;, [Kt, : (4)

The conservation law for Qx is related to the Casimir operator C for the SU(1,1) group; which

can be written as
1

C = 4(1 - (a'a- btb) 2) = 4(1 - Q_). (5)

Thus the eigenstate of QI is also an eigenstate of C and the pair coherent state is related to the

eigenstate of Ki- by Barut and Girardello.

These generate a representation D ql that correspond to the positive discrete series representa-

tion of SU(1,1) [4]. In the number state basis, this corresponds to the basis states Inl + ql,nl >,
where

(_')-,+_,(b')"_Io,o >, (6)
In, + q,,n, >= ((nll)(n, + q,)l)l

The pair coherent state in the number state basis labelled as ]¢1, qi > is

Oo

[(a,q, >= Nq, __. ('}'
.,=o _/n,l(n,4-qx)llnl+ ql,n, >,

(7)

with

Nq, = [(l(,D-q,Iq,(21¢111]-'/2 (8/

These states constitute a complete set in each sector qi and the completeness relation is given by

f d2C,2Iq,(21C,l)Kq,(21(,I)l¢,,q, >< ¢,,q,t (9)

for the normalized states.

We now consider the group obtained by the addition of two SU(1,1) generators defined for four

modes a,b,c,d.

K + = a_b t + ctd t = K + + K + ,

K- = ab + cd = K_ + K_ ,

K_ 1 t •
= -_(a a + btb + ctc + dtd + 2) = K, +K_.

C (K+K- + K-K+) 2
-- KZ,

2
(10)

The 'hi- pair coherent states' or the coherent states for the Kronecker Product are now the eigen-

states of K- ,Cl, C2 and C. If we restrict ourselves to the positive discrete series representations

of SU(1,1) then the Kronecker Product DqIXD q_ i.e the Clebsch Gordan series for SU(1,1) given

by oo

Dq, X D q2 - _" D q. (11)

q=ql +q2 + 1

Thus a given representation in the Kronecker product is fixed by q, qt, q_-
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The eigenvalue problem that we wish to solve is

K-[_,q >=_l(,q > ;C[(,q >= (1/4-q2/4)[_,q > . (12)

In terms of the product number state basis Inl + ql,nl > In2 + q2,n2 > we get:

(¢)k
I_,n, ql,q2 > = N,, __, 1

k=o [(k)!(k + 2n + q, + q2 + 1)!] _

,,q2,- n , (13)
X _ Cqnl,.2,.+kS(.l+_2,n-t-k)[ 1 + ql nl > In2 + q2, n2 >

n 1 ,'r_2

we get an expression for the Kronecker Product states in terms of the CG coefficients in the photon

number basis.

1.2 Clebsh Gordan Problem in the pair coherent state basis

Consider the four mode bases of the Hilbert space characterised by the product of two pair

(SU(1,1) coherent states [¢1, q_ > [_2, q2 > • Since these coherent states form an overcomplete set

any vector in the four mode Itilbert space can be expanded in terms of these states. In particular

the coherent state of the product SU(1,1) X SU(1,1) 1(, q > can be expanded directly in terms of

the unnormalized states

I¢1,q, >> = _ ¢i' )il_ + q,,n >,
,_=o _n!(n + q,

oo f rn

1¢2,q2>> = ,_=0_ _/mm/I(_'24-q2)'lm. +q2,rn> (14)

The completeness relation for the unnormalised states ]_i, qi >> can be deduced from (2.18) to be

/ d2¢i2l¢ilq'fq,(2l¢il)l¢i,qi >><< _i,qil = 1. (15)

The unnormalised states have the advantage that the operators Ki _ and Kf can be expressed as

differential operators. The completeness relation and resolution of the identity ensures that the

product states 1_, ql >> 1_2, q2 ;>> form the basis states for DqIXD q2 and any four mode state

1¢ > can be expanded as

f << _l,qx << _2,q21_ b :> ]¢lql >> ]C2,q2 >> d2a(C])d2a(¢2) • (16)I¢ >:

In this representation the quantity << _1, ql, zeta2, q21¢ > is an analytic function ¢(_[, _, ql, q2)

and the operators K1 and /(2 act as ifferential operators on this function. In particular the

coherent state vector I_, q > in this four mode hilbert space can be written as:

/ << (1,ql << (_,q2l(,q > ](1ql >> 1(2, q2 >> d2a((1)d2a((2) • (17)I(,,q, ql,q2 >=

This becomes the equivalent of the Clebsch Gordon equation in the pair coherent state basis

and the quantity The overlap function << (,_,ql]_2q2[(,q >= f(_[, (_,(ql,q2) is the equivalent
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of the Clebsch Godon coefiient for the SU(1,1) COHERENT STATE BASIS. The action of the

generators of SU(1,1) X SU(1,1) on f is given by

(K_+ + K2+)I = (¢[ + (_)I
a ,o 8 ,o

(K( + Kf)f = [(0--_(q, + (,_-_ + (_-_(q2 + (2 _-_]f
(18)

On the other hand

K l:(f ;Cf:[(1-q2)/4]f

Thus we get the following two differential equations for f:

[ .0 0 .o] =el,

(19)

and

+

a' 2__o__o¢t¢;(a¢t2 a¢t a¢;
a

O--_)- (q2 + 1)(_'(a-_i,

o2]+ _-_22) f

o]aG) f

(ql + q2 + 1)2.] f
4 J

Solving these two equations we get [5]:

f = << (1,ql,G,q2l(,q >>

= N((((t +(;))-q/2Iq(¢4(((t +(2)((, +s2, -,-, ,({ +(_ (20)

N is the normalisation. Thus the state [(, q > can be obtained from the relation:

l¢,q >= 4NTr---Yf d2(, f d_GKq,(21(,i)Kq_(21(21)<< (,, qi,¢2, q2[(,q >> I(,, q, >> IG,q2 >> (21)

This is the Clebsch Gordon form for the product basis of Coherent states of SU(1,1) X SU(1,1).

It is interesting to note that by substituting the values of I(1, ql >> and I(_, q2 >> given in

equations (14) and using the expansion for the Jacobi Polynomial as well as the expansion of the

Bessel function Iq and carrying out the various integrations we have:

I¢,q >
= ¢k

N'__,k=O(k!(k + q)])½ ,-,,,,-,__ @,,+_,2,,',+k)
1

[nlln2!, (nl + ql)!(n2 + q2)!k! _(k + q)! ((n + q,)!(n + q_)!)
1

Y_"(-1)/l!(q2 +/)[(n-/)](n2 -l)!(n, - n -/)[(n + q, -/)[
1

In_ + ql, nl > Ins + q_-,n2 _22)
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By comparison with expression [13] in the previous section we have:

_-Vql ,q2 ,n
1 ,n2 ,_-[-k :-

1

"Ttl!n2!, (nl -_ q_)!(n2 + q2)[k[" _

(k + 2n + ql -}-q2 + 1)[ ((n + ql)[(n + q2)]) 1/2

1

_--_(-1)'_(q2,. + m)!(n- m)!(n2 - m)[(n,- n- m)!(n + ql - m)[
(23)

Which is the Clebsch Gordon coefficient for the canonical number state basis for SU(1,1)XSU(1,1)

2 SubPoissonian Properties of SU(1,1)XSU(1,1) coher-

ent states

To give an idea of the Sub-Poissonian nature of these states let us consider a special case which

is useful in physical applications. Consider the case ql = q2 = 0 ; q=l ; _ -_ 0

In this special case, we start with equal number of photons in the modes a and b and in c and d.

Then

[_,1,0,0 >= NI_ _k _ 1
k [(k + 1)!(k)!] '/2 ,,,,2 (k + 1) 1/26"'+"2,kln1,n'

In2,n_ >, (24)

where

(KI)_/2 (25)
NI- [I1(2[C[)]1/2

The single mode probability distribution P,,1 and the mean number of photons < nl > are given

by

ICI2"_ (26)
P-I(C)---N_ICI=_'_ (n2 + nl + a),2 '

_r_2

and

<_ nl >= ICIh(21CI) (27)
211(21<1)

A measure of the non-classical nature of the distribution is given by Mandel's Q parameter, which

for the mode a is given by

Q =

<n 2>-(<n1>)2- <nl>

<hi>

21CIIs(2ICI) IC1_2(21CI)

312(21CI) 211(2lCl) "

(28)

(29)

In fig. 1 we plot Q .vs. [CI. For values of I_[ < 2, Q is negative showing the departure from

the Poisonnian. The joint probability distribution P,,+_ can be calculated from P,_1,,_2 by the

relation:

Pk= _ 6.,+._,kP._,._- N_ICI_k (30)
.,,._ A:!(/_+ _)!

15



The average value < k > is given by:

kPk - 1 [I2(2] 1) (31)
k Ix(2l¢l)

In figure 2 we plot Pk.vs.k and compare it to the corresponding Poissonian with mean value < k >

and it is clear that the distribution is sub Poissonian.

3 Physical Applications

SU(1,1)XSU(1,1) states are useful states in dealing with physical systems involving four modes

of the radiation fields. The physical problem could be the passage of two-beams of light each

having two polarisation modes passing through a medium in which there is a competition between

the non-linear gain due to an external pumping field and the non-linear absorption[7] [8],[9]. The

states generated are precisely the states considered in this paper. Let each beam contain both left

and right circularly polarised photons. Let a,b, a ,b denote the creation and annilation operators

for RIGHT circularly polarised photons from beam 1 and beam 2 and c, d, c t, dtdenote the creation

and annihilation operators for LEFT circularly polarised photons in beam 1 and beam 2. The

master equation describing the dynamic behaviour of the fields resulting from the competition

between two photon absorption and four wave mixing can be shown to be:

dp/dt = -K/2(&Op - 20pO t + p&O) - i [G(O t + O),p] [31 (32)

Where G denotes the four wave mixing susceptibility. Where K is related to the cross-section for

two photon absorption and O = ab+cd. Defining an operator C=O+2iG/K We have:

dp/dt = -K/2(CtCp + pCtCC - 2CpC t) (33)

Whose steady state solution: Cp = 0 with p = I¢ >< ¢[ so that: C[¢ >= 0 implying that

O1¢ >= -2iG/KI¢ > or (ab + cd)l¢ >= Ale > Where A = -2iG/K Thus the steady state

solutions of the master equations are eigenstates of the operator O. Furthermore, if we now

impose the condition that the initial state is one in which the difference in the in the the number

of photons in the two polarisation modes of each beam is a constant, with q being the constant

for the right circularly polarised photons and q being the constant for the left circularly polarised

photon in beam 1 and beam 2, the states I¢ > are just the SU(1,1) X SU(1,1) coherent states.

Another examples of processes where four modes of the radiation field are important involve

phase conjugate resonators and the process of down conversion in the field of a standing pump

wave[6] .In the latter case, the forward wave will produce the modes a and b and the backward

pump will give the modes c and d. The Hamiltonian for such interactions will have the form

H = (dlab + ¢;cd + c.c), (34)

where _! and ¢b are the forward and backward fields. Again the relevant coherent states are the

eigenstates of the operator

K- = (ab + cd) = g7 + K_. (35)
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