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ABSTRACT

From the motivation of Schrodinger, that of finding states which follow the
motion which a classical particle would in a given potential, we discuss gener-
alizations of the coherent states of the harmonic oscillator, We focus on a
method which is the analytic complement to the group theory point of view. It
uses a minimum uncertainty formalism as its basis. We discuss the properties
and time evolution of these states, always keeping in mind the desire to find

quantum states which follow the classical motion.
1. INIRODUCTION

In 1926 bchrddingerl discovered what have come Lo be known as the coherent
states of the harmonic oscillator. His motivation was to find states which
follow the motion that a classical particle would in an harmonic oscillator
potential.  He succecded by finding a restricted class of Gaussian wave packets
which can analylically be shown Lo have a shape independent of Lime, and whose
centroid osciltates back and forth in the potential the same as a classical
particle with an cnergy (<H> - [0) would, E, being the ground state energy.

Amusingly, alt the end of his paper” Schrodinger commented that, "We can
delinilely foresce Lhal, in o simildar way, wave ¢groups can e ¢onstrucled which
move round highly quantised Kepler ellipses and are the vepresentation by wave
mechanics  of  the hydrogen electron.  Bult the technical difficulties in the
calculation are greater than in the especially simple case which we have treated
here."  Schriidinger did not pursue the problem.

In Lthe J960's the coherent states came into wide usage through Lhe new field
of quantum optics, and many authors popularized their u.'.e.?_l3 hHowever, despite
the many advances, genevalizatioos concentrated on systems whose cigenspeclra
are  equally  spaced. Thus, the idea of gepevalizing coherent states Lo more
general wypes of  polentials, as Schrodinger envisioned, did not reach full

fruition.
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This fundamental queslion of Schridinger fascinated me and my coworkers
(L. M. Simmons, Jr. and V. P. Gutschick). 1Is it possible to find quantum states
which follow the motion that a classical particle would in any given potential?

Giving the intuitive answer now, I will show that it is, "Yes, up to a point,
and depending..." Effectively, the more highly bound a particle state is and,
given that, the greater number of eigenstates with which the "coherent state"
has significant overlap and, finally, the closer to =>qually spaced (i.e.,
harmonic) tLlhese eiygenstates are, then the better and longer the "coherent
state'" will follow Lhe classical motion wilhoul dispersing.

The hcrmonic oscillator is, of course, that system which is the best of all
possihle worlds. It's coherent states never change their shape and follow the
classical motion forever. When we began this problem we krew the harmonic
oscillator 1is very special. However, its very special properties became
clearer and clearer to us as we understood the problem better.

We wanted to find out how important it is to have syslems with equally
spaced eignevalues. Wt also wanted to know if coherent states could be found
for systems which had non-equally spaced cigenvalues and/or had conlinuuns
and/ov could not be solved analytlically. We found a general method Lo handle
such sysLems,lq-lg and at Lthe end of the sLudyM_z4 we came to the intuitive
answer 1 have jusl given above,

What 1 intend to do here is first to review the harmonic oscillator and the
three standard equivalent methods for defining its coherent states.  In Sec. 3
I will show that systems with equally spaced eigenvalues which are nol the har-
monic oscillator de not in general have coherent states which follow the
classical motion lnrvvur.??—za They almost do, but ot exaclly,

We then go to general potentials. It turns out that for non-havmonic sys-
Ltems, the generalizations of the Lhyvee equivalent methods of defining harmonic
oscillator coherent states tead to stateys which are no longer equivalent.  In
particular, although one definition of coherent states is eavy to generalize
from the group theory point of view, the method which we have most clowely in-
vestigated (and which follows Schrodingor's philosophy) is best dealt with from
an analytic point of view.  Thus, what | will discuss can be viewed as Lhe
complementary viewpoint to group theory, just as Schrodinger's wave mechanics
is Lhe complementary viewpoint te Heisenherg's matrix mechanie .. (1 shall alwo
mention further aenecvalizations to multidimensional systems and Lime dependent
patentials.)

lo explicitly how how the formalism works, T will go through in detail ity
application to the funh”? potential.  FPinally, | will «<how how well these
ctates do follow the classical motion by reviewing the vesults of o compuler
genevated movie whoch displays the time evolution of thewe states for many

potentials,
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2. THE_NARMONIC OSCILLATOR _AND ITS COHLRENT STATES

Let us begin by recalling the properties of a bound classical system of

total energy E. The Hamiltonian equation is

m
1]

51 P+ V(x) = 3 W + V(x)

or

(2/mYHE - V(x)]*

x .
1

for the simple harmonic oscillator with
V(x) = %kx2 = Lmw?x2
the solution for x(t) is
2 8
x(L) = (20./mo? )*sin wt
so Lhat

p(L) - mx m(?[/m)gcos wl.

For  the  quantum  problem, with the Hamiltonian equation

Schriddinger equation, p o (K/i)d/dx,

_ R d?

2modx?

s [

' ; e X2 s and'd- ' ; (1 T

the cigensalut iony and cigenvalues are

a L
0 I
41, (rS%JHﬂ.> o it )”n(dux) '

1
" Lo/ n) I/(?Hx”) ,

l Aa(n + YY)

(2.1)

(2.3)

(2.4)

becoming  the

(?.6)

(2 7)

(. 8)

(2.9)
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Two of the most important properties of this system are that the cnergy levels

st = (0 Leins (2.10)
x = [A/(2m), a +a') , (2.11)
p = [hw/21%a" - a*)/i , (2.12)
at - (2nfw) Hmex ¥ ipy (2.13)
[a,a']=1 . (2.14)

The implications of the above are many. But for us what is foremost is that
any wave pachet, no matter what its shape, will returr to ils original shape

after one classical period of oscillation
1 - 2nfw . (2.1%)
This can be seen by decomposing any  time-dependent state  into eigenstates,

Pix, L) 2 u”mn(x)uxp[-iml(n vy, (7.16)
n

and ohserving that Lhe equal spacing of the levels means Lhat

W*(x,L“)W(x,L“) W*(x,t nj/w L”)W(x.t 2u /w0 L”) . (2. 17)
where j is any integer,

Ihis property will be useful in the next section,  osul for now we mention
that for the hawmonic oscillator the cohevent states nol only rveturn to their
ariginal  shape after one period of oscillation, they retain their original
shape for all time and have a centroid which follows the classical motion,

how are Lhese coherent states detined?  Inomodern Lanquage, they are < tand-
ardly detined in threo ecquivalent ways.  The firat way is escentially what

Schradinaer divcovered,

o Minimom Uncevtainty Coherent States (MUCS). Teom L. (2.6), the Hamil-
tonian ot the harmonic oscillator iy quadeatic in p oand x. From the commuta-

tion relalion



[x,p]l = ik , (2.18)
there is an uncertainty relation

(Ax)2(Ap)2 > 4A2 | (2.19)

Now, any commutation relation
[A,B] = iG (2.29)
has an unchytainty relation
(AN)?(AB)2Z > L G>? (2.21)

whose cqualily can be satisfied by that three-parameter set of states which

I I
C e . . 5,25,26
satisfies Lthe igonvalue equation™ 7

G a0 G ,
(A ' ?(‘.\“):! B)lll (A ! (,(‘\“):1 “)lll . (2?2)

Hote that the fouwr pavameters A, B, B2 and <G+ are not independent he-
cause Lhey satisfy the equalily in bq. (2.21).

Applying this to x and p yields

i

(:‘l

2.
(x)  [on(An)? " vxp!- IXPEA;§‘] ' ﬁ -p-x, . (2.23)

Now demanding that the ground-«<tate (n 0 0) wave Tuncltion be & special case of

(2.23) tor - x> «p- 0 gives the additional restriction that

(Ax/Ap)? WAC ) (7.74)
or

(Ax)" (2ae) (72.7Y)
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yielding a two-paramcter set of states. This last restriction is physically

necessary because it corresponds to a classical particle at rest. With this
restriction the coherent-state wave packets will follow the molion of a class-

ical particle and retain their shape. If a different value of (Ax/Ap) were to
be chosen, .he packet would not keep its shape.

It will turn out that the generalization of this method is the one we will

concentrate cn when we ¢eneralize from our classical motion point of view.

ii. Annihilation-Operator Coherent States (AOCS). These states are defined

as the eigenvalues of the destruction operator with complex eigenvalue a:
a o> = aja> . (2.26)
They can be written in Lterms of the number states as

® n
w> = exp(-%lal?) 2 _q_g >, (2.27)

n=0 (n!)
and further expressed as the set of Gaussiars,
\

L 2
o [2n(Aax)” ) ™ vxp[- 4(:x), 4 Zg - % (0? + 'a]?) . (?.28)

Wilh the physical rvestrictions above, o can be shown to be

X PLoxeype 5 e
LY I Kb A, IAX b Ap | . (7.79)
o Lhat
fas oxpl-iope ,\(-/'(_}-'V‘\lnlu(_l (2 30)

Fhuw the AOCS are the MUCH up Lo an drvrelevant phace factor,

iii. Displacement Opevator Cohevent States (AOCS). These staltes are det ined

as thowe ctates which are creeatod by the cnitarvy displacement operator

A

D) c'xp((v.lo St .|-) (1.4
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acting on the ground state. With the aid of the Baker-Campbell-Hausdorff
jdentity, one can show that

D(a)]|0> exp(-%lul2)exp(aa+)exp(-ua)|0>

exp(-%iulz)exp(aa+)|0>

® n
exp(-%la|?) 20 -———-aﬁ!—)— [ 0>
n=

[a> . (¢ 32)

Thus, the DOCS are equivalent to the AOCS and MUCS.

This method is the one which is most easily generalized from the group theory
point of view, since it involves the exponential of the anti-Hemiti 1 operator
(ua+ - a*a”). Indeed, Pere]omov11 has championed and greatly explored this
point of view.

It is from these MUCS and 00CS starting points that the complementarity of
the analytic vs. group theory points of view is seen. As always, an advaniage
of the group theory point of view is that the symmetry is a useful tool to
simplify the concepts.  An advantage of the analytic point of view will be that

ohe can construct states and numerically see how they evolve in time.
3. QUANTUM AND CLASSICAL HARMONIC POTENTIALS

A mentijoned in Sec. 2, two o1 the most striking properties of the harmonic
osciltlator potential are that (i) ir the ¢lassical system, the classical period
of oscillation t © 2n/w is independent of energy and that (ii) in the quantum
system, the eigenvalues are equally spaced by Kw.  Any potential which salisfies
property (i) I call a "classical harmonic potential," and any potential which
satisfies properly (ii1) 1 call a "quantum harmonic potuntinl.”22_24

As is discussed in the standard work of landau and lifuhiu,z7 Lthere are
many polentials which are classical harmonic potentials; in fact, an uncountable
numbey,  In Refs. 22-24 it was also shown that the set of quentum harmonic
potentials s not the same as the set of classical harmonic polentials, even
though they are Lhe sane in WKB upprnximution.}}

Wihat was found is that there me three distinet classes: a) potentials which
are  classical harmonic but ot quantum havmenic, ) these which are quantum
hasmonic but not ¢ lassical harmonic, and ¢) tihose which are both,  Fuarther, cach

class contains an uecountable nueber. 1 refer people Lo Rets. 2z-24 bul the
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The demonstration that quantum harmonic and classical harmonic potentials are
not equivalent classes was a proof by example. What was used was an idea of
Abraham and Moses?‘8 (AM) based on the Gel'fand-Levitan formah’sm.29 One can
Ltake an exactly solvable potential with a known spectra and gencrate an exactly
solvable potential with the same spectra, but with one or, indced, any number of
eigenstates removed.

In narticular, when applied to the harmonic oscillator, one can show that22’28
if the harmonic oscillator ground state is removed, one has the exactly solvable

AM28 potential v (in dimensionless units)
%
z=ax , a- (mu/R)* (3.1)
v = V/Hi £, = En/ﬁw , (3.2)
v=uVv_ + Vi > (3.3)
Vg, = L2 | vy 7 (e - z) (3.4)
-12
0(z) =y S— (3.5)
erfe(z)
o
-2
orfe(z) - o [ e Yt . (3.6)
ntz
The solutiony are
Ly Fon W nol,2,.0.. (3.7)
2. @
Xp(2) w (2) - G el () (3.8)

whore the ¢n are Lhe harmonic oscillator wave funclions of Lg. (2.7).  The shape
of the potential is shown in Fig. 1.

The MM potential is thus a quantum havmonic potential.  However, by numer-
ically calculating the classical peciod 1(n) as o function - dimensionless

energy o, epe finds that Lhe dimensionless quantity
P(e) (1 )/ 1O )/ 2n (3.9)

varies with energy.  Thic is shown in Fig. 2, wiich has two scales on il



Figure 1.
The harmonic oscillator potential vo(z) is a light curve, the contribution vl(z)
is a light dashed curve, and the complete AM potential v(z) is a heavy curve.

The nunber eigenstates are also indicated.

P(e)

1.0015
1.00IO}
1.0005}-

1.00

.98/ -

0
19

figure 2.

(L) plotted as a tuncton of «.  There are two scales for P().  The scale for

PO) = 1 iy greatly expanded,
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Although the variation of the classical period with cnergy is very small, it
does exist, and the AM potential is not a classical harmonic potential.

The above means a "coherent state" will not tollow the classical motion for
all time. As we mentioned at Eq. (2.17), any quantum system with equally
spaced eigenvalues will have any wave packet return to itls original shape after
every time t = 2n/w. But for the AM potential the classical period of oscilla-
tion is not independent of energy. Therefore, the quantum and classical systems
will diverge; slowly, but they wiil diverge.

Thus, we find that a potential with a 1ittle variation from the harmonic
oscillator, i.e., one which is quantum harmonic but not classical harmonic, will
no Tonger yield perfect classical motinn in the quantum cystem.

4. ANALYTIC COHERENT STATES FOR GENLRAI POTENTIALS

We have just seen that the more "harmonic oscillator-like" a potential is,
the more nearly there is a quantum state that can follow the classical motion.
The thing that produces the special features of the harmonic oscillator is that
its Hamiltonian s quadratic in the variables x and p, which vary sinusoidally
with time. We call these the "natural classical variables" for the harmonic
oscillator. What are the '"natural classical variables" for other polentials?

My first physical ansatz is that the "natural classical variables" XC and PC
for any bound systew are the variables whicih change the total energy equation
into a quadratic equation in these two variables and which vary sinusoidally
with time. This makes the equation "harmonic oscillator-like" in these vari-
ables. It changes the x-p phase space plot into an ellipse in an XC-Pc plot.
Specifically, there exist variables

Xc = A(E)sin[wc(E)t] , (4.1)
P. - mic = mXé(x)i (4.2)
- mA([)mc(r)Cos[wc([)t] ) (4.3)

Because
x2 200 - \Y/m o, (4.4)

Xc(x) is the solution of the equation

d [ R |
XL 7 oz Xo(x) = w_ |y, ViV - (4.5)
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Equations (4.2) and (4..) imply that the classical cquations of motion are

ic =p/m (4.6)
- Pc
Xe = = = -wé(E)Xc ) (4.7)

Thus, EQ. (2.1) is replaced by a form which is similar to the harmonic-
oscillator equation for a given energy. That is, this transformation is
equivalent to rewriting (2.1) as

a2 (E)AZ(E) = E% PZ + hm2XZ . (4.8)

I now define the analogous "natural quantum ope:ators," p = (K/i)d/dx,

X= X(x) , (4.9)

.o LrY! 1
I k(Xip + pXL) . (4.10)

Now obtain those states which minimize the uncertainty relation associated
with the commutatnr

[X,P] = iG . (4.11)

My second physical ansatz is that the cokerent states are a two-paramete.
subset of Lhe above minimum uncertainty states defined by restricting AXK/AP so
that the ground state of the potential is a member of the set. (A priori it
was not clear at first that this would be true.) Finally, observe that just
as x and p can be written as sums and differences of raising and lowering
operators for the harmonic oscillator, so Loo X and P can be wrilten as the
Hermitian sums and differences of the in-general n-dependent raising and

Towering operators of the system Ai,
- , + - .
A Kot ATt o (4.12)

p-_

— o b

KA, AT - canty (4.13)
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wvhere Kl(n) and K2(n) are n-dependent c-numbers.

What we have is a chain in which you can go in either direction. If you can
solve the classical problem, you will obtain the natural classical variables.
From these ycu obtain the npatural quantum operators, and find the coherent
states as those which minimize the associated uncertainty relation subject to
the ground state being a member of the set. Fipally, these natural quantum
operalors can be written as the Hermitian sums and uifferences of the quantum
raising and lowering operators.

Similar1, you can go in the reverse direction if you can solve the gquantum
problem. As a matter of fact, when we were discovering this method it was this
reverse procedurre which led us to the solution. Now it appears to us thal for
most examples i. is simpler to proceed starting from the classical problem.

In our seriesl4-19

we also discussed analytic generalizations of annihila-
tion-operator and dispiacement-operator coherent states. In general these are
not the same as the generalized minimum-uncertainty coherent states. For the
annihilation-operator cohevent states, one uses the ract that just as a can be
written in terms of x and p for the harmonic oscillator, so Lloo A; canh be
writlen in terms of X and P. This operator is used. Furthc:, in general these
states are equivalent to states from a displacement-operator which is nr? an
exponential. One can understand this by realizing thal for very cunfining
syslems, like a square well, you cannot displace the ground state unitarily to
the side. It has nowhere to go.

I refer the roader to our 5uriesj4-lg

for more details. 1 will now concen-
Ltrate on the minimum-uncertainly coherent :tatec, which we tound Lo be the most
physical and enlightening Lo study.

b, AN I XAMPLE

To show how e procedure works, | will use what I fina a very illuminating
example, the fﬂﬂh_? polential.  Normalizing so thalt the potential's minimun 1s

at. the origin, the poteptial is
Vix) UULunh7 ax
lbh(h D) Lanh? 4o, (HY 1)

Yo Kas/2m . (5.2)

Ihis potential hes a finite number of bound states, goes Lo zero at the origin,

and goes to “n WX he
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The solulions for our natural classical variables Xc and Pc are

- ox _ E \s ..
Xc = sinh z = (U-o—-_--—E) sin '”r.t . (5.3)
Pc = p cosh z = (Zmqu)%cos wct . ! (5.4)
2a2(Uo -E)]%
] =] = - - — ’
nC(E) m . (5.5)

Onc can verify il these variables obey classical equations of molion analogous
to those for x and p in the harmonic oscillator,

ic =P./m (5.6)

P -mu‘?:xc . (h.7)

~
~

Now we do our ceherent-statec procedure.  The natoral quantun operators are

X Xr sinh 2 (h.8)
P ?i ! :, cosvh 7 4 cosh s ﬂ, . (%.9)

a0 that we are looking for states which satisty the equality in the uncertainty
relation

CAO)PAR) - (B7/0)01 coshe 2 (h.10)

Thewe notmalized states ave

Al (B % v o= ) ?
1

' . (vouh 1)—"
nT B v YY)
. n\:\!l' -.in-l('.lllil I)l ' (l,ll)
1 cvovh? 7 1 .
B iy (h.12)
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C:>u+ iv=_D0B<sinh 2> + <cosh z 37 > . (5.13)

Finally, if

B=s (5.14)

Lhis set of states includes the ground state. Therefore, imposing (5.14) gives
us our coherent states.

Now the quartum riroblem has exact eigenstates and eigenvalues

!
a(s = mI(2s = n v 1)|* s,y 0 15
llln I(n 4 ,1) ’ PS (tL....I Z) , (J.lb)
N » - 2 c ¢
ln (0(?nb n? +s) | (5.16)
whe, ¢ Lhe P:-“ are associaled Legendre functions.,  Because of that one can

figure oul what the raising and Towering operators are for these cigonstatos,

[hey are

A; (v = n)sinh 7 ¥ cosh 2 x) ) (5. 1))

This veritics that indeed our natural quantum operators X oand P oean be expresuaed
as o the Hevmition soms and ditterences ot the quantum vaising and  lowering
oprrators . Just as i bgss (A012) and (4. 1),

L. DISCUSSTON

Given our minimum oncertainty coherent wtate, (MUCS), just how well do they
follow the ¢ lavaical motion? AL the heginning 1 ogave the intuitive anwwer, and
I onow repeat it 1o ectively, "Ihe more highty bound a particle state is and,
given that o the greater pumber of eigenstates with which a coherent state has .
signiticant overltap and, finally, the oser to equally spaced (ie., harmonic)
thewe ecigenstates ave, then the e ter and Tonger o coherent wtal - will foltow
the clanecical wmatina withoal dieraing, "

In the Sth article of our nurivn,l“ wir showed in detail photographs display-
ing the time evolution of MUCS in ditteving potentinly and situations. 1 refer

people to that for the detailed divcoseion which shows haw we came o the above
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intuitive answer. This arLic]e18

30

discusses work which was Lhe basis for a
computer generated film™ which graphically displays the time cvolution of our
states (this film tc be shown at the present seminar).

In this nrinted version I wish to include one display of the time cvolution
of an MUCS, shown in Fig. 3. it is for the cosh-2 potential of the last
sectien. s = 399.5 (400 bLound states), the coherent state starts in the middle
and has an <H> that is 1/10 the way up to the continuum at Ug-

Note that each time the wave packet hits a wall, part of it begins to dis-
perse until, at the end, after 8-5/8ths classical oscillations, there is sig-
nificant spread in the packet from the main hump and the packet's <x> has
deviated from the classical position.

From Lhis and olher runs like this]B'30

we came Lo the intuitive description
of the time 2volution T have given.

liowever, we also considered Lhe time evolution of other Lypes of colwrent
5Lates.14-18'31 Our conclusion there was that our MUCS always do as well as
or bhetter than other states invesligated. Specifically, the less confining a
potential is, the more the various methods numerically yield about the same
coherent states and Lime evolution. However, for highly contined systems (like
the infinite squarc-well), our MICS ncthod still works well whereas some others
cdn run into l.rmlhlu.m

One can, by a alight genevalization, apply this method to multidimensional
hyhlﬂmhl7 and  systems where the commulalion relations involved are compli-

cated. 16

One can also apply this method Lo systems which cannol be solved
analytically, either by analylic approximdalions or by numerically solving the
diftferential equations involved,  (In fact, for Lhe Morse pulvntinll6 our work
involved analdytic approximation techniques.)  inally, the method has alse heen
applied Lo time dependent pulvnliul&..w fhus, T feel that this method is a

gqeneyal way of tinding classical rotion «tates in arbitrary potentials,
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Figure 3,
Fime ovolution of o coherept state wave packet in the (u-.h-? potential with
o 3990 (400 bound state).  The <tate has oan -l that ie 1710 the way up to
the cont Sauum ol ll”. Shown in the polenvial, the wave packet at g height corres
sponding o -He, a0 vertical bar that whows the classical position, and o dot

that represents -xe-. The numbers are the nuwber of classical oseilTations tor

cath fyame,
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