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We present a new mechanism for generation of near-wall streamwise vortices – which
dominate turbulence phenomena in boundary layers – using linear perturbation analy-
sis and direct numerical simulations of turbulent channel flow. The base flow, consist-
ing of the mean velocity profile and low-speed streaks (free from any initial vortices),
is shown to be linearly unstable to sinuous normal modes only for relatively strong
streaks, i.e. for wall inclination angles of streak vortex lines exceeding 50◦. Analysis
of streaks extracted from fully developed near-wall turbulence indicates that about
20% of streak regions in the buffer layer exceed the strength threshold for instability.
More importantly, these unstable streaks exhibit only moderate (twofold) normal-
mode amplification, the growth being arrested by self-annihilation of streak-flank
normal vorticity due to viscous cross-diffusion. We present here an alternative, streak
transient growth (STG) mechanism, capable of producing much larger (tenfold) linear
amplification of x-dependent disturbances. Note the distinction of STG – responsible
for perturbation growth on a streak velocity distribution U(y, z) – from prior transient
growth analyses of the (streakless) mean velocity U(y). We reveal that streamwise
vortices are generated from the more numerous normal-mode-stable streaks, via a new
STG-based scenario: (i) transient growth of perturbations leading to formation of a
sheet of streamwise vorticity ωx (by a ‘shearing’ mechanism of vorticity generation),
(ii) growth of sinuous streak waviness and hence ∂u/∂x as STG reaches nonlinear
amplitude, and (iii) the ωx sheet’s collapse via stretching by ∂u/∂x (rather than rollup)
into streamwise vortices. Significantly, the three-dimensional features of the (instanta-
neous) streamwise vortices of x-alternating sign generated by STG agree well with the
(ensemble-averaged) coherent structures educed from fully turbulent flow. The STG-
induced formation of internal shear layers, along with quadrant Reynolds stresses and
other turbulence measures, also agree well with fully developed turbulence. Results
indicate the prominent – possibly dominant – role of this new, transient-growth-based
vortex generation scenario, and suggest interesting possibilities for robust control of
drag and heat transfer.

1. Introduction

Recurring organized large-scale events in turbulent boundary layers have been
studied extensively for over five decades (Townsend 1956; Kline et al. 1967; Kovasz-
nay, Kibens & Blackwelder 1970; Cantwell 1981; Panton 1997). Nevertheless, the
generation mechanism and evolutionary dynamics of near-wall coherent structures
(CS) are poorly understood – a critical barrier to possible robust modelling and con-
trol of drag (as well as heat and mass transfer) in turbulent boundary layers. The
dominant role of streamwise vortices near the wall in turbulence production and drag
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Figure 1. Top view of the near-wall region covering (x+, z+) = (1400, 450) in the streamwise and
spanwise directions. Lifted low-speed streaks (black) denote u′ < 0 at y+ = 20 and streamwise
vortices (grey-shaded) are indicated by the λ2 vortex definition (Jeong & Hussain 1995) in the
region 0 < y+ < 60.

generation is now widely accepted (e.g. Kim, Moin & Moser 1987). Although the
outer layer also contains energetic (larger) structures (Adrian, Meinhart & Tomkins
1999), recent ‘numerical experiments’ (Jimenez & Pinelli 1999) confirm that the essen-
tial inner-layer dynamics (namely y+ < 60) can operate autonomously. Note that this
claim is asserted in several early works (e.g. Kline et al. 1967), in contrast to studies
which emphasize coupling of near-wall and outer-layer events (e.g. Rao, Narasimha &
Narayanan 1971). The dominance of streamwise vortices is supported quantitatively
by the educed (i.e. ensemble-averaged) near-wall CS, whose model (Jeong & Hussain
1992; Jeong et al. 1997) captures well the documented near-wall features. Clearly, a
formidable challenge is to identify and explain the prevalent dynamics of streamwise
CS generation and evolution near the wall – the key to modelling and control of
turbulent boundary layers.

A representative snapshot of fully developed near-wall turbulence (figure 1) il-
lustrates the dominant structural features, i.e. streamwise vortices and elongated
‘streaks’ of relatively lower-speed and less-stirred fluid. We reiterate that the so-
called ‘bursting’ – used to describe the intermittent, energetic process perceived from
scalar markers in flow visualization or from stationary sensors – does not reflect any
particular event, but is primarily the consequence of passage of near-wall vortices.
Hence, ‘bursting’ as well as the more meaningful ‘sweep’ and ‘ejection’ events can at
most be indirect indicators of streaks, as streaks can exist without streamwise vor-
tices (see figure 1) and hence exhibit no energetic process. Note also the distinction
between lifted streaks – regions of u < 0 in the buffer region – and ejections where
both u < 0 and v > 0 occur simultaneously (u, v, and w denoting streamwise (x),
wall-normal (y), and spanwise (z) velocity fluctuations). Physically, a lifted low-speed
streak is the result of ejection during passage of a previous streamwise vortex (or
vortices). Furthermore, ejections are actually long-lived as they advect several hun-
dred wall units downstream (Johansson, Alfredsson & Kim 1991). Robinson (1991)
concludes that advecting streamwise vortices eject low-speed fluid which, left behind,
creates elongated streaks. An additional connection between near-wall vortices and
streaks explored here is that new vortices are, in turn, generated via growth of streak
perturbations.

The central issue addressed herein is: how are streamwise vortices generated?
As reviewed below, numerous widely disparate mechanisms for vortex formation
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(frequently called ‘regeneration’) have been developed, many quite plausible and even
fairly self-consistent. For a comprehensive collection of proposed mechanisms, see
Panton (1997). Of the numerous proposed regeneration mechanisms, most fall into
one of two broad categories: (i) parent–offspring scenarios, and (ii) instability-based
mechanisms. We characterize the first as the generation of new vortices by the direct
action (induction) of existing vortices. In contrast, the second scenario involves local
instability of a quasi-steady base flow, without requiring the presence of parent
vortices. Note that recurring instability indeed requires a ‘feedback’ mechanism, by
which previous events generate an (longer timescale) unstable base flow on which
(shorter timescale) perturbations can grow; thus, prior vortices play only an indirect
role. We will show that near-wall CS (re)generation results from a distinct mechanism –
streak transient growth – which unites elements of parent–offspring and instability-
based scenarios, and is far more prevalent and energetic than normal-mode instability.
In this scenario, viscosity comes into play not through wall effects (diffusion as well
as no-slip), but instead indirectly through vorticity self-annihilation across a streak
flanked by opposite-signed wall-normal vorticity.

1.1. Parent–offspring regeneration

1.1.1. Hairpin vortex formation

The widely cited concept of a ‘hairpin’ vortex, initiated from a conceptual model
of Theodorsen (1952), refers to an Ω-shaped vortical structure with two streamwise-
oriented legs connected via a raised, spanwise-oriented arch. Hairpin vortices have
been analysed extensively, both computationally (Moin, Leonard & Kim 1986; Singer
1996), and experimentally in flow visualization studies (Gad-el-Hak & Hussain 1986;
Haidari & Smith 1994) and in (x, y)-plane PIV measurements (Adrian et al. 1999).
There is, however, considerable disagreement as to the underlying hairpin vortex
generation mechanism.

Smith & Walker (1994) propose a regeneration scenario in which parent hairpin
vortices spawn offspring hairpins, both behind the (spanwise) head (or ‘arch’) and
beside each of the (streamwise) legs. In this scenario, vortex formation is driven by
unsteady separation near the wall (Doligalski & Walker 1984), in which the parent
hairpin produces localized ejections near its head and legs, the resulting inflectional
shear flow then rolling up by Kelvin–Helmholtz instability and giving birth to new
hairpins. In contrast, in DNS initialized with conditionally averaged streamwise
vortices, Zhou et al. (1999) reveal that a sufficiently strong single hairpin can generate
a packet of hairpin vortices, both upstream and downstream of the parent hairpin. In
this mechanism, the induction of the parent vortex generates intense local shear layers,
composed predominantly of spanwise vorticity. Subsequently, these shear layers roll-
up into arch vortices which link up with the existing streamwise-oriented legs, and are
stretched by the mean shear into offspring hairpin vortices, detached from the primary
hairpin vortex. These observations are also consistent with the conditional-average
initial condition studied by Kim (1987), who emphasized the role of localized vorticity
stretching above the parent legs in generating the offspring arch vortex. Other studies
(discussed in § 1.2) propose that a local Kelvin–Helmholtz-type instability generates
hairpins through roll-up of the crest of a lifted streak.

The vortex surface geometry in these idealized flows exhibiting hairpin vortex
formation is characterized by an x-localized, lifted low-speed streak. Clearly, the
vortex lines in the lifted region will tilt forward, due to the faster advection of their
crests across a shear, much like the Lin & Corcos (1984) mechanism in mixing layers.
Subsequently, the vortex sheet consisting of these tilted vortex lines will collapse
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due to sustained stretching by the mean shear, generating a hairpin vortex with two
well-defined legs. In each of the hairpin vortex studies cited above, such x-localized
lifted streaks are generated externally, whereas low-speed streaks in fully developed
near-wall turbulence are highly elongated and do not experience the inherent tilting
of x-localized streaks. In particular, for the case of an x-independent streak (as a
model of observed highly elongated streaks), vortex lines coincide with the local U
isocontours (bell-shaped in the (y, z)-plane, not to be confused with isovelocity lines
in the mean flow U(y)). Hence, for x-independent streaks, vortex lines experience no
tilting and thus no ωx amplification, due to the fact that U = constant along each
streak vortex line.

Note that hairpin vortices with both legs extending into the near-wall region are
actually rare in near-wall turbulence, both in instantaneous realizations (Robinson
1991; Brooke & Hanratty 1993) and in the ensemble-averaged CS (Jeong et al. 1997).
Our results (Schoppa & Hussain 1997, hereinafter referred to as SH) indicate that
the generation dynamics of individual streamwise vortices are distinctly different
from those of true (two-legged) hairpins. In DNS of blowing-initiated (initially
spanwise symmetric) turbulent spots, individual (spanwise asymmetric) streamwise
vortices become more numerous and intense than hairpins (Singer 1996), suggesting
that the initial hairpin generation observed in idealized studies is not sustained
far downstream (near the wall). Additionally, Zhou et al. (1999) have observed that
asymmetric hairpins (i.e. ‘hooks’ with only one leg) grow more rapidly than symmetric
ones.

1.1.2. ωx sheet generation and roll-up

An alternative parent–offspring scenario is proposed by Brooke & Hanratty (1993),
who studied the spatiotemporal velocity field from DNS data, but found no hairpin-
type vortices. They propose that an opposite-signed offspring vortex forms immedi-
ately underneath a parent vortex, whose downstream end has lifted from the wall.
By identifying streamwise vortices as centres in instantaneous (v, w) vector patterns
in successive (y, z)-planes, Bernard, Thomas & Handler (1993) independently ob-
tained similar findings, further noting that new vortices tend to form from strong ωy ,
typically on the sweep side of the parent vortex. Brooke & Hanratty demonstrate
that the production of offspring ωx is dominated by the vorticity generation term
−(∂w/∂x)(∂u/∂y), where ∂w/∂x (hence ωy) is generated by the parent vortex incli-
nation to the wall. Note, however, that this term tends to produce thin sheets of ωx,
rather than vortices, as demonstrated herein. Vortex formation from such near-wall
ωx sheets is often attributed to sheet rollup via two-dimensional self-advection. Note
that in two-dimensional flow, ωx sheet rollup can occur via two distinct mechanisms:
(i) dipole-like head–tail formation due to the wall image vorticity (Jimenez & Orlandi
1993), or (ii) lifting of the wall-generated ωx (due to no-slip) by a parent vortex, as
in vortex wall-rebound (Orlandi 1990).

While x-overlapping of streamwise vortices has been perceived as evidence of a
parent → offspring causation, the question remains: are parent vortices required for
offspring generation? Our prior results (SH) show that vortex formation can in fact
occur in the absence of a parent vortex, in which pairs of partially overlapping vortices
are generated simultaneously by growth of streak perturbations. Further, analysis of
ωx advection terms (discussed herein) indicates that neither of the (two-dimensional)
ωx sheet rollup mechanisms is relevant to the vortex generation process described
here. In contrast to the limitations of such two-dimensional rollup mechanisms, the
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vortex generation is inherently three-dimensional, driven by localized stretching and
eventual collapse of ωx sheets.

1.2. Instability-based regeneration

Unlike in parent–offspring regeneration scenarios, existing vortices may alternatively
play a more indirect role, by generating and leaving behind an unstable base flow
(via their induction), which in turn spawns new vortices – a kind of ‘feedback’. Not
surprisingly, there is considerable variation among the proposed mechanisms of insta-
bility and feedback, including centrifugal instability, wave–shear instability, oblique
mode interaction of the turbulent mean profile, and (local) shear-layer-type streak
instabilities.

1.2.1. Centrifugal and wave–shear instabilities

Several studies suggest that streamwise vortices originate from locally curved
streamlines generated near the wall. For example, the condition for Taylor–Görtler
instability – sufficient concave curvature of near-wall streamlines – is locally satisfied
above y+ ∼ 50 (Brown & Thomas 1977). Alternatively, Phillips, Wu & Lumley (1996)
consider a Craik–Leibovich (type 2) instability mechanism, involving x-dependent
perturbation growth on shear flows with small-amplitude streamwise undulation. In
particular, they present evidence of Craik–Leibovich-based longitudinal vortex for-
mation near a (rigid) wavy wall, suggested to be locally representative as well of
the fluctuating streamwise velocity field in near-wall turbulence. While base flows
with streamline curvature or streamwise waviness can conceivably be produced by
the induction by (outer) spanwise vortices, it is unclear how the instability-generated
streamwise vortices might do so. The necessary feedback mechanism for successive
episodes of instability and vortex generation is thus not evident. In contrast to the
z-independent base flows of these studies, low-speed streaks with strong z-dependence
are prominent and themselves susceptible to a different (inherently three-dimensional)
perturbation growth mechanism, discussed herein. Further it is difficult to isolate the
role of centrifugal and wave–shear instabilities, as the geometry of streamwise vortices
arising (upon nonlinear evolution) from these instabilities has not been compared with
instantaneous structures in near-wall turbulence. Note that the predominance of the
alternative transient-growth-based scenario developed here is clearly demonstrated by
such a comparison, as the resulting instantaneous vortices correspond closely to the
near-wall CS.

1.2.2. Oblique mode interaction

In early theoretical studies of shear layer transition, Benney (1961) addressed
the generation of x-elongated regions of longitudinal vorticity as a mechanism of
transition to small-scale turbulence. For the case of a tanhU(y) mixing layer, Benney
demonstrates that the generation of an x-mean secondary flow is inherent to the
nonlinear interaction of three-dimensional oblique modes. Note that his focus is
on growth of second-order perturbations by the nonlinear interaction of (initially
unstable) primary oblique modes. The secondary motion is shown to consist of
four counter-rotating cells of longitudinal vorticity per z-wavelength, implying the
generation of spanwise-alternating streamwise ‘vortices’. Although generation of x-
mean perturbation modes is a common feature of nonlinear mode interactions in shear
flows, the mixing-layer dynamics outlined by Benney are not applicable to the growth
of linear streak perturbations in turbulent boundary layers, analysed herein. First,
streak instability upon nonlinear evolution similarly generates x-averaged streamwise
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vorticity (Hamilton, Kim & Waleffe 1995; SH), but the underlying physical-space
vortex geometry is fundamentally different from the rib–roll structure in a mixing
layer (see e.g. Lin & Corcos 1984). Hence, any similarity in the x-averaged ωx

contours should not be construed to indicate that the underlying vortex dynamics
are similar, let alone identical. Additionally, the near-wall educed CS exhibit an
inherent overlapping and staggering in x, indicating the importance of x-dependent
ωx modes, the focus of our study. Finally, Benney focuses on the growth of second-
order perturbations by nonlinear interactions, which is inapplicable to our analysis
of linear mechanisms of streak perturbation growth (§ 4). That is, the linear growth
we describe can produce eventual nonlinearity, but does not require nonlinearity for
growth (unlike the mechanism addressed by Benney).

A related mechanism for vortex generation in near-wall turbulence is proposed by
Jang, Benney & Gran (1986), who apply the ‘direct resonance’ concept of Benney &
Gustavsson (1981) to the growth of coherent (wave) motion in triple flow decomposi-
tion into mean, coherent, and incoherent parts (Reynolds & Hussain 1972). The direct
resonance mechanism consists first of algebraic growth (before eventual exponential
decay) of ωy of a streak due to the vertical velocity v of (stable) oblique modes
of the turbulent mean profile – a form of linear transient growth (discussed below).
After sufficient growth, the ωy induced by left- and right-travelling oblique modes
then interacts nonlinearly to produce an x-averaged v, which Jang et al. attribute
to streamwise ‘vortices’. Although this approach produced some promising results
(including a preferred spanwise scale of 90 wall units), its foundation is challenged
in Waleffe, Kim & Hamilton (1993). In particular, the direct resonance growth is in
fact much slower than that for many other (non-resonant) modes, and the nonlinear
interaction of the oblique modes’ v (rather than ωy) is actually more dominant, but
not considered. Note that physical-space interpretations for such modal ‘nonlinear
interactions’ have so far not been presented.

1.2.3. Streak instability

Several studies have targeted ‘instability’ of lifted low-speed streaks as the dominant
agent of turbulence production, although the details of the instability mechanism
vary widely in the literature, and the associated physical-space process of vortex
generation has not been addressed. This instability concept germinated from early
flow visualization studies of low-speed fluid (Kline et al. 1967), which suggested
spatial oscillations of local U(y) shear layers of the Kelvin–Helmholtz type, prior to
an apparent ‘breakdown’ into smaller scales.

Based on the evolution of instantaneous structures visualized via DNS, Robin-
son (1991) proposes that lifted low-speed streaks, left behind by (faster advecting)
streamwise vortices, contain a locally unstable U(y) shear on the streak crest which
then gives rise to new spanwise ‘arch’ vortices. One ‘leg’ of the arch is said to be
stretched into a streamwise vortex, which in turn generates a new unstable streak
in its wake to close the cycle. Accounting for the entire streak U(y, z) distribution
(rather than U(y) only), such a streak-crest U(y) instability mechanism conceptually
corresponds to varicose modes, which exhibit a hairpin-type perturbation symmetry.
In studies of streak U(y, z) distributions generated by (nonlinear) Görtler vortices
(Hall & Horseman 1991; Yu & Liu 1991), the growth rates of varicose modes are
found to be relatively small (approximately one-half) compared to the dominant sin-
uous modes (the focus of this paper) – even with exceedingly strong streak-crest U(y)
shear. Furthermore, for streak U(y, z) distributions more representative of near-wall
turbulence (i.e. with realistic U(y) shear magnitudes), varicose modes are found to
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be stable (see SH). Finally, note that the dominant varicose instability would neces-
sarily be accompanied (in the nonlinear regime) by formation of two-legged hairpin
vortices, which are indeed rarely found near the wall. As an alternative explanation
of Robinson’s observations, we find that new spanwise ‘arch’ vortices can form due
to growth of sinuous disturbances, accompanied by generation of new streamwise
vortices (see SH). In this scenario, an arch vortex is generated by rollup of an internal
shear layer atop a streak, which links up with the downstream end of a nearby
streamwise vortex due to the shear-induced collapse of the connecting vortex lines.
Owing to circulation pile-up inherent to vorticity layers of finite extent, vortex rollup
commences at the tip of the internal shear layer, much like a wing-tip vortex. (Note
that no perturbations are required for internal shear layer rollup, and hence the arch
formation is not actually an instability process, although vorticity concentration by
two-dimensional self-advection is analogous to Kelvin–Helmholtz instability.)

An alternative streak instability mechanism is proposed by Swearingen & Black-
welder (1987), based on experimental analysis of streak ‘breakdown’ induced by
Görtler vortices, revealing a dominant sinuous (i.e. streak x-waviness) mode of
transition. From flow visualization and measurements revealing correlation of large
fluctuation amplitudes with z inflections of U, they also inferred that turbulence
production is caused by local, ‘wake-like’ instability of the U(z) shear layers flanking
low-speed streaks. Note the distinction with Kline et al. (1967) and Robinson (1991),
who suggested that the instability is driven by Kelvin–Helmholtz-type instability of
the streak-crest U(y). Subsequent stability analysis (Yu & Liu 1991) revealed that
Görtler U(y, z) streak distributions, representative of the Swearingen & Blackwelder
experiments, are in fact unstable to (predominant) sinuous modes. The connection of
vortex generation in near-wall turbulence with the Görtler-streak breakdown was not
addressed in these studies.

As a further extension of the streak instability concept, Hamilton et al. (1995) study
vortex regeneration using the ‘minimal flow unit’ concept of Jimenez & Moin (1991)
applied to plane Couette flow. Hamilton et al. reveal a surprisingly cyclic flow evolu-
tion and identify a three-step closed cycle: (i) streak formation by streamwise vortices,
(ii) streak ‘breakdown’ via (normal-mode) sinuous instability, and (iii) ‘regeneration’
of streamwise vortices due to nonlinear interactions in the post-breakdown flow.
While these results are encouraging, particularly from the viewpoint of mechanistic
low-order dynamical modelling (Waleffe 1997), the influence of the highly constrained
domain on the vortex dynamics underlying regeneration has not been addressed
systematically. For instance, the low Re causes (x-averaged) streamwise vortices to
completely fill the gap between walls, much like Taylor–Couette ‘roll’ vortices. Our
own analysis indicates fundamental differences in the vortex regeneration dynamics
of minimal Couette and channel flows (Schoppa & Hussain 1998a).

To date, the premise of streak instability has not been established for streaks
characteristic of near-wall turbulence, particularly assessment of whether the
normal vorticity on streak flanks is sufficiently strong to cause normal-mode in-
stability. Furthermore, the suppression of instability growth by viscous diffusion
of (base flow) streak vorticity – potentially significant noting the relatively small-
scale characteristic streak spacing – has not been addressed. Finally, a link has not
been found between (linear) streak instability and well-documented (finite-amplitude)
physical-space structures as well as near-wall turbulence measures. In summary,
the role of sinuous normal-mode streak instability in generating the physical-
space CS observed in near-wall turbulence is thus an unresolved issue, addressed
here.
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1.3. Our objectives

The primary goal of this paper is to explain near-wall vortex generation in fully de-
veloped turbulent boundary layers, via growth of x-dependent streak perturbations.
In particular, we address in detail the potential significance of normal-mode streak
instability, through both linear stability analysis and a description of the underlying
(three-dimensional) mechanism. Further, the potential for instability of streaks ex-
tracted from fully developed turbulence is evaluated. Note that our analysis is based
on developed streaks with the documented spanwise spacing of 100 wall units; the
now well-known mechanism of streak formation by ‘lift-up’ is not addressed fur-
ther here. In response to identified limited growth of normal-mode streak instability,
we develop a new scenario – (linear) streak transient growth (STG) – involving (non-
normal) x-dependent spanwise velocity perturbations. The underlying mechanism of
STG, responsible for its rapid early-time growth, is explained using physical-space
vortex dynamics concepts. In particular, physical-space mechanisms are presented to
explain: (i) the role of streak shear in generating streamwise vorticity, and (ii) the role
of velocity perturbations normal to the streak flank in extracting perturbation kinetic
energy from the mean flow. STG amplification into the nonlinear regime is analysed
as a new mechanism of streamwise vortex generation, the prevalence of which is es-
tablished by a close correspondence with documented near-wall turbulence structures:
streamwise vortices, internal shear layers, VISA events, uw and uv quadrant Reynolds
stresses, and turbulence statistics. Furthermore, detailed cause-and-effect explanations
of the generation of streamwise vortices and internal shear layers are pursued using
the ‘clean’ STG-based flow evolution.

In the following, we first outline the computational approach (§ 2), followed by
normal-mode stability analysis of near-wall streaks (§ 3) and development of an
alternative transient growth mechanism (§ 4). The genesis of new streamwise vortices
and internal shear layers is illustrated in § 5, along with a detailed description of
the vortex dynamics involved and related turbulence statistics. In § 6, key results are
summarized, and implications for boundary layer modelling and control are discussed.

2. Computational approach

2.1. Direct numerical simulation

The linear evolution of streak perturbations and the subsequent nonlinear vortex
generation are studied through direct numerical integration of the incompressible
Navier–Stokes equations for plane Poiseuille (channel) flow. The fully spectral algor-
ithm of Kim et al. (1987) is used, with periodic boundary conditions in the streamwise
(x) and spanwise (z) directions, and the no-slip condition enforced on both walls
(normal to y). Fourier expansion is employed in the homogeneous (x, z) directions,
with Chebyshev polynomials in y and cos-mapping for grid concentration near both
walls. For time-stepping, the third-order (explicit) Runge–Kutta method is applied
to the (nonlinear) advective terms, and the second-order (implicit) Crank–Nicolson
scheme is used to advance the viscous terms. For further details of the numerical
algorithm, see Kim et al. (1987).

For all simulations, we use the ‘minimal channel’ domain size of (L+
x ≈ 300,

L+
y ≈ 200, L+

z ≈ 100) and a bulk Reynolds number of Re = Q/ν = 2670 (where
Q is the constant-volume-flow rate per unit z), for which developed channel flow
turbulence is sustained (Jimenez & Moin 1991). With 32 × 129 × 32 computational
points in (x, y, z), grid spacings of ∆x+ = 9.4, ∆y+ ranging from 0.027 (wall) to 2.3
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(centreline), and ∆z+ = 3.1 resolve all dynamically significant lengthscales without
requiring subgrid-scale modelling.

The (streamwise (x), normal (y), spanwise (z)) components of velocity and vorticity
are denoted as (u, v, w) and (ωx, ωy , ωz), respectively, with positive and negative values
indicated by ‘+’ and ‘−’ signs. Perturbations of the two-dimensional streak base
flow U(y, z) (with time-independent vorticity Ωy and Ωz) are primed (u′), and linear
stability (normal-mode) eigenfunctions are tilded (ũ). Turbulent fluctuations of the
(x, z)-averaged mean profile U0(y) are denoted by ut, with r.m.s. amplitude indicated
as urms .

2.2. Near-wall streaks: problem formulation

Herein, we isolate the dynamics of three-dimensional perturbations of lifted streaks,
in a ‘clean’ environment free from existing structures and incoherent turbulence
(including perturbations induced by larger-scale outer vortices). In particular, we
analyse a z-periodic row of x-independent (i.e. straight and parallel), finite-amplitude
low-speed streaks, initially containing no vortices or ωx; hence, the base flow consists
of the two-dimensional streak distribution U(y, z) only. This simplification is well
justified by the fact that streaks extend in x for lengths an order of magnitude longer
than individual near-wall streamwise vortices (see figure 1). Note also that individual
streak regions are frequently devoid of significant ωx, consistent with the base flow
considered here. The streaks are localized to a single wall, to prevent the second wall
(far removed in z) from strongly influencing the essential near-wall dynamics, as is
the case for channel and plane Couette flow at sufficiently high Re. Note that this
class of base flows is inviscidly steady for a constant volume flux, and is qualitatively
consistent with near-wall streaks observed both in minimal channel flow (Jimenez
& Moin 1991; SH) and fully developed turbulent boundary layers (e.g. Robinson
1991) – both having similar near-wall structures and statistics.

As a representation of vortex-free, lifted low-speed streaks of variable strength, we
consider a base flow family of the form

U(y, z) = U0(y) + (∆u/2) cos(βsz)g(y), V = W = 0, (1)

where U0(y) is the mean velocity and g(y) is an amplitude function which satisfies the
no-slip condition at y = 0 and localizes the streak velocity defect to a single wall (i.e.
y+ < 60). A function satisfying these requirements is g(y) ∼ y exp(−ηy2), normalized
to unity and with η specified such that the streak velocity defect ∆u and normal
vorticity Ωy|max = βs∆u/2 exhibit a plateau in the range y+ = 10–30, consistent with
observed lifted streaks and ωy rms statistics. Note that the choice of a (single-harmonic)
sinusoidal z dependence in (1) is supported well by the streak formation analysis in
Waleffe (1995), which demonstrates that the higher z harmonics of the streak U(y, z)
distribution are an order of magnitude weaker than the first harmonic.

A ‘single-sided’ turbulent mean velocity profile is analysed, analogous to that
observed in minimal channel turbulence (Jimenez & Moin 1991), with a parabolic
profile Ulam in the laminar top half of the channel and a Reichardt profile Uturb in
the turbulent bottom half:

U0(y) =







Ulam = Uc[1 − ((y/h) − 1)2], ym 6 y 6 2h

Uturb = u∗

[

2.5 ln(1 + 0.4y/δ) + 7.8(1 − e(−y/11δ) −
y

11δ
e−0.33y/δ)

]

,

0 6 y < ym

(2)

Note that the turbulent mean profile Uturb is used as a first approximation of the local
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Figure 2. Low-speed streak realization in minimal channel flow: (a) 0.55Uc isosurface, (b) typical
U(y, z) cross-stream distribution, with the bold contour common to (a) and (b). Streak base flow
used for stability analysis: (c) U(y, z) distribution (1) with θ20 = 56◦ (with θ20 definition indicated
at y+ = 20); (d ) mean velocity U0(y) profile (2) for one-sided turbulent channel flow (channel
centreline at y+ = 95).

mean flow U0(y) of streaks observed in near-wall turbulence, and is held constant
to isolate the effects of spanwise shear across streaks from the mean shear. The two
profiles Uturb and Ulam are matched at a location ym in the turbulent half, with ym
and Uc determined so that the mean flow velocity and vorticity are continuous at the
matching location, i.e.

Ulam(ym) = Uturb(ym)
dUlam

dy
(ym) =

dUturb

dy
(ym). (3)

Furthermore, the friction velocity u∗ and viscous (wall) lengthscale δ in (2) are
chosen in accordance with Dean’s (empirical) correlation for fully developed turbulent
channel flow:

u∗ =
Q

2h

√

0.0365(Q/ν)−0.25, δ = ν/u∗, (4)

reflecting the physical constraint that the friction velocity cannot be chosen indepen-
dently of the volume flow rate and Reynolds number. For all flows considered here
(with Re = Q/ν = 2670), the matching conditions (3) are satisfied by ym = 0.92h and
Uc = 1.2Q/(2h), resulting in the mean velocity profile U0(y) illustrated in figure 2(d ).

As illustrated in figure 2(c) for a moderately strong streak (with the streak-flank
vorticity ωy governed by ∆u in (1)), the base flow (1)–(2) closely resembles the straight
and x-uniform low-speed streak regions observed at the quiescent phase (i.e. time of
minimum drag) of minimal channel flow (figure 2a,b). In accordance with (1), all streak
base flows considered here are even-symmetric about z = 0, i.e. U(y, z) = U(y,−z).
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Note that the streaks are localized to a single wall (via g(y) in (1)), and hence are
essentially decoupled from the second wall (far removed in y). Thus, this class of base
flows does not exhibit any y symmetries, unlike prior instability studies of streaks
bounded closely by both walls in low-Re plane Couette and channel flow. Compared
to single-walled streaks, the influence of a second no-slip wall immediately above the
streak is twofold: (i) additional y symmetry is imposed on the linear eigenmodes and
(ii) the subsequent nonlinear evolution is fundamentally altered (discussed in Schoppa
& Hussain 1998a). As an example, thin sheets of ωx (reflecting local jet-like w(y)
flow) are generated in narrow-gap Couette flow, compared to collapsed streamwise
vortices generated from single-walled streaks in channel flow.

For illustrative purposes, it is useful to represent the ‘strength’ of lifted streaks (i.e.
the magnitude of streak wall-normal vorticity Ωy = ∂U/∂z) in terms of the base flow
vortex line inclination angle θ on the streak flank, given locally by θ = tan−1(|Ωy|/|Ωz|).
For the base flow streaks (1), the characteristic vortex line lift angle is defined at
y+ = 20 as θ20 = tan−1[Ωy|max/(dU0/dy)]y+=20, where Ωy|max = βs∆u/2 and dU0/dy is
the mean flow spanwise vorticity, e.g. θ20 = 56◦ for the streak in figure 2(c).

Note that the amplitude function g(y) in (1) determines the strength of the local
streak-top U(y) shear layer (e.g. local maximum of ∂U/∂y) residing on the crest
of the lifted streak. Instability growth rates for the predominant sinuous modes
(with symmetry defined below) – the focus of this study – are found to be relatively
insensitive to the strength of this shear layer and hence to the amplitude function g(y).
Note, however, that the slower-growing varicose mode is found to depend crucially
on the vorticity magnitude of this wall-detached (free) shear layer. Varicose mode
instability is possible for artificially strong streak-top shear, yet its growth rate is
significantly smaller than the corresponding sinuous mode (e.g. Görtler streaks, see
Yu & Liu 1991). Thus, the y-variation of the streak velocity defect (represented
here by g(y)) should be varied systematically in instability studies of varicose modes.
Varicose modes are found to be stable for the streaks considered here, representative
of near-wall turbulence (SH), and are not addressed further.

For all flows considered here, the streak spanwise wavenumber βs in (1) is chosen as
2π/β+

s = 100, corresponding to the well-accepted average spanwise spacing of adjacent
low-speed streaks noted in numerous experimental and numerical studies. As discussed
below, the existence of a predominant streak spanwise spacing is consistent with two
competing mechanisms: (i) enhanced perturbation growth for smaller streak spacings
due to streaks’ more intense wall-normal vorticity Ωy , and (ii) reduced streak diffusion
at larger streak spacings (with weakened Ωy), which sustains perturbation growth for
a longer period of time. Although our analysis may subsequently be extended to
address the predominance of this particular streak spacing (via parametric analysis
of βs), our focus here is on vortex generation from developed streaks, whose spacing
must thus be specified a priori. Note that the complementary mechanism of streak
formation, i.e. lift-up of low-speed fluid near the wall by the induced v of (mature)
streamwise vortices, is well-documented (see Waleffe 1995 for details).

2.3. Stability analysis approach

Due to the two-dimensionality of the base flow (1), direct solution of the associated
two-dimensional p.d.e. eigenvalue problem (defined below) necessitates a complex
computational algorithm such as spectral collocation (with grid mapping in y to re-
solve the single-walled streaks), involving eigensolution of large, non-sparse matrices.
As an alternative, we analyse the instability of the streak base flow (1) using direct
numerical simulations (DNS) of the Navier–Stokes equations, initialized with infinites-
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imal disturbances. For the finite-Re stability analysis pursued here, the x-independent
modes constituting the base flow are ‘frozen’, i.e. the streak is held constant in time.

This DNS-based approach is well-suited to extract most-unstable (or least-stable)
linear normal modes. That is, individual modes of interest may be analysed through
appropriate choices of small-amplitude disturbances, including specification of the
streamwise and spanwise wavenumbers (α, β) and a sinuous spanwise symmetry.
Provided that such an arbitrary perturbation has a non-zero projection onto the
instability mode of interest, the perturbation evolution will naturally evolve to the
most unstable (or least-stable) eigenmode. ‘Lock-on’ of the simulation to a given linear
normal mode is signalled by sustained exponential growth (or decay) of E3D(t), the
volume-integrated energy in all x-dependent Fourier modes. Furthermore, non-normal
linear disturbances resulting in ‘transient growth’ – outside the scope of traditional
normal mode stability analysis – may be analyzed through an appropriate initial value
problem (discussed in § 4). As validation of both this stability analysis approach and
the DNS code, arbitrary linear-amplitude two- and three-dimensional disturbances
were verified to lock on to the corresponding Orr–Sommerfeld mode (Orszag 1971),
with growth rate agreement within 1%.

3. Linear normal-mode instability of streaks

To evaluate the role of streak instability in vortex generation, we analyse (§§ 3.1,
3.2) the three-dimensional instability of the two-dimensional streaks (1), over a range
of streak strengths (i.e. magnitude of the streak-flank vorticity Ωy), represented by the
streak lift angle θ20. Our focus here is on ‘lifted’ streaks, which are detectable even
outside the buffer layer (e.g. at y+ = 30; see Robinson 1991). Note the distinction of
these lifted streaks from the more numerous sublayer streaks, which are localized to
the viscous sublayer but do not extend into the buffer layer, reflecting the variation
of streak count with y observed by Adrian et al. (1999). (A lifted streak is typically
traceable to a particular sublayer streak, but the inverse is not always true.) We
then evaluate the instability results with respect to streaks extracted from fully
developed turbulence (§ 3.3), indicating that only a small fraction of streaks are
sufficiently strong for instability. The inherently three-dimensional streak instability
perturbation is compared with other free shear flow instabilities in § 3.4, revealing
a close connection with a new type of corrugated mixing-layer instability. The role
of viscous effects, particularly instability suppression by the streaks’ viscous self-
annihilation, is described in § 3.5.

3.1. Stability problem formulation

In accordance with Floquet theory for the z-periodic base flows represented in (1),
we consider temporal disturbances (denoted by primes) of the form






u′

v′

w′

p′




 (x, y, z, t) = Re











ũ
ṽ
w̃
p̃




 (y, z) ei(αx+βz)eσt




 , (5)

where the streamwise (α) and spanwise (β) wavenumbers are real, with eigenvalues
σ = σr+iσi; Re denotes the real part. The tilded (complex) eigenfunctions are periodic
in z with the streak spanwise wavenumber βs, and the velocity eigenfunctions vanish
at the bottom and top walls (y = 0, 2h).

Linearizing the Navier–Stokes equations and substituting (5) for perturbations, one
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obtains the eigenproblem

σũ + Uiαũ + ṽ
∂U

∂y
+ w̃

∂U

∂z
= −iαp̃ +

1

Re
∇̃2ũ, (6a)

σṽ + Uiαṽ = −
∂p̃

∂y
+

1

Re
∇̃2ṽ, (6b)

σw̃ + Uiαw̃ = −iβp̃ −
∂p̃

∂z
+

1

Re
∇̃2w̃, (6c)

iαũ +
∂ṽ

∂y
+ iβw̃ +

∂w̃

∂z
= 0, (6d)

∇̃2f ≡ −α2f +
∂2f

∂y2
− β2f + 2iβ

∂f

∂z
+

∂2f

∂z2
, (6e)

with the boundary conditions given above. In (6), the wavenumbers (α, β) and Re are
fixed parameters for a given mode, and the real and imaginary parts of the eigenvalue
σ represent the (temporal) growth rate (σr) and phase speed (σi/α), respectively, of
the corresponding eigenfunction.

Eigenmode symmetries. Several important structural features of streak instability
modes, which constrain the permissible physical-space perturbation distributions, are
revealed by examining the symmetry properties of the governing equations. Due to the
x-homogeneity and even z-symmetry of the base flow (1), the eigenfunction equations
(6) exhibit several symmetries, described as follows. First, note that by taking the
complex conjugate (*) of (6), an eigenfunction for (−α,−β) with eigenvalue σ∗ can
be constructed from one belonging to (α, β) and σ, i.e.






ũ
ṽ
w̃
p̃




 (α, β, σ) →






ũ∗

ṽ∗

w̃∗

p̃∗




 (−α,−β, σ∗). (7)

Similarly, an eigenfunction for −β and σ can be obtained upon reflection about z = 0
and sign reversal of the spanwise velocity component:






ũ(y, z)
ṽ(y, z)
w̃(y, z)
p̃(y, z)




 (α, β, σ) →






ũ(y,−z)
ṽ(y,−z)
−w̃(y,−z)
p̃(y,−z)




 (α,−β, σ), (8)

indicating, along with successive application of (7) and (8), that only positive values of
the parameters α and β need to be considered in stability analysis. More importantly,
(8) reflects a structural distinction with oblique instability modes of a parallel shear
layer, for which modes for +β and −β differ only in the sign of w̃ and simply
represent left- or right-propagating spanwise waves (Schoppa, Hussain & Metcalfe
1995). In contrast, streak instability modes for +β and −β have eigenfunction z-
distributions (i.e. related via (8) by spanwise reflection about z = 0), which preclude
a spanwise-wave-type structure (discussed below).

A further instructive symmetry occurs for inviscid disturbance evolution, in which
the viscous terms of (6) are omitted. In this special case, an eigenfunction for −σ∗



70 W. Schoppa and F. Hussain

(a) (b) (c)

(d) (e)

z
x

z
–2π

z
2π

z
0

Figure 3. Illustration of linear instability perturbation effect on base-flow streaks (grey-shaded)
for modes: (a) fundamental sinuous, (b) subharmonic sinuous, (d ) fundamental varicose, and (e)
subharmonic varicose. A travelling spanwise wave as in (c) is not permissible as a streak instability
mode, due to z-symmetry constraints.

and −β can be generated from one belonging to σ and β as





ũ
ṽ
w̃
p̃




 (α, β, σ) →






−ũ∗

ṽ∗

w̃∗

−p̃∗




 (α,−β,−σ∗). (9)

That is, for every stable (decaying) inviscid mode (σr < 0), there exists a corre-
sponding unstable (σr > 0) mode (the latter being constructed by applying (9) and
(8) successively), indicating that the base flow is either unstable or neutrally stable
(σr = 0) to inviscid disturbances. That is, the base flow cannot have decaying inviscid
modes only; the existence of only decaying modes thus requires viscous effects.

Sinuous and varicose modes. To consider the physical space perturbation effect
of streak instability modes, we consider the relevant z-symmetries. Note that these
symmetries are apparent a priori if z = 0 is aligned with the lines in figure 3. For the
case of z-fundamental modes (i.e. β = 0, no spanwise propagation), it is well-known
that for z-symmetric base flows, the eigenfunctions of (6) split into two classes: (i)
‘varicose’ modes (figure 3d ) with (ũ, ṽ, w̃): (even, even, odd) in z, and (ii) ‘sinuous’
modes (figure 3a) with (ũ, ṽ, w̃): (odd, odd, even) in z.

Note that a similar z-symmetry is present in the governing equations for normal-
mode perturbations (u′, v′, w′), resulting in two distinct perturbation classes with
even and odd z-symmetries. (This can be easily verified by: (i) decomposition of
perturbations into z-even and z-odd components, (ii) integration of the linearized
Navier–Stokes equations (NSE) over an arbitrary interval [−z0,+z0] to obtain the
even perturbation equations (odd terms vanish identically), and (iii) subtraction of
the even equations from the NSE to yield the odd perturbation equations.) Note
that z-subharmonic streak instability modes occur as either sinuous (figure 3b) or
varicose (figures 3e) perturbations. (The terms ‘varicose’ and ‘sinuous’ applied to
z-subharmonic modes refer to the shape of an individual perturbed streak.) When
the sign of β is switched, the patterns in figure 3(b,e) are shifted in z by 2π, serving
as a visual interpretation of the symmetry (8). In contrast, a travelling spanwise wave
(figure 3c), analogous to a single oblique mode of a parallel free shear layer, is not re-
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Figure 4. Growth rates of unstable normal modes of sinuous streak instability: (a) as a function of
streamwise wavenumber α, for a streak lift angle of θ20 = 56◦; (b) as a function of streak streangth
θ20 for the most unstable mode with α+ = 0.02.

alizable for streak instability due to the z-symmetry described. Hence, theories which
invoke oblique modes of a one-dimensional shear layer, without explicit inclusion of
z-dependence, permit travelling oblique modes analogous to figure 3(c), though not
permitted for streaks because of the even or odd z-symmetry required. Collectively,
the symmetry conditions outlined above constrain the permissible physical-space ge-
ometry of velocity field perturbations for individual streak instability modes, guiding
a priori the functional form of eigenmode solutions. In the following, we focus
exclusively on the (dominant) fundamental sinuous mode (figure 3a).

3.2. Streak instability results

To quantify possible linear instability of streaks occurring in near-wall turbulence, we
first discuss (normal-mode) solutions of the stability equations (6) for the U(y, z) base
flow (1), over a range of streak strengths (i.e. varying θ20). Statistics of θ20 are then
obtained for streaks extracted from near-wall turbulence, permitting assessment of
these streaks’ possible instability. All results reported in this section are for Re = 2670
with the base flow U(y, z) frozen, to isolate viscous effects on the perturbation
evolution (viscous influence on the base flow is addressed in § 3.5). Note that our
prior analysis (SH) of streak instability at higher Re indicates an inviscid instability
mechanism – in spite of close proximity to the wall – with increasing growth rate as
Re is increased up to an asymptotic limit (for a fixed base flow U(y, z)).

Figure 4(a) shows the normal-mode growth rate σ+
r ≡ σrν/u

2
∗ as a function of

streamwise wavenumber α+ ≡ αν/u∗, with the corresponding x-wavelength L+
x de-

noted on the top axis. The dependence of σ+
r on the streak strength, namely θ20,

is shown in figure 4(b). As indicated in figure 4(a), a moderately strong streak, say
with lift angle θ20 = 56◦ (Ω+

y |max = 0.35) (figure 2c) and 2π/β+
s = 100, is indeed

linearly unstable, with a maximum growth rate of approximately σ+
r = 0.012. Inter-

estingly, the maximal normal mode growth rate occurs for a streamwise wavelength
of approximately 300 wall units, closely corresponding to the minimum x-wavelength
(L+

x = 290) required for turbulence sustenance (Jimenez & Moin 1991) at Re = 2670.
Note that the 320 wall unit streamwise extent of two x-displaced counter-rotating ad-
jacent coherent structures educed from near-wall turbulence (Jeong et al. 1997) also
exhibits a nearly maximal streak instability growth rate. Collectively, these results
indicate that the characteristic streamwise wavelength of near-wall structures (∼ 300
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x

z

Figure 5. Streak identification shown for a typical flow field: streaks at y+ = 20 identified as regions
of u′ < 0 (grey-shading), with streak centres determined by the local z-minimum of |∂u/∂z| within
each streak region (bold lines).

wall units) is consistent with these streak instability results. As a further note, the
minimal x-wavelength for sustained turbulent plane Couette flow (Hamilton et al.
1995) – approximately 170 wall units – differs markedly from that of minimal channel
flow (figure 4a), suggesting inherent differences between the two cases.

Having shown linear instability of a U(y, z) distribution visually representative of
instantaneous lifted streaks in near-wall turbulence (cf. figure 2b,c), we now quantify
the growth rate variation with streak strength, denoted by the streak lift angle
θ20 (defined above). Recall that for a fixed streak spacing, θ20 determines both the
height and the flank-slope of lifted U contours (figure 2c). Results below are for
instability modes with a fixed streamwise wavelength of L+

x = 300, approximately
the most unstable mode for this range of θ20. Significantly, as shown in figure 4(b),
sinuous streak instability requires a threshold streak lift angle of approximately
θ20 = 50◦ (corresponding to a streak vorticity of Ω+

y |max = 0.27). Thus, lifted streaks
may be either passive (stable) or dynamically active (unstable) to small-amplitude
sinuous perturbations, depending upon rather slight (i.e. visually indistinguishable)
differences in streak-flank vorticity. For instance, streaks with a lift angle of 45◦

are well within the stability region, while 55◦ streaks (which visually look similar)
exhibit a significant instability growth rate. Furthermore, this instability threshold
indicates that lifted streaks, even those extending past the buffer layer, are not
necessarily unstable, depending on the streak-flank slope. On increasing θ20 above the
instability cutoff, the growth rate increases approximately linearly with the streak-flank
vorticity Ωy|max = ∂U/∂z, suggesting a dominant influence of U(z) spanwise shear in
driving sinuous instability (see also Yu & Liu 1991 for Görtler streaks). Nevertheless,
as shown below (§ 3.4), the sinuous mode is inherently three-dimensional, and its
growth mechanism is fundamentally different from a one-dimensional U(z) wake
profile.

3.3. Streak strength statistics

Owing to the growth rate threshold in figure 4(b), the role of (normal-mode) streak
instability in fully developed near-wall turbulence relies critically on the magnitude
of streak lift angle θ20 (hence ∂u/∂z) actually realized. To obtain conditional streak
statistics, individual streak realizations are extracted from fully developed turbulent
channel flow at Re = Q/ν ∼ 3100 (Kim et al. 1987 database). To obtain statistics of
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Figure 6. A sample local spanwise profile of (∂u/∂z)+ through the streak identified by the vertical
line in figure 5; the first local extrema on either side of the streak centre zc defines the streak-flank
vorticity.

local, unsmeared streak vorticity, the following streak extraction procedure (illustrated
in figures 5 and 6) is used:

(i) regions of u′ < 0 are identified in a specified y-plane (grey-shaded in figure 5);
(ii) within each u′ < 0 region, the (xc, zc) locations of local minima of u′ in z are

identified as streak centres (bold lines in figure 5);
(iii) the first local maxima of |∂u/∂z| in z (figure 6) is identified on either side of

each streak centre (xc, zc). The larger of these two |∂u/∂z| values is recorded as the
streak-flank vorticity |∂u/∂z|max for each streak realization.

Note that the positive and negative peaks of ∂u/∂z are generally of comparable
magnitude (figure 6), reminiscent of a local U(z) wake profile. For flow realizations
extracted at 50 different times (spanning 500 wall time units) from fully developed
near-wall turbulence (L+

x ∼ 1400; L+
z ∼ 450), this extraction procedure identifies

approximately 11 300 streak (y, z) cross-sections (like the example realization in fig-
ure 6). Dividing the z domain size by the average number of streak realizations per
unit x (for an x grid spacing of ∆x+ = 29), an average spanwise spacing (between
accepted realizations) of 96 wall units is obtained at y+ = 20. The close agreement
of this sampled streak count with the accepted z-spacing of streaks (100 wall units)
confirms that streaks are accurately captured (i.e. false streak counts or omissions are
minimal).

Subject to the conditional streak sampling outlined above, histograms of streak lift
angle statistics for fully developed turbulence are shown in figure 7 at heights of y+ =
10, 20, and 30 from the wall. Analogous to the definition of θ20 above, the characteristic
streak lift angle at a given y+ is defined as θy+ = tan−1[|∂u/∂z|max/(dU0/dy)]y+=n.
Note that θy+ serves only as a characteristic streak strength (for statistical purposes),
as the vortex line lift angle of an instantaneous streak can differ from its θy+ value,
owing to: (i) use of only the ∂u/∂z contribution to ωy and (ii) non-dimensionalization
by the mean shear dU0/dy, instead of the local ωz . Histograms of streak lift angle
θy+ in figure 7 indicate that larger θy+values are more common with increasing y+.
In particular, the mean lift angles of the streak realizations identified at y+ = 10,
20, and 30 are θ10 = 25◦, θ20 = 44◦, and θ30 = 55◦, respectively. The occurrence of
stronger streaks at larger y reflects the characteristic geometry of streak vortex lines
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Figure 7. Histograms of streak lift angle θy+, conditionally sampled from DNS data of fully
devoloped channel flow turbulence at: (a) y+ = 10, (b) y+ = 20, and (c) y+ = 30. The bold line at
each y+ denotes the threshold streak lift angle required for instability of the U(y, z) distribution (1).

(figure 2b,c): nearly flat vortex lines in the sublayer, with strong lifting appeared only
above y+ ∼ 20. Note also that only lifted streaks are sufficiently strong to extend into
the buffer layer, so that the percentage of strong streaks necessarily increases with y
(despite the decreasing total streak count with y due to ‘drop-out’ of weaker sublayer
streaks).

To evaluate whether streaks strong enough for instability are actually realized in
near-wall turbulence, the bold lines in figure 7 denote the values of θ10, θ20 and θ30 for
the neutrally stable streak in figure 4(b), i.e. the streak U(y, z) distribution (1) with
θ20 = 50◦. Caution must be exercised in interpreting these results, owing to differences
in vorticity distributions between individual streak realizations (extracted from fully
turbulent flow) and the base flow (1). In particular, instability should not be inferred
for: (i) streaks which may exceed the strength threshold at some y-locations (e.g. in
the sublayer), but not at all other y, and (ii) streaks which are locally strong, but not
sufficiently elongated in x (to permit growth of disturbances of wavelength L+

x ∼ 300).
That is, the presence of streak realizations with θy+ exceeding the strength threshold
for instability serves as a necessary, but not sufficient, condition for the operation of
(normal-mode) streak instability in near-wall turbulence. Furthermore, owing to the
prominence of weaker (hence stable) sublayer streaks (i.e. not extending into the buffer
layer) in statistics for y+ 6 10, instability should be inferred from statistics in the
buffer layer (where only lifted streaks occur). In the range y+ = 20–30, comparison
of lift angle statistics (figure 7b,c) with the corresponding streak instability cutoff
(marked by a bold line) indicates that 15–25% of lifted streaks are strong enough
(i.e. with sufficient magnitudes of ∂u/∂z or θ20) to be linearly unstable.

In summary, streaks satisfying the necessary strength condition for linear instability
do in fact occur in near-wall turbulence over the range y+ = 10–30, albeit constituting
only a small fraction of all lifted streak regions in the buffer region. Additionally,
the streak count declines sharply with increasing θ20 near the stability cutoff (e.g.
figure 7b), indicating that few unstable streaks attain a large growth rate (cf. fig-
ure 4b, 7b). Finally, note that other possible mitigating factors of streak instability,
particularly the influence of viscous self-annihilation of base flow streak vorticity,
must also be considered (§ 3.5). Hence, a scenario of dominant vortex generation and
turbulence sustenance via linear (normal-mode) instability of lifted near-wall streaks
must be evaluated carefully, as done below.

3.4. Relation with other shear-layer instabilities

Having demonstrated that sufficiently strong near-wall streaks are linearly unstable,
we now address the physical mechanism of (normal-mode) streak instability, in re-
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Figure 8. Comparison of ω′
y(x, z) distributions of sinuous instability modes of (a) near-wall streaks

at y+ = 25 and (b) a one-dimensional sinusoidal wake with the same U(z) profile in this plane.

lation to free shear flow instabilities. Note that the instability is indeed inviscid (i.e.
increasing growth rate with Re to an asymptotic limit) in spite of its location in the
highly viscous near-wall region. Many prior studies have addressed possible mecha-
nisms of streak instability via localized velocity profile inflections – either inflectional
U(y) at the low-speed streak crest (Kelvin–Helmholtz instability, e.g. Kline et al. 1967)
or an inflectional U(z) velocity defect at the streak flank (wake-like instability, e.g.
Swearingen & Blackwelder 1987).

First, note that Orr–Sommerfeld inflection-point theory (i.e. necessary conditions
for instability), valid strictly for one-dimensional velocity profiles, does not directly
apply to the linear stability equations (5) and (6) for a two-dimensional U(y, z) base
flow. Secondly, the dominant sinuous mode instability studied here can occur without
any U(y) inflections of the streak base flow (1), for which Kelvin–Helmholtz-type
instability of localized U(y) shear is thus not the cause. Finally, although strong
localized streak-crest U(y) shear is necessary for varicose instability, these modes are
stable for streaks typical of near-wall turbulence (see SH).

We now address the possible analogy between (sinuous) streak and wake instabili-
ties, qualitatively suggested by the resemblance of the inflectional U(z) velocity defect
through the streak to a one-dimensional wake flow (see also the typical streak ∂u/∂z
profile in figure 6). For this, instability modes are calculated for the one-dimensional
sinusoidal wake

Uwake(z) = U0 + (∆u/2) cos(βsz), (10)

matched to the z-profile of the streak base flow (1) at y+ = 25 (i.e. Uwake(z) = U(y+ =
25, z)). The wake modes are calculated using the DNS-based stability analysis outlined
in § 2.3, via a spectral simulation code developed for free mixing layers (see Schoppa
et al. 1995 for algorithm details and validation). To permit direct comparison, sinuous
wake modes are calculated for a wake flow Uwake(z) corresponding to streaks with
2π/β+

s = 100 and amplitude Ω+
y |max = 0.35 (figure 2c), for the streamwise wavelength

of 2π/α+ = 315.
In figure 8, the normal vorticity perturbation ω′

y of the sinuous streak insta-
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Figure 9. Perturbation streamwise vorticity ω′
x for sinuous streak instability mode, at (a) αx = 0,

(b) αx = π/2, (c) αx = π, and (d ) αx = 3π/2. Positive and negative ω′
x are shown as solid and

dotted contours respectively, and the bell-shaped line denotes the phase speed contour U = σi/α.
The shading shows the regions of induced spanwise flow (in the direction of the thick arrow).

bility mode (at y+ = 25; figure 8a) is compared to that of the corresponding
one-dimensional wake mode (figure 8b). Interestingly, the sinuous wake and streak
instability modes have a fundamentally different vorticity structure, despite a very
similar base flow U(z). In particular, note that the streak mode is characterized by
thin sheets of ω′

y , which induce nearly-parallel u′ but weak spanwise motion w′ due to
the sheet-like structure (e.g. parallel, straight ω′

y sheets induce no w′). In contrast, the
wake mode consists of elliptical cells of ω′

y (figure 8b), responsible for all induced w′

due to the mode’s two-dimensionality. Additionally, the streak mode ω′
y is maximal

at the streak flanks (i.e. at z-location of maximum ∂U/∂z), whereas the maxima of
wake ω′

y occur within the low- and high-speed regions (i.e. at the z-location of zero
mean shear). Such fundamental differences in the correspondings ω′

y distributions
indicate that the streak and wake sinuous w′ disturbances are generated by distinctly
different mechanisms. That is, despite requiring sufficient magnitudes of streak lift
angle θ20 and hence U(z) shear, the sinuous streak instability mechanism is not in
reality ‘wake-like’.

In contrast to the purely two-dimensional wake instability (i.e. containing ω′
y only),

the streak instability mechanism we find is inherently three-dimensional (dynamics
described in § 4.4). In particular, the sinuous streak instability mode is characterized
by curved sheets of ω′

x in the cross-stream (y, z)-plane (figure 9), localized primarily
near the low-speed streak ‘crest’ and the high-speed ‘trough’ regions. Due to their
z-elongation, these ω′

x sheets mainly induce quasi-parallel w′ within the low-speed
streak (shaded regions in figure 9). For example, −w′ is induced within the streak
below the +ω′

x layer in figure 9(a), and −w′ is generated at the streak crest between
the opposite-signed, dipole-like layers in figure 9(b); and vice versa for +w′ induction
in figures 9(c,d ) due to x-antisymmetry. Therefore, sinuous w′(x) motion occurring
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Figure 10. Perturbation vorticity distributions in the base-flow vortex-line coordinate system (x, n, s),
for sinuous instabilities of (a) near-wall streaks and (b) a corrugated mixing layer, compared with
(c) superposed ±β oblique modes of a planar mixing layer. The three columns show (y, z)-plane
contours of ω′

x, ω
′
s, ω

′
n.

for streak instability is induced predominantly by ω′
x sheets, instead of by ω′

y as in
the (two-dimensional) wake case.

The ω′
x sheets are slightly inclined to the wall (in the (x, y)-plane) and opposite-

signed regions overlap in x, reminiscent of the overlapping of counter-rotating longi-
tudinal coherent structures educed from fully developed near-wall turbulence (Jeong
et al. 1997). Note, however, that the linear-mode ω′

x distribution does not reflect
vortices, as the sheet-like geometry induces a predominantly planar wall-parallel flow
(i.e. mainly w′(y) shear). Furthermore, the even z-symmetry of ω′

x (figure 9) across the
streak is not representative of observed streamwise vortices, which tend to appear on
only one streak flank, both in instantaneous realizations and as ensemble-averaged
coherent structures. Thus, linear growth of sinuous streak instability is itself not
sufficient to explain the generation of observed near-wall vortices. As shown herein,
nonlinear effects acting on these streak disturbances (as they evolve into the nonlinear
regime) are actually responsible for the observed geometry of near-wall vortices.

Having demonstrated that streak instability is distinct from either localized Kelvin–
Helmholtz or wake instabilities, we now illustrate a close relationship existing with the
three-dimensional instability of a planar mixing layer. To understand this connection,
it is useful to project the perturbation vorticity onto a local coordinate system
referenced to base flow vortex lines (bell-shaped, equivalent to U = constant contours
for x-independent flows). In particular, defining local binormal (x), tangential (s), and
normal (n) coordinates as in figure 10(a), the corresponding vorticity components
may be transformed as

ωb = ωx,

ωs = −ωy

Ωy

|Ω|
− ωz

Ωz

|Ω|
,

ωn = −ωy

Ωy

|Ω|
+ ωz

Ωy

|Ω|
,







(11)

where (Ωy , Ωz) are the (y, z) components of the base flow vorticity with (non-zero)
local magnitude |Ω|; note Ωx = 0.
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For the special case of a one-dimensional U(y) mixing layer, the (ωb, ωn, ωs) vorticity
components reduce to the usual (ωx, ωy , ωz) components. In figure 10(c), perturbation
vorticity contours are shown for superposed ±β oblique modes of a planar tanh
mixing layer (see Schoppa et al. 1995 for further details), with streamwise and
spanwise wavenumbers chosen to match the most unstable sinuous streak mode.
Application of the transformation (11) to the streak mode (figure 10a) reveals a
striking correspondence with the mixing-layer oblique modes, for all perturbation
vorticity components. That is, by ‘lifting’ the oblique mode distributions in figure 10(c)
at their z-midpoint, perturbation vorticity distributions very similar to those of the
streak mode (figure 10a) are obtained. Note also the similar vorticity distributions
with respect to the phase speed contour U = σi/α (on which both distributions are
constant in time; σi = 0 for the oblique modes). For instance, U = σi/α passes through
the maxima of ω′

x and ω′
n, and separates positive and negative ω′

s in both cases.
To progress further, we also investigate a new type of shear layer instability – a

z-periodic ‘corrugated’ mixing layer of the form

Ucorr(y, z) = ∆U tanh(y + A cos(βz)) (12)

with a y-displacement of amplitude A and a spanwise wavenumber β designed to
closely match the height and spanwise spacing of lifted streak vortex lines. As shown
in figure 10(b), sinuous instability modes of the corrugated mixing layer (12) even
more closely match the streak instability perturbation vorticity, capturing spatial
variations due to the shear-layer curvature as well. Note that some details differ, e.g.
opposite-signed ω′

n contours overlap (in n) for the streak mode (figure 10a), but not
for the shear-layer modes (figures 10b,c). These and other minor vorticity differences
result from the y-antisymmetry of the corrugated shear layer, not exhibited in the
streak base flow (e.g. unlike mixing layers, see lack of y-symmetry in figure 2c).

The close correspondence of the perturbation vorticity distributions in figure
10(a–c) indicates a strong connection between streak instability and three-dimensional
instability modes of both corrugated and planar mixing layers. A further consequence
is that the streak instability is not only inviscid in nature, but the no-slip and imper-
meability conditions at the wall evidently play no important destabilizing role. That is,
viscous effects do not directly enter into the mechanism through the wall conditions.
Viscous effects, however, enter into the problem via self-annihilation of the (base
flow) streak-flank vorticity by viscous cross-diffusion (discussed in § 3.5 below). In
summary, sinuous (normal-mode) streak instability and oblique mixing layer modes
share the following features:

(i) Individual oblique modes of a planar mixing layer exhibit a spanwise-wave-type
perturbation (e.g. figure 3c) which is prohibited for z-symmetric streaks. However,
superposed ±β oblique modes of equal strength (i.e. a standing wave) produce a close
correspondence with the streak mode.

(ii) The spanwise phase of perturbations is fixed relative to the z-symmetry locations
for both streak and corrugated mixing layer instabilities, while this phase is arbitrary
for the oblique modes of a planar mixing layer.

(iii) Streak instability is seen to involve the same underlying instability mechanism
(discussed in § 4.4) as mixing layer oblique modes, noting the close correspondence of
all perturbation vorticity components in figure 10.

3.5. Streak diffusion effect: unfrozen base flow

Up to this point, we have focused on normal-mode sinuous streak instability, with
the base flow streaks (1) frozen to isolate the instability growth mechanism from the
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Figure 11. Linear evolution of (a) E3D energy (normalized by initial disturbance energy) and (b)
ωx rms at y+ = 20 (normalized by the initial value), for the most unstable normal mode (solid)
and STG (dashed). All curves are for freely diffusing (unfrozen) streaks, with an initial streak lift
angle of θ20 = 56◦. Also shown in (a) is the decay of θ20 (dotted; right ordinate) due to streak self
annihilation.

effects of base flow vorticity diffusion (i.e. viscous decay of streak Ωy(y, z) and Ωz(y, z)).
In situations where the base flow evolves (e.g. via vorticity diffusion) on a much slower
timescale than the instability growth, the base-flow evolution is inconsequential (as
for planar mixing-layer stability analysis). However, for streaks representative of
near-wall turbulence, the base-flow diffusion timescale and instability growth rate are
found to be comparable (see below), necessitating analysis of perturbation evolution
with a freely evolving (‘unfrozen’) base flow. Having identified linear instability of
frozen streaks, we now consider the linear evolution of an unstable normal mode in
the presence of unfrozen, viscously decaying streaks.

Noting the inviscid instability mechanism (see SH), in which viscous effects and
the no-slip wall play no destabilizing role, the question remains: How do viscous
effects – obviously important for the near-wall scaling but non-essential to the growth
mechanism – enter the streak instability dynamics? We find that the viscous diffusion
of the streak base flow U(y, z) is significant, for the well-accepted streak spacing
of L+

z = 100. In particular, the opposite-signed wall-normal (base-flow) vorticity Ωy

flanking the low-speed streak undergoes viscous self-annihilation via cross-diffusion, a
kind of planar reconnection. Consequently, Ωy decays exponentially as Ωy = Ωy(0)e−γt,
with a non-dimensional (wall-unit) decay rate of γ+ = γν/u2

∗ = 0.0068 calculated via
DNS. The vorticity (viscous) decay rate for streaks of infinite y extent (i.e. without
the wall) can be derived from the vorticity equation for Ωy applied to the spanwise
spacing, and is found to be νβ2

s )
+ = 0.0037, indicating that roughly half of the Ωy

diffusion flux occurs in z via cross-diffusion. The remaining flux occurs in y primarily
to the wall due to the Ωy = 0 condition at the wall (considering the diffusion of
scalar Ωy). Note that the (viscous) streak decay rate γ+ = 0.0068, though slower than
the streak’s (normal-mode) instability growth rate (σ+

r = 0.012 at θ20 = 56◦), is of
comparable magnitude, indicating that the streak diffusion is non-negligible.

As a consequence of streak Ωy diffusion (automatically accounted for in DNS),
the streak lift angle θ20 decays as θ20(t) = tan−1[Ωy(0)e−γt/(dU0/dy)], the decay
constituting a significant stabilizing effect on streak instability. For instance, an
initially unstable streak with θ20 = 56◦ reaches the stability cutoff of θ20 = 50◦ by t+ =
30, due to streak diffusion (figure 11a). Consequently, growth of the most unstable
(normal) sinuous eigenmode (for θ20 = 56◦), initialized along with an unfrozen streak,
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is rather quickly shut off by the viscous streak decay (see figure 11a). In particular,
growth of the instability mode is limited to a factor-of-two amplification of E3D

(volume-integrated energy of all x-dependent Fourier modes), after which the streak
becomes too weak for linear instability to continue. Note that this ‘saturation’ and
susbsequent decay of E3D due to streak self-annihilation occurs at a linear amplitude
(i.e. instability mode disturbance amplitude near machine accuracy) and thus should
not be confused with the (typical) nonlinear saturation.

4. Linear streak transient growth

In contrast to the limited growth of the most unstable normal mode of streak in-
stability – a factor-of-two E3D amplification – we develop here an alternative scenario:
the streak transient growth (STG) mechanism. Although both normal-mode instability
and STG eventually reach linear ‘saturation’ (by the countering effect of viscous self-
annihilation of streak vorticity), STG has a much higher short-time growth rate and is
capable of producing much higher amplification than the most unstable normal mode.
Significantly, STG also produces order-of-magnitude perturbation growth for stable
streaks, which are far more numerous (i.e. about 80% of near-wall streaks are stable;
see figure 7b). For the disturbance level prevailing in developed near-wall turbulence,
STG causes a sufficiently large perturbation amplitude to excite a nonlinear ωx ampli-
fication mechanism (described in § 5.2), resulting in generation of streamwise vortices.
Thus, both the normal-mode and STG mechanisms are linear in their growth and
decay, STG becoming more effective after large linear amplification, through eventual
nonlinearity. We will provide insight into the (fairly elusive) ‘physical mechanism’ of
STG through vortex-dynamics-based reasoning, but we first describe the key features
and significance of STG.

Although not specifically applied to date to vortex generation in near-wall turbu-
lence, the concept of (linear) transient growth (see Trefethen et al. 1993) has been used
extensively to address the related problem of (subcritical) ‘bypass’ transition of the
mean velocity U(y) (Butler & Farrell 1992; Reddy & Henningson 1993). The essential
point is that transient growth of disturbances is possible for non-self-adjoint operators
like the linearized Navier–Stokes operator for shear flows. Recall that, because of this
feature of the linear operator governing perturbation evolution, eigenmodes of the
traditional normal mode analysis are not orthogonal to one another. Because of
this non-orthogonality, particular disturbances (say, specific combinations of normal
modes) can generally be amplified by significant factors (by transient growth), even if
all constituent normal modes are individually stable! For the most energetic perturba-
tion of U(y), transient growth generates an x-independent streak via the well-known
‘lift-up’ mechanism. Note, however, that for such an x-independent flow, streamwise
vorticity decays monotonically by self-annihilation, and thus no sustained turbulence
can occur. In contrast, for the new transient growth scenario developed here, we
focus on growth of x-dependent disturbances, necessary for ωx generation, and hence
for subsequent generation of near-wall streamwise vortices and ‘bursts’ of Reynolds
stress and turbulence production. The near-wall streamwise vortices – the footprints
of which were initially termed ‘bursts’ (Kline et al. 1967) – are considerably shorter in
x (by an order of magnitude) than low-speed streaks (figure 1; see also Jeong et al.
1997) and can result only from three-dimensional, x-dependent perturbations. Addi-
tionally, note that we consider perturbations of U(y, z) streaks, not to be confused
with prior transient growth studies of the one-dimensional, streakless mean velocity
U(y).
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We first present evidence of transient growth of streak perturbations (§ 4.1), il-
lustrating the dominance of STG over normal-mode instability. An explanation of
the underlying STG mechanism is outlined via vortex dynamics arguments in § 4.2,
followed by additional explanation in the context of energy considerations (§ 4.3). The
distinction of the normal-mode streak instability mechanism from STG is described
in § 4.4.

4.1. STG: observations

Since most near-wall streaky regions are stable and the amplification of (infrequently
occurring) normal-mode-unstable streaks is highly limited, a different mechanism must
be responsible for the successive (re)generation of near-wall streamwise vortices. We
thus consider transient growth of streak perturbations as an alternative mechanism
which: (i) causes significant perturbation growth (much higher than normal-mode
instability) for freely diffusing streaks, and (ii) operates for weaker, normal-mode-
stable streaks, found to be much more common near the wall (figure 7b).

With the goal of elucidating the significance of transient growth for streak U(y, z)
base flows, we consider a spanwise velocity perturbation of the form

w′(x, y) = W sin(αx)g(y), (13)

with g(y) = y exp(−ηy2) and a linear amplitude W ; hereinafter, (13) is referred to
as the STG perturbation. This simple initial perturbation is motivated by a number
of physical considerations. First, as will be shown in § 4.2, growth of streamwise
vorticity ω′

x is driven by the combined effect of streak shear (predominantly ∂U/∂y)
and x-variation of w′ through a new ‘shearing’ mechanism of vorticity generation.
Second, x-dependence of w′ is also required for production of uw Reynolds stress for
extraction of kinetic energy by the perturbation, as shown in § 4.3. Analysis in § 4.3
shows that a simple spanwise flow perturbation (i.e. as given by (13)) normal to the
streak-flank Ωy generates the (dominant) velocity perturbation u′ (i.e. u′

x), and hence
can extract kinetic energy from the (x-averaged) mean flow more rapidly than possible
in normal-mode instability. Finally, analysis of fully developed near-wall turbulence
indeed confirms that sinuous streak displacement motion like (13) is prevalent and
precedes the generation of streamwise vortices (discussed in § 5.1).

The non-normality of the STG perturbation may be easily verified: given (13),
there is no value of σ for which the perturbation equations (6) can be satisfied. Unlike
traditional normal-mode instability (i.e. linear growth leading to nonlinear saturation),
the peak perturbation amplitude resulting from transient growth depends directly on
its initial amplitude. That is, while linear growth of normal modes typically saturates
(due to nonlinear effects) at virtually the same amplitude independent of the initial
amplitude – a characteristic feature of normal modes – the final amplitude reached by
transient growth does depend strongly on the initial amplitude. Hence, it is important
to analyse perturbations which are prevalent in developed near-wall turbulence, as
captured by (13).

Frozen streak. Note that transient growth is characterized by rapid temporal per-
turbation growth (for a base flow which can be unstable or even stable to normal
modes). To clearly demonstrate the significance of STG, we first consider the case
of a frozen U(y, z) streak (i.e. with no base-flow evolution), in order to isolate the
growth phenomenon from the suppressive effect of viscous streak self-annihilation
in unfrozen (freely evolving) flows. Additionally, we focus on STG via analysis of a
linearly stable streak, say with θ20 = 45◦, as an illustrative example (i.e. a streak which
produces no growth of normal modes; see figure 4b). Significantly, we find that the
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Figure 12. Comparison of normal mode and transient growth of linear three-dimensional pertur-
bation energy, for a frozen base flow (i.e. streak diffusion not permitted): (a) normal-mode-stable
streaks with θ20 = 45◦; (b) normal-mode-unstable streaks with θ20 = 56◦.

STG perturbation (13) does in fact produce significant (factor of 10) amplification of
E3D (figure 12a), in contrast to the exponential decay of the least-stable normal mode.
Subsequently, the STG perturbation linearly ‘saturates’ and eventually decays, as dis-
cussed in § 4.3. The significance of this large, albeit temporary, (linear) amplification
of energy in x-dependent modes lies in the consequence that nonlinear effects are
triggered at high amplitudes – the nonlinearity following the large amplification due
to linear STG – leading to streamwise vortex generation (§ 5.2). The transient growth
mechanism thus reveals a dynamically active role of stable streaks, found to be more
prominent in near-wall turbulence than unstable streaks.

For the (less frequently occurring) unstable streaks, STG also plays a dominant
role, producing more rapid early-time growth and larger amplification than the most
unstable normal mode. As an illustration, consider an unstable streak (e.g. with
θ20 = 56◦), for which STG produces an early-time E3D(t) growth which is significantly
faster than the most unstable normal mode (t+ < 20 in figure 12b), resulting in
a factor of 10 larger amplification. This faster early-time growth rate, compared
to normal-mode instability is due to (subtle) differences between the perturbation
vorticities of STG and normal modes, described in § 4.2–§ 4.4 below.

Unfrozen streak. Returning to the physically relevant case of an unfrozen (freely
diffusing) streak, STG generates a factor-of-20 amplification of E3D , even in the
presence of countering streak diffusion (figure 11a). In contrast, the corresponding
(initially unstable) normal mode experiences only a factor-of-two E3D growth, for
the same streak distribution U(y, z). Growth of both STG and the normal mode is
eventually shut off (past t+ ∼ 50) by the streak being progressively weakened by the
ever-present vorticity self-annihilation (reflected by θ20 in figure 11a). Until the time of
this linear ‘saturation’, STG generates an order-of-magnitude larger amplification than
the initially unstable normal mode, due to the faster early-time growth mechanism
of STG (described below). STG also produces much more significant growth of
streamwise vorticity, critical for near-wall vortex generation. For instance, a factor-
of-16 amplification of ωx rms occurs for STG (at y+ = 20), compared to only a factor
of two for the most unstable normal mode (figure 11b).

As an aside, similar disturbance growth for unstable streaks in SH (the distinction
from STG was not addressed there) is shown to be self-similar in Re over the range
2650–10 650. The self-similarity was shown by the collapse of the growth rate as
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Figure 13. Evolution of perturbation (b–f ) ωx and (g–i ) streak-flank velocity vectors during STG;
these distributions are in planes A–A and B–B identified in figure 14: (b,c) in plane A–A and
(d–i ) in plane B–B. The times correspond to (d,g) t0, (b,e,h) t1, and (c,f,i ) t2. The streak vortex line
coordinate system is defined in (a). Regions C, T, and F denote the crest, trough, and flank of the
streak, respectively.

a function of time, both non-dimensionalized in wall units. That is, for self-similar
scaling of the base-flow streaks, the wall-normal vorticity Ωy increases with increasing
Re, as does the rate of streak self-annihilation. A concomitant increase in disturbance
growth rate occurs with increasing Re due to the correspondingly higher streak-flank
vorticity (e.g. see increasing growth rate with θ20 in figure 4b). We find that the two
effects – instability growth and streak self-annhilation – continue to be in balance as
Re is increased. Although perhaps not totally surprising from the (highly debated)
viewpoint that outer-scale events play an unimportant role in the near-wall dynamics,
this Re-scaling suggests that the same growth behaviour occurs at practical Reynolds
numbers, with autonomous near-wall (i.e. inner-scaling) dynamics. This prompted SH
to assert the prominence of the same perturbation growth mechanism and associated
DNS results at much higher Re values, beyond the reach of DNS.

4.2. STG: streamwise vorticity generation mechanism

Up to this point, we have demonstrated the dominance of STG in generating order-
of-magnitude growth of E3D and ωx, for both stable and unstable streaks. We now
address the underlying physical-space (perturbation) vortex dynamics, focusing on
STG of the more frequently occurring normal-mode-stable streaks, for which the
growth mechanism can be clearly revealed and distinguished from normal-mode
instability. Superficially, the premise of perturbation growth for otherwise normal-
mode-stable base flows may appear enigmatic. The principal question addressed in
this section is: how does transient growth of streak perturbations occur physically,
when all normal modes decay (e.g. figure 12a)?

Perturbation vorticity equation. To explain the underlying mechanism of STG, we
focus on the dynamics of ω′

x generation, via vorticity perturbation equations derived
for the streak-vortex-line coordinate system (x, n, s) defined in figure 13(a). Recall
that the s and n directions are everywhere tangent and normal, respectively, to the
base-flow vortex lines (equivalently, constant-U contours for x-independent flow). A
key advantage of this base-flow vortex-line coordinate system is that it significantly
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simplifies the evolution equations for perturbation vorticity and enables simpler
physical interpretations. In particular, both the base-flow velocity U and vorticity Ω
are single-component (i.e. u = U(n)x; ω = Ω(n, s)s), and U is one-dimensional in
this coordinate system. Transforming the vorticity equation into (x, n, s) coordinates
(Lamb 1945) for linearized perturbations of a U(n) streak distribution, the inviscid
evolution equations for vorticity perturbations (ω′

x, ω
′
n, ω

′
s) are derived as

∂ω′
x

∂t
+ U

∂ω′
x

∂x
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where the direction cosine amplitudes hn and hs are determined from

h2
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. (15)

The base-flow vorticity is given by Ω = −hndU/dn in transformed coordinates, which
permits simplification of the two ω′

x production terms (first two terms on the right-
hand side of (14a)) to a single term. This simplification of the right-hand side of the ω′

x

equation is important in understanding the underlying transient growth mechanism,
in that physical-space interpretation of the original tilting terms is obscured by
their partial cancellation of each other (i.e. rewriting the second tilting term as
hnω

′
ndU/dn = Ω∂u′

s/∂x − Ωhs∂u
′
x/∂s, the first tilting term Ωhs∂u

′
x/∂s is cancelled).

Alternatively, interpretation of the sole ω′
x generation term Ω∂u′

s/∂x clearly reveals
the essential mechanism of STG – differential advection (‘shearing’) of perturbation
velocity by the mean shear – which differs from the traditional concepts of vorticity
tilting and stretching, as explained below.

To understand the dynamics of ω′
x generation by STG, we focus throughout this

section on normal-mode-stable streaks with θ20 = 40◦, as an illustrative example.
(The reader is forewarned that figures 13–16 are interrelated and must be discussed
together for clarity.) The perturbation evolution characteristic of STG is illustrated
in figures 13 and 14 by (y, z)- and (x, y)-distributions of ω′

x, respectively; the (y, z)
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Figure 15. Schematic of (a) u′
s and (b) u′

n distributions near the streak creast (C), trough (T), and
flanks (F) for the initial STG perturbation in plane B–B, obtained via projection of (13) onto streak
vortex-line coordinates (n, s). Positive and negetive contours are solid and dashed, respectively.

Ω

+u
s

n

x

s

–u
s

∂us

∂x

Α

+u
s

–u
s

Α

n

s

∂us

∂n
~ ω

x

Figure 16. Physical mechanism of ‘shearing’ generation of vorticity, i.e. ω′
x production due to

the term Ω∂u′
s/∂x. This new mechanism is responsible for vorticity generation in both STG and

normal-mode streak instability (as well as corrugated mixing-layer instability).

cross-sections A–A and B–B are defined based on the x-symmetry of STG. The
initial STG perturbation velocity, decomposed in vortex line coordinates, is shown in
figure 15. The shearing mechanism of ω′

x generation by the base flow is illustrated
schematically in figure 16.

Initial STG perturbation. Initially at t0 (i.e. t = 0), the ω′
x contours are wall-

parallel straight lines in B–B, reflecting the wall-jet-like spanwise flow w′(y) of the
STG perturbation (figure 13d ). Due to the sinusoidal x-variation of the perturbation
(13), ω′

x is characterized by overlapping cells with x-alternating sign, with maximum
amplitude in B–B but identically vanishing ω′

x in A–A (figure 14a). In terms of
perturbation velocity, STG initially consists of the u′

s and u′
n distributions shown in

figures 15(a,b), with maximum amplitude in B–B and a sinusoidal x-variation. The
components u′

s and u′
n are obtained via projection of the STG w′-perturbation onto

the n- and s-directions, as illustrated in figure 13(a). Note that the u′
s component –

shown below to be critical for ω′
x generation – is maximum in the streak crest (C)

and trough (T) regions, where the STG perturbation w′ is aligned with streak vortex
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lines (i.e. with the s-coordinate; figure 15a). In contrast, the u′
n component (velocity

perturbation normal to streak vortex lines) is localized to the streak flank (F) regions
(figure 15b). As will be shown in § 4.3, u′

n is critical for production of perturbation
kinetic energy.

Early-time STG evolution. Immediately after t0, ω′
x is rapidly generated in A–A,

producing by t1 (i.e. t+ = 20) a flat, z-localized elliptical patch of +ω′
x in the streak

trough region (T in figure 13b). The essential mechanism of STG, responsible for
this early-time ω′

x growth, is reflected by the sole ω′
x generation term Ω∂u′

s/∂x in
(14). To see this, first note that u′

s is largest in magnitude in plane B–B; due to the
sinusoidal x-variation of STG, ∂u′

s/∂x is thus largest in magnitude in plane A–A.
Secondly, recall that u′

s and hence ∂u′
s/∂x are maximum in the streak trough and

crest regions (figure 15a). Further, the Ω∂u′
s/∂x generation term is selectively larger

in the streak trough, where the streak shear |Ω = |dU/dn| is maximum (being much
weaker in the crest). Collectively, the action of the (base-flow) streak shear Ω on the
perturbation ∂u′

s/∂x leads to significant ω′
x generation (via the term Ω∂u′

s/∂x in (14)),
in the form of a flat, z-localized patch of +ω′

x in the streak trough region in plane
A–A (figure 13b). Note that the −ω′

x regions in figure 13(b) (underneath +ω′
x, closer

to the wall) are a kinematic consequence of the wall no-slip condition, due to the
presence of u′

s generated near the wall.
‘Shearing’ generation of vorticity. The physical mechanism by which ∂u′

s/∂x gener-
ates ω′

x within a local shear (i.e. with mean vorticity Ω) is illustrated in figure 16.
The regions of u′

s of the STG perturbation (13) are represented in the top panel,
which alternate in sign in x accordingly. Due to the base flow shear dU/dn, the
initially rectangular u′

s regions are shear-deformed into a parallelogram-shape, with
+u′

s advected over the top of −u′
s (at line A–A in figure 16). Consequently, a spanwise

shear layer u′
s(n) with streamwise vorticity +ω′

x is generated (bottom-right panel)
in the region where ∂u′

s/∂x is negative. By symmetry, −ω′
x is generated at a half-x-

wavelength away, where ∂u′
s/∂x is positive. Note that the streak-vortex-line coordinate

system permits this simplified interpretation of perturbation vorticity generation, dis-
tinct both in functional form and physical interpretation from the typical concept of
vorticity tilting (as well as its more rigorous analytical representation; Panton 2001).

Late-time STG evolution. Subsequent to early-time STG growth, +ω′
x is similarly

generated in A–A along the entire streak periphery, albeit more slowly in regions of
lesser shear (i.e. the streak crest C and flanks F), eventually resulting in a z-continuous,
lifted +ω′

x sheet by t2 (figure 13c). Note the unexpected result that the peak ω′
x at the

crest is even higher than at the trough (region of highest shear), presumably because
of more rapid cross-diffusion of overlapping, opposite-signed ω′

x in the trough region
(due to closer proximity to the wall). In B–B, the ω′

x evolution is dominated by
simple x-advection via the U∂ω′

x/∂x term in (14a). In particular, +ω′
x generated near

A–A is advected overhead of −ω′
x generated a half x-wavelength away, resulting in

z-elongated sheets of ‘lifted’ ω′
x (figure 13f ), with the x-elongated, opposite-signed ω′

x

sheets overlapping in y in B–B (figure 14c).
In this interpretation of ω′

x generation, note that growth rate of ω′
x directly depends

on the magnitude of ∂u′
s/∂x. For STG of normal-mode-stable streaks, u′

s(x) is initially
imposed, which causes early-time ω′

x generation before viscous decay. That is, the
creation of x-overlapping u′

s layers of opposite signs by the base flow shear (figure 16)
eventually results in accelerated viscous decay of u′

s and hence of ∂u′
s/∂x. Thus,

after the initial transient growth, ω′
x generation via the continually decaying ∂u′

s/∂x
is eventually unable to overcome the viscous cross-annihilation of opposite-signed,
overlapping ω′

x sheets (e.g. figure 14c), resulting in ω′
x decay at late times. The
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corresponding energy-based analysis of STG linear saturation appears in § 4.3. Note
the distinction with normal modes for unstable streaks, where a coupling of ω′

x and ω′
n

leads to sustained growth of ∂u′
s/∂x and hence of ω′

x, resulting in instability (explained
in § 4.4).

Normal mode lock-on. The late-time ω′
x distribution also corresponds to the least-

stable normal mode, due to the inherent lock-on of arbitrary disturbances to the
corresponding normal mode. That is, for an arbitrary initial disturbance (including
perturbations susceptible to transient growth) consisting of a linear combination of
normal modes, the least-stable normal mode will either grow fastest or decay slowest,
and hence will emerge as the dominant perturbation as t → ∞. STG of linearly stable
streaks is necessarily temporary (as implied by ‘transient’), as the STG perturbation
must eventually evolve into the least-stable normal mode (with the same underlying
dynamics of ω′

x) at late times. Note that in contrast to normal modes, whose spatial
distribution is fixed (with only time-varying amplitude), the perturbation vorticity
distribution evolves continuously during STG. Hence, the fundamental distinction
between STG and (stable) normal modes is illustrated by the qualitatively different
early-time (t1) and late-time (t2) ω′

x distributions in figures 13 and 14. Consider
figures 13(b) and 13(c) representing STG and the stable normal mode: STG produces
more z-localized and flattened ω′

x patches in the streak trough, while the normal
mode produces a z-continuous, lifted ω′

x sheet. In the (x, y) plane, STG generates
x-compact ω′

x cells (figure 14b), compared to x-elongated ω′
x layers for the normal

mode (figure 14c).

4.3. STG: energy production mechanism

Having described the underlying dynamics of ω′
x generation during STG, we now

consider the corresponding mechanism of energy growth. We begin with the customary
evolution equation for the perturbation kinetic energy E, simplified for (x, z)-periodic
disturbances ū′ of the base flow U(y, z) and a base flow vortex-line coordinate system
(defined above):

dE

dt
=

∫

V

−

(

u′
xu

′
nhn

dU

dn

)

dV

︸ ︷︷ ︸

P

−
1

Re

∫

V

(∇u
′
· ∇u

′) dV

︸ ︷︷ ︸

ε

; E ≡

∫

V

1

2
(u′

· u
′) dV . (16)

In the following discussion, the energy production P and dissipation ε are normalized
by the kinetic energy E. The energy growth rate (1/E)dE/dt (= 2σr for a normal
mode) is the difference between P (generally positive) and ε (strictly positive). Unlike
(linear) normal modes, for which P and ε are constant in time, STG is characterized
by temporal variation of both P and ε. Since the physical-space distribution of non-
normal perturbations evolves temporally (as explained above), the ‘efficiency’ P/ε of
a given perturbation in generating energy growth (i.e. P/ε > 1) generally varies in
time during transient growth.

As an illustrative example, we consider STG for normal-mode-stable streaks with
θ20 = 40◦, for which the evolutions of energy production P and dissipation ε are
shown in figure 17. Note that there is no production P at t0, since the initial STG
perturbation (13) contains no u′

x, resulting in P = 0 from (16). Immediately thereafter,
P sharply increases and significantly surpasses the perturbation’s ε, resulting in rapid
transient growth of E for t+ < 30 (figure 17). Subsequently, a rapid decrease in P
coupled with a gradual increase in ε results in energy saturation at t+ ∼ 50 (when
P/ε ∼ 1) and decay thereafter. Note that both P and ε approach time-asymptotic
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Figure 17. Temporal evolution of perturbation kinetic energy E, production P , dissipation ε, and
the ‘perturbation efficiency’ P/ε during STG, for normal-mode-stable streaks with θ20 = 40◦. Note
that both P and ε are normalized by the instantaneous value of E.
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Figure 18. Schematic of STG energy growth mechanism, illustrating streak z-shifting mechanism
of u′

x generation, with positive (solid) and negative (dashed) u′
x values shown in relation to the

sinuously deforming streak.

(constant) values (figure 17), reflecting the late-time ‘lock-on’ of the perturbation to
the corresponding least-stable normal mode, with P/ε < 1 indicating its stability.

Energy production mechanism. The sharp increase in energy production P charac-
teristic of STG (figure 17) is driven solely by the Reynolds stress −u′

xu
′
n in (16),

which transfers energy from the streak base flow U(n) to the perturbation. As a
visual interpretation of this production mechanism, figure 18 shows the STG u′

n(x)
perturbation of the streak, with the maximum dU/dn occurring on either streak flank
F . Due to the advection of the base flow vorticity dU/dn by the u′

n(x) perturbation,
rapid growth of u′

x occurs on the streak flanks, given by ∂u′
x/∂t ∼ −hnu

′
ndU/dn. To

understand this u′
x growth, consider a point D in plane B–B where the STG-induced

z-shifting of the streak is maximum. The streak movement in z brings in high-speed
fluid to D, thus increasing u′

x there. Hence, the production P in (16) is maximum
within the u′

x cells (e.g. within region D). This constitutes the essential physical-space
energy growth mechanism of STG. Consequently, during early-time evolution (i.e.
between t0 and t1) in which strong streak-flank u′

n persists (figure 13g,h), large P and
hence rapid growth of E occur.

STG linear saturation. Having demonstrated a rather simple mechanism of energy
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production during STG, the question arises: why does growth eventually cease? For
this, we return to the curved ω′

x sheets generated at late times by the ‘shearing’
mechanism of vorticity generation, described in § 4.2. Focusing on figure 13 at late
times (t2), the induced velocity of the curved ω′

x sheet (figure 13f ) at the streak crest
is predominantly along the streak-flank vortex line (i.e. dominated by u′

s; figure 13i ).
This late-time generation of curved ω′

x sheets thus decreases u′
n, the component normal

to the vortex lines. Hence follows a decline of P below ε, resulting in the saturation
and decay of E. Note that perturbation dissipation ε is dominated by the (∂u′

x/∂z)
2

contribution, arising from the opposite-signed u′
x cells across the streak (figure 18).

Owing to this saturation mechanism inherent to STG, the (linear) saturation level
depends on the initial perturbation amplitude, which has implications for the onset
of nonlinearity (see § 5.1).

4.4. Normal mode instability mechanism

Corrugated mixing layer. In order to clearly distinguish the unique characteristics of
STG, we now describe the analogous growth mechanism for unstable normal modes.
Owing to the close correspondence of sinuous streak and corrugated shear-layer
instability modes (figure 10), we analyse here the more tractable former case to reveal
the underlying streak instability mechanism. The corrugated mixing-layer base flow
(12) is particularly useful in that it permits analytical representation of the base-flow
vortex-line coordinate transformation (x, y, z) → (x, n, s), defined (in closed form) as

n = y + A cos(βz),

s = (2/β) tan−1[tan(βz/2)eAβ
2y], 0 6 βz 6 π,

s = (2/β) tan−1[tan(βz/2)eAβ
2y] + 2π/β, π < βz 6 2π,







(17)

where the functional form of the s definition is chosen to ensure its boundedness and
continuity across βz = nπ. Furthermore, to permit direct comparison with oblique
modes of a planar mixing layer, the coordinate transformation is defined so that (n, s)
reduces to (y, z) as the corrugation amplitude A → 0. It is easily verified that, as
A → 0, the governing equations (14) reduce to those for oblique modes of a planar
mixing layer, and the terms underlined with braces in (14) vanish identically. In the
light of the strong resemblance of the corrugated and planar mixing-layer modes
(figure 10), these underlined terms, representing the effects of the base-flow curvature,
are thus non-essential to the instability mechanism (thus not considered further). To
further simplify the analysis, we focus on the perturbation vorticity evolution in the
centreplane n = 0; note that simple x-advection of vorticity (e.g. the U∂ω′

x/∂x term
in (14a)) vanishes identically in this plane, on which U = 0.

ω′
n generation. The coordinate transformation and simplifications developed here

reveal an easily tractable physical mechanism of instability, driven predominantly by
a coupling between vorticity perturbations ω′

x and ω′
n, each augmenting the other

(hence instability). Focusing first on ω′
n generation, the (n, s) distribution of the sole

generation (tilting) term hsΩ∂u′
n/∂s (right-hand side of (14b); figure 19a) directly

corresponds to the ω′
n distribution at the same x (figure 10b), hence indicating that

ω′
n generation via tilting is dominant (i.e. overshadowing advection terms on the left-

hand side of (14b)). The physical mechanism of the ω′
n generation term hsΩu′

n/∂s is
illustrated in figure 20(a) via ω′

x-contours at x0 and xπ (i.e. a half-wavelength apart in
x), with corresponding u′

n profiles at n = 0. Figure 20(b) shows the perturbation effect
of ω′

x on initially spanwise-aligned streak vortex lines; the dashed lines pass through
the points of maximum |ω′

x| generation: P (positive ω′
x) and N (negative ω′

x). As
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Figure 19. Dominent perturbation vorticity production terms for instability of a corrugated mixing
layer: (a) ω′

n production term hsΩ∂u′
n/∂s and (b) ω′

x production term Ω∂u′
s/∂x. Positive and negative

magnitudes are denoted by solid and dotted contours respectively, and the bold line represents the
U = 0 contour.

(a) (b)

z

x

z
0

z
π

z
2π

x
0

x
πω′

x

u
n
′ x

z
0

z
π

z
2π

x
0

x
π

N

Py

z

Figure 20. Illustration of ω′
n production mechanism in (a) perspective view and (b) top view, for

corrugated mixing-layer instability. In (a), profiles of u′
n are overlaid with contours of ω′

x at two
x values half a wavelength apart. Perturbed vortex lines (initially aligned with z in this view) are
shown in (b) and the dashed lines in (b) correspond to those in (a). P and N denote points of
maxium positive and negetive ω′

x generation.

shown, positive and negative u′
n are induced predominantly by the counter-rotating

ω′
x regions embedded within the mixing layer with vorticity Ω. That is, positive and

negative u′
n are induced on the left and right sides of the positive ω′

x regions (due
to their finite s-extent); vice versa for negative ω′

x. Thus, induction of the positive
and negative ω′

x regions reinforce one another, resulting in jet-like u′
n ejections out of

the mixing layer, with maximum strength between adjacent ω′
x layers (i.e. at zπ/2 and

z3π/2). Consequently, the base-flow vorticity Ω (thick vortex lines in figure 20a) is tilted
by the s-varying u′

n to generate ω′
n at locations of non-zero ∂u′

n/∂s. Note that maxima
of |∂u′

n/∂s| and hence |ω′
n| correspond spatially with the ω′

x regions (figure 20), due
to this dominant role of ω′

x induction in the ω′
n generation mechanism.

ω′
x generation. In turn, we find that ω′

x generation is dominated by the x-varying
perturbation velocity u′

s induced by the vorticity perturbation ω′
n. With reference to

the evolution equation (14a), ω′
x evolution is dominated by the ‘shearing’ generation

term Ω∂u′
s/∂x (see physical explanation in § 4.3), the dominance inferred by the close

correspondence of the spatial distribution (figure 19b) with that of ω′
x (figure 10b). As

shown by the normal-mode distributions of u′
s (vectors) and ω′

n (contours) overlaid on
the U = 0 surface in figure 21, x-varying u′

s is a direct consequence of opposite-signed
cells of ω′

n lying within the shear layer. In particular, positive and negative u′
s are

induced adjacently upstream and downstream of the positive ω′
n cells; and vice versa

for negative ω′
n. With reference to figure 21, this ω′

x generation effect is maximum
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Figure 21. Illustration of x-varying u′
s (vectors) induced by ω′

n (contours) for corrugated mixing-layer
instability, responsible for ω′

x production (U = 0 surface grey-shaded). Vortex lines through the ω′
n

cells are shown at x0 and xπ and A denotes regions of maximum ω′
s stretching.

within the ω′
n cells; note that ω′

n, in turn, generates the x-varying u′
s required for ω′

x

production. This closes the coupling between ω′
x and ω′

n.
ω′

s generation. In this vortex-dynamics-based physical explanation, tangential vor-
ticity ω′

s is seen to play a more indirect role in the sinuous instability mechanism. As
illustrated in figure 10(b), ω′

s appears as sheets of vorticity which alternate in sign
across each flank of the corrugated shear layer. Hence, the ω′

s distribution simply
causes shifting of the streak vortex lines normal to itself at the flanks; e.g. in fig-
ure 10(b), both streak flanks are shifted leftward. The relatively large cross-flank peaks
of ω′

s in figure 10(b) are thus a reflection of the large Ω gradient existing on the streak
flank. With reference to figure 20 (at the same location x0), this shear layer shifting is
seen to be a direct consequence of the u′

n induced by vorticity perturbations ω′
x (e.g.

compare base flow and perturbed vortex lines). This mechanism of ω′
s generation via

n-displacement (by perturbation velocity u′
n) of base-flow vorticity is captured by the

vorticity advection term hnu
′
n∂Ω/∂n (left-hand side of (14c)). Additional ω′

s generation
occurs by the stretching term hsΩ∂u′

s/∂s (right-hand side of (14c)), where positive
∂u′

s/∂s occurs on the streak flanks (regions A in figure 21). Thus, simultaneous growth
of ω′

s accompanies instability, but is predominantly a passive consequence of local
advection by ω′

x- and ω′
n-induced velocities. This growth of ω′

s therefore does not
directly feed back onto the coupled ω′

x- and ω′
n-generation mechanism.

In summary, tractable physical mechanisms underlying both normal-mode streak
instability and STG are revealed through analysis of perturbation vorticity evolution
in a (curvilinear) streak vortex line coordinate system.

Unstable normal modes vs. STG. For normal modes of stronger unstable streaks (i.e.
θ20 > 50◦), an inherent coupling exists between ω′

x and ω′
n (hence instability), in that

(i) s-varying u′
n induced by ω′

x generates ω′
n, and in turn (ii) x-varying u′

s induced by
ω′

n generates ω′
x via ‘shearing’ vorticity generation. This coupling is consistent with the

closely overlapping spatial distributions of ω′
x, ω

′
n (figure 10b), and the corresponding
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production terms (figure 19). For STG of weaker stable streaks (i.e. θ20 < 50◦), the
normal-mode coupling of ω′

x and ω′
n is insufficiently strong to overcome viscous

self-annihilation. The STG disturbance compensates for the lack of ω′
n growth on

the streak crest and trough by directly feeding u′
s(x) into the shearing mechanism (ii)

of ω′
x generation. On the streak flanks, the STG disturbance is composed of u′

n(x),
which generates rapid perturbation energy growth via the streak-shifting mechanism
reflected in (16). Subsequently, the streak U(n) shear creates overlapping, lifted sheets
of ω′

x, whose curvature strengthens u′
s(x) on the streak flank at the expense of u′

n(x),
hence halting the STG energy growth mechanism at later times.

Unstable vs. stable normal modes. The ω′
x distributions of unstable and stable normal

modes (the latter captured by the late-time evolution described in §§ 4.2 and 4.3)
contain some subtle, yet dynamically significant, qualitative differences. For unstable
streaks, the coupling of ω′

x and ω′
n required for sustained instability growth is localized

to the streak crest and trough, resulting in elliptical ω′
x regions here (figure 9a). The

opposite sign and y-displacement of ω′
x regions induce significant u′

n (primarily w′;
shaded region in figure 9a) and hence energy production. In contrast, for stable
streaks, this ω′

x–ω
′
n coupling is insufficient to sustain perturbation growth, resulting

in: (i) x-overlapping, lifted ω′
x sheets with minimal concentration at the streak crest

and trough (figure 13c, f ), and (ii) predominant induction of u′
s (figure 13i ), rather

than the u′
n required for production.

5. Nonlinear streak transient growth and vortex generation

Up to this point, we have focused on the linear growth of three-dimensional
perturbations of lifted streaks, having identified both linear instability of sufficiently
strong streaks and a prevalent transient growth mechanism that destabilizes the more
numerous normal-mode-stable streaks. We now demonstrate via DNS (including all
nonlinear terms) that initially linear perturbation growth due to STG can trigger
strong nonlinear effects, even for normal-mode-stable streaks. Significantly, from an
initially quiescent streak region containing no initial vortices, nonlinear STG rapidly
generates the well-documented structures near the wall: streamwise vortices and
internal shear layers, including associated turbulence and Reynolds stress events.
(Note that while the ‘shearing’ generation mechanism is dominant in linear STG, it
is not ultimately responsible for the (nonlinear) vortex formation.)

5.1. Nonlinear growth

In the following, we isolate STG by initializing linearly stable streaks of the form
(1), with a streak lift angle θ20 = 45◦ (stability shown in figure 4b). Hence, any
perturbation growth is due to STG, as all normal modes are (linearly) stable in this
case. Note that analogous results for linearly unstable streaks (with θ20 = 56◦) appear
in SH, where both the transient growth and normal-mode instability mechanisms
contribute to perturbation growth.

Owing to the temporal nature of linear STG – rapid early-time energy growth
followed by slower decay – the STG mechanism will not generate significant nonlinear
effects if the initial perturbation level is small (dotted curve in figure 22, where
the (linear) amplitude is magnified 106 times). Recall (§ 4.3) that the inherent short-
time duration of STG is responsible for its linear saturation; thus the saturation
level depends on the initial perturbation amplitude. Hence, finite-amplitude initial
disturbances are necessary for the tenfold amplification of STG to be large enough
to trigger the nonlinear effects by which streamwise vortices are formed. For the
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Figure 22. Growth of STG perturbation energy into the nonlinear regime, for linearly stable
streaks (all with θ20 = 45◦). The dotted line shows linear STG (magnified 106 times). Note that the
perturbation amplitude w+

rms = 1.1 (solid) corresponds to the disturbance level in fully devoloped
turbulence.

STG perturbation (13), initialized over the amplitude range w+
rms = 0.5–1.1, significant

E3D growth occurs well into the nonlinear regime (figure 22). In contrast, similar
generation of nonlinearity by normal modes is unlikely, due to the strong limitation
of normal-mode growth (only twofold amplification) because of the streaks viscous
self-annihilation. The level at which nonlinearity can be said to have set in cannot
be defined exactly, but is evident from the nature of disturbance evolution, such as
the loss of z-symmetry in the perturbation ωx distribution (exhibited in figure 13b),
described in § 5.2 below. In figure 22, this onset of nonlinearity corresponds to an E3D

value of about 0.0003, as evident from the large-time trend of E3D(t). Significantly,
nonlinear STG generates indefinitely sustained turbulence (i.e. nonlinear-amplitude
E3D in figure 22), eventually leading to the minimal channel regeneration cycle (with
associated E3D oscillations). Note that sustained turbulence is generated from an even
smaller disturbance amplitude if the streaks are stronger (i.e. normal-mode-unstable),
e.g. w+

rms = 0.25 for streaks with θ20 = 56◦ (see SH).
The STG-based idealized flow analysed here – a (stable) straight streak U(y, z)

with a superimposed sinuous w(x) disturbance – is well-representative of uw Reynolds
stress behaviour in fully developed turbulence (not to be confused with the extensively
studied uv Reynolds stresses). In particular, observations of uw Reynolds stress events
of quadrant Q2uw(ut < 0, wt > 0) and quadrant Q3uw(ut < 0, wt < 0) show numerous
well-defined x-alternating patterns (figure 23a; same instantaneous realization as in
figure 1). The correspondence of these Q2uw and Q3uw events in figure 23(a) with
the dynamically significant near-wall CS can be established by comparison with
figure 1. The numerous patterns of alternating Q2uw and Q3uw events in figure 23(a)
agree well with the STG perturbation shown by the insert (figure 23b), both in
(x, z) scale and uw+ amplitude (compare uw+ contour levels in figures 23a and 23b).
This close agreement indicates that STG-type disturbances – capable of producing
order-of-magnitude growth of E3D and ωx – are prevalent in near-wall turbulence.

The origin of these organized uw patterns can be traced to the induced velocity
of: (i) newly created streamwise vortices embedded in the buffer layer, (ii) remnant
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Figure 23. uw Reynolds stress events Q2uw (dotted contours) and Q3uw (solid contours) in (a) fully
developed near-wall turbulence, and (b) idealized flow analysed here, consisting of a straight streak
U(y, z) and the STG w′(x) disturbance.

streamwise vortices in the buffer region, following near-wall annihilation (via cross-
diffusion) of ωx of neighbouring opposite-signed vortices, and (iii) asymmetric, hook-
shaped hairpin vortices in the log region. Note that the hairpin legs analyzed in
Zhou et al. (1999) commonly exhibit a large inclination from the wall, which in turn
can induce a significant x-varying w underneath the hairpin leg (in the buffer layer).
Each of these induced flows may be a source of the STG w(x) perturbation and
subsequent vortex formation studied herein. This scenario serves as an explanation
for the creation of new ‘quasi-streamwise’ vortices underneath and beside pre-existing
inclined vortices, observed by Brooke & Hanratty (1991) and Zhou et al. (1999).

5.2. Streamwise vortex generation

5.2.1. DNS visualization

The most significant aspect of the STG mechanism outlined here is the formation
of new streamwise vortices, once STG grows to nonlinear amplitudes. The streamwise
vortex generation process is clearly illustrated by the ‘clean’ ωx evolution in figure 24,
free from extraneous perturbations or incoherent turbulence. The initial STG distur-
bance is characterized by relatively weak layers of ωx (figure 24a), the same as for
linear STG (figure 13d ). After a short period of growth (e.g. t+ ∼ 17, figure 24b), the
ωx perturbation attains a similar physical-space structure as the linear STG pertur-
bation (figure 13b), indicating the predominance of the early-time (linear) ‘shearing’
mechanism of ωx generation by STG (described in § 4.2). Subsequently, as nonlinear
effects (explained in § 5.2.2) become prominent, concentration of the +ωx layer occurs
on one streak flank, as formation of a new streamwise vortex commences (SP in
figure 24c). The loss of z-reflectional symmetry in figure 24(c), initially present (at low
perturbation amplitudes) due to symmetries in the linearized perturbation equations
(see § 3.1), signals the onset of significant nonlinearity. Note that the ωx distribution
at a half-wavelength in x away (i.e. structure SN) is obtained by z reflection and sign
inversion. As ωx amplification continues, new collapsed streamwise vortices (i.e. with
compact, near-circular cross-section) emerge on a timescale of t+ ∼ 50 (figure 24d ).
This generation of new streamwise vortices from near-wall ωx layers is strikingly simi-
lar to that noted in minimal channel flow (see SH), and consistent with observations in
other studies. However, contrary to prior speculations, the ωx layers do not in reality
roll up due to two-dimensional self-advection (discussed in § 5.2.2). Instead, the vor-
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Figure 24. Streamwise vortex formation due to nonlinear transient growth, illustrated by
cross-stream distributions of ωx at (a) t+ = 0, (b) t+ = 17, (c) t+ = 35, (d ) t+ = 45. The
(y, z)-planes are tracked downstream with the x-phase of the STG perturbation, with a ‘phase
speed’ of approximately 0.6Uc.
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Figure 25. Streamwise vortices generated by STG of linearly stable streaks in (a) top view, (b)
side view at t+ = 45. Isosurfaces of ωx at levels +0.6ωx|max and −0.6ωx|max are (dark) shaded and
hatched, respectively; contours of u at y+ = 20 are shaded to indicate the low-speed streak.

tex generation mechanism is inherently three-dimensional, dominated by intense ωx

stretching. Note that past the initial (transient) vortex formation, streamwise vortices
and hence turbulence are sustained indefinitely as the minimal channel regeneration
cycle commences (figure 22), indicating the robustness of this STG mechanism.

The three-dimensional geometry of the new STG-generated vortices (i.e. SP and SN,
with positive and negative ωx, respectively) is characterized by x-overlapping of tilted,
opposite-signed streamwise vortices on either side of a low-speed streak (figure 25).
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Figure 26. Vortex line geometry during transient growth-based vortex generation: (a) t+ = 0; (b)
t+ = 17; (c, d ) t+ = 45. THe vortex lines in (a–c) are begun on an x-distributed rake within
the streak trough region (i.e. z = 0); the rake in (d ) consists of nine lines (in a square) passing
through the core of the x-midplane of vortices SP and SN (shown as grey-shaded ωx isosurface
levels +0.6ωx|max and −0.6ωx|max in (c) and (d )).

Note that the spatial relation of SP and SN is maintained upon evolution except
for increasing overlap, with the vortex lengthening eventually arrested by viscous
decay. Most significantly, this vortex geometry is strikingly similar to that of three-
dimensional coherent structures (CS) educed (from more than 100 vortex realizations)
in fully developed near-wall turbulence (Jeong et al. 1997). Inherent non-uniformity
of the base-flow streaks causes variations in vortices from one realization to another,
and the finite-amplitude incoherent turbulence makes the instantaneous structures
even more variant (see figure 1). Thus, ensemble averaging of a large number of
base flow/perturbation combinations (i.e. CS eduction) is required to reveal the
dominant vortex generation mechanism. The close correspondence of figure 25 with
the ensemble-averaged CS (see also SH) serves as strong evidence that this STG-based
vortex formation process is a dominant mechanism in near-wall turbulence.

Visualization of the corresponding vortex line geometry during STG-induced
streamwise vortex formation is presented in figure 26, which displays a rake of
vortex lines near the emerging SP and SN vortices. Note that the frames (a),(b),(c)
in figure 26 correspond to frames (a),(b),(d ) in figure 24; the latter are at the x-plane
S–S identified in figure 26(c). The initially x-aligned hairpin-shaped vortex lines (fig-
ure 26a) reflect the essentially straight and uniform initial streak, representative of
the quiescent phase of minimal channel flow (Jimenez & Moin 1991). Due to the STG
w(x) perturbation, the streak vortex lines exhibit a growing sinuous z-displacement
(see § 4.3 and figure 18), which reaches a significant (nonlinear) amplitude (figure 26b).
Subsequently, vortex lines coalesce due to vortex stretching, resulting in new collapsed
streamwise vortices SP and SN (figure 26c). Note that core dynamics associated with
these finite-length streamwise vortices are countered by strong viscous effects near
the wall. In figure 26(d ), we show vortex lines initiated as a rake within the cores of
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SP and SN; clearly, these lines cross the corresponding ωx surfaces, illustrating the
limitation of vortex line tracing in vortex identification, particularly near the wall.

These results clearly have some important conceptual implications for vortex regen-
eration. Foremost, we have demonstrated that the presence of a strong existing vortex
is unnecessary for new vortex generation, contrary to prior parent–offspring scenarios
(reviewed in § 1). Nevertheless, w(x) perturbations of finite, yet moderate amplitude
(e.g. w+

rms ∼ 0.5) are required for vortex generation from the more numerous stable
streaks considered here. Thus, pre-existing (parent) vortices do play an indirect role in
generating the (relatively weak) spanwise velocity disturbance environment required
for vortex generation. Note that since the STG mechanism delineated here causes
simultaneous growth of both +ωx (SP) and −ωx (SN) vortices at different x, the
evolution of SP and SN in fixed (y, z)-planes might superficially give the impression
that one vortex is generating the other. In reality, both vortices originate and mature
simultaneously from initially vortex-free streaks, as seen in figures 24–26.

5.2.2. Evolutionary vortex dynamics

Since the newly generated vortices SP and SN are predominantly streamwise
(figure 25), further insight into the dynamics of near-wall vortex formation can be
obtained by considering the inviscid evolution equation for ωx:

∂ωx

∂t
= −u

∂ωx

∂x
− v

∂ωx

∂y
− w

∂ωx

∂z
︸ ︷︷ ︸

Advection

+ωx

∂u

∂x
︸ ︷︷ ︸

Stretching

+
∂v

∂x

∂u

∂z
−

∂w

∂x

∂u

∂y
︸ ︷︷ ︸

Tilting

. (18)

Note that the last two terms in (18) together represent the vortex line ‘tilting’ terms,
rewritten to simplify their visual interpretation. Individually, each of the two terms
constituting tilting indeed represents (instantaneously) the ‘shearing’ mechanism of ωx

generation explained in § 4.2 and figure 16. In order to evaluate the role of the different
terms in (18) in SP formation, we plot the distributions of each term in figure 27 at the
instant of figure 24(c) (i.e. at t+ = 35). By this time, the STG perturbation amplitude is
sufficiently large to trigger nonlinear effects, leading to the onset of vortex generation.
Note that the advection and stretching effects are necessarily nonlinear, as these terms
do not appear in the linearized evolution equations for STG. In figure 27, the bold
contour of +ωx in (a)–(d ) provides common reference, denoting the emerging SP
vortex boundary (same as in figure 24c). Generation terms which act to strengthen
+ωx and hence SP are indicated by positive magnitudes, whereas negative values
indicate local weakening of SP.

Vorticity tilting. We find that significant +ωx intensification occurs due to the
generation term (−∂w/∂x)(∂u/∂y) (figure 27c), which dominates the (∂v/∂x)(∂u/∂z)
term (figure 27b) near the wall. Note that in linear evolution, the −(∂w/∂x)(∂u/∂y)
term corresponds to the Ω∂u′

s/∂x generation term, responsible for creation of a ω′
x

sheet (and x-circulation generation) in the streak trough region (figure 13b; see § 4.2).
In the nonlinear regime of STG, the −(∂w/∂x)(∂u/∂y) term is largest in magnitude
over all other terms, consistent with fully developed turbulence (Brooke & Hanratty
1993). However, this term actually contributes to the thin tail (C in figure 27c) of the
near-wall ωx layer, not to the main vortex (SP). Hence, the −(∂w/∂x)(∂u/∂y) term
is not responsible for vortex formation, as it contributes insignificant +ωx within
SP.

Two-dimensional advection. Prior studies (e.g. Sendstad & Moin 1992; Brooke &
Hanratty 1993) have proposed that near-wall ωx sheets (like those generated by STG)
‘roll-up’ due to their self-advection, an effect represented by the ωx advection terms
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Figure 27. Distributions of terms of the ωx evolution equation during STG-based vortex generation
at t+ = 35: (a) two-dimensional ωx advection (−v∂ωx/∂y − w∂ωx/∂z), (b) the (∂v/∂x)(∂u/∂z)
generation term, (c) the −(∂w/∂x)(∂u/∂y) generation term, and (d ) direct stretching (ωx∂u/∂x). The
bold line in each panel identifies the +ωx layer in figure 24(c).
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Figure 28. Schematic of two-dimensional rollup mechanisms of a near-wall +ωx layer: (a) rollup
on the layer’s left side near a free-slip wall due to image vorticity and ‘head-tail’ dipole formation
by mutual induction, and (b) rollup on the layer’s right side near a no-slip due to ejection by an
opposite-signed vortex (−ωx contours dashed) overhead.

in (18). In purely two-dimensional flow, near-wall vorticity sheets can roll up via
two distinct mechanisms, illustrated in figure 28: (i) on the left side of a +ωx layer
above a free-slip wall, with dipole-like ‘head–tail’ formation due to the wall image
vorticity (see Jimenez & Orlandi 1993), as illustrated in the sequence in figure 28(a),
or (ii) on the right side of a +ωx layer attached to a no-slip wall, due to lifting
of the wall-generated ωx by a parent vortex, as in vortex wall-rebound (see Orlandi
1990), as shown by the sequence in figure 28(b). Note that for the case of a near-
wall patch with opposite vorticity (−ωx, each mechanism will lead to rollup on the
opposite side of the layer from that shown in figure 28; i.e. roll up on the right
side in figure 28(a) and left side in figure 28(b). For the vortex formation studied
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Figure 29. Generation of positive (solid) and negative (dotted) ∂u/∂x by STG-induced waviness
of a streak (shaded) at y+ = 20. The cross-section through the positive (SP) and negative (SN)
streamwise vortices are denoted by solid bold contours of |ωx|. The hatched regions denote the
largest values of vortex stretching by +∂u/∂x, while lines SL1 and SL2 identify internal shear layers
containing −∂u/∂x.

here (as well as vortex formation typically observed in near-wall turbulence), SP
forms on the left side of the +ωx layer (figure 24c), hence indicating that the vortex
rebound mechanism (ii) of ωx sheet rollup plays no significant role. Even though
mechanism (i) would also lead to vortex formation on the left side of the +ωx layer
(figure 28a), analysis of the ωx advection terms during SP formation indicates that this
image vorticity rollup mechanism is insignificant. In particular, ωx advection actually
opposes vortex formation, acting instead to reduce +ωx (region A in figure 27a)
where SP eventually forms. The negative amplitude of the advection term within
SP indicates that the opposite-signed SN vortex immediately above the +ωx layer
(figure 24c) acts to advect +ωx (i.e. SP) toward the right. Since SP eventually forms
on the left side of the +ωx layer (figure 24d ), a mechanism other than ωx advection
must be responsible for vortex generation. As described below, a three-dimensional
mechanism is actually responsible for vortex generation, dominating the competing
(two-dimensional) advection effects. This lack of wall-induced vortex formation serves
to explain the recent observation that elimination of the no-slip condition for w (with
a stress-free condition ∂w/∂y = 0) actually enhances the near-wall turbulence intensity
and drag (Jimenez & Pinelli 1999).

Direct stretching. In reality, SP formation is dominated by direct stretching of +ωx,
evident from nearly circular regions of +ωx∂u/∂x (D in figure 27d ) embedded within
region SP. We find that this local ωx stretching is sustained in time and is mainly
responsible for the vortex collapse, whose location coincides with the +ωx∂u/∂x peak.
The +∂u/∂x responsible for vortex collapse by stretching is a simple consequence of
low-speed streak waviness, as illustrated by ∂u/∂x contours overlaid onto the wavy
streak (figure 29). Recall that streak waviness is generated naturally by (initially
linear) transient growth of the STG perturbation, via spanwise streak displacement
by perturbation velocity normal to the streak flanks (described in § 4.3). Once this
waviness grows to a finite size, strong +∂u/∂x develops downstream of the regions
of maximum z-displacement (i.e. hatched regions in figure 29). Since a large velocity
difference exists across the streak flanks (e.g. differential U between high-speed and
low-speed fluid at a fixed y in figure 2c), a sizeable value of +∂u/∂x is quickly
generated once the streak flank is tilted in the (x, z)-plane by the growing streak
waviness (recall the rapid temporal nature of STG). Consequently, direct stretching
of positive and negative ωx occurs in these regions of +∂u/∂x, which are the eventual
locations of vortices SP and SN (bold +ωx and −ωx contours in figure 29). (Note
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Figure 30. Formation of internal shear layer SL1 (figure 29) by STG, illustrated by −ωz (solid)
contours at (a) t+ = 0, (b) t+ = 17, and (c) t+ = 52. Contours of positive (dashed) and negative
(dotted) ut overlaid in (c) illustrate the strong velocity gradient ∂u/∂x within SL1.

that positive and negative ωx generation is maximum at points P and N respectively
in figure 20b.) The initial near-wall ωx sheets quickly collapse (figure 24d ) due to this
localized stretching (figure 27d ), overcoming viscous diffusion which would otherwise
cause their annihilation. Note that these dynamics are also captured as +VISA events
(i.e. +∂u/∂x) existing within the core of the ensemble-averaged coherent structures
(Jeong et al. 1997), further indicating the dominance of this STG-based vortex
formation process.

5.3. Internal shear layer generation

Simultaneous with the generation mechanism of streamwise vortices outlined above,
nonlinear evolution of STG also produces the well-known internal shear layers of
spanwise vorticity. Internal shear layers are sharp, inclined +u/ − u interfaces in
(x, y) (e.g. with slope ∼ 30◦ from x), and hence are characterized by intense both
∂u/∂y (hence −ωz) and −∂u/∂x. Prior studies indicate that internal shear layers are
generated both by x-localized ejections (Bogard & Tiederman 1987) and by waviness
(‘asymmetry’) of elongated low-speed streaks in (y, z) (Johansson et al. 1991). Internal
shear layers are also detected well by the VITA conditional sampling technique,
originally developed to detect ‘bursts’ via strong local |∂u/∂x| events (Blackwelder &
Kaplan 1976). Here, we explain the genesis of internal shear layers, revealing close
correspondence of the STG-generated internal shear layers to both experimental
VITA detections and asymmetric, ensemble-averaged VISA events in DNS data.

During (nonlinear) STG, a pair of internal shear layers is created at locations SL1
and SL2 in figure 29, indicated by the generation of wall-detached layers of −ωz

(shown for SL1 in figure 30). In particular, the originally uniform −ωz layer of the
straight streak (figure 30a) is quickly transformed by the z-displacement of the lifted
streak by the w(x) perturbation of STG, resulting in creation of a tongue-shaped −ωz

region (figure 30b). Subsequently, this wall-detached −ωz is significantly intensified
into a thin, inclined shear layer (figure 30c), as commonly observed in (x, y) snapshots
of near-wall turbulence. Note the close resemblance of the fluctuation +ut and −ut
contours in this instantaneous flow (figure 30c) to the VISA-triggered ensemble
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Figure 31. Trace of fluctuating velocity ut through the internal shear layer in figure 30(c) at
y+ = 20, illustrating a −VISA event centred at xc, the midpoint of SL1.

average (Johansson et al. 1991), both in magnitude and contour shape (including the
sharp +u/−u interface). Furthermore, the ut trace through the internal shear layer at
y+ = 20 (figure 31), aligned with the minimum of −∂u/∂x (i.e. a −VISA event), agrees
well with experimental ensemble-averaged +VITA events. The asymmetry in x of this
trace clearly shows why +VITA (−VISA) events are more numerous for a given
variance threshold. This generic feature of internal shear layers is a straightforward
kinematic consequence of streamwise u gradients (i.e. self-steepening of −∂u/∂x by
impact of high-speed u with downstream low-speed u, and vice versa for +∂u/∂x), as
explained in Jeong et al. (1997). Finally, note that by normalizing the data in figure 31
as ut/urms , a peak amplitude near unity is obtained, consistent with amplitudes of
both (experimental) VITA and (DNS-based) VISA events.

Generation mechanism. Note that the internal shear layer formation occurs simul-
taneously with the creation of streamwise vortices SP and SN. As shown in figure 29,
the internal shear layer SL1 (the line is the projection of the tongue in figure 30c) is
generated directly across the streak (in z) from the simultaneously developing stream-
wise vortex SP. By symmetry, a second internal shear layer SL2 occurs across from
SN. Note that the initiation of internal shear layer formation commences at early
times (e.g. at t+ = 17, figure 30b), before streamwise vortex formation has occurred
(figure 24b). Thus, the vortex and shear layer pairs are generated simultaneously,
rather than sequentially, indicating that existing vortices are non-essential for internal
shear layer formation. Note that +∂u/∂x (responsible for vortex collapse) is naturally
accompanied by −∂u/∂x across a wavy streak (dotted contours in figure 29), con-
stituting the sharp +u/ − u interface (i.e. with large −∂u/∂x) embedded within the
internal shear layer (figure 30c). Hence, generation of streak waviness by nonlinear
STG is responsible for the simultaneous genesis of both streamwise vortices and
internal shear layers, processes driven by +∂u/∂x and −∂u/∂x, respectively.

Progressing further, we now explore the mechanism by which −∂u/∂x (due to
streak waviness) generates an intense, wall-detached shear layer of ∂u/∂y and −ωz

(figure 30c). As illustrated in figure 32, the internal shear layer forms on the flank
of the lifted streak, where high-speed fluid impacts the wavy low-speed streak (hence
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Figure 32. Relation of internal shear layer SL1 (figure 29) to the STG-perturbed streak. The black
region of high |ωz | marks the mid-plane of SL1, and the wavy streak is underneath the lifted
u = 0.5Uc surface (hatched). The relative locations of the streak and structures SP and SN are
added for illustrative purpose. The local stagnation flow (illustrated by arrows) near the shaded
(y, z)-plane is addressed in figure 33.
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Figure 33. Distributions of normal strains (a) ∂u/∂x, (b) ∂v/∂y, and (c) ∂w/∂z in the (y, z)
cross-section shaded in figure 32, elucidating the extensional strain in the (y, z)-plane responsible
for internal shear layer generation (positive and negative contours solid and dashed, respectively).

generating −∂u/∂x at the hatched plane). The hatched plane is drawn at the x-
location of minimum −∂u/∂x (maximum negative), and the velocity gradients in this
plane are shown in figure 33. Being associated with a stagnation-type flow in x,
−∂u/∂x (figure 33a) produces a source-type flow in the hatched plane, resulting in
large values of both +∂v/∂y (figure 33b) and +∂w/∂z (figure 33c) on the streak flank.
Consequently, any pre-existing vorticity (ωy and ωz) along the streak flank is stretched
by this extensional strain. Hence, the internal shear layers observed here are composed
of streak-flank vorticity locally displaced in z toward the (x, y)-plane of SL1 (by STG
of the streak wave), and stretched by the (kinematically required) extensional strain.
That is, where a streamwise vortex (SP or SN) consisting of predominantly ωx is
formed on one flank of a streak, an internal shear layer (predominantly ωz) forms
on the other flank of the streak. In contrast to a scenario of localized ejection, this
internal shear layer generation mechanism is inherent to a wavy streak, and does not
require advection or stretching by existing vortices.
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Figure 34. Instantaneous quadrant −uv Reynolds stress events (Q1, Q2: ejection, Q3, and Q4:
sweep) generated by STG at t+ = 45. The low-speed streak is denoted as the u = 0.5Uc contour
(bold-dashed), and the (positive) streamwise vortex SP is indicated by the +0.6ωx|max contour
(hatched).

5.4. Reynolds stress and turbulence statistics

To further quantify the role of nonlinear STG in near-wall turbulence, we also con-
sider the generation of −uv Reynolds stress events and corresponding fluctuation
amplitudes. In the context of the uv-quadrant-based conditional averaging procedure
developed by Wallace, Eckelmann & Brodkey (1972), a representative distribution of
instantaneous −uv events is shown in a (y, z) cross-section in figure 34. Near the newly
generated SP vortex (identified by shading), the distribution of quadrant Reynolds
stresses agrees well with the educed coherent structure (Jeong et al. 1997), including
the location of ejection (Q2), sweep (Q4), and counter-gradient stresses (Q1, Q3). Inter-
estingly, a region of significant counter-gradient Reynolds stress (Q1) occurs at larger
y away from the vortex. Due to the y-variation of the w perturbation of STG, low-
speed fluid is displaced in z underneath high-speed fluid overhead. In the (y, z)-plane,
this effect, along with the induction of both SP and SN, produces z-asymmetry of the
streak back (i.e. with the left side flattened). The sliding of the fluid element F from
the high-speed region up the streak back (marked by a thick dashed line in figure 34)
is associated with both +u and +v, hence Q1. DNS flow visualization reveals that this
Q1 event occurs throughout the early-stages of STG-induced vortex formation, and
thus may be useful as an indirect indicator of STG operation in snapshots of near-
wall turbulence. At later times, the Q1 magnitude decreases as the newly generated
vortex modifies (through ejection) the original streak from which it was formed.

The net (x, z)-averaged Reynolds stress at y+ = 20 indicates a rapid increase
in turbulence production due to STG (figure 35). Whereas the Reynolds stress is
initially identically zero, transient growth quickly generates (by t+ ∼ 80) mean values
approaching that in fully developed turbulence (0.65 at y+ = 20, Kim et al. 1987),
with even larger values for a perturbation amplitude of w+

rms = 0.9 (figure 35b).
Consistent with the well-known role of streamwise vortices, the growth of turbulence
production results from the v-induction of newly generated streamwise vortices,
captured statistically by vrms and ωx rms , respectively (figure 35). Note that starting
from a quiescent initial flow, the amplitudes in fully developed turbulence (v+

rms = 0.55
and ω+

x rms = 0.14 at y+ = 20) are approached to within 40% for w+
rms = 0.5 (figure 35a)

and fully attained for w+
rms = 0.9 (figure 35b). Additionally, the amplitude of v+

rms in
figure 35(b) agrees well with that observed in minimal channel flow turbulence
(Jimenez & Moin 1991). Thus, starting from a quiescent, laminar streak flow, the
STG mechanism generates the turbulence levels observed in both minimal-domain
and fully developed near-wall turbulence.
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Figure 35. Growth of (x, z)-averaged turbulence statistics at y+ = 20 due to STG: Reynolds stress
−utvt, normal velocity vrms , and streamwise vorticity ωx rms . All quantities are wall-unit normalized,
and the initial perturbation amplitude is (a) w+

rms = 0.5 and (b) w+
rms = 0.9.

6. Concluding discussion

Herein, we reveal a significant limitation of vortex (re)generation scenarios based
on normal-mode streak instability. Namely, the streak-flank normal vorticity – shown
here to critically determine the onset and growth rate of sinuous streak instability – is
annihilated by viscous self-diffusion (i.e. planar vortex reconnection). Consequently,
even strong, initially unstable streaks (shown here to constitute about 20% of buffer-
layer streaks in fully developed turbulence) are stabilized on a rapid timescale of
t+ ∼ 50, limiting normal-mode growth to only a factor of two. These results serve as
strong evidence that normal-mode streak instability does not contribute significantly
to vortex generation and turbulence production near the wall.

As an alternative, we identify here a new streak transient growth (STG) mechanism,
which generates an order-of-magnitude amplification of perturbation energy in x-
dependent modes, even for more numerous, weaker, normal-mode-stable streaks.
Compared to normal-mode instability, the STG mechanism is seen to be significantly
more energetic and to operate more frequently (involving more streak regions) in
a given flow volume. Owing to the temporal nature of transient growth for stable
streaks (more typical of fully developed turbulence), the initial disturbance amplitude
must be sufficient for significant nonlinear effects to be triggered (i.e. disturbances
eventually decay linearly otherwise). We find that w′(x) perturbations of moderately
low amplitude (e.g. w+

rms = 0.5) do in fact lead to generation of new vortices and
sustained near-wall turbulence.

Note that the STG perturbation (13) does not necessarily capture the optimal
growth, as it reflects a simple idealization of uw Reynolds stress events observed in
near-wall turbulence. Analysis of quadrant 2 and 3 uw Reynolds stress magnitudes
in fully developed turbulence – representative of the combination of w(x) and low-
speed streaks required for transient growth – indicates that virtually all regions
along streaks exhibit uw magnitudes sufficient for subsequent STG to reach nonlinear
amplitude. Note that the w(x) observed within low-speed streaks reflects the induction
of pre-existing vortices overhead, constituting the ‘parent–offspring’ component of the
STG-based vortex generation scenario. Interestingly, near-wall turbulence exhibits a
well-defined, x-alternating pattern of Q2 and Q3 uw Reynolds stresses, indicating that
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uw events (and the STG mechanism this pattern captures) are thus a critical trigger
for turbulence production.

Most importantly, transient growth into the nonlinear regime generates new col-
lapsed streamwise vortices from normal-mode-stable streaks. Unlike prior suggestions,
vortex generation does not involve streamwise vorticity generation at the wall (by
the no-slip condition) or vorticity layer rollup – both two-dimensional mechanisms.
Instead, the vortex formation is inherently three-dimensional, with direct stretching
(inherent to streak (x, z)-waviness) of near-wall ωx sheets leading to streamwise vortex
collapse. Significantly, STG produces new collapsed streamwise vortices near the wall
which closely resemble the ensemble-averaged CS (Jeong et al. 1997). The formation
mechanism of internal shear layers (and associated VISA events) is also captured,
along with quadrant Reynolds stresses and other turbulence statistics, all of which
are shown to agree well with fully developed turbulence. In summary, evidence sug-
gests the dominance of this STG-based vortex generation mechanism in near-wall
turbulence.

The rapid temporal growth accompanying (nonlinear) STG suggests reassessment
of the revised view of ‘bursting’. In particular, the modern, widely accepted explanation
of ‘bursting’ is the advection of spatially distributed streamwise vortices and related
structural features past a fixed measurement or observation location (Robinson 1991).
However, the STG-based vortex formation scenario described here does in fact reveal
burst-like growth of −uv, v, and ωx in time (in an advecting reference frame), in
the spirit of the original temporal ‘bursting’ concept (Kline et al. 1967). Note that
fixed-point measurements (including conditional sampling) would not clearly detect
such temporal evolution, due to advection of the developing flow. The rapid temporal
STG scenario we find suggest that both views – spatial advection of existing structures
and temporal growth of new structures – are relevant to ‘bursting’.

In the context of the related issue of bypass transition from the mean velocity
U(y), the present results suggest a two-step (linear) mechanism: (i) transient growth
of x-independent perturbations of U(y) to generate a finite-amplitude z-varying streak
U(y, z) via the ‘lift-up’ streak formation mechanism (i.e. prior transient growth analysis
of U(y)), followed by (ii) STG of x-dependent perturbations of the streak U(y, z) to
generate (new) streamwise vortices and hence sustained turbulence. Alternatively,
a single-step (linear) mechanism may also exist, involving a single (x, z)-dependent
perturbation which simultaneously excites mechanisms (i) and (ii) from the mean
velocity U(y). That is, a wavy streak can form in the first place (via wavy lift-up
by a sinuous perturbation) from a ((x, z)-homogeneous) laminar profile – as opposed
to the scenario of formation of an x-homogeneous streak subsequently perturbed
by a sinuous w(x) (studied here). The measure of transient growth – used in the
corresponding variational problem to quantify optimal perturbation growth – must
then be specifically chosen to capture this single-step bypass mechanism. In particular,
an appropriate perturbation measure should capture simultaneously the growth of
the streak magnitude (u′) and its sinuous spanwise displacement (w′). Otherwise,
consideration of perturbation kinetic energy E identifies x-independent perturbations
as optimal. This suggests use of a u′w′ Reynolds stress measure of transient growth,
rather than E as commonly used to date.

Our results also open many important, currently unexplored avenues for modelling
and control of near-wall turbulence. For instance, the low-speed streaks in actual
flows are certainly non-uniform, wavy, and surrounded by a sea of finite-amplitude
perturbations or incoherent turbulence, in contrast to the clean flow we have analysed.
Particularly for turbulence modelling (including near-wall modelling for LES), such
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instantaneous irregularities, including non-equilibrium outer flow conditions, require
a more statistical framework for the mechanistic descriptions here. For instance,
a promising approach is a triple decomposition of the fully turbulent flow into
(i) (local) x mean streaks U(y, z), (ii) the (evolving) streak perturbation capturing
transient growth, vortex generation and decay, and (iii) incoherent turbulence. The
fact that the ensemble-averaged (over numerous irregular structures) CS and the
STG-generated (instantaneous) vortices are very similar is encouraging, in that it
suggests the mechanism described here is the underlying one.

Additionally, the association of vortex formation with an instability is promising
from a control standpoint, noting the success of instability control in free shear flows
(e.g. see Hussain 1983). The most logical approach to CS-based drag reduction and
heat transfer suppression is to simply prevent vortex (re)generation in the first place
(in contrast to popular approaches which counteract fully developed CS). Our focus
is on large-scale control, wherein numerous streaks may be simultaneously stabilized
by a single large-scale forcing. Based on this control premise, we have developed
new techniques for drag reduction, enabling large-scale flow forcing without requiring
instantaneous flow information (Schoppa & Hussain 1998b). As proof-of-principle,
we find that an x-independent forcing, with a wavelength of 400 wall units and an
amplitude of only 6% of the centerline velocity, produces a significant sustained
drag reduction: 20% for imposed counter-rotating streamwise vortices and 50% for
colliding, z-directed wall jets. The drag reduction results from weakened longitudinal
vortices near the wall, due to control-induced ωy reduction, which in turn arrests the
streak perturbation growth responsible for vortex generation. These results suggest
promising new strategies for drag and heat transfer control, e.g. passive vortex
generators or colliding spanwise jets from x-aligned slots, involving large-scale (hence
more durable) actuation and requiring no wall sensors or control logic. For further
details of these large-scale control strategies, see Schoppa & Hussain (1997, 1998b).
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