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Coherent versus Incoherent Energy Transfer and Trapping in Photosynthetic Antenna
Complexes

Jan A. Leegwater
Department of Physics and Astronomy, Vrije UniVersiteit Amsterdam, De Boelelaan 1081,
1081 HV-NL Amsterdam, The Netherlands

ReceiVed: May 17, 1996X

In this paper we present a study of a model in which there is energy transfer as well as a special site where
an irreversible reaction takes place. This model has an arbitrary ratio of homogeneous broadening versus
site interaction energy. This allows us to study the crossover from hopping dynamics to exciton dynamics.
We show that for the survival time the hopping (Fo¨rster) approximation gives a surprisingly accurate final
result even when the energy transfer is excitonic. Fluorescence depolarization however is a sensitive probe
for the nature of the energy transfer. We study the number of coherent molecules by considering a
generalization of the inverse participation ratio. For LH1, assuming that it is a ring of 16 dimers, we estimate
that the excitation is, on the average, delocalized over two dimers. The excitation is localized by phonons.

I. Introduction

In the photosynthetic light-harvesting complex excitation
energy is transferred between antenna pigments and eventually
from antenna pigments to the photosynthetic reaction center. It
is often assumed that this energy transfer takes place through
the Förster mechanism.1 In the Förster picture at all times a
specific molecule is excited, and the excitation hops from one
molecule to the next as a result of the dipole-dipole interaction.
There are well-known antenna system for which the Fo¨rster
picture is expected to be invalid. For instance in the so-called
FMO complex2 the pigments are so close together that, on the
basis of arguments presented in this paper, the excitation must
be considered to be delocalized over a number of pigments,
and the excitation dynamics cannot be described at all by the
Förster mechanism.
To advance the discussion of the coherence of the excitations,

we study here a model in which the limiting cases of Fo¨rster
transfer and completely delocalized excitonic states are continu-
ously connected to each other. The most important parameter
determining this crossover is the interaction energyJ divided
by the homogeneous line widthΓ. Because of the continuous
connection of the limiting cases, the issues involved in exciton
coherence versus Fo¨rster incoherence can be discussed in a clean
way. In this paper the homogeneous line width is primarily
caused by fluctuations in the transition frequency due to
phonons. In a spectroscopic language what we call homoge-
neous line width corresponds toT *2 processes. The motivation
for denoting these processes as homogeneous is that the
dephasing process is assumed to be fast.3 This is to be
contrasted with inhomogeneous broadening, which is caused
by static disorder that has to be taken into account by averaging
the final quantities under consideration.
In biophysical systems, a typical interaction is that of two

bacteriochlorophyll molecules located at a distance of aboutr
) 1 nm.4 As the transition dipole transition moment is on the
order ofµ ) 7 D, the interaction strength can beJ ) µ2/r3 =
250 cm-1. However, in∆OD spectra frequently features are
noticeable that are separated by 10 nm at a wavelength of 850
nm. This corresponds to an energy on the order of 120 cm-1.
We can obtain an estimate of the homogeneous line widthΓ

by identifying it with the smallest energy on which features
are noticeable. So an estimate for the Fo¨rster limit parameter
J/Γ) 2. This parameter may be larger for certain systems, as
also inhomogeneous broadening can be important. An estimate
for the amount of inhomogeneous broadening is 200 cm-1, so
that it is of magnitude similar to the homogeneous line width.
The estimate given here is compatible with other estimates for
C-phycocyanin,5 allophycocyanin,6 and photosystem II.7 Clearly,
on the basis of these estimates the study of exciton coherence
in photosynthetic antenna systems is highly relevant. We should
point out that the model studied here has been extensively
studied in a condensed matter physics context.8 In these studies
the emphasis was on the derivation and on the validity of the
resulting dynamic equations. Here we provide explicit solutions
of the resulting equations, and we put the emphasis on the
properties of this solution.
This paper is organized as follows. In section II we describe

the model of the antenna system and demonstrate the Green
function solution. In section III it is shown that in the limit of
large inhomogeneously broadened lines Fo¨rster transfer is
recovered. In section IV we present numerical results for a ring
of pigments and show that as far as the excitation lifetime goes,
the Förster hopping picture gives a good approximation. In
section V we show that fluorescence depolarization is sensitive
to the mode of energy transfer and that a consistent interpretation
in terms of Fo¨rster transfer in general is not possible. Finally
in the Discussion, section VI, we present a generalization of
the well-known inverse participation ratio and argue that it is a
good measure of the average number of coherently excited
molecules.

II. Model Hamiltonian

We consider a Frenkel exciton model where the various
pigments are coupled to each other by interactionsJ. Typically
we will consider dipole-dipole or nearest neighbor interactions,
but for the moment we will use a general interaction. The (tight
binding) Hamiltonian is

where|i〉 and |j〉 denote electronic states in which moleculeiX Abstract published inAdVance ACS Abstracts,August 1, 1996.

H0 ) ∑
i

pωi|i〉〈i| +
1

2
∑
i*j

Jij(|i〉〈j| + |j〉〈i|) (1)
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(or j ) is excited. The first term inH0 describes the transition
energies of the molecules. We have allowed for the sites to
have different excitation energiesωi. Inhomogeneous broaden-
ing is described by taking the transition frequencies to be random
variables taken from some (usually Gaussian) distribution. The
second term on the right-hand side in eq 1 is the interaction
term. One of the consequences of this interaction is that an
excitation can be transferred from a moleculei to another
moleculej.
We assume that there is also homogeneous broadening in

the model, due to phonons. For simplicity we will assume that
each molecule has its own heat bath, which is correct when
there is no phonon-mediated interaction between molecules. The
phonons cause a time dependent shift of the isolated molecule
transition frequency, but the phonons do not give rise to a
decrease of the number of excited molecules. This is effected
by adding an exciton-phonon interaction termV to the
Hamiltonian

whereB† andB are creation and annihilation operators for the
phonons, and the phonon Hamiltonian is

Note that the interaction operatorV commutes with the operator
counting the number of excited molecules∑i|i〉〈i|. Equation 2
can be made plausible as follows: Any time a phonon comes
along, the operatorB† orB has a certain expectation value. Then
the isolated molecule transition frequencyωi is modified by an
amount proportional toCi,ki. We have not included the
dependence of the interaction energyJij on the intermolecular
distance in the coupling with the phonons. We expect that this
off-diagonal dependence is much smaller than diagonal exciton-
phonon coupling simply because the energies involved differ
by almost 2 orders of magnitude. Below we will average over
the phonon degrees of freedom.
We further include a special molecule in the model on which

an excitation can decay irreversibly. This special molecule can
model the reaction center of the antenna complex or, as is done
in section V, a singlet-singlet annihilation site. This irreversible
decay can be described in many ways. The most convenient
way is to add a non-hermitian term to the Hamiltonian,

so that the total, non-hermitian Hamiltonian is given by

with the phonon independent part

The phonons give rise to loss of phase coherence. To describe
this properly, we must use the reduced density matrixF(t). The
density matrix is the average of the state|ψ,ki〉 over the phonon
degrees of freedom,

Hereψ refers to the system part of the wave function, andki to
the phonon part. There are two classes of matrix elements in

the density matrix. The diagonal elementsFi,i are the prob-
abilities of finding moleculei in the excited state. The off-
diagonal elementsFi*j describe the coherence between molecules
i andj. The phase coherence between moleculesi andj decays
when a phonon is absorbed or emitted by moleculei since then
the transition frequency is changed, and as a result, the phase
is changed by some random amount.
The temperature of the systems enters through the probability

distribution of the phonons at timet ) 0. We will consider the
limit in which the phonon correlation time is much shorter than
other times so that it can be approximated by aδ function. While
the phonon correlation time is not really known, it is quite
possible that it is on the order of 50 fs. Thus, the phonon
correlation time may be important for ultrafast experiments.
This, however, is beyond the scope of this paper. Due to the
quantum fluctuation dissipation theorem,3 a zero correlation time
can only occur at high temperatures. This is the motivation
for limiting ourselves to the high-temperature situation in this
paper. After taking the average over the phonon degrees of
freedom, the time evolution of the density matrix is given by8-10

where the asterisk denotes complex conjugation. This careful
treatment of the complex conjugation is needed to correctly
describe the irreversible decay. The operatorΓ′ describes the
loss of phase coherence due to the interaction with phonons. It
is all that remains of the phonons after the average over the
phonon degrees of freedom has been taken. In the site basis
set the action ofΓ′ is given by

whereΓ is a number that corresponds to the homogeneous line
width. Fluctuations in frequency due to the phonons give rise
to a decrease of phase coherence between different sites, but
they do not give rise to an immediate depopulation of a site.
Equation 9 demonstrates this explicitly:Γ̂′Fi,i ) 0, whereas
Γ̂′Fi*j ) Γ. Of course, when the pigments interact with each
other, energy is transferred, but this transfer is not described
by Γ̂′ alone. The operatorΓ̂′ acts at the density matrix level;
that is, it acts on|i〉〈j|. In a matrix representationΓ̂′ correspond
to very large,N2 × N2 matrix.
Rather than calculating the time evolution of the density

matrix it turns out that it is better to calculate the Laplace
transform of the density matrix,

We will be interested only in the casez ) 0. The formal
solution of eq 8 is

where the Liouville operatorL is given by

Equation 11 is the defining relation for the Green functionG(z).
To calculateG(z) an N2 × N2 matrix must be inverted.
However, the problem can be simplified by using the very
special form of the dephasing operator. We separate

V) ∑
ki

Ci,ki
|i〉〈i|(Bi,ki

† + Bi,ki) (2)

Hph ) ∑
ki

Ωki
Bi,ki
† Bi,ki (3)

Hi ) -i
Γd

2
|1〉〈1| (4)

HT ) H + V+ Hph (5)

H ) H0 + Hi (6)

F(t) ) Tr{ki}|ψ,ki〉〈ψ,ki| (7)

d
dt

F(t) ) -iHF(t) + iF(t)H* - Γ̂′F(t) (8)

Γ̂′|i〉〈j| ) Γ(1- δi,j)|i〉〈j| (9)

F(z) ) ∫0∞e-ztF(t) (10)

F(z) ) (z- iL + Γ̂′)-1F(t)0)
) G(z) F(t)0) (11)

-iLF(t) ) -iHF(t) + iF(t)H* (12)

Γ̂′ ) Γ - Γ̂ (13)
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whereΓ is a number operator identical to theΓ introduced
above, and

We next introduce the so-called noninteracting Green function
G0, in which Γ̂ is ignored:

G0 can easily be calculated in terms of the eigenfunctions|ψk〉
and eigenvaluesωk of H as

As H is non-hermitian, we must make a distinction between
left and right eigenfunctions. We now note thatΓ̂ is a very
simple operator: it is diagonal in the|i〉〈j| basis, and more
significantly, onlyN out of N4 entries are nonzero. The only
nonzero matrix elements are between density matrices of the
form |i〉〈i|. These matrix elements correspond to populations,
as〈i|F(t)|i〉 is the probability of finding moleculei excited. For
the Green function we find

G(z) ) 1

z- iL + Γ - Γ̂

) 1
z- iL + Γ

+ 1
z- iL + Γ

Γ̂ 1
z- iL + Γ

+

1
z- iL + Γ

Γ̂ 1
z- iL + Γ

Γ̂ 1
z- iL + Γ

+ ...

) G0(z) + G0(z) T(z) G0(z) (17)

This equation defines the so-calledT-matrix T(z). While
formally T is anN2 × N2 matrix, it is clear from eq 17 that
only matrix elements between populations are nonzero. More-
over, to findT only N2 out ofN4 matrix elements ofG0(z) are
needed, as can be seen from eq 17. We find

where the inverse is the inverse of anN× N matrix, the matrix
elements of which are

Equation 18 represents an enormous improvement: we started
with anN2 × N2 problem, which is now simplified to anN ×
N problem through the use of Green functions. Equations 17
and 18 are the starting point for the calculations in this paper.

III. The Fo1rster Transfer Limit

For the case where the homogeneous line width is much larger
than the interaction (Γ . J), the interaction can be treated as a
small perturbation and the energy transfer can be described as
hopping of excitations.8 This we denote as the Fo¨rster limit as
opposed to the exciton limit in whichJ. Γ. The general case
we will denote as the mixed model. The relation with the
solution derived in section II will now be elucidated. In the

hopping model the probabilitiesPi of finding moleculei excited
change in time according to

where the Fo¨rster transfer ratesW(F) follow from a calculation
of the spectral overlap integral.1 As the homogeneous width is
much larger than the interactionJ and considering the high-
temperature limit, pigmenti has a Lorentzian absorption
spectrum centered aroundωi and full width at half-maximum
of Γ. The special pigment 1 is also lifetime broadened and has
a full width at half-maximum ofΓ + Γd. So the width of the
absorption line of pigmenti is given by

The Förster transfer rates are given by

with Γi j ) (Γi + Γj)/2. As we are considering the high-
temperature case,W(F)(irj) ) W(F)(jri). To recover ther-6

dependence of the Fo¨rster energy transfer rate,1 we note that
for dipole-dipole interactionsJ ∝ r-3. The rates eq 22 are
valid for Γ . J irrespective ofΓd. The Laplace transform of
Pi, Pi(z), is found as

where now only anN × N matrix must be inverted.
We have just described the hopping picture. We now show

that identical results are obtained in the largeΓ limit of the
results of section II. For notational clarity we will ignore the
distribution of frequencies for this argument, and putωi ) 0.
Moreover we ignore the irreversible decay and putΓd ) 0. In
the limit Γ . J we can findG0(z)0) perturbatively:

The second term does not couple population matrix elements
of the density matrix so that we do not require this term in the
calculation ofT. We thus find

Note that the matrix elements ofŴ(x) are identical to the Fo¨rster
matrix elementsŴ(F). The Green function becomes

The first term on the right-hand side corresponds to a coherent
contribution that in the time domain corresponds to an expo-
nentially decaying contribution, with a decay time 1/Γ. We
will ignore it in the remainder of this paper. The second term

Γ̂|i〉〈j| ) Γδi,j|i〉〈j| (14)

G0(z) ) (z- iL + Γ)-1 (15)

G0(z)(|i〉〈j|) ) ∑
k,k′

|ψk〉
〈ψk|i〉〈j|ψ*k′〉

z- iωk + iω*k′ + Γ
〈ψ*k′| (16)

T(z) ) Γ̂ + Γ̂ 1
z- iL + Γ

Γ + ...

) Γ̂ 1
1- G0(z)Γ̂

(18)

[1 - G0(z)Γ̂]n,n′ ) δn,n′ - [G0(z)]nn,n′n′Γ (19)

d

dt
Pi ) ∑

j

[W(F)(irj)Pj - W(F)(jri)Pi]

≡ŴPj (20)

Γi ) Γ + Γdδi,1 (21)

W(F)(irj) )
2Jij

2

Γij
[1+ (ωi - ωj

Γij
)2]-1

(22)

Pi(z) ) 1

z- Ŵ(F)
Pj(t)0) (23)

G0(z)0)) 1
Γ

- 1

Γ2
[H, ...] + 1

Γ3
[H, [H, ...]] + ... (24)

[1 - G0(z)Γ̂]n,n′ ) - 1

Γ2
[H, [H, ...]]nn,n′n′

)
2Jn,n′

2

Γ2
- δn,n′∑

n1

2Jn,n1
2

Γ2

≡ 1
Γ
Wn,n′

(x) (25)

G(z)0)) 1
Γ

+ [W(x)]-1 (26)
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is essentially eq 23. We thus have shown that the Green
function approach of section II is a generalization of the Fo¨rster
model and reduces to the hopping picture whenΓ . J. For
the general case of unequalωi, the rates eq 22 are found from
a slightly more complicated calculation.

IV. Solution for a Ring

In the previous section we considered the caseΓ . J. For
typical situations occurring in photosynthesis this is not justified.
In the Introduction we pointed out that a very reasonable
estimate isJ/Γ ) 2. To study the consequences of this, we
apply the Green function solution to a simple situation, that of
an antenna complex in the form of a ring. While this is a
reasonable assumption to make, we will also assume that the
reaction center is included in the ring as one of the molecules.
This model is taken for illustration purposes only, there is no
known antenna structure with this geometry. We take the
nearest neighbor interaction

and we assume periodic boundary conditions so thatJ1,N ) JN,1
) J. We will assume that initially all molecules are excited
with equal probability and without phase coherence between
different molecules. ThenFi,j(t)0)) δi,j/N. We are interested
in the average survival time of these excitations. There is no
unique measure for the survival time. As is commonly done,
we take the zeroth moment ofF(t):

For Förster transfer the survival time can be found using the
methods of Pearlstein.11,12 In the present context the result can
be written as

with the decay timetd ) 1/Γd and the hopping time

Incidentally, for the parameters giventh ) 5 fs, which is a
completely unrealistically short time, indicating that the energy
transfer is not described by the Fo¨rster rates. The first term in
eq 29 represents the average reaction time; the excitation will,
on average, spend 1/N of its time on molecule 1, from where it
can disappear from the system. The second term describes the
time duration of energy transport. We have not found a closed
result for the exciton model, but the calculation of the excitation
lifetime is simple on a computer: computing the inverse of eq
18 is standard, and the excitation lifetime then follows from eq
28. There are three dimensionless parameters characterizing
the problem: the number of pigmentsN, the ratio of the
interaction and the homogeneous line widthJ/Γ, and the decay
rate ratioΓd/Γ. In the presentation of the numerical results we
have keptN andΓd/Γ constant. A typical result is presented in
Figure 1. We find that the exact solution, the hopping approach,
and eq 29 produce virtually identical results for this case, for
which the excitation lifetime is mainly determined by the
reaction rate.
These conclusions are modified only when we consider

unrealistic parameters. In Figure 2 we have presented similar
curves for the transport-limited situation in whichΓd ) 10Γ.
For this value of the single-site annihilation rate, the special

molecule that models the reaction center is substantially lifetime
broadened so that eq 29 is always inaccurate. The hopping
picture gives somewhat inaccurate results only deep in the
exciton regime, whenJ> 5Γ. We conclude that a major reason
for the success of the Fo¨rster approach in photosynthesis is that
whenever the hopping model fails to describe the dynamics
correctly, the survival time is limited by the reaction rate, and
the dynamics is irrelevant as far as the survival time is
concerned. This observation holds even stronger for a physical
antenna system coupled to a reaction center as the reaction center
presumably is located in the middle of a ring of antenna
complexes so that the most important energy transfer process
is the transfer to the reaction center, not the energy transfer
within the antenna.12 An excitation lifetime study is insensitive
to the effects of excitation coherence.
A situation that is of much more physical interest is when

inhomogeneous broadening is present. This is incorporated by
taking various individual molecule transition frequenciesωi.
Because of the inhomogeneous broadening, the dynamics of

Ji,j ) Jδ|i-j|,1 (27)

ts≡ ∫0∞dtFn,n(t) ) ∑
n

Fn,n(z)0) (28)

ts ) Ntd + N2 - 1
12

th (29)

th ) (2J2/Γ)-1 (30)

Figure 1. Dimensionless survival timets of a ring as a function of the
ratio of nearest neighbor interactionJ and homogeneous line widthΓ.
In this figure the single site decay rateΓd ) 1/td is fairly small,Γd )
Γ/10. While barely visible, three almost identical curves are presented.
The solid line is the exact result, the dashed line is the result of the
hopping model, and the dotted line is the analytical result, eq 29. Clearly
the analytical result is very accurate even whenJ > Γ. The reason for
this is that whenever the interactionJ is large so that the hopping picture
is not valid, the lifetime is determined by the reaction time (the first
term in eq 29).

Figure 2. Survival timets in units of the single-site decay time as a
function of the ratio of nearest neighbor interactionJ and homogeneous
line widthΓ. As in Figure 1, the solid line is the exact result, the dashed
line is the result of the hopping model, and the dotted line is the
analytical result, eq 29. Now the decay rate is unrealistically large,Γd

) 10Γ. Comparing the solid line to the dashed line, we find that only
for quite large interaction strengthsJ does the hopping picture become
inaccurate. Equation 29 is always inaccurate, as for this rapid decay
rate the reaction center is lifetime broadened (eq 21) so that the Fo¨rster
transfer rate to the reaction center is not equal to the other transfer
rates,W(1r2) * W(iri+1).
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the excitation is modified. In Figure 3 we present the result of
simulations where theωi are randomly drawn from a Gaussian
distribution with standard deviation∆. When inhomogeneous
broadening is significantand Jis comparable toΓ, the hopping
picture becomes somewhat inaccurate. This is due to the fact
that hopping does not take into account coherent effects such
as superexchange. Yet, as above, the difference between the
exciton calculation and the hopping calculation is only minor.

V. Application to Light-Harvesting Complexes

Recently the structure of the light-harvesting complex 2 (LH2)
of Rhodopseudomonas acidophilawas solved.4 It was found
that the B850 absorption is due to a ring of 18 pigments.
Assuming that the fundamental spectroscopic unit is a dimer,
we can relate this LH2 complex to our model for a ring ofN)
9 dimers. Recently femtosecond experiments on LH1 of
Rhodobacter sphaeroideswith the reaction center removed were
performed.13 While the structure of the LH1 complex is not
known, it is assumed that it is a ring ofN ) 16 dimers. Other
numbers are also assumed, for instance in ref 13 an interpretation
of experimental results is presented assumingN ) 8.
The two studies of ref 13 were fluorescence depolarization

and singlet-singlet annihilation. The theoretical description of
the singlet-singlet annihilation process is very similar to that
of excitation decay described in the previous section. The most
significant difference is that singlet-singlet annihilation sup-
posedly takes place when the two excitations are next to each
other. This can easily be incorporated in the model studied in
this paper. Firstly the index now denotes the relative distance
of the two excitations. Secondly we add the term-iΓd|N〉〈N|/2
to the effective Hamiltonian of eq 1. The third modification is
that we have to replace the periodic boundary condition by a
reflecting boundary condition as the two excitations cannot cross
each other. Effectively this amounts to puttingJ1,N ) JN,1 ) 0.
The singlet-singlet lifetime can then be calculated using the
techniques of refs 11 and 12. We find

Comparing this with eq 29, we note that the reaction time (the
first term on the right-hand side) is halved, as there are now
two reaction sites. Also the hopping timeth is halved, as we
are only interested in the relative distance of the two excitations.

Due to the reflecting boundary conditions, the prefactor to the
transport term is somewhat different from that found in eq 29.
For small rings the difference can be significant. We have not
studied the effect of disorder on eq 31, as this is complicated
by the fact that then not only the relative distance of the two
excitations is important but also the location of the two
excitations on the underlying structure is important.
While singlet-singlet annihilation is not very sensitive to the

nature of the energy transfer mechanism, we now show that
the depolarization time is sensitive toJ/Γ. For a consistent
interpretation the issue of exciton coherence cannot be ignored.
The model studied in the previous section does not quite apply
to LH1. We now suggest possible interpretations for these
experiments within the context of the discussion of coherent
versus incoherent energy transport. The extension of the theory
to the depolarization experiment is simple. As there is no
reaction site, we putΓd ) 0. The pulse that is used to create
the initial population of excitations is polarized. The direction
of the transition dipoles of the pigments varies along the ring,
so an anisotropic distribution of excitation is created. The
excitation density is assumed to be given by

whereFp describes the amount of anisotropy. As the transition
dipoles are oriented the fluorescence is polarized. The distribu-
tion will relax toward an isotropic distribution. Due to the
orientation of the ring, the fluorescence will not decay to zero
and a small residual anisotropic signal will remain. The part
of the polarization that is decaying because of the energy transfer
is proportional to

Similar to before, we can define a measure for the depolarization
time as the zeroth moment ofP(t). This can be found in terms
of the Green function of section II. Summing eq 33 and a
similar contribution with a sine, we find a measure for the
depolarization time:

For a ring without disorder we can find an analytical result
for the depolarization time. As we have putΓd ) 0, the
eigenfunctions ofH are plane waves. HenceG0 can be obtained
in closed form.10 As the ring is isotropic,G0,nn′ only depends
on n - n′ so that alsoT can be calculated. We finally find

with

For largeN the sum can be replaced by an integral, resulting in

For small interactionJ the depolarization time becomes

Figure 3. Dimensionless survival timets as a function of the ratio of
inhomogeneous width∆ and homogeneous widthΓ for a ring of 16
pigments whereΓd ) Γ. Dotted line: Γ ) 10J. For thisΓ there is no
difference between the exciton calculation and the hopping result
(indicated by+). Solid line: Γ ) J, exciton calculation. Dashed line:
Γ ) J, hopping approximation. The hopping picture is slightly
inaccurate whenΓ ) J, as then coherent effects such as superexchange
are not taken into account.

ts ) N
2
td +

(N- 1)(N- 2)
12

th
2

(31)

Fn,n(t)0)) F0 + Fp[cos2(2πn
N ) - 1

2] (32)

P(t) ∝ ∑
n

[cos2(2πn/N) - sin2(2πn/N)]Fn,n(t) (33)

tdep)
1

N
∑
n,n′

cos(4π

N
(n- n′))Gnn,n′n′(z)0) (34)

tdep) 1
Γ

1
1- G0T

(35)

G0T)
1

N
∑
k)1

N Γ2

Γ2 + 16J2 sin2(2π/N) sin2(2πk/N)
(36)

G0T) {1+ [4JΓ sin(2π
N )]2}-1/2

(37)
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as was found before by ref 13. The significance of eq 37 is
that it explicitly shows when a crossover behavior from hopping
dynamics to exciton dynamics is to be expected. For reasonable
estimates of the parameters appropriate for LH1 we find that
we are indeed in the crossover regime and eq 38 is inaccurate.
In Figure 4 we graphed prediction eq 35. For a ring with a
significant amount of disorder the effect of coherence is reduced.
This is illustrated in Figure 5.
In ref 13 the fluorescence depolarization was found to decay

on a time scale on the order of 200 fs. They interpreted their
experiments assuming a ring ofN) 16 pigments, an interaction
energyJ ) 250 cm-1, a homogeneous broadening ofΓ ) 250
cm-1, and an inhomogeneous broadening of∆ ) 250 cm-1.
Using the theory described here, we obtaintdep= 60 fs, which
is much too fast. If we assume thatΓ and∆ are correct, we
find that tdep = 200 fs forJ ) 80 cm-1. The singlet-singlet
annihilation time of LH1 ofR. sphaeroideswas found to be
about 1 ps. However using the given parameters with interac-
tion energyJ) 80 cm-1, we find a singlet-singlet annihilation
rate of ts > 3 ps, which is incompatible with experimental
results. We have not found a set of parameters that offers a
consistent interpretation of the experimental results of ref 13.

VI. Discussion

In this paper we have shown how the Green function
formalism can be applied to photosynthetic antenna systems.
We have shown that the lifetime of an excitation does not
depend sensitively on the excitonicness of the energy transfer.
Only for primarily inhomogeneously broadened antenna systems
(large disorder) can differences between coherent and hopping
dynamics be found. The situation is almost the opposite for
the depolarization time. The predicted depolarization time is
dependent on the nature of the exciton dynamics. Whenever
the ratio of interaction strength over homogeneous line width
J/Γ is on the order of unity, significant deviations from hopping
dynamics are predicted. A reasonable estimate isJ/Γ ) 2; this
will be significant in the interpretation of experimental results.
As far as LH1 is concerned, other interpretations of the
experimental results are possible. The point of view of ref 13
is that the finite temperature combined with static disorder can

be used to provide a consistent interpretation of the spectroscopic
data. Nevertheless, as soon as the interaction strength becomes
comparable to the homogeneous line width, coherent effects
cannot be ignored.
In discussing the exciton dynamics it would be useful to have

a number that indicates the average “size” of an excitation, or
rather, the number of coherent pigments. Here we propose a
simple extension of the concepts used in the theory of
localization.14,15 We define the generalized average participation
ratio:

This is the time-integrated probability that an excitation that
started at sitei can be found at the same site, weighted by the
dephasing time.14,15 In terms of the eigenfunctions||ψk〉 with
energiesωk, the generalized participation ratio is given by

In the limit of zero homogeneous line widthΓ f 0,R tends to
the usual participation ratio:

which is valid when there are no degenerate states. The inverse
participation ratio,

is universally taken as the number of coherent molecules,14,15,16

valid when there is no homogeneous broadening.
In the Förster limit of very largeΓ the exciton dynamics is

incoherent, which can also be interpreted as a hopping excitation.
In this case only one molecule is excited at the time. A very
attractive property of the generalized participation ratioR is
that it does just that; it can easily be shown that in the limit of
Γ f ∞, R) 1. The inverse generalized participation ratio 1/R
is a good measure for the number of coherent molecules. A
desirable property ofR is that it is a physical quantity, as it is

Figure 4. Depolarization timetdepmultiplied by the dephasing rateΓ
as a function of the scaled nearest neighbor couplingJ/Γ for a ring of
N ) 16 pigments. Solid line: exact result. Dashed line: Fo¨rster limit.
The hopping resulttdepΓ ) Γ2/4J2 sin2(2π/N) holds for J , Γ. The
hopping picture fails whentdep = 1/Γ. The physical reason for this is
that in order to have a depolarization, there must be decay, and the
decay rate is essentiallyΓ. In contrast to the fluorescence lifetime, the
depolarization is sensitive to the excitonic nature of the energy transport.

tdep)
th

4 sin2(2π/N)
(38)

Figure 5. Depolarization timets divided by the Fo¨rster hopping time
th ) Γ/2J2 as a function of the ratio of disorder∆ divided by the
homogeneous line widthΓ. In this figure results for a ring ofN ) 16
pigments are presented andΓ ) J. The dashed curve is the result of
the diffusion approximation, and the solid curve the exact exciton result.
Disorder reduces the effect of coherent exciton dynamics.

R) ∑
i

ΓGii ,ii
(0) (z)0) (39)

R)
Γ

N
∑
i,k,k′

∫0∞dt e-Γtei(ωk-ωk′)t|〈i|ψk〉|2|〈i|ψk′〉|2

)
1

N
∑
i,k,k′

|〈i|ψk〉|2
Γ2

Γ2 + (ωk - ωk′)
2
|〈i|ψk′〉|2 (40)

R(Γ)0))
1

N
∑
i,k

|〈i|ψk〉|4 (41)

Ncoh) 1/R (42)
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a certain moment of the Green function. This means that it is
independent of the basis set used, for example. In Figure 6 we
present results for the number of coherent molecules as a
function of the amount of inhomogeneous broadening for
various amounts of homogeneous broadening. We find thatNcoh

satisfies the expected limiting cases. Because of the degeneracy
in the absence of disorder,Ncoh < N even at∆ ) 0.
Without disorder, explicit results forR can be obtained:

The resulting coherence sizes are presented in Figure 7. We
find that for sufficiently large systemsNcohconverges. For large
N the sum in eq 43 can be replaced by an integral, resulting
in14

whereK is the complete elliptic integral of the first kind.14 This

function is used to obtain the dot-dashed line in Figure 7. In
the large interaction limit we obtain

For LH1 Bradforthet al. found thatJ ) Γ and∆ ) Γ, and we
assume thatN) 16. For these values we find thatNcoh) 2.03.
Without disorder we findNcoh) 2.07, and ignoring the phonons
givesNcoh) 4.85. We conclude that for LH1 ofR. sphaeroides
the excitation is delocalized over about two dimers. Moreover,
the localization is due to the phonons and not due to the static
disorder.
It remains to be seen to what extent the average number of

coherent molecules corresponds to an experimentally observable
quantity. The number presented in this paper follows from an
admittedly indirect approach: a theoretical calculation based
on parameters that are obtained by combining the presumed
structure of LH1 with the experimental results for the fluores-
cence depolarization. Recently17 pump-probe experiments on
J-aggregates were related to an exciton size. However, the
theory used in ref 17 did not take into account the homogeneous
dephasing caused by phonons, so that it is unlikely that it can
be applied to photosynthetic systems. The calculation of pump-
probe spectra (or photon echo) from an approach as used in
this paper is the route to go. It is also quite complicated as, at
least in the straightforward approach, the density matrix becomes
anN2 × N2 matrix.
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Figure 6. Inverse generalized participation ratio 1/R ) Ncoh as a
function of disorder∆ divided by the interaction energyJ for a linear
periodic chain ofN ) 16 molecules. Solid line:Γ ) J. Dashed line:
Γ ) J/10. Dotted line:Γ ) 10J. For large homogeneous line widths
the number of coherent molecules is 1, irrespective of the amount of
disorder. For small homogeneous line widths the number of coherent
molecules decreases with increasing disorder, which is the onset of
the usual localization behavior.

Figure 7. Inverse generalized participation ratio 1/R ) Ncoh as a
function of the interaction energyJ divided by the homogeneous line
width Γ for a linear periodic chain without disorder. Dashed line:N
) 4. Solid line: N ) 10. Dotted line:N ) 30. The dot-dashed line
represents the infinite size limit, eq 44. For a realistic value ofJ ) 2Γ
only about four molecules are coherent, even for large complexes. The
number of coherent molecules does not tend toN in the exciton limit
(J large) because of the degeneracy of the ring.

R)
1

N
∑

k1,k2)1

N Γ

Γ + 2iJ cos
2πk1
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- 2iJ cos
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N

(43)
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