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Coherent versus Incoherent Energy Transfer and Trapping in Photosynthetic Antenna
Complexes

Jan A. Leegwater

Department of Physics and Astronomy, Vrije kbrsiteit Amsterdam, De Boelelaan 1081,
1081 HV-NL Amsterdam, The Netherlands

Receied: May 17, 1998

In this paper we present a study of a model in which there is energy transfer as well as a special site where
an irreversible reaction takes place. This model has an arbitrary ratio of homogeneous broadening versus
site interaction energy. This allows us to study the crossover from hopping dynamics to exciton dynamics.
We show that for the survival time the hopping (5ier) approximation gives a surprisingly accurate final
result even when the energy transfer is excitonic. Fluorescence depolarization however is a sensitive probe
for the nature of the energy transfer. We study the number of coherent molecules by considering a
generalization of the inverse participation ratio. For LH1, assuming that it is a ring of 16 dimers, we estimate
that the excitation is, on the average, delocalized over two dimers. The excitation is localized by phonons.

I. Introduction by identifying it with the smallest energy on which features

- . I are noticeable. So an estimate for thedter limit parameter
In the photosynthetic light-harvesting complex excitation 31— 5 This parameter may be larger for certain systems, as

energy is transferred between antenna pigments and eventually, o inhomogeneous broadening can be important. An estimate
from antenna pigments to the photosynthetic reaction center. Ittor the amount of inhomogeneous broadening is 200%s0
is often assumed that this energy transfer takes place throughy, 4 it i of magnitude similar to the homogeneous line width.

the Ec_rster mecha_nlsrh. .In the Foster picture at all imes a g egtimate given here is compatible with other estimates for
specific molecule is excited, and the excitation hops frqm ON€ ¢ _phycocyanitt,allophycocyanird,and photosystem Tl. Clearly,
molecule to the next as a result of the dipetipole interaction. o y'yhe hasis of these estimates the study of exciton coherence
T_here are well-known an_tenn_a SVStem for Wh.'Ch theste in photosynthetic antenna systems is highly relevant. We should
picture is expected to be invalid. For instance in the so-called point out that the model studied here has been extensively

FMQ complex the pigments are SO.CIOSE together that,. onthe g died in a condensed matter physics corftelt.these studies
basis of arguments presented in this paper, the excitation mus he emphasis was on the derivation and on the validity of the

bedcohn5|der_ed to t:je delo_cahzed ov%r adnum_kge:jof p'ﬁgenﬁs’resulting dynamic equations. Here we provide explicit solutions
and the excitation dynamics cannot be described at all by the ot e regulting equations, and we put the emphasis on the

Forster mechanism. _ ~ properties of this solution.
To advance the discussion of the coherence of the excitations, Thjs paper is organized as follows. In section Il we describe

we study here a model in which the limiting cases ofter  {he model of the antenna system and demonstrate the Green
transfer and completely delocalized excitonic states are continu-f,nction solution. In section 1l it is shown that in the limit of
ously connected to each other. The most important parameteriarge inhomogeneously broadened linesrster transfer is
determining this crossover is the interaction enejgjivided recovered. In section IV we present numerical results for a ring
by the homogeneous line widih Because of the continuous ¢ pigments and show that as far as the excitation lifetime goes,
connection of the limiting cases, the issues involved in exciton e Fgster hopping picture gives a good approximation. In
coherence versusFter incoherence can be discussed in a clean section \/ we show that fluorescence depolarization is sensitive
way. In this paper the homogeneous line width is primarily {5 the mode of energy transfer and that a consistent interpretation
caused by fluctuations in the transition frequency due 10 in terms of Faster transfer in general is not possible. Finally
phonons. In a spectroscopic language what we call homoge-i, the Discussion, section VI, we present a generalization of
neous line width corresponds 10s processes. The motivation  the well-known inverse participation ratio and argue that it is a

for denoting these processes as homogeneous is that thgoog measure of the average number of coherently excited
dephasing process is assumed to be ¥asthis is to be molecules.

contrasted with inhomogeneous broadening, which is caused
by static disorder that has to be taken into account by averaging||. Model Hamiltonian
the final quantities under consideration.

In biophysical systems, a typical interaction is that of two
bacteriochlorophyll molecules located at a distance of about
= 1 nm# As the transition dipole transition moment is on the
order ofu = 7 D, the interaction strength can Be= u?/r3 =
250 cntl. However, inAOD spectra frequently features are
noticeable that are separated by 10 nm at a wavelength of 850

nm. This corresponds to an energy on the order of 120'cm Ho= Zhwi“m[” + }z J (Ji) + [j ) 1)
We can obtain an estimate of the homogeneous line width | 2 :

We consider a Frenkel exciton model where the various
pigments are coupled to each other by interactibn$ypically
we will consider dipole-dipole or nearest neighbor interactions,
but for the moment we will use a general interaction. The (tight
binding) Hamiltonian is

1=

® Abstract published irAdvance ACS Abstract#ugust 1, 1996. where|iland |jC0denote electronic states in which molecule
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(orj) is excited. The first term ity describes the transition  the density matrix. The diagonal elememts are the prob-
energies of the molecules. We have allowed for the sites to abilities of finding moleculée in the excited state. The off-
have different excitation energies. Inhomogeneous broaden- diagonal elementsi+; describe the coherence between molecules
ing is described by taking the transition frequencies to be randomi andj. The phase coherence between molecudexlj decays
variables taken from some (usually Gaussian) distribution. The when a phonon is absorbed or emitted by molecsiace then
second term on the right-hand side in eq 1 is the interaction the transition frequency is changed, and as a result, the phase
term. One of the consequences of this interaction is that anis changed by some random amount.
excitation can be transferred from a moleculéo another The temperature of the systems enters through the probability
moleculej. distribution of the phonons at tinte= 0. We will consider the

We assume that there is also homogeneous broadening irlimit in which the phonon correlation time is much shorter than
the model, due to phonons. For simplicity we will assume that other times so that it can be approximated kyfanction. While
each molecule has its own heat bath, which is correct whenthe phonon correlation time is not really known, it is quite
there is no phonon-mediated interaction between molecules. Thepossible that it is on the order of 50 fs. Thus, the phonon
phonons cause a time dependent shift of the isolated moleculecorrelation time may be important for ultrafast experiments.
transition frequency, but the phonons do not give rise to a This, however, is beyond the scope of this paper. Due to the
decrease of the number of excited molecules. This is effected quantum fluctuation dissipation theoréra,zero correlation time

by adding an excitonphonon interaction termV to the can only occur at high temperatures. This is the motivation
Hamiltonian for limiting ourselves to the high-temperature situation in this
paper. After taking the average over the phonon degrees of
V= ZCLKH DE|(BIki + Bi,ki) (2) freedom, the time evolution of the density matrix is give& Y
| d . . A,
whereB' andB are creation and annihilation operators for the P = ~iHe(®) + ipH* — I"p() (8)

phonons, and the phonon Hamiltonian is
where the asterisk denotes complex conjugation. This careful
Hon= ZQK BiTkiBi,ki 3) treatment of the complex conjugation is needed to correctly
v describe the irreversible decay. The operdtodescribes the
loss of phase coherence due to the interaction with phonons. It
Note that the interaction operatdrcommutes with the operator  js gl that remains of the phonons after the average over the

counting the number of excited moleculggi(lil. Equation 2 phonon degrees of freedom has been taken. In the site basis
can be made plausible as follows: Any time a phonon comes set the action of” is given by

along, the operatds' or B has a certain expectation value. Then

the isolated molecule transition frequenayis modified by an im =ra- O )i 9)

amount proportional toCj,. We have not included the

dependence of the interaction enedjyon the intermolecular  whereT is a number that corresponds to the homogeneous line

distance in the coupling with the phonons. We expect that this width. Fluctuations in frequency due to the phonons give rise

off-diagonal dependence is much smaller than diagonal exeiton to a decrease of phase coherence between different sites, but

phonon coupling simply because the energies involved differ they do not give rise to an immediate depopulation of a site.

by almost 2 orders of magnitude. Below we will average over Equation 9 demonstrates this explicitfpi; = 0, whereas

the phonon degrees of freedom. ["oij = T. Of course, when the pigments interact with each
We further include a special molecule in the model on which other, energy is transferred, but this transfer is not described

an excitation can decay irreversibly. This special molecule can by [ alone. The operatdr’ acts at the density matrix level;

model the reaction center of the antenna complex or, as is donethat is, it acts oni(lj. In a matrix representatioff correspond

in section V, a singletsinglet annihilation site. This irreversible  to very large N2 x N2 matrix.

decay can be described in many ways. The most convenient Rather than calculating the time evolution of the density

way is to add a non-hermitian term to the Hamiltonian, matrix it turns out that it is better to calculate the Laplace

transform of the density matrix,

Ty
Hi = _|_|1D]1| (4) 00 _
2 @ =[5 & o) (10)

so that the total, non-hermitian Hamiltonian is given by ) ) )
We will be interested only in the case= 0. The formal

Hr=H+V+H, (5) solution of eq 8 is

with the phonon independent part p(2) = (z— iL + I") p(t=0)

H=H,+ H, (6) = G(9) p(t=0) (11)
The phonons give rise to loss of phase coherence. To describeWhere the Liouville operato is given by
this properly, we must use the reduced density maitix The —iLp(t) = —iHp(t) + ip(t)H* (12)
density matrix is the average of the statek;Cover the phonon
degrees of freedom, Equation 11 is the defining relation for the Green funcii&(@).

. To calculate G(z) an N2 x N2 matrix must be inverted.

p(t) = Tr{lﬁ}|1/”ki[|]51"'kiI ) However, the problem can be simplified by using the very

special form of the dephasing operator. We separate
Herey refers to the system part of the wave function, & )
the phonon part. There are two classes of matrix elements in I'=sTr-rT (13)
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whereT is a number operator identical to tHeintroduced hopping model the probabilitigd of finding molecule excited

above, and change in time according to
)il = T, i 14 d . .
We next introduce the so-called noninteracting Green function t N
Go, in which T is ignored: =WP, (20)
Gy2) = (z— iL + ! (15) where the Fster transfer rate®/F follow from a calculation

of the spectral overlap integral As the homogeneous width is
much larger than the interactiahand considering the high-
temperature limit, pigmeni has a Lorentzian absorption
spectrum centered arourg and full width at half-maximum

Gp can easily be calculated in terms of the eigenfunctigné!
and eigenvaluesay of H as

@i My of I'. The special pigment 1 is also lifetime broadened and has
G,(2)(it) = gw,kg apt|  (16) a full width at half-maximum off" + I'y. So the width of the
- z—iogtiog+T absorption line of pigmeritis given by
As H is non-hermitian, we must make a distinction between =T +Tw, (21)

left and right eigenfunctions. We now note tHatis a very
simple operator: it is diagonal in thgl] basis, and more
significantly, onlyN out of N* entries are nonzero. The only 2 _
nonzero matrix elements are between density matrices of the WO(i—j) = =11+ [—=— (22)
form |illl]. These matrix elements correspond to populations, T r

asil|p(t)|ifis the probability of finding moleculeexcited. For

The Faster transfer rates are given by

ij

the Green function we find with T ; = ([ + Ij)/2. As we are considering the high-
temperature cas&/F)(i—j) = WF)(j—i). To recover the 6

1 dependence of the Ester energy transfer rateye note that
C@Q=—"— for dipole—dipole interactions] O r=3. The rates eq 22 are
z—iL+IT'-T valid for I' > Jirrespective ofly. The Laplace transform of

_ 1 N 1 N 1 . Pi, Pi(2), is found as
z—iL+TI' z—iL+T z—-iL+T 1 _
1 R 1 ) 1 . P2 = —z — W(F)PJ(t_O) (23)

z—iL+Frz—iL+Frz—iL+F
where now only arN x N matrix must be inverted.
= Gy(2) + Gy(2 T(2) Gy(2) 17) We have just described the hopping picture. We now show
. ) . ) ) that identical results are obtained in the ladgedimit of the
This equation dezflnes 2the so-calletkmatrix T(z). While results of section Il. For notational clarity we will ignore the
formally T is anN® x N* matrix, it is clear from eq 17 that  gispribution of frequencies for this argument, and pyt= O.
only matrix elements between populations are nonzero. More- \15raover we ignore the irreversible decay and Put= 0. In

over, to findT only N2 out of N* matrix elements of5y(2) are the limit T > J we can findGo(z=0) perturbatively:
needed, as can be seen from eq 17. We find

1 1 1
P 1 Gy(z=0) =T~ SH I SHH G (24)
T(Z)_r+rz—iL+FF+“' r r
—f 1 (18) The second term does not couple population matrix elements
T 1— Go(z)f of the density matrix so that we do not require this term in the

calculation of . We thus find
where the inverse is the inverse ofldn< N matrix, the matrix . 1
elements of which are [1-G@I],y=— ITz[H’ H, .. Qoo
[1 = Go@I T = Oy = [Go@lunind  (19) 0y 2 23 2

nn' nny

Equation 18 represents an enormous improvement: we started N >
with anN? x N? problem, which is now simplified to aN x r T

N problem through the use of Green functions. Equations 17 — lW(x), (25)
and 18 are the starting point for the calculations in this paper. e

Note that the matrix elements ¥ are identical to the Fster

IIl. The Fo'rster Transfer Limit matrix elementdM®. The Green function becomes

For the case where the homogeneous line width is much larger 1 -1
than the interactionl{> J), the interaction can be treated as a G(z=0)= T + [W( 1 (26)
small perturbation and the energy transfer can be described as
hopping of excitation§. This we denote as the Eer limit as The first term on the right-hand side corresponds to a coherent

opposed to the exciton limit in which>T'. The general case contribution that in the time domain corresponds to an expo-
we will denote as the mixed model. The relation with the nentially decaying contribution, with a decay timd"1/We
solution derived in section Il will now be elucidated. In the will ignore it in the remainder of this paper. The second term
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is essentially eq 23. We thus have shown that the Green 80 (T
function approach of section Il is a generalization of tfieskar N=16, t,=10/T
model and reduces to the hopping picture wiier- J. For
the general case of unequail, the rates eq 22 are found from 60—
a slightly more complicated calculation.
IV. Solution for a Ring 3 or
In the previous section we considered the cBse J. For
typical situations occurring in photosynthesis this is not justified. 20
In the Introduction we pointed out that a very reasonable
estimate isJ/T' = 2. To study the consequences of this, we ohnl v

apply the Green function solution to a simple situation, that of
an antenna complex in the form of a ring. While this is a
reasonable assumption to make, we will also assume that th
reaction center is included in the ring as one of the molecules.

nearest neighbor interaction

Jij= 301 (27)
and we assume periodic boundary conditions sodhat= Iy 1

= J. We will assume that initially all molecules are excited

0.1

1
1T

10

eFigure 1. Dimensionless survival timg of a ring as a function of the

! ' - ! - ratio of nearest neighbor interactidrand homogeneous line widih

This model is taken for illustration purposes only, there is no n this figure the single site decay rafe = 14 is fairly small, [q =
known antenna structure with this geometry. We take the I'/10. While barely visible, three almost identical curves are presented.
The solid line is the exact result, the dashed line is the result of the
hopping model, and the dotted line is the analytical result, eq 29. Clearly
the analytical result is very accurate even wkien I'. The reason for

this is that whenever the interactidiis large so that the hopping picture

is not valid, the lifetime is determined by the reaction time (the first

term in eq 29).

with equal probability and without phase coherence between IR AL B AR
different molecules. Thep;(t=0) = J;/N. We are interested | N=16, t,=1/10T
in the average survival time of these excitations. There is no i
unique measure for the survival time. As is commonly done, 100 |- =
we take the zeroth moment pft): C ]
w S F ]
t.= ﬁ) dto, (1) = anyn(2=0) (28) - I |
n - m
For Faster transfer the survival time can be found using the 10k 4
methods of Pearlsteit}:'2 In the present context the result can . ]
i L vanul gl Ll
be written as o1 5 o
N2 —1 1/T
t,= Nt + 12_th (29) Figure 2. Survival timets in units of the single-site decay time as a
function of the ratio of nearest neighbor interactibend homogeneous
; ; _ ; ; line widthT". As in Figure 1, the solid line is the exact result, the dashed
with the decay timéq = 1/I's and the hopping time line is the result of the hopping model, and the dotted line is the
-1 analytical result, eq 29. Now the decay rate is unrealistically ldrge,
t, = (232IT) (30) = 10r'. Comparing the solid line to the dashed line, we find that only

for quite large interaction strengttisioes the hopping picture become
Incidentally, for the parameters givep = 5 fs, which is a inaccurate. Equation 29 is always inaccurate, as for this rapid decay
completely unrealistically short time, indicating that the energy rate the reaction center is lifetime broadened (eq 21) so that tisésfFo
transfer is not described by thé iSter rates. The first term in transfer rate to the_ reaction center is not equal to the other transfer

. o o . rates, W(1—2) = W(i—i+1).

eq 29 represents the average reaction time; the excitation will,
on average, spendNbof its time on molecule 1, from where it  molecule that models the reaction center is substantially lifetime
can disappear from the system. The second term describes théroadened so that eq 29 is always inaccurate. The hopping
time duration of energy transport. We have not found a closed picture gives somewhat inaccurate results only deep in the
result for the exciton model, but the calculation of the excitation exciton regime, whed > 5I". We conclude that a major reason
lifetime is simple on a computer: computing the inverse of eq for the success of the 'Fster approach in photosynthesis is that
18 is standard, and the excitation lifetime then follows from eq whenever the hopping model fails to describe the dynamics
28. There are three dimensionless parameters characterizingorrectly, the survival time is limited by the reaction rate, and
the problem: the number of pigmendd, the ratio of the the dynamics is irrelevant as far as the survival time is
interaction and the homogeneous line width, and the decay = concerned. This observation holds even stronger for a physical
rate ratiol'4/T". In the presentation of the numerical results we antenna system coupled to a reaction center as the reaction center
have kepN andI'y/T" constant. A typical result is presented in presumably is located in the middle of a ring of antenna
Figure 1. We find that the exact solution, the hopping approach, complexes so that the most important energy transfer process
and eq 29 produce virtually identical results for this case, for is the transfer to the reaction center, not the energy transfer
which the excitation lifetime is mainly determined by the within the antenn&? An excitation lifetime study is insensitive

reaction rate.
These conclusions are modified only when we consider

curves for the transport-limited situation in whi¢lhy = 10r.

to the effects of excitation coherence.
A situation that is of much more physical interest is when

unrealistic parameters. In Figure 2 we have presented similarinhomogeneous broadening is present. This is incorporated by

taking various individual molecule transition frequencies

For this value of the single-site annihilation rate, the special Because of the inhomogeneous broadening, the dynamics of
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100 — 7 Due to the reflecting boundary conditions, the prefactor to the
; transport term is somewhat different from that found in eq 29.
For small rings the difference can be significant. We have not
studied the effect of disorder on eq 31, as this is complicated
by the fact that then not only the relative distance of the two
excitations is important but also the location of the two
excitations on the underlying structure is important.

While singlet-singlet annihilation is not very sensitive to the
nature of the energy transfer mechanism, we now show that
the depolarization time is sensitive #0". For a consistent
interpretation the issue of exciton coherence cannot be ignored.
ol L i L The model studied in the previous section does not quite apply

A/r to LH1. We now suggest possible interpretations for these

experiments within the context of the discussion of coherent
Figure 3. Dimensionless survival timg as a function of the ratio of  yersus incoherent energy transport. The extension of the theory
inhomogeneous widt and homogeneous width for a ring of 16 to the depolarization experiment is simple. As there is no

pigments wherd'y = I'". Dotted line: I' = 10J. For thisTI there is no . ) _ .
difference between the exciton calculation and the hopping result reaction site, we pufq = 0. The pulse that is used to create

(indicated by-+). Solid line: T' = J, exciton calculation. Dashed line:  the initial population of excitations is polarized. The direction
I' = J, hopping approximation. The hopping picture is slightly of the transition dipoles of the pigments varies along the ring,
inaccurate wheil = J, as then coherent effects such as superexchange so an anisotropic distribution of excitation is created. The
are not taken into account. excitation density is assumed to be given by

to/ty

the excitation is modified. In Figure 3 we present the result of 2am 1
simulations where the; are randomly drawn from a Gaussian Pn(t=0) = po + »Op[COS'2 (W) 5 (32)
distribution with standard deviatio. When inhomogeneous

broadening is significardnd Jis comparable td', the hopping  \yherep, describes the amount of anisotropy. As the transition
picture becomes somewhat inaccurate. This is due to the factgjpoles are oriented the fluorescence is polarized. The distribu-
that hopping does not take into account coherent effects suchtion will relax toward an isotropic distribution. Due to the
as superexchange. Yet, as above, the difference between th@jentation of the ring, the fluorescence will not decay to zero
exciton calculation and the hopping calculation is only minor. gnd a small residual anisotropic signal will remain. The part
o . ) of the polarization that is decaying because of the energy transfer

V. Application to Light-Harvesting Complexes is proportional to

Recently the structure of the light-harvesting complex 2 (LH2)
of Rhodopseudomonas acidophilas solved. It was found P(t) O Z[co§(2nn/N) — sinf(2zn/N)] pan®  (33)
that the B850 absorption is due to a ring of 18 pigments. n
Assuming that the fundamental spectroscopic unit is a dimer,
we can relate this LH2 complex to our model for a ring\bf Similar to before, we can define a measure for the depolarization
9 dimers. Recently femtosecond experiments on LH1 of time as the zeroth moment B{t). This can be found in terms
Rhodobacter sphaeroidesth the reaction center removed were  Of the Green function of section Il. Summing eq 33 and a
performed® While the structure of the LH1 complex is not ~ Similar contribution with a sine, we find a measure for the
known, it is assumed that it is a ring bf= 16 dimers. Other  depolarization time:
numbers are also assumed, for instance in ref 13 an interpretation 1 tor
of experimental results is presented assuniing 8. _ = e

The two studies of ref 13 were fluorescence depolarization faep = Z cos( N (n—n ))G””'”'“'(Zzo) (34)
and singlet-singlet annihilation. The theoretical description of
the singlet-singlet annihilation process is very similar to that  For a ring without disorder we can find an analytical result
of excitation decay described in the previous section. The mostfor the depolarization time. As we have plit = 0, the
Signiﬁcant difference is that S|ng|'eB|ng|et annihilation Sup- eigenfunctions oH are p|ane waves. Henm can be obtained

posedly te}kes place_when.the two excit_ations are next to eaphin closed form'® As the ring is isotropicGo, only depends
other. This can eaSlIy be |n00rp0rated in the model studied in onn — n' so that alsol can be calculated. We f|na||y find
this paper. Firstly the index now denotes the relative distance

nn

of the two excitations. Secondly we add the terid q| NIIN|/2 1 1

to the effective Hamiltonian of eq 1. The third modification is tiep= fm- (35)

that we have to replace the periodic boundary condition by a

reflecting boundary condition as the two excitations cannot cross yith

each other. Effectively this amounts to puttihgy = Jy1 = O.

The singlet-singlet lifetime can then be calculated using the 1N 2

techniques of refs 11 and 12. We find G,T = _Z (36)
N&E? + 1652 sir(27/N) sin’(27k/N)

N L (N-DN=2)t

= Etd + 12 2 (31) For largeN the sum can be replaced by an integral, resulting in
Comparing this with eq 29, we note that the reaction time (the cT=[1+ 43_. [2m\]3 12 37
first term on the right-hand side) is halved, as there are now 0 _{ st( N) } @37)

two reaction sites. Also the hopping tinigis halved, as we
are only interested in the relative distance of the two excitations. For small interactiord the depolarization time becomes
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Figure 4. _Depolarization timegep muItip_Iied by the dephasing rafe Figure 5. Depolarization time; divided by the Fester hopping time
as a function of the scaled nearest neighbor couplififor a ring of tn = I'/2J as a function of the ratio of disordex divided by the
N = 16 pigments. Solid line: exact result. Dashed linérster limit. homogeneous line width. In this figure results for a ring dfl = 16

The hopping resultgel” = T'%4J? sir¥(27/N) holds forJ < T. The pigments are presented afid= J. The dashed curve is the result of

hopping picture fails whettye, = 1/T". The physical reason for this is  the diffusion approximation, and the solid curve the exact exciton result.

that in order to have a depolarization, there must be decay, and theDisorder reduces the effect of coherent exciton dynamics.

decay rate is essentially. In contrast to the fluorescence lifetime, the

depolarization is sensitive to the excitonic nature of the energy transport. be used to provide a consistent interpretation of the spectroscopic

data. Nevertheless, as soon as the interaction strength becomes

— b (38) comparable to the homogeneous line width, coherent effects

4 sirf(27/N) cannot be ignored.

In discussing the exciton dynamics it would be useful to have
as was found before by ref 13. The Signiﬁcance of eq 37 is @ number that indicates the average “size” of an excitation, or
that it explicitly shows when a crossover behavior from hopping rather, the number of coherent pigments. Here we propose a
dynamics to exciton dynamics is to be expected. For reasonableSimple extension of the concepts used in the theory of
estimates of the parameters appropriate for LH1 we find that localization!*!> We define the generalized average participation
we are indeed in the crossover regime and eq 38 is inaccuratefatio:

In Figure 4 we graphed prediction eq 35. For a ring with a ©
significant amount of disorder the effect of coherence is reduced. R= erii,ii(Zzo) (39)
This is illustrated in Figure 5. :

In ref 13 the fluorescence depolarization was found to decay 1 is the time-integrated probability that an excitation that
on a time scale on the order of 200 fs. They interpreted their garteq at sité can be found at the same site, weighted by the
experiments assuming a ring df= 16 pigments, an interaction dephasing timé*15 In terms of the eigenfunctiongyCwith

energyJ = 250 cn1?, a homogeneous broadeninglof= 250 energieswy, the generalized participation ratio is given by
cm%, and an inhomogeneous broadeningfof= 250 cntl.

Using the theory described here, we obtiig = 60 fs, which T S

is much too fast. If we assume thBtand A are correct, we R= —;j(‘) dt & e | ]y, (1P| Dlap [
find thattyep = 200 fs ford = 80 cntX. The singlet-singlet Nifr

annihilation time of LH1 ofR. sphaeroidesvas found to be 1

about 1 ps. However using the given parameters with interac- = —%l[ﬂlwkﬂlz
tion energyd = 80 cnt!, we find a singlet-singlet annihilation Ni%x

rate ofts > 3 ps, which is incompatible with experimental

results. We have not found a set of parameters that offers aln the limit of zero homogeneous line widih— 0, Rtends to
consistent interpretation of the experimental results of ref 13. the usual participation ratio:

tdep

2

- Sy d* (40)
I+ (0 — wy)

. . 1

VI. Discussion R(C=0) = NZ | [[”wk[]]“ (41)

In this paper we have shown how the Green function .
formalism can be applied to photosynthetic antenna systems.yyhich is valid when there are no degenerate states. The inverse
We have shown that the lifetime of an excitation does not papiicipation ratio,
depend sensitively on the excitonicness of the energy transfer.
Only for primarily inhomogeneously broadened antenna systems N = 1R (42)
(large disorder) can differences between coherent and hopping
dynamics be found. The situation is almost the opposite for is universally taken as the number of coherent moleciiés!é
the depolarization time. The predicted depolarization time is valid when there is no homogeneous broadening.
dependent on the nature of the exciton dynamics. Whenever In the Faster limit of very largel’ the exciton dynamics is
the ratio of interaction strength over homogeneous line width incoherent, which can also be interpreted as a hopping excitation.
JIT is on the order of unity, significant deviations from hopping In this case only one molecule is excited at the time. A very
dynamics are predicted. A reasonable estimafflis= 2; this attractive property of the generalized participation raids
will be significant in the interpretation of experimental results. that it does just that; it can easily be shown that in the limit of
As far as LH1 is concerned, other interpretations of the I' — oo, R=1. The inverse generalized participation ratiR 1/
experimental results are possible. The point of view of ref 13 is a good measure for the number of coherent molecules. A
is that the finite temperature combined with static disorder can desirable property oR is that it is a physical quantity, as it is
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N=16 |

Ncoh

1
A/3

Figure 6. Inverse generalized participation ratioRL& Neoh as a
function of disordeA divided by the interaction energyfor a linear
periodic chain ofN = 16 molecules. Solid lineI" = J. Dashed line:

" = J/10. Dotted line:T' = 10J. For large homogeneous line widths
the number of coherent molecules is 1, irrespective of the amount of
disorder. For small homogeneous line widths the number of coherent
molecules decreases with increasing disorder, which is the onset of
the usual localization behavior.
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Figure 7. Inverse generalized participation ratioRl~ Neon as a
function of the interaction energydivided by the homogeneous line
width T for a linear periodic chain without disorder. Dashed liré:

= 4. Solid line: N = 10. Dotted line: N = 30. The dot-dashed line
represents the infinite size limit, eq 44. For a realistic valué &f2I"

only about four molecules are coherent, even for large complexes. The
number of coherent molecules does not tendll o the exciton limit

(J large) because of the degeneracy of the ring.

a certain moment of the Green function. This means that it is

independent of the basis set used, for example. In Figure 6 we
present results for the number of coherent molecules as a

function of the amount of inhomogeneous broadening for
various amounts of homogeneous broadening. We find\that

J. Phys. Chem., Vol. 100, No. 34, 19964409

function is used to obtain the dot-dashed line in Figure 7. In
the large interaction limit we obtain

21
Neon =1 log(J/T) (45)
For LH1 Bradforthet al. found that] = T" andA =T, and we
assume thall = 16. For these values we find thid{on = 2.03.
Without disorder we findNcon = 2.07, and ignoring the phonons
givesNgon = 4.85. We conclude that for LH1 &. sphaeroides
the excitation is delocalized over about two dimers. Moreover,
the localization is due to the phonons and not due to the static
disorder.

It remains to be seen to what extent the average number of
coherent molecules corresponds to an experimentally observable
guantity. The number presented in this paper follows from an
admittedly indirect approach: a theoretical calculation based
on parameters that are obtained by combining the presumed
structure of LH1 with the experimental results for the fluores-
cence depolarization. Recerflypump—probe experiments on
J-aggregates were related to an exciton size. However, the
theory used in ref 17 did not take into account the homogeneous
dephasing caused by phonons, so that it is unlikely that it can
be applied to photosynthetic systems. The calculation of pump
probe spectra (or photon echo) from an approach as used in
this paper is the route to go. It is also quite complicated as, at
least in the straightforward approach, the density matrix becomes
an N2 x N? matrix.
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