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Coherent Vortex Extraction in 3D Turbulent Flows Using Orthogonal Wavelets
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This Letter presents a wavelet technique for extracting coherent vortices from three-dimensional tur-
bulent flows, which is applied to a homogeneous isotropic turbulent flow at resolution N � 2563. The
coherent flow is reconstructed from only 3%N wavelet coefficients that retain the vortex tubes, and 98.9%
of the energy with the same k25�3 spectrum as the total flow. In contrast, the remaining 97%N wavelet
coefficients correspond to the incoherent flow which is structureless, decorrelated, and whose effect can
therefore be modeled statistically.
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In this Letter we propose a wavelet method to split tur-
bulent flows into organized and random components. It
follows the prescription given by Hugh Dryden half a cen-
tury ago when he wrote [1] “The rapidly developing theory
of random functions may possibly form the mathematical
framework of an improved theory of turbulence. However,
it is necessary to separate the random processes from the
nonrandom processes. It is not yet fully clear what the
random elements are in turbulent flows.” We conjecture
that turbulent flows can be described as a superposition of
metastable coherent vortices that are not in statistical equi-
librium. Their nonlinear interactions are responsible for
the chaotic behavior of turbulent flows and generate a ran-
dom incoherent flow, which then relaxes towards statistical
equilibrium and is dissipated at the smallest scales. This
leads us to define a new method, called coherent vortex
simulation (CVS) [2,3], which splits each flow realization
into coherent and random contributions and computes the
time evolution of only the former, while modeling the ef-
fect of the latter.

Such a separation is not possible in the Fourier rep-
resentation, as turbulent flows have no spectral gap that
allows decoupling out-of-equilibrium large-scale motions
and well-thermalized small-scale motions. This explains
why the concepts which have been derived by analogy with
the kinetic theory of gases (e.g., mixing length, turbulent
viscosity, homogenization, renormalization, subgrid scale
parametrization) have encountered problems in modeling
turbulent flows. We conjecture that the wavelet represen-
tation, formulated in terms of both space and scale [4,5],
allows such a decoupling between organized motions out
of statistical equilibrium and random motions in statistical
equilibrium. Both components are multiscale [6] but have
different probability distributions and correlations.

To perform the CVS decomposition we use vorticity
rather than velocity because it is more appropriate for
tracking the nonlinear dynamics of turbulent flows, in any
space dimension, since vorticity is independent of the
inertial frame (Galilean invariance) and has strong topo-
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logical properties expressed in Helmholtz’ and Kelvin’s
theorems. Moreover, vorticity compresses better than ve-
locity in a wavelet basis, because it is more localized
in space.

The principle of the CVS method, as we have already
demonstrated for two-dimensional flows [2], is to split the
vorticity field into two orthogonal fields. After projecting
the vorticity field onto an orthogonal wavelet basis, the
coherent vorticity is reconstructed from the wavelet coeffi-
cients larger than a given threshold and the incoherent vor-
ticity from the remaining wavelet coefficients. Finally, the
coherent and incoherent velocities are computed from the
coherent and incoherent vorticities using Biot-Savart law.
The threshold value depends on the variance of the total
field, i.e., the total enstrophy, and on its resolution, with-
out any adjustable parameter. This choice is based on theo-
rems [7] proving optimality of the wavelet representation
to denoise signals having inhomogeneous regularity, such
as the intermittent fields encountered in turbulence. The
CVS decomposition gives a constructive definition of the
coherent vortices and of the incoherent background flow.

In this Letter we generalize the CVS decomposition
to three-dimensional turbulent flows. Each of the three
components vk of vorticity is projected onto an orthogo-
nal wavelet basis cL, constituting a MRA (multireso-
lution analysis) [4,5], where L � �j, �i, m� indexes the
scale j, the three space coordinates �i, and the seven spatial
directions m. We thus obtain the wavelet coefficients ṽi �
�v, cL�, where �. , .� is the inner product. We then com-
pute the modulus of the vorticity wavelet coefficients
jṽj and determine the index set LC addressing the
coherent wavelet coefficients �ṽk�C whose absolute value
is larger than the threshold jṽjT � � 4

3Z logN�1�2, where
Z � 1

2 �v, v� is the total enstrophy and N the resolution.
The complementary index set LI � LnLC addresses
the incoherent wavelet coefficients �ṽk�I . Subsequently,
we reconstruct by inverse wavelet transform each com-
ponent of the coherent and incoherent vorticity fields
and obtain the decomposition of the total vorticity into
© 2001 The American Physical Society 054501-1
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�v � �vC 1 �vI . Note that the wavelet transform is
orthogonal, which yields the decomposition of the total
enstrophy into Z � ZC 1 ZI . Finally, the Biot-Savart law
�V � = 3 �=22 �v� is used to compute the corresponding
coherent and incoherent velocity fields to obtain �V �
�VC 1 �VI . Moreover, since wavelets are almost eigen-
functions of the Biot-Savart kernel, the total energy is
also split into E � EC 1 EI 1 e with E �

1
2 � �V , �V � and

e # 0.5%E.
To illustrate CVS filtering, we consider a statistically

stationary three-dimensional homogeneous isotropic
turbulent flow, forced at large scale, with a microscale
Reynolds number Rl � 150. The initial conditions are
random and the boundary conditions are periodic. This
flow was computed by Vincent and Meneguzzi [8] using
a pseudospectral code at resolution 2403, upsampled to
N � 2563. Such a fully developed turbulent flow contains
organized vortex tubes (also called vortex filaments or
“worms”), observed in both numerical [8,9] and laboratory
experiments [10], which are advected in a homogeneous
and isotropic fashion by the velocity field they generate.

In applying the CVS extraction algorithm with Coif-
man 12 wavelets [4,5], we find that the coherent flow is
represented by only 3%N wavelet coefficients, although
it retains 98.9% of the energy and 75.4% of the enstro-
phy. In contrast, the incoherent flow, which corresponds to
the 97%N remaining wavelet coefficients, contains only
0.6% of the energy and 24.6% of the enstrophy. In Fig. 1
we observe that both the coherent and incoherent fields
are multiscale, which confirms previous works [2,4,6,8].
The energy spectrum for the coherent flow has the same
k25�3 scaling as the total flow, throughout the whole in-
ertial range. The fall off observed in the dissipative range
corresponds to some coherent energy which has been trans-
ferred into incoherent energy before being dissipated. This
is confirmed by the fact that there is an equipartition of in-
coherent energy up to the dissipative scales, since its spec-
trum scales as k2 (white noise in 3D) followed by a decay

FIG. 1. Energy spectrum E�k�.
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due to the dissipation of incoherent energy at the smallest
scales.

We now compare the total, coherent, and incoherent vor-
ticity fields in physical space, after zooming into a 643

subcube to observe the small scale structures. Figures 2,
3, and 4 show three isosurfaces of the modulus of vor-
ticity j �vj for each of the three fields. We find the same
entangled vortex tubes in the coherent vorticity (Fig. 3)
as in the total vorticity (Fig. 2), while the incoherent vor-
ticity is structureless (Fig. 4). The decomposition of the
turbulent flow into an organized coherent contribution and
a random incoherent contribution is confirmed by looking
at the PDFs (probability distribution functions) of velocity
and vorticity. In Fig. 5 we observe that the coherent veloc-
ity has exactly the same PDF as the total velocity, and that
the PDF of the incoherent velocity PDF is Gaussian with
a variance ten times smaller than that of the total veloc-
ity. In Fig. 6 the PDF of the coherent vorticity exhibits the
same stretched exponential behavior as the total vorticity,
while the PDF of the incoherent vorticity is exponential
with a much smaller variance. Note that we have plotted
only one component of velocity and of vorticity, since we
have checked that, for both fields, the three components
have the same PDF.

The CVS extraction algorithm is based on a wavelet de-
noising method without any a priori assumption as to the
shape of the coherent vortices. We now check a poste-
riori that the coherent vorticity field indeed contains the
vortex tubes observed in fully developed turbulent flows
[8–10]. The vortex tubes are local quasisteady solutions
of Euler equations, which occur in regions where the non-
linearity is depleted. In 2D turbulent flows these regions

FIG. 2. Total vorticity (the gray surfaces, from light to dark,
correspond to j �vj � 3s, 4s, and 5s, with s �

p
2Z ).
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FIG. 3. Coherent vorticity (the gray surfaces, from light to
dark, correspond to j �vj � 3s, 4s, and 5s).

are characterized by a functional relationship between vor-
ticity and stream function which is used to identify the
coherent vortices [2]. However, such a precise criterion to
characterize them does not yet exist for 3D turbulent flows,
since their dynamics is more complicated due to vortex
stretching. If we rewrite Euler equations in terms of the
Lamb vector �l � �V 3 �v, we obtain ≠t �v 1 = 3 �l � 0
and = ? �V � 0. Thus, one possibility for the nonlinearity
to be depleted is when �V tends to align with �v. This cor-
responds to the local maximization of the relative helicity

FIG. 4. Incoherent vorticity (the gray surfaces, from light to
dark, correspond to j �vj � 3�2s, 2s, and 5�2s).
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FIG. 5. PDF of velocity.

h �
�V ? �v

j �V jj �vj
and is called local Beltramization. Moreover, it

has been observed in both laboratory and numerical experi-
ments that vortex tubes maximize helicity [11,12], there-
fore we will use the relative helicity h as an indication of
their presence. In Fig. 7 we plot the PDF of h for the to-
tal, coherent, and incoherent flows, and we observe that
the coherent flow exhibits the same distribution as the total
flow, with two maxima at h � 11 and 21 corresponding
to alignment and antialignment between �v and �V (note that
two 3D random fields would have a flat PDF of h). The fact
that the coherent flow presents the same tendency towards
local Beltramization as the total flow is another confirma-
tion that the CVS filtering has extracted the vortex tubes.
In contrast, the PDF of h for the incoherent flow is more
evenly distributed with a maximum at h � 0, which sug-
gests a tendency towards two-dimensionalization. These
observations support Moffatt’s conjecture that “blobs of
maximal helicity may be interpreted as coherent structures,
separated by regular surfaces on which vortex sheets, the
site of strong dissipation, may be located” [13].

In conclusion, we have shown that the coherent
flow contains the vortex tubes and has the same k25�3
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FIG. 6. PDF of vorticity.
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FIG. 7. PDF of relative helicity.

power-law behavior as the total flow. This leads us to
propose a new scenario to explain the turbulent cascade.
The transfer of energy between the various scales does
not result from eddy fragmentation, as in the classical
Richardson’s scenario. It is rather due to nonlinear vortex
interactions, e.g., stretching and straining, which transfer
coherent energy throughout the whole inertial range, while
at the same time producing incoherent energy, which is
present at all inertial scales, and is dissipated only at the
smallest scales.

CVS is based on the hypothesis that there is no need to
compute the evolution of the incoherent degrees of free-
dom, since they have reached statistical equilibrium. Evi-
dence for this has been given in this Letter by the following
observations: the incoherent flow is structureless, decor-
related (since it presents an equipartition energy spectrum)
and its velocity PDF is Gaussian. Thus, the effect of the
incoherent degrees of freedom on the coherent ones can be
modeled statistically. In contrast, the coherent degrees of
freedom are out of statistical equilibrium, since they cor-
respond to long-range correlated vortex tubes in nonlinear
interaction. Therefore their evolution should be computed
in detail by tracking their displacements and the produc-
tion of strong gradients.
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The results presented in this Letter give us incentives
to extend the CVS method to compute three-dimensional
Navier-Stokes equations in an adaptive wavelet basis,
remapped at each time step to track the nonlinear vortex
dynamics in both space and scale, as we have done for two-
dimensional turbulent flows [2,3]. The advantage of the
CVS method is to combine an Eulerian representation
of the solution in a wavelet basis with a Lagrangian
strategy to adapt the basis in space and scale, to track
the formation, advection, and dissipation of vortex tubes
whatever their scales.
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