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The coherent vortex simulation~CVS! decomposes each realization of a turbulent flow into two
orthogonal components: An organized coherent flow and a random incoherent flow. They both
contribute to all scales in the inertial range, but exhibit different statistical behaviors. The CVS
decomposition is based on the nonlinear filtering of the vorticity field, projected onto an
orthonormal wavelet basis made of compactly supported functions, and the computation of the
induced velocity field using Biot–Savart’s relation. We apply it to a three-dimensional homogeneous
isotropic turbulent flow with a Taylor microscale Reynolds numberRl5168, computed by direct
numerical simulation at resolutionN52563. Only 2.9%N wavelet modes correspond to the
coherent flow made of vortex tubes, which contribute 99% of energy and 79% of enstrophy, and
exhibit the samek25/3 energy spectrum as the total flow. The remaining 97.1%N wavelet modes
correspond to a incoherent random flow which is structureless, has an equipartition energy
spectrum, and a Gaussian velocity probability distribution function~PDF!. For the same flow and
the same compression rate, the proper orthogonal decomposition~POD!, which in this statistically
homogeneous case degenerates into the Fourier basis, decomposes each flow realization into large
scale and small scale flows, in a way similar to large eddy simulation~LES! filtering. It is shown that
the large scale flow thus obtained does not extract the vortex tubes equally well as the coherent flow
resulting from the CVS decomposition. Moreover, the small scale flow still contains coherent
structures, and its velocity PDF is stretched exponential, while the incoherent flow is structureless,
decorrelated, and its velocity PDF is Gaussian. Thus, modeling the effect of the incoherent flow
discarded by CVS-wavelet shall be easier than modeling the effect of the small scale flow discarded
by POD-Fourier or LES. ©2003 American Institute of Physics.@DOI: 10.1063/1.1599857#
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I. INTRODUCTION

Since the work presented in this paper has been
formed at NASA-Ames during the CTR~Center for Turbu-
lence Research! Summer Program 2000,1 we recall the com-
ments on turbulence research made in 1948 by Hugh
Dryden, the first director of NACA~later NASA!.

Dryden begins his paper on ‘‘Recent advances in
mechanics of boundary layer flow’’2 by stating: ‘‘There have
been no notable advances in the theory of fully develo
turbulent motion during the last decade.... In the peri
1934–1938 Taylor developed his statistical theory of turb
lence, which was so fruitful in treating the problem of isotr
pic turbulence. Von Ka´rmán extended the theory, clothed it i
more elegant mathematical form, and attempted, with inco

a!Author to whom correspondence should be addressed. Telephone:133 1
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plete success, to treat the problem of shear flow.... At
Fifth International Congress of Applied Mechanics in 1938
Tollmien and Prandtl suggested that the turbulent fluctu
tions might consist of two components, one derivable from
harmonic function and the other satisfying an equation of
heat conduction type, i.e., a nondiffusive and a diffusive co
ponent, or viscosity independent and viscosity depend
type.’’

Tollmien and Prandtl’s suggestion to split the turbule
fluctuations into non-diffusive and diffusive components
very similar to the concept behind coherent vortex simu
tion ~CVS! which we introduced in Refs. 3–5. CVS track
the nonlinear dynamics~the non-diffusive component! using
an adaptive wavelet basis,6–8 which captures the coheren
vortices at all scales, and discards the incoherent backgro
flow ~the diffusive component! which has reached a statist
cal equilibrium characterized by a Gaussian velocity pro
6 © 2003 American Institute of Physics
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2887Phys. Fluids, Vol. 15, No. 10, October 2003 Coherent vortex extraction in 3D homogeneous turbulence
ability distribution function~PDF! and an energy equiparti
tion spectrum.3,5,9

Later, Dryden adds: ‘‘The mixing length concept seem
wholly inadequate..., the ‘‘mean free path,’’ mixing length,
scale of the turbulent processes is large compared with
thickness of the boundary layer. Considerable masses of
move as more or less coherent units. The process canno
smoothed by averaging over a small volume because it is
possible to choose dimensions small compared with a si
fluid element. The mixing length idea, that the turbulent fl
tuations and the turbulent shear stress are directly related
the mean speed at a point and its derivatives at that po
must be abandoned. Shall the flow then be regarded a
mean flow that merely transports and distorts large edd
superposed on the flow, these eddies being of varying
and intensity?’’

This comment of Dryden, which assumes that turbul
flows are composed of coherent units of varying sizes
intensities which cannot be smoothed by averaging, supp
our proposal of using the wavelet representation to st
turbulent flows.10 We have shown with the continuous wav
let transform that coherent vortices are multiscale edd
whose activity covers the entire inertial range and indu
the intermittency of turbulent flows.11,12 We confirmed this
with the orthogonal wavelet transform,3 and demonstrated
that coherent vortex tubes are responsible for thek25/3 en-
ergy spectrum of 3D turbulent flows.9,13

Finally Dryden concludes: ‘‘The rapidly developing
theory of random functions14 may possibly form the math
ematical framework of an improved theory of turbulenc
However it is necessary to separate the random proce
from the non-random processes. It is not yet fully clear w
the random elements are in turbulent flows. The experime
results described suggest that the ideas of Tollmien
Prandtl, that the measured fluctuations include both rand
and non-random elements, are correct, but as yet there is
known procedure either experimental or theoretical for se
rating them.’’

The CVS decomposition proposes such a procedure.
developed it over the last ten years1,3,5,9,10,15in order to sepa-
rate the turbulent fluctuations into organized and rand
components. In 199215 we found that the nonlinear dynamic
of two-dimensional turbulent flows, and therefore, their p
dictability, is better preserved by compressing the flow us
a wavelet packet basis rather than a Fourier basis. In 1916

we showed that a wavelet packet basis is also better su
for this than adapted local cosine bases, which correspon
wave packets. In 19993 we selected the wavelet basis as t
optimal basis for the CVS decomposition of turbulent flow
Similarly to the wavelet methods developed for sign
denoising,17,18 the CVS decomposition is based on a nonl
ear filtering of the vorticity field projected onto an orthono
mal wavelet basis made of compactly supported functio
The corresponding organized and random components o
velocity field are reconstructed using Biot–Savart’s relati

We apply the CVS decomposition to a 3D statistica
stationary homogeneous isotropic turbulent flow with a T
lor microscale Reynolds numberRl5168, which has been
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computed by direct numerical simulation~DNS! at resolution
N52563. The choice of a statistically stationary homog
neous isotropic flow is made on purpose, to demonstrate
efficiency of the CVS simulation in the worst possible ca
for it. Indeed, the wavelet representation used by CVS
better suited to treat nonstationary or inhomogeneous fl
rather than stationary or homogeneous flows.13,19

In Ref. 20 another wavelet method, based on a tw
dimensional cut of the velocity field, has been proposed
decompose experimental data of a turbulent mixing la
into coherent structures and background fluctuations. In R
21 different techniques for extracting coherent structures
experimental data of turbulent shear flows have been
viewed, including proper orthogonal decomposition~POD!
and wavelet methods. In Ref. 13 we have applied the C
decomposition to DNS data of a 3D time developing turb
lent mixing layer and in Ref. 19 of a 3D turbulent jet in
stratified flow modeling the atmospheric tropopause.

In this paper we compare the coherent vortices extrac
by the CVS decomposition with those obtained after filteri
the vorticity field using the POD for the same number
retained modes. Since the flow studied here is statistic
invariant by translation and rotation, in this case the PO
degenerates into the Fourier basis, where the modes
sorted in increasing order of the wavenumber. Such a ho
geneous isotropic flow is the most difficult case to treat
both POD and CVS, but it is the most generic turbulent flo
one can compute at large Reynolds numbers without anyad
hoc turbulence model.

II. CVS DECOMPOSITION

A. Wavelet projection

We consider a 3D vorticity fieldv~x!5¹3V~x!, com-
puted with resolutionN523J, N being the number of grid
points andJ the number of octaves in each direction. T
three componentsvn(x), with n51, 2, 3, are developed into
an orthonormal wavelet series, from the largest scalel max

520 and to the smallest scalel min522J11, using a 3D multi-
resolution analysis~MRA!10,22

vn~x!5@v̄0,0,0#nf0,0,0~x!

1 (
j 50

J21

(
i x50

2 j 21

(
i y50

2 j 21

(
i z50

2 j 21

(
m51

7

@ṽ j ,i x ,i y ,i z
m #nc j ,i x ,i y ,i z

m ~x!.

The 3D orthogonal scaling functions are

f j ,i xi y ,i z
~x!5f j ,i x

~x!f j ,i y
~y!f j ,i z

~z!,

and the corresponding 3D orthogonal wavelets are
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 1. Coiflet 12 wavelet: The scaling functionf ~top! and the corresponding waveletc ~bottom!, in physical space~left! and their corresponding moduli
uf̂u and uĉu, in Fourier space~right!.
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c j ,i x ,i y ,i z
m ~x!51

c j ,i x
~x!f j ,i y

~y!f j ,i z
~z!; m51,

f j ,i x
~x!c j ,i y

~y!f j ,i z
~z!; m52,

f j ,i x
~x!f j ,i y

~y!c j ,i z
~z!; m53,

c j ,i x
~x!f j ,i y

~y!c j ,i z
~z!; m54,

c j ,i x
~x!c j ,i y

~y!f j ,i z
~z!; m55,

f j ,i x
~x!c j ,i y

~y!c j ,i z
~z!; m56,

c j ,i x
~x!c j ,i y

~y!c j ,i z
~z!; m57.

Heref j ,i is a one-dimensional scaling function andc j ,i the
corresponding one-dimensional wavelet,j the index for the
scale discretization,i x , i y , i z the indices for the space dis
cretization andm the index for the seven discrete directio
in 3D space. Due to orthogonality, the scaling coefficie
are given by@v̄0,0,0#n5^vn ,f0,0,0& and the wavelet coeffi-
cients by@ṽ j ,i x ,i y ,i z

m #n5^vn ,c j ,i x ,i y ,i z
m &, where^•,•& denotes

the L2-inner product.
We have chosen Coifman 12 wavelets,22 because they

are almost symmetric, which is not the case for Daubech
wavelets. They are compactly supported functions~Fig. 1,
bottom! with M54 vanishing moments, which are comput
using a quadrature mirror filter of length 3M512. The cor-
responding scaling function~Fig. 1, top! has alsoM vanish-
ing moments~except the zeroth-order moment!.
Downloaded 02 Oct 2003 to 129.199.72.109. Redistribution subject to A
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The CVS decomposition algorithm consists of three f
wavelet transforms, one for each vorticity component,
thresholding of the wavelet coefficients, and three inve
fast wavelet transforms to reconstruct the coherent vortic
The incoherent vorticity is then obtained by substracting
coherent from the total vorticity, as the wavelet transform
linear. The computational cost of the fast wavelet transfo
is of orderCN, whereN is the resolution, andC is propor-
tional to the filter length 3M , with M54 for the Coifman 12
wavelet used here. Therefore, the total number of operat
is O(N), while it is O(N log2 N) for the fast Fourier trans-
form ~FFT!.

B. Nonlinear thresholding

The vorticity field is decomposed into coherent vortici
vC(x) and incoherent vorticityvI(x) by projecting its three
components onto an orthonormal wavelet basis and appl
nonlinear thresholding to the wavelet coefficients. T
choice of the threshold is based on theorems17,18 proving
optimality of the wavelet representation for denoising s
nals. This optimality is in the sense that wavelet-based e
mators minimize the maximumL2-error for inhomogeneous
regular functions perturbed by Gaussian white noise.
have chosen the variance of the total vorticity instead of
variance of the noise, which gives the thresholdT
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



2889Phys. Fluids, Vol. 15, No. 10, October 2003 Coherent vortex extraction in 3D homogeneous turbulence

Downloaded 02 O
TABLE I. Statistical properties of the vorticity and velocity fields for CVS-wavelet and POD-Fourier.

Decomposition

Quantity total

CVS-wavelet POD-Fourier

coherent–incoherent large scale–small scale

% of coefficients 100 2.9 97.1 2.9 97.1
Enstrophy 4895 3872 1023 3455 1440
% of enstrophy 100 79.1 20.9 70.6 29.4
Vorticity skewness 20.048 20.056 0.000 20.041 20.002
Vorticity flatness 8.7 9.6 4.8 6.1 9.6
Energy 43.0 42.6 0.2 42.7 0.3
% of energy 100 99.1 0.47 99.3 0.7
Velocity skewness 0.051 0.052 0.000 0.053 0.003
Velocity flatness 2.9 2.9 3.4 2.8 6.8
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3Z logN)1/2, whereZ5 1

2^v,v& is the total enstrophy and
N is the resolution proportional toRl . Notice that this
threshold does not require any adjustable parameter.

We then compute the modulus of the wavelet coe
cients

uṽj ,i x ,i y ,i z
m u5S (

n51

3

@ṽ j ,i x ,i y ,i z
m #n

2D 1/2

. ~1!

The coherent vorticity is then reconstructed from t
wavelet coefficients whose modulus is larger than the thre
old T, while the incoherent vorticity is reconstructed fro
the remaining wavelet coefficients. The two fields thus o
tained,vC and vI , are orthogonal, which ensures the d
composition of the total enstrophy intoZ5ZC1ZI .

Biot–Savart’s relationV5¹3(¹22v) is used to recon-
struct the coherent and incoherent velocities,VC(x) and
VI(x), from the corresponding coherent and incoherent v
ticities. Since wavelets are ‘‘almost’’ eigenfunctions of si
gular Calderon–Zygmund kernels,23 such as Biot–Savart’s
kernel, the two velocity fields are quasi-orthogonal and
total energy is decomposed intoE5EC1EI1e, where E
5 1

2^V,V& ande,0.5%E ~Table I!.

C. Divergence problem

The continuous wavelet transform commutes with
divergence operator, but not its discrete version, which lo
the translational invariance property of the continuo
transform.10 Therefore, since the vector-valued wavelet ba
we have chosen here is not divergence-free, the CVS dec
position does not yield coherent and incoherent vortic
fields that are perfectly solenoidal. The same problem a
occurs for vortex methods24 and for large eddy simulation
~LES! using filters other than the Fourier cutoff filter. In spi
of that, the corresponding coherent and incoherent velo
fields are divergence-free, since they are reconstructed u
Biot–Savart’s relation.

There are several ways to insure that the coherent
incoherent vorticities remain solenoidal:

~i! use divergence-free vector-valued wavelets;25–27

~ii ! decomposev into v5vdiv501¹f and calculatef by
taking the divergence ofv, which yields the Poisson
equation¹2f5¹•v;
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~iii ! apply the previous decomposition, not to the solutio
but to the wavelet basis itself. This can be done a
pre-calculation, since the wavelet decomposition i
linear transformation.

In Fig. 2 we have compared the one-dimensional isot
pic enstrophy spectrum,Z(k)5 1

2*k5ukuuv̂(k)u2dk where
v̂(k)5*v(x)e2 ik"xdx, of the coherent flow with and with-
out imposing the divergence-free condition. We ha
checked that the non-solenoidal contribution remains be
2.9% of the total coherent enstrophy and only appears in
dissipative range. The same result holds for the incohe
enstrophy. The fact that there is no divergent contribution
the inertial range guarantees that the nonlinear dynamics,
therefore the flow evolution, is not affected by the diverge
contribution of vorticity. Therefore, we do not think that it
necessary to implement one of the procedures mentio
above to force the coherent and incoherent vorticity fields
remain perfectly solenoidal.

III. APPLICATION OF THE CVS DECOMPOSITION

A. Comparison with the POD-Fourier decomposition

The proper orthogonal decomposition~POD!,28 intro-
duced in the 1940s by Kosambi, Loe`ve, and Karhunen, ha

FIG. 2. Comparison between the enstrophy spectrum of the coherent
ticity with ~dashed line! and without~full line! the divergence-free condi-
tion.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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2890 Phys. Fluids, Vol. 15, No. 10, October 2003 Farge et al.
been applied to turbulence by Obukhov and Lumley.29 It is
also called Karhunen–Loe`ve ~KL ! decomposition, principa
component analysis~PCA!, empirical orthogonal functions
~EOF! or singular value decomposition~SVD!, depending on
its domain of application. It computes the two-point corre
tion tensor of an ensemble of realizations, then diagonal
it and retains only the eigenmodes which have the larg
eigenvalues. It yields the best basis for this ensemble of
alizations with respect to theL2-norm. The retained mode
are defineda posteriorifor all realizations, as those contain
ing, on average, the most variance. Thus, the decompos
is linear, as the selection of the retained modes does
depend on each realization.

In contrast, the CVS-wavelet decomposition perfor
the selection of the retained modesa priori, i.e., without
knowing all the flow realizations, by selecting from an orth
normal wavelet basis the functions whose amplitudes h
the strongest values. Hence, the selection procedure is
linear, as the retained basis functions depend on each
realization. For the time-integration, CVS retains at timt
the active wavelets whose modulus is larger than the thr
old T, plus their neighbors in wavelet space, which are n
essary to compute the flow evolution fromt to (t1Dt). After
computing the solution at time (t1Dt) using the wavelets
selected at timet, the coefficients whose modulus has b
come smaller than the thresholdT are discarded. Subse
quently, new active wavelets, i.e., those whose moduli h
become larger thanT plus their neighbors, are added to d
fine the computational basis at time (t1Dt). This selection
of the active wavelets is nonlinear, because it depends on
flow realization at timet, and on the direction of the transfe
in wavelet space between (t2Dt) and t, used to select the
neighbor wavelets added to the active wavelet set: for m
details see Refs. 5 and 7.

For a homogeneous and isotropic flow, such as the
studied here, the two-point correlation tensor is invariant
der translation and rotation: therefore POD yields a Fou
basis whose modes are sorted by decreasing order of w
numberk5uku. This is a particular case of a low-pass filt
used in LES, where the large scale modes are determin
cally computed, while the effect of the small scale mod
~the subgrid scale contribution! on the resolved large scal
modes is modeled.

B. Application to a homogeneous turbulent flow

We consider a three-dimensional homogeneous isotr
turbulent flow, computed by direct numerical simulatio
~DNS! using a classical pseudo-spectral code at resolu
N52563, which corresponds to a Reynolds number based
the Taylor microscaleRl5168. The computation has bee
initialized with a Gaussian random vorticity field, and pe
formed until a statistically stationary state has been reac
Figure 4 shows the modulus of the vorticity fluctuations
the total flow~only a 643 sub-cube is shown to get a mo
precise visualization!. It exhibits elongated and distorted vo
tex tubes, as previously observed in both laboratory and
merical experiments.30–32

We compare CVS-wavelet and POD-Fourier applied
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the same flow realization, and for the same compression
Let us first consider the CVS decomposition. After expan
ing the three components of the vorticity field in an orth
normal wavelet series, we calculate1

2uṽj ,i x ,i y ,i z
m u2 using~1! to

get the enstrophy retained by each wavelet. Subsequently
sort theN wavelets by decreasing order of retained enst
phy, compute their partial sum, and plot the percentage
retained enstrophy versus the percentage of retained wav
to obtain the compression curve of the wavelet basis for
flow realization~Fig. 3!.

This curve shows that very few wavelets contain most
the enstrophy, and that, if more than 10%N wavelets are
kept, it saturates rapidly. This saturation corresponds t
quasi-equipartition of the enstrophy among the 90%N weak-
est wavelet modes, which is characteristic of random fie
In Fig. 3 we indicate by a star the thresholdT we use, which
retains 2.9% of the wavelet coefficients and 79% of the
strophy. The coherent vorticityvC is then reconstructed from
the wavelet coefficients whose moduli are aboveT, and the
incoherent vorticityvI is the remainder. Using Biot–Savart
relation, we also compute the corresponding coherent ve
ity, VC5¹3(¹22vC), and incoherent velocity,VI5¹
3(¹22vI).

We now perform the POD-Fourier decomposition of t
same flow realization, and for the same compression rat
before. As noted above, the POD basis for such a homo
neous and isotropic flow is the Fourier basis, whose mo
are sorted in decreasing order of wavenumberk5uku. We
thus expand the vorticity field in Fourier space and retain
2.9%N modes for which the wavenumberk is smaller than
the cut-off wavenumberkc548. It does not matter whethe
we decompose the vorticity field or the velocity field, as t
Fourier basis diagonalizes the inverse curl operator~Biot–
Savart’s kernel!.

C. Comparison of physical space reconstruction

Figure 5~top! displays the modulus of the coherent~left!
and incoherent~right! vorticity fluctuations resulting from
the CVS decomposition, while Fig. 5~bottom! displays the
modulus of the large scale~left! and small scale~right! vor-

FIG. 3. Compression curve for the CVS decomposition: % of retained
strophy versus % of retained wavelets~the star corresponds to th
thresholdT!.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 4. ~Color! Modulus of vorticity of the total flow~isosurfacesuvu53s, 4s, 5s wheres252Z is the variance of the vorticity fluctuations!.

FIG. 5. ~Color! Comparison between CVS-wavelets~top! and POD-Fourier~bottom! compressions: Modulus of vorticity for the retained~left! and discarded
~right! modes~isosurfacesuvu53s, 4s, 5s, and 3/2s, 2s, 5/2s, respectively!. Top, left: coherent flow; top right: incoherent flow; bottom, left: large scale flo
bottom right: small scale flows.
Downloaded 02 Oct 2003 to 129.199.72.109. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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ticity fluctuations resulting from POD or LES decompos
tions. Note that the values of the three iso-surfaces cho
for visualization~3s, 4s, and 5s with s252Z the variance
of the vorticity fluctuations! are the same for the total, th
coherent and the large scale vorticities, but they have b
reduced by a factor of two for the incoherent and small sc
vorticities whose fluctuations are much smaller.

In the coherent vorticity~Fig. 5, top, left!, which corre-
sponds to the modes retained by the CVS-wavelet dec
postion, we recognize the same vortex tubes as those pre
in the total vorticity~Fig. 4!. In contrast, the incoherent vor
ticity ~Fig. 5, top, right!, which corresponds to the discarde
modes, is much more homogeneous and does not exhibit
coherent vortices. Hence, the CVS decomposition extract
the vortex tubes, whatever their scales. The resulting co
ent flow is as intermittent as the total flow, while the d
carded incoherent flow is structureless and non-intermitt
This enables us to model quite easily the effect of the in
herent flow onto the coherent flow, as discussed in Ref.

In the large scale vorticity~Fig. 5, bottom, left!, which
corresponds to the modes retained by the POD-Fourie
LES decompositions, we observe most of the vortex tub
But, when we compare them with those retained in the
herent vorticity ~Fig. 5, top, left!, we find that they are
weaker and much smoother, since their small scale contr
tion has been removed. As a consequence, the small s
vorticity ~Fig. 5, right! also exhibits coherent structure
similar to those in the total vorticity~Fig. 4!. Therefore the
small scale flow remains intermittent and exhibits localiz
bursts, which correspond to the small scale contribution
the vortex tubes, whose effect on the large scale flow wo
be difficult to model.

D. Comparison of statistics

In Table I we show that only 2.9% wavelet modes c
respond to the coherent flow, which retains 99% of the
ergy and 79% of the enstrophy, while the remaining 97.
incoherent modes contain only 0.47% of the energy and 2
of the enstrophy. For the same compression rate, P
Fourier retains about the same amount of energy as C
wavelet, but slightly less enstrophy~71% instead of 79%Z).

Figure 6 ~top! shows the PDF of the vorticity in sem
logarithmic coordinates. For CVS~left!, the coherent vortic-
ity presents a very similar stretched exponential behav
including the tails, as the total vorticity, with flatness 9
instead of 8.7~Table I!. The incoherent vorticity has an ex
ponential PDF, with much weaker tails, and flatness 4.8.
POD-Fourier or LES~right!, the PDF of the large scale vo
ticity is exponential with flatness 6.1, while it is a stretch
exponential with flatness 9.6 for the small scale vortic
They both have about the same range of variation, whic
not the case for the CVS-wavelet decomposition, where
extrema of the incoherent vorticity are 3.6 times weaker th
those of the coherent vorticity. This is another indication
the difficulty to model the effect of the small scales on t
large scales.

Figure 6 ~middle! shows the velocity PDF in semi
logarithmic coordinates for both CVS~left! and POD~right!.
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The skewness of the total velocity and vorticity is about ze
and both CVS and POD preserve this property~Table I!. We
observe that the coherent velocity has the same Gaus
distribution as the total velocity, with flatness 2.9, and t
incoherent velocity also remains almost Gaussian, with fl
ness 3.4, but its variance is 185 times smaller~Table I!. In
contrast, the velocity PDF for POD~Fig. 6, middle, right!
shows that, although the large scale contribution is Gaus
with flatness 2.8, the small scale contribution exhibits
stretched exponential behavior, with flatness 6.8. This n
Gaussianity of the small scale flow has already been not
in laboratory and numerical experiments.33 As a conse-
quence, the modeling issue will be more difficult for POD
LES than for CVS, whose incoherent velocity is almo
Gaussian and has a strongly reduced variance.

The corresponding one-dimensional isotropic ene
spectra, (E(k)5 1

2*k5ukuuV(k)u2dk, are plotted on Fig. 7
~top!, where we have indicated the cut-off wavenumberkc

548 separating the large scale and small scale contribut
of POD-Fourier or LES. We observe that the spectrum of
coherent energy is identical to the spectrum of the total
ergy all along the inertial range. This implies that the vort
tubes are responsible for thek25/3 energy scaling, which cor-
responds to a long-range correlation between them. In c
trast, the incoherent energy has a scaling close tok2, which
corresponds to an energy equipartition between all wavev
tors k, since the one-dimensional isotropic spectrum is o
tained by integrating energy in three-dimensionalk-space
over two-dimensional shellsk5uku. The incoherent velocity
field is therefore spatially decorrelated, which is consist
with the observation that incoherent vorticity is structurele
and homogeneous~Fig. 5, top, right!. Thus, we have found
that the incoherent energy is uniformly distributed in Four
~Fig. 7, top!, wavelet~Fig. 3!, and physical~Fig. 5, top, right!
spaces. This gives strong evidence of its random nat
since by definition noise cannot be local in any basis.
contrast, POD-Fourier does not exhibit such decorrelat
since its small scale contribution is not uniformly distribute
neither in Fourier space, nor in physical space where it
hibits inhomogeneities~Fig. 5, bottom, right!.

To check the dynamical behavior of the coherent a
incoherent flows we compute their energy transfers in wa
number space. Figure 7~bottom! shows that the direct energ
transfers, from large to small scales, are the same for
coherent and total flows. This proves that the coherent fl
triggers all nonlinear interactions, which are fully resolv
by the CVS filter. Therefore, there is no need to paramet
the effect of the discarded incoherent modes on the reta
coherent modes. This is no more the case for the large s
flow, whose energy transfers present a strong accumula
near the cut-off scalekc . A subgrid parametrization is the
necessary to extract the energy coming from the large sc
which otherwise piles up atkc .

From these observations, we propose the following s
nario to interpret the turbulent cascade. The coherent en
is nonlinearly transferred towards small scales by the non
ear interactions between vortex tubes, i.e., their stretch
folding and twisting. In the meantime these nonlinear int
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 6. Comparison between CVS-wavelet~left! and POD-Fourier~right! compressions: PDFs of vorticity~top!, velocity ~middle! and relative helicity
~bottom!.
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actions also produce incoherent energy at all scales~in a way
analogous to white noise emission!, which is only dissipated
at the smallest scales by molecular viscosity. We conjec
that the coherent flow is dynamically active, while the inc
herent flow is slaved to it, being only passively advect
strained and mixed by the coherent vortex tubes. In contr
the small scale flow, discarded by the POD-Fourier or L
filter, is not slaved but remains dynamically active due to
small scale contribution of the coherent tubes, which m
cause backscatter as observed by Ref. 34, i.e., there ma
some energy transfers towards large scales. This is ano
evidence of the modeling problem that POD-Fourier or L
may encounter.
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E. Comparison of the geometrical alignment between
velocity and vorticity

Since the CVS filtering is based ona priori denoising,
without any dynamical assumption or pattern recognition
potheses about the vortex tubes, we now checka posteriori
that we have actually extracted them. Following Ref. 9 th
can be described as local steady solutions of the Euler e
tion where the nonlinearity is locally depleted, which ha
pens, in particular, where vorticity and velocity vecto
become aligned. This geometrical alignment maximiz
the relative helicity h5V"v/(uVuuvu) and is called
Beltramization.35

In Fig. 6 ~bottom, left! we show that the coherent flow
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 7. Energy spectraE(k) ~top! for the total, coherent and incoherent flows, and energy transfersdtE(k) ~bottom! for the total, coherent~CVS! and large
scale~POD! flows. The vertical line corresponds to the Fourier cut-off wavenumberkc548. Inset: Zoom aroundkc ~from k520 to 50!.
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exhibits the same tendency towards local Beltramization
the total flow, which is characterized by the two maxim
observed in the PDF of the relative helicity forh511
~alignment! andh521 ~anti-alignment!. In contrast, the in-
coherent flow is more evenly distributed, with a maximum
h50 which indicates a tendency towards local tw
dimensionalization. This observation, together with the e
dence of strong dissipation in the incoherent flow~Fig. 7,
top!, agrees with the remark of Moffatt:35 ‘‘ Euler flows con-
tain blobs of maximal helicity (positive or negative) whi
may be interpreted as ‘coherent structures,’ separated
regular surfaces on which vortex sheets, the site of str
viscous dissipation, may be located.’’ Following this picture,
we conjecture that the CVS coherent flow is dominated
three-dimensional vortex tubes which tend to maximize
licity, while the incoherent flow is made of two-dimension
vortex sheets which tend to maximize dissipation.

The POD-Fourier or LES decompositions differ from t
CVS-wavelet decomposition since they do not disentan
components exhibiting different geometrical alignments.
observe that both the total, large scale and small scale fl
exhibit the same PDF of the relative helicity~Fig. 6, bottom,
right!. This comes from the fact that each vortex tube in
total flow contributes to both the large and small sca
flows.

IV. CONCLUSION

We have shown that the CVS decomposition, based
the nonlinear filtering of the wavelet coefficients of vorticit
is an efficient tool for extracting coherent vortices out
turbulent flows. We have applied it to a three-dimensio
homogeneous isotropic turbulent flow, computed at reso
tion N52563, which is decomposed into two orthogon
components: A low-dimensional (2.9%N) coherent flow,
made of vortex tubes, which is long-range correlated wit
k25/3 energy spectrum, and a large-dimensional (97.1%N)
incoherent flow, which is random, decorrelated and ha
Gaussian velocity PDF. For the same compression rate
POD, which degenerates for this homogeneous isotropic
in the Fourier basis, does not extract the vortex tubes equ
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well. The small scale contribution of the coherent vortic
extracted with the POD-Fourier remains in the small sc
flow, resulting in a stretched exponential PDF of veloci
Therefore, modeling the effect of the discarded modes on
resolved modes is easier to perform with CVS than w
POD-Fourier or LES.

In order to avoid a common misunderstanding, we str
that:

~i! the incoherent flow is not only small scale, but mu
tiscale, because its energy is spread over all scale
a white noise;

~ii ! the coherent flow is not only large scale, but mul
scale, although it dominates the large scales due to
long-range correlation. Moreover, the coherent flo
also contains small scales associated with
stretched and distorted vortex tubes.

As a consequence, two different kinds of motion contribu
to the small scales:

~i! incoherent motions which, under the effect of th
strong mixing exerted by the coherent vortex tub
have already reached a statistical equilibrium, char
terized by the equipartition of energy and the Gaus
anity of the velocity PDF;

~ii ! coherent motions, dominated by the nonlinear inter
tions between vortex tubes which generate sm
scales by their mutual stretching, folding and twistin
Those are not yet in statistical equilibrium, since th
are long-range correlated and their velocity PDF
non-Gaussian.

We conjecture that only the coherent motions are
namically active and trigger the nonlinear dynamics and
resulting energy cascade. The incoherent background fl
produced by the nonlinear interactions between the cohe
vortex tubes, is passively advected and strained by th
This straining inhibits any instability to develop in the inc
herent flow, and results in a strong mixing which leads to
dissipation of incoherent energy by molecular viscos
Since the incoherent motions are slaved to the coherent fl
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



ac
e
n.
36
na

is
in
n
d
e

nc

a
flo

x
s
n
s

th
re
es
h
o
n
r
a

ta
ke
rib
a
i.e
d

je
he

en
m

oe
c
e

hi
G
it
,’’

llo
na

ye

re

ho-

ng
Ib:

st.

tive
two-

ut-
el-

w
ut.

in

e,’’

ve-

ng

m-
let

llo,
ses

sion

nk-

o,

er
low,

ent
ds,’’

-

the

an

n

s

m-

2895Phys. Fluids, Vol. 15, No. 10, October 2003 Coherent vortex extraction in 3D homogeneous turbulence
their effect remains negligible. Therefore, discarding at e
time step the incoherent energy produced by the nonlin
vortex interactions is a way to model turbulent dissipatio5

In addition a wavelet forcing technique, proposed in Ref.
can be used, as illustrated in Ref. 5 for a two-dimensio
mixing layer.

Although we have considered here a homogeneous
tropic turbulent flow, the previous observations concern
CVS remain also valid for inhomogeneous turbule
flows,13,19 as long as they contain vortices which are a
vected by the mean velocity field induced by all the oth
vortices ~e.g., wakes, shear layers, boundary layers!. For
such inhomogeneous flows there is often a local invaria
by translation due to the vortex advection. For these inhom
geneous cases a nonlinear method, such as CVS, rem
more appropriate to extract the coherent vortices in each
realization than a linear method such as POD or LES.

In conclusion, we think that the classical strategy of e
panding the flow in a given basis and truncating the serie
a fixed number of resolved modes can be improved. O
should keep in mind that DNS and LES of turbulent flow
integrate only one flow realization at a time, and that
statistics are computed afterwards by averaging several
izations. Therefore, POD, which is by construction the b
basis to represent an ensemble of flow realizations wit
reduced number of modes, is not necessarily the best dec
position for computing the evolution of each flow realizatio
CVS offers a nonlinear strategy which adapts the numbe
resolved modes to each flow realization, by projecting it,
each time step, onto an orthonormal wavelet basis and re
ing only the strongest wavelet coefficients. Thus, CVS ma
it possible to compute all degrees of freedom which cont
ute to the flow nonlinearity, i.e., the coherent modes, wh
ever their scale, while the remaining degrees of freedom,
the incoherent modes, are discarded to model turbulent
sipation. The method actually combines an Eulerian pro
tion of the solution with a Lagrangian procedure for t
adaption of the computational basis.5,6 The next step is to
perform three-dimensional CVS computations of turbul
flows. Preliminary results have been obtained for a 3D te
porally developing turbulent mixing layer.37
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