PHYSICS OF FLUIDS VOLUME 15, NUMBER 10 OCTOBER 2003

Coherent vortex extraction in three-dimensional homogeneous turbulence:
Comparison between CVS-wavelet and POD-Fourier decompositions

Marie Farge®
LMD-IPSL-CNRS, Ecole Normale Sujsaire, 24 rue Lhomond, 75231 Paris Cedex 05, France

Kai Schneider
CMI, Universifede Provence, 39 rue Joliot-Curie, 13453 Marseille Cedex 13, France
and L3M-CNRS, IMT, 38 rue Joliot-Curie, 13451 Marseille Cedex 20, France

Giulio Pellegrino
L3M-CNRS, IMT, 38 rue Joliot-Curie, 13451 Marseille Cedex 20, France

Alan A. Wray and Robert S. Rogallo
NASA-Ames Research Center, Moffett Field, California 94035

(Received 22 November 2002; accepted 21 May 2003; published 2 Septembgr 2003

The coherent vortex simulatiofCVS) decomposes each realization of a turbulent flow into two
orthogonal components: An organized coherent flow and a random incoherent flow. They both
contribute to all scales in the inertial range, but exhibit different statistical behaviors. The CVS
decomposition is based on the nonlinear filtering of the vorticity field, projected onto an
orthonormal wavelet basis made of compactly supported functions, and the computation of the
induced velocity field using Biot—Savart's relation. We apply it to a three-dimensional homogeneous
isotropic turbulent flow with a Taylor microscale Reynolds numBgr 168, computed by direct
numerical simulation at resolutiohN=256°. Only 2.9%N wavelet modes correspond to the
coherent flow made of vortex tubes, which contribute 99% of energy and 79% of enstrophy, and
exhibit the samé > energy spectrum as the total flow. The remaining 9™ ¥avelet modes
correspond to a incoherent random flow which is structureless, has an equipartition energy
spectrum, and a Gaussian velocity probability distribution functPRF. For the same flow and

the same compression rate, the proper orthogonal decompao@t@id), which in this statistically
homogeneous case degenerates into the Fourier basis, decomposes each flow realization into large
scale and small scale flows, in a way similar to large eddy simul@tiBs) filtering. It is shown that

the large scale flow thus obtained does not extract the vortex tubes equally well as the coherent flow
resulting from the CVS decomposition. Moreover, the small scale flow still contains coherent
structures, and its velocity PDF is stretched exponential, while the incoherent flow is structureless,
decorrelated, and its velocity PDF is Gaussian. Thus, modeling the effect of the incoherent flow
discarded by CVS-wavelet shall be easier than modeling the effect of the small scale flow discarded
by POD-Fourier or LES. ©2003 American Institute of Physic§DOI: 10.1063/1.1599857

I. INTRODUCTION plete success, to treat the problem of shear flow.... At the
Since the work presented in this paper has been perlfn‘th International Congress of Applied Mechanics in 1938...

formed at NASA-Ames during the CTRCenter for Turbu- Tollmien and Prandtl suggested that the turbulent fluctua-

lence ReseargtSummer Program 2000we recall the com- tions might consist of two components, one derivable from a
ments on turbulence research made in 1948 by Hugh harmonic function and the other satisfying an equation of the

Dryden, the first director of NACAlater NASA). heat conduction type, i.e., a nondiffusive and a diffusive com-
Dryden begins his paper on “Recent advances in thdonent, or viscosity independent and viscosity dependent
mechanics of boundary layer flo®by stating: “There have type”
been no notable advances in the theory of fully developed Tollmien and Prandtl's suggestion to split the turbulent
turbulent motion during the last decade.... In the periodfluctuations into non-diffusive and diffusive components is
1934-1938 Taylor developed his statistical theory of turbu-very similar to the concept behind coherent vortex simula-
lence, which was so fruitful in treating the problem of isotro- tion (CVS) which we introduced in Refs. 3—-5. CVS tracks
pic turbulence. Von Kaman extended the theory, clothed itin the nonlinear dynamic&he non-diffusive componentising
more elegant mathematical form, and attempted, with incoman adaptive wavelet badis® which captures the coherent
vortices at all scales, and discards the incoherent background
dAuthor to whom correspondence should be addressed. Teleph@8e1 flow (the diffusive ComponemwhiCh has reached a statisti-
44 32 22 35; fax-+33 1 43 36 83 92. Electronic mail: farge@Imd.ens.fr cal equilibrium characterized by a Gaussian velocity prob-
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ability distribution function(PDF) and an energy equiparti- computed by direct numerical simulatidBNS) at resolution
tion spectrunt:>® N=256". The choice of a statistically stationary homoge-
Later, Dryden adds: The mixing length concept seems neous isotropic flow is made on purpose, to demonstrate the
wholly inadequate..., the “mean free path,” mixing length, or efficiency of the CVS simulation in the worst possible case
scale of the turbulent processes is large compared with théor it. Indeed, the wavelet representation used by CVS is
thickness of the boundary layer. Considerable masses of fluidetter suited to treat nonstationary or inhomogeneous flows
move as more or less coherent units. The process cannot 5ather than stationary or homogeneous flGWS.
smoothed by averaging over a small volume because itis not In Ref. 20 another wavelet method, based on a two-
possible to choose dimensions small compared with a singldimensional cut of the velocity field, has been proposed to
fluid element. The mixing length idea, that the turbulent flucdecompose experimental data of a turbulent mixing layer
tuations and the turbulent shear stress are directly related tghto coherent structures and background fluctuations. In Ref.
the mean speed at a point and its derivatives at that point,21 dif_ferent techniques for extracting coherent structures in
must be abandoned. Shall the flow then be regarded as &Perimental data of turbulent shear flows have been re-
mean flow that merely transports and distorts large eddie</1€Wed, including proper orthogonal decompositiétOD)
superposed on the flow, these eddies being of varying siZ'd wavelet methods. In Ref. 13 we have applied the CVS
and intensitg” decomposition to DNS data of a 3D time developing turbu-

This comment of Dryden, which assumes that turbulen!ent _”.“Xing layer anq in Ref. 19 of a SD turbulent jet in a
flows are composed of coherent units of varying sizes an&tratlfled flow modeling the atmospheric tropopause.

intensities which cannot be smoothed by averaging, supports tr'}” tg'\j szper we cq:ppargt':]h?hcohergtnt'vogtmfe;s efﬁirapted
our proposal of using the wavelet representation to stud y the LV decomposition wi 0s€ obtained after hitering
0 : . he vorticity field using the POD for the same number of
turbulent flows'® We have shown with the continuous wave- . ) . . o
. : ._retained modes. Since the flow studied here is statistically
let transform that coherent vortices are multiscale eddies

. o . . invariant by translation and rotation, in this case the POD
whose activity covers the entire inertial range and induces

the intermittency of turbulent flows:> We confirmed this degenerates into the Fourier basis, where the modes are

) sorted in increasing order of the wavenumber. Such a homo-
with the orthogonal wavelet transfoﬁm\_nd demonsgtrated geneous isotropic flow is the most difficult case to treat for
that coherent vortex tubes are responsible forkh&® en-

ergy spectrum of 3D turbulent flovid? both POD and CVS, but it is the most generic turbulent flow
' [ R I ith
Finally Dryden concludes: The rapidly developing one can compute at large Reynolds numbers withoutaghy

theory of random functiont$ may possibly form the math- hocturbulence model.
ematical framework of an improved theory of turbulence.
However it is necessary to separate the random processes
from the non-random processes. It is not yet fully clear what
the random elements are in turbulent flows. The experiment3| -vs pECOMPOSITION
results described suggest that the ideas of Tollmien and o
Prandtl, that the measured fluctuations include both randonf*: Wavelet projection
and non-random elements, are correct, but as yet there is no  We consider a 3D vorticity fieldo(x)=VXV(x), com-
known procedure either experimental or theoretical for sepaputed with resolutiorN= 2%, N being the number of grid
rating them” points andJ the number of octaves in each direction. The
The CVS decomposition proposes such a procedure. Wihree components,(x), with n=1, 2, 3, are developed into
developed it over the last ten yehts'®*%19n order to sepa- an orthonormal wavelet series, from the largest stalg
rate the turbulent fluctuations into organized and random=2° and to the smallest scalg;,=2"%, using a 3D muilti-
components. In 1992 we found that the nonlinear dynamics resolution analysi$MRA)%??
of two-dimensional turbulent flows, and therefore, their pre-
dictability, is better preserved by compressing the flow using
a wavelet packet basis rather than a Fourier basis. In12994wn(x) =[®00.0ln®0 0.0 X)
we showed that a wavelet packet basis is also better suited - -
for this than adapted local cosine bases, which correspond to ~
wave packets. In 1999ve selected the wavelet basis as the + ZO izo iz«o 2«0 Zl [“)J”,ix,iy,iz]n’z”ffix,iy,iZ
optimal basis for the CVS decomposition of turbulent flows. SR A
Similarly to the wavelet methods developed for signal
denoisingt’*®the CVS decomposition is based on a nonlin-
ear filtering of the vorticity field projected onto an orthonor-
mal wavelet basis made of compactly supported functions.
The corresponding organized and random components of the
velocity field are reconstructed using Biot—Savart’s relation. d)jvixiy'iz(x): ¢jvix(X)¢jriy(y)¢jviz(Z)’
We apply the CVS decomposition to a 3D statistically
stationary homogeneous isotropic turbulent flow with a Tay-
lor microscale Reynolds numb&, =168, which has been and the corresponding 3D orthogonal wavelets are

J-12i-12i-12-1 7

(x).

The 3D orthogonal scaling functions are
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FIG. 1. Coiflet 12 wavelet: The scaling functigh(top) and the corresponding wavelgt(bottom, in physical spaceleft) and their corresponding moduli,
|| and|y|, in Fourier spacéright).

lﬂj,ix(x)¢j,iy(Y) ¢ (2 u=1, The CVS decomposition algorithm consists of three fast
wavelet transforms, one for each vorticity component, a
¢Jvix(x)‘piliy(y)‘ﬁiyiz(z); r=2, thresholding of the wavelet coefficients, and three inverse
b1 ()b N, (2 p=3, fast wavelet transforms to reconstruct the coherent vorticity.
_ The incoherent vorticity is then obtained by substracting the
‘zb]'u,ix,iy,iz(x): ‘ﬂl,ix(x)‘l’iv‘y(y)‘/’iv‘z(z)’ p=4, coherent from the total vorticity, as the wavelet transform is
i ()i (¥ (2); u=5, linear. The computational cost of the fast wavelet transform
g / ’ ) is of orderCN, whereN is the resolution, an€ is propor-
1,0 i, (V1,25 p=86, tional to the filter length 81, with M =4 for the Coifman 12
‘/’j,ix(x)‘r/’j,iy(y)‘/fj,iz(z); uw="7. wavelet used here. Therefore, the total number of operations

i , , . ) is O(N), while it is O(N log, N) for the fast Fourier trans-
Here ¢; ; is a one-dimensional scaling function arl; the (FFT).

corresponding one-dimensional wavelethe index for the
scale discretization,,, iy, i, the indices for the space dis-
cretization andu the index for the seven discrete directions
in 3D space. Due to orthogonality, the scaling coefficients ~ The vorticity field is decomposed into coherent vorticity
are given by[ wg o aln=(wn, P00 and the wavelet coeffi- wc(x) and incoherent vorticityw (x) by projecting its three
cients by[z)ffix’iy’iz]ﬁ(wn "Mfix-iy,i)’ where(-,-) denotes components onto an orthonormal wavelet basis and applying
the L2-inner product. nonlinear thresholding to the wavelet coefficients. The

We have chosen Coifman 12 wavel@shecause they choice of the threshold is based on theor&Mproving
are almost symmetric, which is not the case for Daubechiegptimality of the wavelet representation for denoising sig-
wavelets. They are compactly supported functigfigy. 1,  nals. This optimality is in the sense that wavelet-based esti-
bottom with M =4 vanishing moments, which are computed mators minimize the maximurb2-error for inhomogeneous
using a quadrature mirror filter of lengthVB=12. The cor- regular functions perturbed by Gaussian white noise. We
responding scaling functio(Fig. 1, top has alsaM vanish-  have chosen the variance of the total vorticity instead of the
ing momentgexcept the zeroth-order moment variance of the noise, which gives the threshold

B. Nonlinear thresholding
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TABLE |. Statistical properties of the vorticity and velocity fields for CVS-wavelet and POD-Fourier.

Decomposition CVS-wavelet POD-Fourier
Quantity total coherent—incoherent large scale—small scale

% of coefficients 100 2.9 97.1 2.9 97.1
Enstrophy 4895 3872 1023 3455 1440

% of enstrophy 100 79.1 20.9 70.6 29.4
Vorticity skewness —0.048 —0.056 0.000 —0.041 —0.002
Vorticity flathess 8.7 9.6 4.8 6.1 9.6
Energy 43.0 42.6 0.2 42.7 0.3
% of energy 100 99.1 0.47 99.3 0.7
Velocity skewness 0.051 0.052 0.000 0.053 0.003
Velocity flatness 2.9 2.9 34 2.8 6.8

—(4ZlogN)2 whereZ= 4w, ) is the total enstrophy and (i) apply the previous decomposition, not to the solution,

N is the resolution proportional t®,. Notice that this but to the wavelet basis itself. This can be done as a

threshold does not require any adjustable parameter. pre-calculation, since the wavelet decomposition is a
We then compute the modulus of the wavelet coeffi- linear transformation.

cients

In Fig. 2 we have compared the one-dimensional isotro-
3 vz pic enstrophy spectrumZ(k) =3/ _ | @(k)|*dk where
|afix,iy,iz|:( Z [a’fix,iy,iz]ﬁ) - (1) &(k)=Jw(x)e **dx, of the coherent flow with and with-
nt out imposing the divergence-free condition. We have
The coherent vorticity is then reconstructed from thechecked that the non-solenoidal contribution remains below
wavelet coefficients whose modulus is larger than the thresi2.9% of the total coherent enstrophy and only appears in the
old T, while the incoherent vorticity is reconstructed from dissipative range. The same result holds for the incoherent
the remaining wavelet coefficients. The two fields thus ob-enstrophy. The fact that there is no divergent contribution in
tained, wc and @, are orthogonal, which ensures the de-the inertial range guarantees that the nonlinear dynamics, and
composition of the total enstrophy infb=2-+72,. therefore the flow evolution, is not affected by the divergent
Biot—Savart’s relation/=V X (V ~2e) is used to recon- contribution of vorticity. Therefore, we do not think that it is
struct the coherent and incoherent velociti®;(x) and  necessary to implement one of the procedures mentioned
V,(x), from the corresponding coherent and incoherent vorabove to force the coherent and incoherent vorticity fields to
ticities. Since wavelets are “almost” eigenfunctions of sin- remain perfectly solenoidal.
gular Calderon—Zygmund kernéf$such as Biot—Savart's
kernel, the two velocity fields are quasi-orthogonal and thdll. APPLICATION OF THE CVS DECOMPOSITION
tOtf‘I energy is decomposed in=Ec+E, +e, whereE A. Comparison with the POD-Fourier decomposition
=3(V,V) and e<0.5%E (Table |.

The proper orthogonal decompositidROD),?® intro-

C. Divergence problem duced in the 1940s by Kosambi, hag and Karhunen, has
The continuous wavelet transform commutes with the

divergence operator, but not its discrete version, which loses ' conerent g0 p—

the translational invariance property of the continuous e

transform'® Therefore, since the vector-valued wavelet basis KB

we have chosen here is not divergence-free, the CVS decomie}t P |
position does not yield coherent and incoherent vorticity )
fields that are perfectly solenoidal. The same problem alsc
occurs for vortex method$and for large eddy simulations
(LES) using filters other than the Fourier cutoff filter. In spite
of that, the corresponding coherent and incoherent velocity 1 | 3 1
fields are divergence-free, since they are reconstructed usin R\
Biot—Savart's relation. P
There are several ways to insure that the coherent anc 3
incoherent vorticities remain solenoidal:

E\
1 ' M

(i) use divergence-free vector-valued wavefét$? 1 10 100

(it) decomposeo Into w= wdiV:0+V¢ and calculatep by FIG. 2. Comparison between the enstrophy spectrum of the coherent vor-

taking the divergence ab, which yields the Poisson ticity with (dashed ling and without(full line) the divergence-free condi-
equationV?¢=V - w; tion.
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been applied to turbulence by Obukhov and Lunifeit is 100
also called Karhunen—Lee (KL) decomposition, principal g0l
component analysi$PCA), empirical orthogonal functions
(EOP) or singular value decompositiq8VD), depending on
its domain of application. It computes the two-point correla-
tion tensor of an ensemble of realizations, then diagonalizes €0
it and retains only the eigenmodes which have the largest so
eigenvalues. It yields the best basis for this ensemble of re-
alizations with respect to the?-norm. The retained modes

are defineda posteriorifor all realizations, as those contain-

70+

ing, on average, the most variance. Thus, the decompositior 2°{ 1
is linear, as the selection of the retained modes does not 10} R o %
depend on each realization. 0

In contrast, the CVS-wavelet decomposition performs ¢ 5 10 1 20 25 30 3 40 45 %
the selection of the retained modaspriori, i.e., without  FIG. 3. Compression curve for the CVS decomposition: % of retained en-
knowing all the flow realizations, by selecting from an ortho- strophy versus % of retained wavelefthe star corresponds to the
normal wavelet basis the functions whose amplitudes hav&"esnoldD-

the strongest values. Hence, the selection procedure is non-

linear, as the retained basis functions depend on each flowe same flow realization, and for the same compression rate.
realization. For the time-integration, CVS retains at time |et us first consider the CVS decomposition. After expand-
the active wavelets whose modulus is larger than the threshing the three components of the vorticity field in an ortho-
old T, plus their neighbors in wavelet space, which are necnormal wavelet series, we Ca'°”'#§’fix,iy,iz|2 using(1) to

essary to compute the flow evolution frdrto (t+At). After et the enstrophy retained by each wavelet. Subsequently, we
computing the solution at timet ¢ At) using the wavelets ot theN wavelets by decreasing order of retained enstro-
selected at time, the coefficients Whose_ modulus has be-phy compute their partial sum, and plot the percentage of
come smaller than the thresholll are discarded. Subse- retained enstrophy versus the percentage of retained wavelets
quently, new active wavelets, i.e., those whose moduli havgy optain the compression curve of the wavelet basis for this
become larger thafi plus their neighbors, are added to de- fio\ realization(Fig. 3).
fine the computational basis at timet(At). This selection This curve shows that very few wavelets contain most of
of the active wavelets is nonlinear, because it depends on the enstrophy, and that, if more than 1B%wavelets are
flow realization at time, and on the direction of the transfers yept, it saturates rapidly. This saturation corresponds to a
in wavelet space between-tAt) andt, used to select the quasj-equipartition of the enstrophy among the $0%eak-
neighbor wavelets added to the active wavelet set: for mor@st wavelet modes, which is characteristic of random fields.
details see Refs. 5 and 7. In Fig. 3 we indicate by a star the threshdlave use, which

For a homogeneous and isotropic flow, such as the ongstains 2.9% of the wavelet coefficients and 79% of the en-
studied here, the two-point correlation tensor is invariant Unstrophy_ The coherent Vortici@c is then reconstructed from
der translation and rotation: therefore POD yields a Fouriethe wavelet coefficients whose moduli are abdvend the
basis whose modes are sorted by decreasing order of wavigicoherent vorticityw, is the remainder. Using Biot—Savart's

numberk=k|. This is a particular case of a low-pass filter relation, we also compute the corresponding coherent veloc-
used in LES, where the large scale modes are deterministity, V.=V x(V 2wc), and incoherent velocityV,=V

cally computed, while the effect of the small scale modesx (V~2¢,).
(the subgrid scale contributipron the resolved large scale We now perform the POD-Fourier decomposition of the

modes is modeled. same flow realization, and for the same compression rate as
o before. As noted above, the POD basis for such a homoge-
B. Application to a homogeneous turbulent flow neous and isotropic flow is the Fourier basis, whose modes

We consider a three-dimensional homogeneous isotropig!® Sorted in decreasing order of wavenumberk|. We
turbulent flow, computed by direct numerical simulation thus expand the vorticity field in Fourier space and retain the
(DNS) using a classical pseudo-spectral code at resolutiof: 970N modes for which the wavenumbkris smaller than

N=256%, which corresponds to a Reynolds number based off¢ cut-off wavenumbek;=48. It does not matter whether
the Taylor microscaleR, = 168. The computation has been we decompose the vorticity field or the velocity field, as the

initialized with a Gaussian random vorticity field, and per- Fourier basis diagonalizes the inverse curl operéadot—

formed until a statistically stationary state has been reacheavarts kernel
Figure 4 shows the modulus of the vorticity fluctuations of
the total flow(only a 64 sub-cube is shown to get a more
precise visualization It exhibits elongated and distorted vor- Figure 5(top) displays the modulus of the coheréleft)
tex tubes, as previously observed in both laboratory and nuand incoheren{right) vorticity fluctuations resulting from
merical experiment®-32 the CVS decomposition, while Fig. @ottom displays the
We compare CVS-wavelet and POD-Fourier applied tomodulus of the large scalgeft) and small scaléright) vor-

C. Comparison of physical space reconstruction
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FIG. 4. (Color) Modulus of vorticity of the total flow(isosurfacegw|=30, 40, 50 where o= 2Z is the variance of the vorticity fluctuations

o L
A =
: - ) K " N
- y A 1
4 o
: %
] % :

W [low pors RRETY
FIG. 5. (Color) Comparison between CVS-wavelétsp) and POD-Fourietbottom compressions: Modulus of vorticity for the retaingefft) and discarded

(right) modes(isosurfacesw|=30, 40, 50, and 3/2r, 20, 5/20, respectively. Top, left: coherent flow; top right: incoherent flow; bottom, left: large scale flow;
bottom right: small scale flows.
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ticity fluctuations resulting from POD or LES decomposi- The skewness of the total velocity and vorticity is about zero,
tions. Note that the values of the three iso-surfaces chosesnd both CVS and POD preserve this propéfigble ). We
for visualization(3c, 40, and % with o?=2Z the variance observe that the coherent velocity has the same Gaussian
of the vorticity fluctuations are the same for the total, the distribution as the total velocity, with flatness 2.9, and the
coherent and the large scale vorticities, but they have beencoherent velocity also remains almost Gaussian, with flat-
reduced by a factor of two for the incoherent and small scal@mess 3.4, but its variance is 185 times sma(leable |). In
vorticities whose fluctuations are much smaller. contrast, the velocity PDF for PO[Fig. 6, middle, right

In the coherent vorticitfFig. 5, top, lefi, which corre-  shows that, although the large scale contribution is Gaussian
sponds to the modes retained by the CVS-wavelet deconwith flatness 2.8, the small scale contribution exhibits a
postion, we recognize the same vortex tubes as those presesitetched exponential behavior, with flatness 6.8. This non-
in the total vorticity(Fig. 4). In contrast, the incoherent vor- Gaussianity of the small scale flow has already been noticed
ticity (Fig. 5, top, right, which corresponds to the discarded in laboratory and numerical experimertsAs a conse-
modes, is much more homogeneous and does not exhibit aryuence, the modeling issue will be more difficult for POD or
coherent vortices. Hence, the CVS decomposition extracts allES than for CVS, whose incoherent velocity is almost
the vortex tubes, whatever their scales. The resulting coheGaussian and has a strongly reduced variance.
ent flow is as intermittent as the total flow, while the dis- The corresponding one-dimensional isotropic energy
carded incoherent flow is structureless and non-intermittengpectra, E(k)Z%fk=\k\|V(k)|2dk, are plotted on Fig. 7
This enables us to model quite easily the effect of the incoftop), where we have indicated the cut-off wavenumker
herent flow onto the coherent flow, as discussed in Ref. 5. =48 separating the large scale and small scale contributions

In the large scale vorticityFig. 5, bottom, left, which  of POD-Fourier or LES. We observe that the spectrum of the
corresponds to the modes retained by the POD-Fourier afoherent energy is identical to the spectrum of the total en-
LES decompositions, we observe most of the vortex tubesergy all along the inertial range. This implies that the vortex
But, when we compare them with those retained in the cotubes are responsible for the 3 energy scaling, which cor-
herent vorticity (Fig. 5, top, lefl, we find that they are responds to a long-range correlation between them. In con-
weaker and much smoother, since their small scale contriburast, the incoherent energy has a scaling close’ tavhich
tion has been removed. As a consequence, the small scaierresponds to an energy equipartition between all wavevec-
vorticity (Fig. 5, righy also exhibits coherent structures, tors k, since the one-dimensional isotropic spectrum is ob-
similar to those in the total vorticityFig. 4). Therefore the tained by integrating energy in three-dimensiokapace
small scale flow remains intermittent and exhibits localizedgyer two-dimensional shells=|k|. The incoherent velocity
bursts, which correspond to the small scale contribution ofield is therefore spatially decorrelated, which is consistent
the vortex tubes, whose effect on the large scale flow wouldyith the observation that incoherent vorticity is structureless

be difficult to model. and homogeneoudig. 5, top, right. Thus, we have found
_ o that the incoherent energy is uniformly distributed in Fourier
D. Comparison of statistics (Fig. 7, top, wavelet(Fig. 3), and physical(Fig. 5, top, right

In Table | we show that only 2.9% wavelet modes cor-Spaces. This gives strong evidence of its random nature,
respond to the coherent flow, which retains 99% of the ensince by definition noise cannot be local in any basis. In
ergy and 79% of the enstrophy, while the remaining 97.1%ontrast, POD-Fourier does not exhibit such decorrelation,
incoherent modes contain only 0.47% of the energy and 219%ince its small scale contribution is not uniformly distributed,
of the enstrophy. For the same compression rate, POD?¢€ither in Fourier space, nor in physical space where it ex-
Fourier retains about the same amount of energy as CvSbits inhomogeneitiesFig. 5, bottom, right
wavelet, but slightly less enstropliy1% instead of 79%). To check the dynamical behavior of the coherent and

Figure 6(top) shows the PDF of the vorticity in semi- incoherent flows we compute their energy transfers in wave-
logarithmic coordinates. For CV@eft), the coherent vortic- nhumber space. Figure(Bottom shows that the direct energy
ity presents a very similar stretched exponential behaviorfransfers, from large to small scales, are the same for the
including the tails, as the total vorticity, with flatness 9.6 coherent and total flows. This proves that the coherent flow
instead of 8.7(Table |). The incoherent vorticity has an ex- triggers all nonlinear interactions, which are fully resolved
ponential PDF, with much weaker tails, and flatness 4.8. Foby the CVS filter. Therefore, there is no need to parametrize
POD-Fourier or LESright), the PDF of the large scale vor- the effect of the discarded incoherent modes on the retained
ticity is exponential with flatness 6.1, while it is a stretchedcoherent modes. This is no more the case for the large scale
exponential with flatness 9.6 for the small scale vorticity.flow, whose energy transfers present a strong accumulation
They both have about the same range of variation, which igear the cut-off scal&.. A subgrid parametrization is then
not the case for the CVS-wavelet decomposition, where th@ecessary to extract the energy coming from the large scales
extrema of the incoherent vorticity are 3.6 times weaker thanvhich otherwise piles up & .
those of the coherent vorticity. This is another indication of ~ From these observations, we propose the following sce-
the difficulty to model the effect of the small scales on thenario to interpret the turbulent cascade. The coherent energy
large scales. is nonlinearly transferred towards small scales by the nonlin-

Figure 6 (middle) shows the velocity PDF in semi- ear interactions between vortex tubes, i.e., their stretching,
logarithmic coordinates for both CVi&ft) and POD(right).  folding and twisting. In the meantime these nonlinear inter-
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FIG. 6. Comparison between CVS-wavel&ft) and POD-Fouriel(right) compressions: PDFs of vorticitftop), velocity (middle) and relative helicity
(bottom).

actions also produce incoherent energy at all sqates way  E. Comparison of the geometrical alignment between
analogous to white noise emissjpwhich is only dissipated Vvelocity and vorticity
at the smallest scales by molecular viscosity. We conjecture  gjpce the CVS filtering is based anpriori denoising,

that the coherent flow is dynamically active, while the inco-\ithout any dynamical assumption or pattern recognition hy-
herent flow is slaved to it, being only passively advectedpotheses about the vortex tubes, we now chegosteriori
strained and mixed by the coherent vortex tubes. In contrasthat we have actually extracted them. Following Ref. 9 they
the small scale flow, discarded by the POD-Fourier or LESan be described as local steady solutions of the Euler equa-
filter, is not slaved but remains dynamically active due to theion where the nonlinearity is locally depleted, which hap-
small scale contribution of the coherent tubes, which mayens, in particular, where vorticity and velocity vectors
cause backscatter as observed by Ref. 34, i.e., there may become aligned. This geometrical alignment maximizes
some energy transfers towards large scales. This is anothtite relative helicity h=V-w/(|V||w|) and is called
evidence of the modeling problem that POD-Fourier or LESBeltramization®>

may encounter. In Fig. 6 (bottom, lefy we show that the coherent flow
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exhibits the same tendency towards local Beltramization awell. The small scale contribution of the coherent vortices
the total flow, which is characterized by the two maximaextracted with the POD-Fourier remains in the small scale
observed in the PDF of the relative helicity for=+1  flow, resulting in a stretched exponential PDF of velocity.
(alignmeni andh= —1 (anti-alignmenk In contrast, the in- Therefore, modeling the effect of the discarded modes on the
coherent flow is more evenly distributed, with a maximum atresolved modes is easier to perform with CVS than with
h=0 which indicates a tendency towards local two-POD-Fourier or LES.
dimensionalization. This observation, together with the evi-  In order to avoid a common misunderstanding, we stress
dence of strong dissipation in the incoherent figvig. 7,  that:
top), agrees with the remark of Moffatt:“ Euler flows con- .
tain blobs of maximal helicity (positive or negative) which M
may be interpreted as ‘coherent structures,” separated by
regular surfaces on which vortex sheets, the site of stron?,.
viscous dissipation, may be locaté#&ollowing this picture, i)
we conjecture that the CVS coherent flow is dominated by
three-dimensional vortex tubes which tend to maximize he-
licity, while the incoherent flow is made of two-dimensional
vortex sheets which tend to maximize dissipation.

The POD-Fourier or LES d(_acomposmons dlffer_ from the As a consequence, two different kinds of motion contribute
CVS-wavelet decomposition since they do not d|sentangl?0 the small scales:
components exhibiting different geometrical alignments. We '
observe that both the total, large scale and small scale flows) incoherent motions which, under the effect of the

the incoherent flow is not only small scale, but mul-
tiscale, because its energy is spread over all scales as
a white noise;

the coherent flow is not only large scale, but multi-
scale, although it dominates the large scales due to its
long-range correlation. Moreover, the coherent flow
also contains small scales associated with the
stretched and distorted vortex tubes.

exhibit the same PDF of the relative helicitiyig. 6, bottom, strong mixing exerted by the coherent vortex tubes,
right). This comes from the fact that each vortex tube in the have already reached a statistical equilibrium, charac-
total flow contributes to both the large and small scales terized by the equipartition of energy and the Gaussi-
flows. anity of the velocity PDF;

(i) coherent motions, dominated by the nonlinear interac-
IV. CONCLUSION tions between vortex tubes which generate small

scales by their mutual stretching, folding and twisting.
We have shown that the CVS decomposition, based on Those are not yet in statistical equilibrium, since they

the nonlinear filtering of the wavelet coefficients of vorticity, are long-range correlated and their velocity PDF is
is an efficient tool for extracting coherent vortices out of non-Gaussian.

turbulent flows. We have applied it to a three-dimensional

homogeneous isotropic turbulent flow, computed at resolu- We conjecture that only the coherent motions are dy-
tion N=256°, which is decomposed into two orthogonal namically active and trigger the nonlinear dynamics and the
components: A low-dimensional (2.9% coherent flow, resulting energy cascade. The incoherent background flow,
made of vortex tubes, which is long-range correlated with groduced by the nonlinear interactions between the coherent
k=52 energy spectrum, and a large-dimensional (9M)% vortex tubes, is passively advected and strained by them.
incoherent flow, which is random, decorrelated and has &his straining inhibits any instability to develop in the inco-
Gaussian velocity PDF. For the same compression rate, theerent flow, and results in a strong mixing which leads to the
POD, which degenerates for this homogeneous isotropic caghissipation of incoherent energy by molecular viscosity.
in the Fourier basis, does not extract the vortex tubes equall@ince the incoherent motions are slaved to the coherent flow,
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