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Space missions
1
 and ground-based observations

2
 have shown that some asteroids are loose 

collections of rubble rather than solid bodies. The physical behavior of such ‘rubble pile’ 

asteroids has been traditionally described using only gravitational and frictional forces within 

a granular material
3
. Cohesive forces in the form of small van der Waals forces between 

constituent grains have been recently predicted to be important for small rubble piles (10-

kilometer-sized or smaller), and can potentially explain fast rotation rates in the small 

asteroid population
4-6

. Hitherto, the strongest evidence came from an analysis of the 

rotational breakup of main belt comet P/2013 R3 (ref. 7), although that was indirect and 

poorly constrained by present observations. Here we report that the kilometer-sized asteroid 

(29075) 1950 DA
8
 is a rubble pile that is rotating faster than that allowed by gravity and 

friction. We find that cohesive forces are required to prevent surface mass shedding and 

structural failure, and that the strength of the forces are comparable to, though somewhat 

less than, that of lunar regolith. 

 

It is possible to infer the existence of cohesive forces within an asteroid by determining if it is a 

rubble pile with insufficient self-gravity to prevent rotational breakup by centrifugal forces. One 

of the largest known candidates is near-Earth asteroid 1950 DA (mean diameter of 1.3 km; ref. 
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8), as it has a rotation period of 2.1216 hr that is just beyond the critical spin limit of ~2.2 hr 

estimated for a cohesionless asteroid
9
. A rubble pile structure and the degree of self-gravity can 

be determined by a bulk density measurement, which can be acquired through model-to-

measurement comparisons of Yarkovsky orbital drift
10

. This drift arises on a rotating asteroid 

with non-zero thermal inertia, and is caused by the delayed thermal emission of absorbed 

sunlight, which applies a small propulsion force to the asteroid’s afternoon side. Thermal-

infrared observations can constrain the thermal inertia value
11

, and precise astrometric position 

measurements conducted over several years can constrain the degree of Yarkovsky orbital 

drift
2
. Recently, the orbital semimajor axis of 1950 DA has been observed to be decreasing at a 

rate of 44.1 ± 8.5 m yr
-1

 because of the Yarkovsky effect
12

, which indicates that the asteroid's 

sense of rotation must be retrograde. Using the Advanced Thermophysical Model
13,14

, in 

combination with the retrograde radar shape model
8
, archival WISE thermal-infrared data

15
 

(Extended Data Table 1, and Extended Data Figs 1 and 2), and orbital state
12

, we determine the 

thermal inertia and bulk density of 1950 DA (Methods). The thermal inertia value is found to be 

remarkably low at 24 
+20

/-14 J m
-2

 K
-1

 s
-1/2

, which gives a corresponding bulk density of 1.7 ± 0.7 g 

cm
-3

 (Fig. 1 and Extended Data Fig. 3). This bulk density is much lower than the minimum value 

of 3.5 g cm
-3

 required to prevent loss of surface material by centrifugal forces (Fig. 2). 

 

Spectral observations of 1950 DA indicate either an E- or M-type classification in the Tholen 

taxonomic system
16

. However, its low optical albedo and low radar circular polarization ratio
8
 

rule out the E-type classification
 

(Extended Data Table 2). The derived bulk density is 

inconsistent with the traditional view that M-type asteroids are metallic bodies. However, the 



Rosetta encounter with main-belt asteroid (21) Lutetia has demonstrated that not all M-type 

asteroids are metal-rich
17

. Indeed, the low radar albedo
8
 of 1950 DA is very similar to that of 

Lutetia, suggesting a similar composition. The best meteorite analog for Lutetia is an enstatite 

chondrite
17

, which has a grain density of 3.55 g cm
-3

. Taking the same meteorite analog and 

grain density for 1950 DA implies a macro-porosity of 51 ± 19 % and indicates that it is a rubble 

pile asteroid (Fig. 1). 

 

As the WISE observations were taken when 1950 DA was ~1.7 AU from the Sun, the derived 

thermal inertia value scales to 36 
+30

/-20 J m
-2

 K
-1

 s
-1/2

 at 1 AU because of temperature 

dependent effects. This scaled value is comparable to that of ~45 J m
-2

 K
-1

 s
-1/2

 determined for 

the lunar surface from thermal-infrared measurements
18

, and implies the presence of a similar 

fine-grained regolith. This is consistent with 1950 DA’s low radar circular polarization ratio, 

which suggests a very smooth surface at centimeter to decimeter scales
8
. The sub-observer 

latitude of the WISE observations was ~2° and indicates that this surface material was primarily 

detected around 1950 DA’s equator. 

 

For the derived bulk density, 1950 DA has 48 ± 24 % of its surface experiencing negative 

ambient gravity (Methods) with peak outward accelerations of (3 ± 1) × 10
-5

 gE (where gE is 9.81 

m s
-2

) around the equator (Figs 1, 2 and 3). This makes the presence of a fine-grained regolith 

rather unexpected, and requires the existence of cohesive forces in order for 1950 DA to retain 

such a surface. In granular mechanics, the strength of this cohesive force is represented by the 

bond number, B, which is defined as the ratio of this force to the grain's weight. Lunar regolith 



has been found to be highly cohesive because of van der Waals forces arising between grains
19

, 

and experimental and theoretical studies have shown that the bond number for this cohesive 

force is given by 

21

A

510 −−−= dgB           (1) 

 where gA is the ambient gravity and d is the grain diameter
5
. To prevent loss of surface 

material requires bond numbers of at least one, but surface stability requires the bond 

numbers to be greater than ten, which places limits on the possible grain sizes present. For a 

peak negative ambient gravity of  3 × 10
-5

 gE, this relationship dictates that only grains with 

diameters less than ~6 cm can be present and stable on the asteroid's surface. 

 

This upper limit of ~6 cm diameter grains is consistent with 1950 DA’s lunar-like regolith. In 

particular, lunar regolith has micron to centimeter sized grains described by an approximate d
-3

 

size distribution
6,19

. Rubble pile asteroid (25143) Itokawa also has a d
-3

 grain size distribution 

but has boulders ranging up to ~40 m in size on the surface
20

, which is reflected in its much 

higher thermal inertia value of ~750 J m
-2

 K
-1

 s
-1/2

 (ref. 21). 1950 DA might have had large 

boulders present on its surface in the past, but these would have been progressively lost in 

order of size as it was spun-up by the YORP effect (i.e. spin state changes caused by the 

anisotropic reflection and thermal re-emission of sunlight from an irregular shaped asteroid
10

). 

This spinning-up selection process leaves behind the relatively fine-grained regolith with low 

thermal inertia that we see today
5
, and would work in addition to the thermal fatigue 

mechanism of asteroid regolith formation
22

. 



To check whether internal cohesive forces are also required to prevent structural failure of 

1950 DA, we applied the Drucker-Prager model for determining the failure stresses within a 

geological material
4,6

 (Methods). In this model, the maximum spin-rate a rubble pile asteroid 

can adopt depends on its overall shape, degree of self-gravity, and internal strength. The 

internal strength results from the angle of friction between constituent grains and any cohesive 

forces present. Utilizing the dynamically-equivalent and equal-volume ellipsoid of 1950 DA, and 

using an angle of friction typical for lunar regolith of 40° (ref. 19), we find that a minimum 

cohesive strength of 64 
+12

/-20 Pa is required to prevent structural failure (Figs 1 and 4). This is 

less than that of 100 Pa measured for weak lunar regolith
19

, and is within the range of 3 to 300 

Pa estimated by numerical simulations of rubble pile asteroids
6
. It is also consistent with the 

range of 40 to 210 Pa estimated for the precursor body of P/2013 R3 (ref. 7). This finding proves 

that not all small asteroids rotating faster than the cohesionless critical spin limit are coherent 

bodies or monoliths
4-6

. It also supports the view that some high-altitude bursting meteors, such 

as impacting asteroid 2008 TC3 (ref. 23), are very small rubble piles held together by cohesive 

forces
6
. 

 

Finally, as 1950 DA has a 1 in 4000 chance of impacting the Earth in 2880 (ref. 12), and has the 

potential to breakup like P/2013 R3 because of its tensional state, it has raised new implications 

for impact mitigation. Some hypothesized deflection techniques, such as the kinetic impactor
24

, 

violently interact with the target asteroid and have the potential to destabilize long-ranging 

granular force networks present
25

. With such tenuous cohesive forces holding one of these 

asteroids together, a very small impulse may result in complete disruption. This may have 



happened on the precursor body of P/2013 R3 through a meteorite impact. Therefore, there is 

a potential danger of turning one Earth threatening asteroid into several if cohesive forces 

within rubble pile asteroids are not properly understood. 
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Figure 1: Physical property distributions of (29075) 1950 DA. These were derived by ATPM at 

the 3-σ confidence level by fitting to the WISE thermal-infrared observations and to the 

observed rate of Yarkovsky orbital drift. 

 

Figure 2: Degree of negative ambient gravity for (29075) 1950 DA. The area of the surface 

experiencing negative ambient gravity (solid line) is plotted against the primary (left) y-axis, and 

the peak negative ambient gravity (dashed line) is plotted against the secondary (right) y-axis. 

Both are plotted as functions of bulk density for the nominal diameter of 1.3 km. The vertical 

lines represent the 1-σ range derived for the bulk density, i.e. 1.7 ± 0.7 g cm
-3

. 
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Figure 3: Gravitational slopes of (29075) 1950 DA. These were produced using the retrograde 

radar shape model
8
 with the nominal derived bulk density of 1.7 g cm

-3
. Gravitational slopes 

greater than 90°, which predominantly occur around the equator, indicate that those surface 

elements are experiencing negative ambient gravity. 

 

Figure 4: Minimum internal cohesive strength of (29075) 1950 DA. This was calculated using the 

Drucker-Prager failure criterion as a function of bulk density (x-axis) and angle of friction 

(legend) for the nominal diameter of 1.3 km. The vertical lines represent the 1-σ range derived 

for the bulk density, i.e. 1.7 ± 0.7 g cm
-3

. 

 

Methods 

Thermophysical modelling 

The Advanced Thermophysical Model (or ATPM) was used to determine the thermal inertia and 

bulk density of (29075) 1950 DA. The ATPM has been developed to interpret thermal-infrared 

observations of atmosphereless planetary surfaces
13

, and simultaneously make asteroidal 

Yarkovsky and YORP effect predictions
14

. Accurate interpretation of thermal-infrared 

observations was verified by application to the Moon
13

, and it has been successfully applied to 

asteroids (1862) Apollo
26

 and (101955) Bennu
2
 for determining their thermal and physical 

properties. 

 

To summarize how it works
26

, the ATPM computes the surface temperature variation for each 

surface element during a rotation by solving 1D heat conduction with a surface boundary 



condition that includes direct and multiple scattered sunlight, shadowing, and re-absorbed 

thermal radiation from interfacing surface elements (i.e. global self-heating effects). Rough 

surface thermal-infrared beaming (i.e. thermal re-emission of absorbed solar energy back 

towards the Sun) is explicitly included in the form of hemispherical craters, which have been 

shown to accurately recreate the lunar thermal-infrared beaming effect
13

. The degree of 

roughness for each surface element is specified by a fraction of its area covered by the 

hemispherical craters, fR. The asteroid thermal emission as a function of wavelength, rotation 

phase, and various thermophysical properties is determined by applying the Planck function to 

the derived temperatures and summing across visible surface elements. The Yarkovsky and 

YORP effects are then determined by computing the total recoil forces and torques from 

photons reflected off and thermally emitted from the asteroid surface. 

 

Analysis of WISE thermal-infrared observations 

The thermal inertia of 1950 DA was determined using archival WISE thermal-infrared 

observations, which were obtained on 12-13 July 2010 UT during the WISE All-Sky survey
15

. All 

instances of WISE observations of 1950 DA were taken from the Minor Planet Center database 

and used to query the WISE All-Sky Single Exposure (L1b) source database via the NASA/IPAC 

Infrared Service Archive. Search constraints of 10’’ within the MPC ephemeris of 1950 DA, and 

Julian dates within 10 seconds of the reported observations, were used to ensure proper data 

retrieval. The magnitudes returned from this query were kept only in the instances in which 

there was a positive object detection or where a 95% confidence brightness upper limit was 

reported. 1950 DA had a faint apparent visual magnitude of 20.5 when the WISE observations 



were taken, and was only detected at 3-σ levels or greater in the W3 (11 μm) and W4 (22 μm) 

channels. Additionally, we only used data points that repeatedly sampled common rotation 

phases of 1950 DA to ensure consistency, and to avoid outliers, within the data set. This 

resulted in 14 useable data points in the W3 channel and 2 useable data points in the W4 

channel (Extended Data Table 1). The WISE images for these data points were also retrieved to 

check for any contaminating sources or extended objects surrounding 1950 DA (see Extended 

Data Fig. 2). The WISE magnitudes were converted to fluxes, and the reported red-blue 

calibrator discrepancy
27

 was taken into account. A 5% uncertainty was also added in quadrature 

to the reported observational uncertainties to take into account additional calibration 

uncertainties
27

. As in previous works of WISE asteroid observations (e.g. ref. 15), we color 

correct the model fluxes using the WISE corrections of ref. 27 rather than color correct the 

observed fluxes. 

 

The free parameters to be constrained by the WISE observations in the model fitting include 

the diameter, thermal inertia, surface roughness, and rotation phase. Although the radar 

circular polarization ratio indicates a very smooth surface at centimeter to decimeter spatial 

scales
8
, it does not provide a constraint on surface roughness occurring at smaller spatial scales 

that are comparable to 1950 DA's thermal skin depth (~1 mm). Surface roughness occurring at 

these spatial scales induce the thermal-infrared beaming effect, which requires that roughness 

must be left as a free parameter to allow the full range of possible interpretations of the WISE 

thermal-infrared observations to be obtained. In addition, the uncertainty on 1950 DA's 

measured rotation period does not allow accurate phasing of the radar shape model between 



the light-curve observations taken in 2001 and the WISE observations taken in 2010. Therefore, 

the rotation phase of the first observation (used as the reference) was left as a free parameter 

in the model fitting. 

 

In the model fitting, the model thermal flux predictions, FMOD(λn,D,Γ,fR,φ), were compared with 

the observations, FOBS(λn), and observational errors, σOBS(λn), by varying the diameter, thermal 

inertia, roughness fraction, and rotation phase to give the minimum chi-squared fit 

( ) ( )
( )∑

=







 −Γ
=

N

n n

nn FfDF

1 OBS

OBSRMOD2 ,,,,

λσ
λϕλχ        (2) 

for a set of N observations with wavelength λn. Separate thermophysical models were run for 

thermal inertia values ranging from 0 to 1000 J m
-2

 K
-1

 s
-1/2

 in equally spaced steps of 20 J m
-2

 K
-1

 

s
-1/2

 initially, and then between 0 and 90 J m
-2

 K
-1

 s
-1/2

 in 2 J m
-2

 K
-1

 s
-1/2

 steps once the likely 

thermal inertia value had been constrained. The diameter, roughness fraction, and rotation 

phase were also stepped through their plausible ranges, forming a 4-dimensional grid of model 

test parameters (or test clones) with the thermal inertia steps. A parameter region bounded by 

a constant Δχ2
 at the 3-σ confidence level then defined the range of possible parameters. 

Finally, counting the number of acceptable test clones in each parameter value bin then 

allowed the probability distribution for each free parameter to be obtained. The best model fit 

had a reduced-χ2
 value of 1.06, and an example model fit to the WISE observations is shown in 

Extended Data Fig. 1. 

 



Unfortunately, the WISE data alone do not place unique constraints on the diameter, thermal 

inertia, and surface roughness because of its limited phase angle and wavelength coverage. As 

shown in Extended Data Fig. 3, the best-fitting diameter increases with thermal inertia such 

that a unique constraint cannot be made. Fortunately, the radar observations had constrained 

1950 DA’s diameter to be 1.3 km with a maximum error of 10% (ref. 8). Therefore, by allowing 

the diameter to vary between 1.17 and 1.43 km only, we found that 1950 DA’s thermal inertia 

value must be very low, i.e. 24 
+20

/-14 J m
-2

 K
-1

 s
-1/2

 or ≤ 82 J m-2
 K

-1
 s

-1/2
. This result is consistent 

with a preliminary upper bound of 110 J m
-2

 K
-1

 s
-1/2

 determined by ref. 28 using a simpler 

thermophysical model that neglected rough surface thermal-infrared beaming effects. In our 

work, the surface roughness still remains unconstrained, but must be included for the 

Yarkovsky effect analysis described below. The probability distribution for the derived thermal 

inertia value is shown in Fig. 1. 

 

Analysis of Yarkovsky orbital drift 

The bulk density of 1950 DA could be determined by model-to-measurement comparisons of its 

Yarkovsky semimajor axis drift. Ref. 12 were able to measure a transverse acceleration of (-6.70 

± 1.29) × 10
-15

 AU/day
2
 acting on 1950 DA in its orbit by using optical astrometry dating back to 

1950 and radar ranging data taken in 2001 and 2012. This transverse acceleration corresponded 

to a rate of change in semimajor axis of (-2.95 ± 0.57) × 10
-4

 AU/Myr or -44.1 ± 8.5 m yr
-1

 (ref. 

29). Parameter studies using the ATPM have shown that the Yarkovsky effect is in general 

enhanced by rough surface thermal-infrared beaming
14

. For 1950 DA's oblate shape, fast 

rotation period, and low thermal inertia, the potential enhancement was rather large (see 



Extended Data Fig. 4) and had to be included to prevent underestimation of 1950 DA's bulk 

density. The overall Yarkovsky drift acting on 1950 DA, da/dt(D,Γ,fR,ρ), for a bulk density ρ was 

determined from 
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where da/dt(Γ)smooth is the smooth surface component, da/dt(Γ)rough is the rough surface 

component, and da/dt(Γ)seasonal is the seasonal component
26

. Each component was evaluated 

separately at a specified initial diameter, D0, and bulk density, ρ0. A Yarkovsky effect prediction 

was produced for every test clone deemed acceptable from the WISE flux-fitting described 

above. To produce the distribution of possible bulk densities, each prediction was compared 

against 500 samples of Yarkovsky drift that were randomly selected from a normal distribution 

with a mean and standard deviation of -44.1 ± 8.5 m yr
-1

. This ensured that the uncertainty on 

the measured Yarkovsky drift was taken into account. Extended Data Fig. 3 shows the derived 

bulk density as a function of thermal inertia for the range of acceptable test clones without a 

thermal inertia constraint. As indicated, to match the observed drift at the 1-σ level required 

the bulk density to be less than 2.7 g cm
-3

 regardless of the thermal inertia value. Using the 

thermal inertia constraint, the bulk density was constrained to be 1.7 ± 0.7 g cm
-3

 and its 

probability distribution is shown in Fig. 1. 

 

Cohesive force modelling 

Surface and internal cohesive forces are required to prevent surface mass shedding and 

structural failure of 1950 DA, respectively. The surface cohesive forces are proportional to the 



magnitude of the negative ambient gravity experienced by the surface. In particular, the 

gravitational acceleration, g, acting at a particular point of 1950 DA’s surface, x, was 

determined using a polyhedral gravity field model
30

. Under asteroid rotation the ambient 

gravitational acceleration at that surface point will be modified by centripetal acceleration, 

such that 

( )( )ppxxgg ˆˆ2 ⋅−−=′ ω          (4) 

where ω is the asteroid angular velocity and p̂  is the unit vector specifying the orientation of 

the asteroid rotation pole. The ambient surface gravity, gA, acting along the surface normal, n̂ , 

of point x is then given by 

ng ˆ
A ⋅′−=g ,           (5) 

and, finally, the effective gravitational slope, θ, is given by 

( )g′= −
Ag

1cosθ  .          (6) 

To accurately measure the area of its surface experiencing negative ambient gravity each shape 

model facet was split into one hundred smaller sub-facets. The negative ambient gravity as a 

function of bulk density is shown in Fig. 2, and a 3D plot of gravitational slope is shown in Fig. 3. 

The bond number for a particular regolith grain diameter in a specified degree of negative 

ambient gravity was then determined from equation (1). 

 

The minimum internal cohesive force required to prevent structural failure of 1950 DA was 

determined analytically from the Drucker-Prager failure criterion and a model of interior 

stresses within the asteroid
4,6

. For a homogenous ellipsoidal body with semi-axes a, b, c the 

average normal stress components are 



 ( )
5

2
2

22 a
GAxx πρρωσ −= , 

( )
5

2
2

22 b
GAyy πρρωσ −= , 

( )
5

2
2

2 c
GAzz πρσ −=  ,         (8) 

where the A i terms are dimensionless coefficients that depend only on the shape of the body. 

These coefficients are Ax = 0.57003, Ay = 0.60584, and Az = 0.82413 for the dynamically-

equivalent and equal-volume ellipsoid of 1950 DA, which were determined from equation 4.6 

of ref. 4. The Drucker-Prager failure criterion using the average stresses is given by 

( ) ( ) ( )[ ] ( )[ ]2222

6

1
zyxxzzyyx sk σσσσσσσσσ ++−≤−+−+−     (9) 

where k is the internal cohesion and s is the slope constant. The slope constant is determined 

from the angle of friction φ using 

( )ϕ
ϕ

sin33

sin2

−
=s .          (10) 

An angle of friction consistent with lunar regolith of 40° (ref. 19) was assumed to calculate the 

minimum internal cohesive force required to prevent structural failure of 1950 DA using the 

Druger-Prager criterion. The minimum internal cohesive force as a function of bulk density for 

three different angles of friction is shown in Fig. 4. 
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Extended Data 

Extended Data Figure 1: Example ATPM fit to the WISE thermal-infrared observations. This fit 

(lines) was made for a thermal inertia of 24 J m
-2

 K
-1

 s
-1/2

 and a surface roughness of 50%. The 

error bars correspond to the 1-σ uncertainties on the measured data points. 

 

Extended Data Figure 2: WISE thermal-infrared images of (29075) 1950 DA. The image scale is 

2.75 arcsec per pixel for the W1/W2/W3 channels and 5.53 arcsec per pixel for the W4 channel. 

White pixels are bad pixels that do not contain data. The object seen to the upper left of 1950 

DA in the W1 and W2 channels is a faint background star. 

 



Extended Data Figure 3: Physical properties derived for (29075) 1950 DA as a function of 

thermal inertia. a, Diameter; b, bulk density. The dashed lines represent the 1-σ uncertainty for 

the average solid lines. The red horizontal lines represent the radar diameter constraint
8
 of 1.30 

± 0.13 km, and the red vertical lines represent the corresponding thermal inertia constraint of ≤ 

82 J m
-2

 K
-1

 s
-1/2

. 

 

Extended Data Figure 4: Enhancement of Yarkovsky orbital drift by surface roughness for 

(29075) 1950 DA. 

 

Extended Data Table 1: WISE thermal-infrared observations of (29075) 1950 DA. 

 

Extended Data Table 2: Physical properties of (29075) 1950 DA. *Derived in this work. 
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MJD (day) Rotation phase Channel WISE magnitude 
Flux (10

-17
 

W m
-2

 µm
-1

) 
Heliocentric 

distance (AU) 
WISE-centric 
distance (AU) 

Phase angle (°) 

55389.71982 0.000 W3 10.00 ± 0.16 7.63 ± 1.20 1.738 1.410 35.8 

55389.85212 0.497 W3 9.64 ± 0.12 10.64 ± 1.29 1.739 1.409 35.8 

55390.11670 0.490 W3 9.52 ± 0.12 11.89 ± 1.43 1.741 1.408 35.7 

55390.18282 0.238 W3 9.93 ± 0.15 8.17 ± 1.19 1.741 1.407 35.7 

55390.24890 0.985 W3 10.10 ± 0.19 6.98 ± 1.26 1.741 1.407 35.7 

55390.24903 0.987 W3 9.90 ± 0.16 8.36 ± 1.27 1.741 1.407 35.7 

55390.31510 0.734 W3 9.76 ± 0.13 9.51 ± 1.27 1.742 1.407 35.7 

55390.38121 0.482 W3 9.86 ± 0.15 8.69 ± 1.25 1.742 1.406 35.7 

55390.51351 0.978 W3 9.92 ± 0.15 8.23 ± 1.22 1.743 1.406 35.7 

55390.57973 0.727 W3 9.55 ± 0.11 11.54 ± 1.30 1.744 1.405 35.7 

55390.71200 0.224 W3 9.82 ± 0.15 8.98 ± 1.28 1.745 1.405 35.6 

55390.84433 0.721 W3 9.52 ± 0.11 11.87 ± 1.34 1.745 1.404 35.6 

55390.97650 0.216 W3 9.98 ± 0.17 7.75 ± 1.28 1.746 1.403 35.6 

55390.97660 0.217 W3 9.79 ± 0.14 9.27 ± 1.25 1.746 1.403 35.6 

55390.57973 0.727 W4 7.16 ± 0.30 6.35 ± 1.76 1.744 1.405 35.7 

55390.84433 0.721 W4 7.09 ± 0.29 6.80 ± 1.85 1.745 1.404 35.6 



 Property Value 

Size 
Diameter of equivalent volume sphere

8 
1.30 ± 0.13 km 

Dimensions of dynamically-equivalent and equal-volume ellipsoid (2a, 2b, 2c)
8 

1.46 × 1.39 × 1.07 km 

 
Optical 

Absolute magnitude
8 

16.8 ± 0.2 
Phase parameter

8 
0.15 ± 0.10 

 

Geometric albedo
8 

0.20 ± 0.05 

Rotation 
Rotation period

8 
2.12160 ± 0.00004 hr  

Obliquity
8
 168 ± 5 ° 

Orbit 

Semimajor axis
12 

1.70 AU 

Eccentricity
12 

0.51 

Yarkovsky semimajor axis drift
12 (-2.95 ± 0.57) × 10

-4
 AU/Myr 

(or -44.1 ± 8.5 m yr
-1

) 

Surface composition 

Spectral type
16

 M 

Thermal inertia* 
24 

+20
/ -14  J m

-2
 K

-1
 s

-1/2
  

(36 
+30

/ -20 J m
-2

 K
-1

 s
-1/2

 at 1 AU) 

Surface roughness* 50 ± 30 % 

Radar albedo
8 

0.23 ± 0.05 

Radar circular polarization ratio
8
 0.14 ± 0.03 

Mass 

Bulk density* 1.7 ± 0.7 g cm
-3

 

Macro-porosity* 51 ± 19 % 

Mass* (2.1 ± 1.1) × 10
12

 kg 

Cohesion 

Surface area of negative ambient gravity* 48 ± 24 % 

Peak negative ambient gravity* (3 ± 1) × 10
-5

 gE 

Internal cohesive strength* 64 
+12

/ -20 Pa 
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