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Abstract The contacts between cohesive, frictional
particles with sizes in the range 0.1–10µm are the subject of
this study. Discrete element model (DEM) simulations rely
on realistic contact force models—however, too much details
make both implementation and interpretation prohibitively
difficult. A rather simple, objective contact model is pre-
sented, involving the physical properties of elastic–plastic
repulsion, dissipation, adhesion, friction as well as rolling-
and torsion-resistance. This contact model allows to model
bulk properties like friction, cohesion and yield-surfaces.
Very loose packings and even fractal agglomerates have been
reported in earlier work. The same model also allows for
pressure-sintering and tensile strength tests as presented in
this study.

Keywords Granular materials · Molecular dynamics (MD)
and discrete elementmodel (DEM) force-laws · Friction ·
Rolling- and torsion-resistance · Adhesion ·
Plastic deformation

1 Introduction

Cohesive, frictional, fine powders show a peculiar flow
behavior that can be quantified by macroscopic bulk
properties as, among others, cohesion, friction, yield and
tensile strengths, dilatancy, stiffness, and anisotropy. The
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information propagation in such granular media is not com-
pletely understood, neither on the micro- nor on the macro-
level, especially when friction and other contact mechanisms
are involved. Nevertheless, the macroscopic properties are
controlled by the “microscopic” contact forces and torques,
involving, e.g., contact adhesion or friction. Molecular
dynamics (MD) or discrete element models (DEM) require
the contact forces and torques as the basic input, to solve
the equations of motion for all particles in the system. Alter-
native methods like event-driven MD [38,39,41] or contact
dynamics [28,55,56,63,65] are based on further simplifica-
tions, like the assumption of instantaneous contacts or the
perfect rigidity of particles, but will not be discussed here.

Research challenges involve not only the realistic quan-
titative and predictive simulation of many-particle systems,
their experimental validation, but also the transition from
the microscopic contact properties to the macroscopic flow
behavior. This so-called micro-macro transition should allow
to understand the collective flow behavior of many particles
as function of their contact properties.

The goal of this paper is to provide a minimal set of contact
models—as a compromise between a realistic and an easy
to handle modeling approach. Naturally the contact model
will be over-simplified, however, many details seem not to
be important for the behavior on the macroscopic level. A
single contact-model allows to simulate various systems and
structures, as mentioned above. A better and deeper under-
standing of the relation between micro- and macro-properties
will be facilitated by simpler contact models—fine-tuning
can be achieved in a future step.

1.1 Frictional contact models

Typically the normal and tangential (frictional) contact forces
are dealt with separately. While the former are subject of
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ongoing dispute, the latter are implemented in a commonly
accepted way, based on the first realistic model for static fric-
tion, as introduced by Cundall and Strack [6,12,39,64,73]:
a virtual tangential spring is attached to each contact and
evolves while the contact partners are moving and rotating,
relative to each other, due to the contact force and the many
other forces from other particles. Even though much more
advanced models were discussed in the literature, related to
the early works of Mindlin et al. [53,54], Derjaguin et al.
[15], and Johnson et al. [26], the basic idea remains the same,
being complemented by additional effects like, e.g., hystere-
sis, non-linearity, and others [27,72,83,84,93,94]. Advanced
contact models are then applied to various situations in pow-
der flow [6,29,36,73,80,82,95,97]. The present study will
deal with the simplest linear visco-elastic tangential spring
only, however, involving the possibility for different coeffi-
cients of static and dynamic friction as a new ingredient.

The tangential friction will lead to forces, but also to tor-
ques on the contact partners. Rolling- and torsion-resistance
[2,16,17,44,62,78] can play an important role in particle
systems, since they also lead to torques, typically reducing
the particles’ freedom to rotate. This can be used to mimick
the effects of surface roughness and non-spherical shapes
to some extent [57–59], but naturally, non-spherical parti-
cles require more advanced algorithms [31,52,89]—not dis-
cussed further in this study.

The present implementation of rolling- and torsion-
resistance is based on the same ideas as the model for static
and dynamic friction—even the algorithm/subroutine for the
evolution of the tangential spring can be used for rolling and
torsion degrees of freedom—for both particle-particle and
particle-wall contacts. Note that one has to assure that the
contact models are objective, i.e., a rotation of the frame of
reference must not affect the result.

1.2 Normal contact modeling

For fine particles, not only friction is relevant, but also adhe-
sive contact properties due to van der Waals forces. Since
effects like liquid and possibly permanent solid bridges are
not subject of the present study, we refer to the detailed liter-
ature, see Refs. [5,9,19,20,24,68,69,74,87,88,90] and ref-
erences therein.

Also other phenomena are relevant for the normal force
model: Due to the very small contact areas, already mod-
erate forces will lead to plastic yield and plastic deforma-
tion of the material in the vicinity of the contact. This will
lead to a larger contact area with increased stiffness and
increased adhesion due to the van der Waals forces. Like in
the case of friction, plenty of models are available, some of
them based on visco-elasticity [7,32,47,76] others on elasto-
plasticity [25,27,83,84,93,94]. For spheres, typically con-
tact models in the spirit of Hertz [4,22,35,60,66,70,79] seem

appropriate—but only when the forces are small enough so
that the yield stress is reached nowhere close to the contact
area. For rather large metal spheres, the details of contact
models are even measurable, when waves propagate along
chains of particles [10,11,49,75], and a Hertz based contact
law is recommmended. However, Hertz models will not be
discussed in this study, since finer powders only have a neg-
ligible range of elastic Hertz-like behavior [87] and, further-
more, are never perfectly spherical at the contact anyway.
The present model is a piece-wise linear generalization of
the hysteretic model ideas of Walton [94,96], involving plas-
tic deformations, nonlinear stiffness and history dependent
adhesion [43,44].

When contact overlaps/deformations become too large,
the physics changes and the present model is limited by a
simple linear force displacement branch with the maximal
contact stiffness. This is convenient, since it allows to fix
the time-step for numerical integration, however, the model
becomes questionable in the regime of large deformations.

1.3 Related issues in brief

For techniques to perform the so-called micro–macro tran-
sition, see e.g. [40,91,92] and references therein. The chal-
lenge here is to reduce the tremendous amount of information
on the contact level, like contact-orientation and -force proba-
bility distribution functions [68], to the relevant macroscopic
properties related to bulk-moduli, anisotropy and inhomo-
geneity in the contact network. The quest for a macroscopic
constitutive model based on microscopic contact parameters
is still ongoing.

Contact force measurements are rather simple for larger
particles [18,33,37], but for particles of micrometer size
advanced techniques have to be applied, see e.g. [8,20,30]
and references therein. Even though contacts can have a tem-
perature and time-dependent behavior as during sintering
[46,50,51], this will not be the issue of the present study.
Since the model presented below allows for pressure-
sintering, a sample of particles can form a solid block, if
compressed strong enough. The solid, sintered sample con-
tains all memory of its history and the primary particles are
still separate entities. Such a “granule” can then be exam-
ined by compressive and tensile tests—and all this without
the much more complex modeling of non-spherical parti-
cles and without the often used beam-like models for contact
adhesion and rolling resistance [89].

2 Soft particle molecular dynamics (MD)

Many-particle simulation methods like MD are also referred
to as discrete element models (DEM) [3,12,21,34,81,85,91].
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Cohesive, frictional powders: contact models for tension 237

They complement experiments on small “representative
volume elements” (RVEs) by providing deep and detailed
insight into the kinematics and dynamics of the samples
examined. Large scale industrial applications, simulated par-
ticle by particle, are out of reach of DEM, since much more
than the typical easy-to-deal-with million particles are
involved in a silo or a dam.

2.1 Discrete particle model

The realistic and detailed modeling of the deformations of
particles in contact with each other is much too complicated;
therefore, we relate the interaction force to the overlap δ of
two particles, see Fig. 1. In tangential direction, the forces
and torques also depend on the tangential displacement and
the relative rotations of the particle surfaces—different rota-
tional degrees of freedom are responsible for sliding, rolling
and torsion. Inter-particle forces based on the overlap and
relative motion might not be sufficient to account for the
inhomogeneous stress distribution inside the particles and
possible multi-contact effects. Thus, the results presented
here are of the same quality as the simplifying assumptions
about the force-overlap relations made. However, it is the
only way to model larger samples of particles with a mini-
mal complexity of the contact properties, taking into account
the relevant phenomena: non-linear contact elasticity, plastic
deformation, and adhesion.

2.2 Equations of motion

Given the sum of forces f i acting on a particle i , either
from other particles, or from walls, the problem is reduced
to the integration of Newton’s equations of motion for the
translational and rotational degrees of freedom:

mi
d2

dt2 r i = f i + mi g, and Ii
d

dt
ωi = qi , (1)

with the mass mi of particle i , its position r i the total force
f i = ∑

c f c
i , the acceleration due to volume forces like grav-

ity g, the particles moment of inertia Ii , its angular velocity
ωi and the total torque qi = qfriction

i + qrolling
i + qtorsion

i , as
defined below.

The equations of motion are thus a system of D + D
(D−1)/2 coupled ordinary differential equations to be solved
in D dimensions, with D = 2 or D = 3. With tools from
numerical integration, as nicely described in textbooks as
[1,61,67], this is a straightforward exercise. The typically
short-ranged interactions in granular media allow for opti-
mization by using linked-cell (LC) or alternative methods
in order to make the neighborhood search more efficient.
In the case of interactions that range longer than contact-
interactions, (e.g., charged particles or van der Waals type
forces) this is not possible anymore, so that either a cut-off

distance or more advanced methods for speed-up have to be
applied.

2.3 Normal contact force laws

Two spherical particles i and j , with radii ai and a j , respec-
tively, interact only if they are in contact so that their overlap

δ = (ai + a j ) − (r i − r j ) · n (2)

is positive, δ > 0, with the unit vector n = ni j = (r i −
r j )/|r i − r j | pointing from j to i . The force on particle
i , from particle j , at contact c, can be decomposed into a
normal and a tangential part as f c := f c

i = f nn + f t t ,
where n · t = 0. The tangential force leads to a torque like
rolling and torsion do, see below.

2.3.1 Linear contact model

The simplest normal contact force model, which takes care of
excluded volume, and thus the particle elasticity and stiffness,
as well as dissipation, involves a linear repulsive and a linear
viscous (velocity-dependent) force

f n = kδ + γ0vn, (3)

with a spring stiffness k, a viscous damping γ0, and the rel-
ative velocity in normal direction vn = −vi j · n = −(vi −
v j )·n = δ̇. This so-called linear spring dashpot (LSD) model
describes particle contacts as damped harmonic oscillators,
for which the half-period of a vibration—around an equilib-
rium position with a certain contact force—can be computed
analytically [39]. The typical response time, i.e. contact dura-
tion, is

tc = π

ω
, with ω =

√
(k/m12) − η2

0, (4)

the eigenfrequency of the contact, the rescaled damping coef-
ficient η0 = γ0/(2mi j ), and the reduced mass mi j = mi m j/

(mi +m j ). From the solution of the equation of a half period
of the oscillation, one also obtains the coefficient of restitu-
tion as the ratio between final (primed) and initial velocity,

r = v′
n/vn = exp (−πη0/ω) = exp (−η0tc). (5)

The contact duration in Eq. (4) is also of practical tech-
nical importance, since the integration of the equations of
motion is stable only if the integration time-step �tMD is
much smaller than tc. Note that tc depends on the magnitude
of dissipation: In the extreme case of an overdamped spring,
tc can become very large (which would render the contact
behavior artificial [47]). Thus, the use of neither too weak
nor too strong dissipation is recommended; restitution coef-
ficients between about 0.4 and 0.8 can be seen as “strong”
dissipation. Lower values lead to artificially strong viscous
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effects, while larger values correspond to weaker and weaker
dissipation, with r = 1, the elastic limit.

2.3.2 Adhesive, elasto-plastic contact model

Here, a variant of the linear hysteretic spring model [39,87,
98] is introduced. This model is the simpler version of more
complicated nonlinear-hysteretic force laws [71,87,88,98,
99]. The adhesive, plastic (hysteretic) force is

f hys =
⎧
⎨

⎩

k1δ if k2(δ − δ0) ≥ k1δ

k2(δ − δ0) if k1δ > k2(δ − δ0) > −kcδ

−kcδ if − kcδ ≥ k2(δ − δ0)

(6)

with k1 ≤ k2 ≤ k̂2, see Fig. 1. The lines with slopes k1

and −kc define the range of possible force values. Between
these two extremes, unloading and reloading follow a line
with slope k2, which interpolates between k1 and a maximum
stiffness k̂2. Possible equilibrium states are indicated as cir-
cles in Fig. 1, where the upper and lower circle correspond to
a pre-stressed and stress-free state, respectively. Small per-
turbations lead, in general, to small deviations along the line
with slope k2 as indicated by the arrows in Fig. 1.

During initial loading the force increases linearly with the
overlap δ, until the maximum overlap δmax is reached (δmax

is kept in memory as a history variable). The line with slope
k1 thus defines the maximum force possible for a given δ.

During unloading the force drops on a line with slope k2,
which depends, in general, on δmax, see Eq. (8). The force at
δ = δmax decreases to zero, at overlap δ0 = (1−k1/k2)δmax,
which resembles the plastic contact deformation. Reloading
at any instant leads to an increase of the force along the same
line with slope k2, until the maximum force is reached; for
still increasing δ, the force follows again the line with slope
k1 and δmax has to be adjusted accordingly.

Unloading below δ0 leads to attractive adhesion forces
until the minimum force −kc δmin is reached at the over-
lap δmin = (k2 − k1)δmax/(k2 + kc), a function of the model

δ

r

ri

j δ

k1δ

−k

(δ−δ )2        0k

δ max

f hys

minδ

min
f

f
0

0

δ0

c δ

Fig. 1 Left: Two particle contact with overlap δ in normal direction.
Right: Schematic graph of the piece-wise linear, hysteretic, adhesive
force–displacement model in normal direction. The non-contact forces,
indicated by f0 and the line for negative δ, are neglected in the rest of
the paper

parameters k1, k2, kc, and the history parameter δmax.
Further unloading leads to attractive forces f hys = −kcδ

on the adhesive branch with slope −kc. The highest possible
attractive force, for given k1 and k2, is reached for kc → ∞,
so that one has fmin ≥ −(k2 − k1)δmax for arbitrary kc.

A non-linear un-/re-loading behavior would be more real-
istic, however, due to a lack of detailed experimental informa-
tions, the piece-wise linear model is used as a compromise.
One reasonable refinement, which accounts for an increas-
ing stiffness with deformation, is a k2 value dependent on
the maximum overlap. This also implies relatively small and
large plastic deformations for weak and strong contact forces,
respectively. Unless a constant k2 = k̂2 is used, the contact
model [43,44,50], requires an additional quantity, i.e., the
plastic flow limit overlap

δ∗
max = k̂2

k̂2 − k1
φ f

2a1a2

a1 + a2
, (7)

with the dimensionless plasticity depth, φ f , defined relative
to the reduced radius. If the overlap is larger than a fraction φ f

of the particle radius (for a1 = a2), the (maximal) constant
stiffness k̂2 is used. For different particle radii, the reduced
radius increases towards the diameter of the smaller particles
in the extreme case of particle-wall contacts (where the wall-
radius is assumed infinite). This formulation is equivalent to
earlier versions [43,44] for almost equal-sized particles, but
has some advantages for large size-differences.

Note that a limit stiffness k̂2 ≥ k2 is desirable for practical
reasons. If k2 would not be limited, the contact duration could
become very small so that the time step would have to be
reduced below reasonable values. For overlaps smaller than
δ∗

max, the function k2(δmax) interpolates linearly between k1

and k̂2:

k2 :=k2(δmax)=
{

k̂2 if δmax ≥ δ∗
max

k1+(k̂2 − k1)
δmax
δ∗

max
if δmax <δ∗

max
. (8)

While in the case of collisions of particles with large rel-
ative velocities—and thus large deformations—dissipation
takes place due to the hysteretic nature of the force-law, rea-
sonably strong dissipation of small amplitude deformations
is achieved by adding the viscous, velocity dependent dis-
sipative force from Eq. (3) to the hysteretic force, such that
f n = f hys + γ0vn .

In summary, the adhesive, plastic, hysteretic normal con-
tact model contains the five parameters k1, k̂2, kc, φ f , and γ0

that respectively account for (i) loading- and (ii) reloading-
stiffness and plastic deformation, (iii) adhesion strength, (iv)
plastic overlap-range of the model, and (v) viscous dissipa-
tion. Finally, we remark that the hysteretic model contains
the linear contact model as special case k1/k̂2 = 1 for which
kc and φ f become meaningless.
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Normal van der Waals type particle interactions that lead
to attractive forces, see f0 in Fig. 1, already when the particles
are still separated are not discussed here, for details see [43]
and references therein.

2.4 Tangential contact force laws

For the tangential degrees of freedom, there are three different
force- and torque-laws to be implemented: (i) friction, (ii)
rolling resistance, and (iii) torsion resistance.

2.4.1 Sliding

For dynamic (sliding) and static friction, the relative tangen-
tial velocity of the contact points,

vt = vi j − n(n · vi j ), (9)

is to be considered for the force and torque computations in
subsection 2.5, with the total relative velocity of the particle
surfaces at the contact

vi j = vi − v j + a′
i n × ωi + a′

j n × ω j , (10)

with the corrected radius relative to the contact point a′
α =

aα − δ/2, for α = i, j . Tangential forces acting on the con-
tacting particles are computed from the accumulated sliding
of the contact points along each other, as described in detail
in subsection 2.5.1.

2.4.2 Objectivity

In general, two particles can rotate together, due to both a
rotation of the reference frame or a non-central “collision”.
The angular velocity ω0 = ωn

0 +ωt
0, of the rotating reference

has the tangential-plane component

ωt
0 = n × (

vi − v j
)

a′
i + a′

j
, (11)

which is related to the relative velocity, while the normal
component, ωn

0, is not. Inserting ωi = ω j = ωt
0, from Eq.

(11), into Eq. (10) leads to zero sliding velocity, proving
that the above relations are objective. Tangential forces and
torques due to sliding can become active only when the par-
ticles are rotating with respect to the common rotating refer-
ence frame.1

Since action should be equal to reaction, the tangential
forces are equally strong, but opposite, i.e., f t

j = − f t
i ,

while the corresponding torques are parallel but not nec-
essarily equal in magnitude: qfriction

i = −a′
i n × f i , and

1 For rolling and torsion, there is no similar relation between rotational
and tangential degrees of freedom: for any rotating reference frame,
torques due to rolling and torsion can become active only due to rotation
relative to the common reference frame, see below.

qfriction
j = (a′

j/a′
i )q

friction
i . Note that tangential forces and

torques together conserve the total angular momentum about
the pair center of mass

Li j = Li + L j + mir
2
icmωt

0 + m jr
2
jcmωt

0, (12)

with the rotational contributions Lα = Iαωα , for α = i, j ,
and the distances rαcm = |rα −rcm| from the particle centers
to the center of mass rcm = (mi r i + m j r j )/(mi + m j ), see
Ref. [39]. The change of angular momentum consists of the
change of particle spins (first term) and of the change of the
angular momentum of the two masses rotating about their
common center of mass (second term):

d Li j

dt
= qfriction

i

(

1 + a′
j

a′
i

)

+
(

mir
2
icm + m jr

2
jcm

) dωt
0

dt
,

(13)

which both contribute, but exactly cancel each other, since

qfriction
i

(

1 + a′
j

a′
i

)

= −(a′
i + a′

j ) n × f i (14)

= −
(

mir
2
icm + m jr

2
jcm

) dωt
0

dt
,

see [43] for more details.

2.4.3 Rolling

A rolling velocity v0
r = −a′

i n × ωi + a′
j n × ω j , defined

in analogy to the sliding velocity, is not objective in general
[17,43]—only in the special cases of (i) equal-sized particles
or (ii) for a particle rolling on a fixed flat surface.

The rolling velocity should quantify the distance the two
surfaces roll over each other (without sliding). Therefore, it
is equal for both particles by definition. An objective rolling
velocity is obtained by using the reduced radius, a′

i j = a′
i a

′
j/

(a′
i + a′

j ), so that

vr = −a′
i j

(
n × ωi − n × ω j

)
. (15)

This definition is objective since any common rotation of
the two particles vanishes by construction. A more detailed
discussion of this issue is beyond the scope of this paper,
rather see [17,43] and the references therein.

A rolling velocity will activate torques, acting against the
rolling motion, e.g., when two particles are rotating anti-
parallel with spins in the tangential plane. These torques
are then equal in magnitude and opposite in direction, i.e.,
qrolling

i = −qrolling
j = ai j n × f r , with the quasi-force f r ,

computed in analogy to the friction force, as function of the
rolling velocity vr in Sect. 2.5.2; the quasi-forces for both
particles are equal and do not act on the centers of mass.
Therefore, the total momenta (translational and angular) are
conserved.
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2.4.4 Torsion

For torsion resistance, the relative spin along the normal
direction

vo = ai j
(
n · ωi − n · ω j

)
n, (16)

is to be considered, which activates torques when two
particles are rotating anti-parallel with spins parallel to the
normal direction. Torsion is not activated by a common
rotation of the particles around the normal direction n ·ω0 =
n · (

ωi + ω j
)
/2, which makes the torsion resistance objec-

tive.
The torsion torques are equal in magnitude and directed in

opposite directions, i.e., qtorsion
i = −q torsion

j = ai j f o, with
the quasi-force f o, computed from the torsion velocity in
Sect. 2.5.3, and also not changing the translational momen-
tum. Like for rolling, the torsion torques conserve the total
angular momentum.

2.4.5 Summary

The implementation of the tangential force computations for
f t , f r , and f o as based on vt , vr , and vo, respectively, is
assumed to be identical, i.e., even the same subroutine is
used, but with different parameters as specified below. The
difference is that friction leads to a force in the tangential
plane (changing both translational and angular momentum),
while rolling- and torsion-resistance lead to quasi-forces in
the tangential plane and the normal direction, respectively,
changing the particles’ angular momentum only.

For more details on tangential contact models, friction,
rolling and torsion, see Refs. [2,16,17,43,44].

2.5 The tangential contact model

The tangential contact model presented now is a single proce-
dure (subroutine) that can be used to compute either sliding,
rolling, or torsion resistance. The subroutine needs a relative
velocity as input and returns the respective force or quasi-
force as function of the accumulated deformation. The slid-
ing/sticking friction model will be introduced in detail, while
rolling and torsion resistance are discussed where different.

2.5.1 Sliding/sticking friction model

The tangential force is coupled to the normal force via
Coulomb’s law, f t ≤ f s

C := µs f n , where for the sliding
case one has dynamic friction with f t = f t

C := µd f n . The
dynamic and the static friction coefficients follow, in gen-
eral, the relation µd ≤ µs . The static situation requires an
elastic spring in order to allow for a restoring force, i.e., a
non-zero remaining tangential force in static equilibrium due
to activated Coulomb friction.

If a purely repulsive contact is established, f n > 0, the
tangential force can be active. For an adhesive contact,
Coulombs law has to be modified in so far that f n is replaced
by f n + kcδ. In this model, the reference for a contact is no
longer the zero force level, but the adhesive, attractive force
level along −kcδ.

If a contact is active, one has to project (or better rotate)
the tangential spring into the actual tangential plane, since
the frame of reference of the contact may have rotated since
the last time-step. The tangential spring

ξ = ξ ′ − n(n · ξ ′), (17)

is used for the actual computation, where ξ ′ is the old spring
from the last iteration, with |ξ | = |ξ ′| enforced by appropriate
scaling/rotation. If the spring is new, the tangential spring-
length is zero, but its change is well defined after the first,
initiation step.

In order to compute the changes of the tangential spring,
a tangential test-force is first computed as the sum of the tan-
gential spring force and a tangential viscous force (in analogy
to the normal viscous force)

f t
0 = −kt ξ − γtvt , (18)

with the tangential spring stiffness kt , the tangential dissipa-
tion parameter γt , and vt from Eq. (9). As long as | f t

0| ≤ f s
C ,

with f s
C = µs( f n + kcδ), one has static friction and, on the

other hand, for | f t
0| > f s

C , sliding friction becomes active.
As soon as | f t

0| gets smaller than f d
C , static friction becomes

active again.
In the static friction case, below the Coulomb limit, the

tangential spring is incremented

ξ ′ = ξ + vt �tMD, (19)

to be used in the next iteration in Eq. (17), and the tangential
force f t = f t

0 from Eq. (18) is used. In the sliding friction
case, the tangential spring is adjusted to a length consistent
with Coulombs condition, so that

ξ ′ = − 1

kt

(
f d
C t + γtvt

)
, (20)

with the tangential unit vector, t = f t
0/| f t

0|, defined by
Eq. (18), and thus the magnitude of the Coulomb force is
used. Inserting ξ ′ from Eq. (20) into Eq. (18) during the next
iteration will lead to f t

0 ≈ f d
C t .

Note that f t
0 and vt are not necessarily parallel in three

dimensions. However, the mapping in Eq. (20) works always,
rotating the new spring such that the direction of the frictional
force is unchanged and, at the same time, limiting the spring
in length according to Coulombs law. In short notation the
tangential contact law reads

f t = f t t = +min
(

fC , | f t
0|

)
t, (21)
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where fC follows the static/dynamic selection rules described
above. The torque on a particle due to frictional forces at this
contact is qfriction = lc

i × f c
i , where lc

i is the branch vector
connecting the center of the particle with the contact point.
Note that the torque on the contact partner is generally dif-
ferent in magnitude, since lc

i can be different, but points in
the same direction; see Sect. 2.4.2 for details on this.

The four parameters for the friction law are kt , µs , φd =
µd/µs , and γt , accounting for tangential stiffness, the static
friction coefficient, the dynamic friction ratio, and the tan-
gential viscosity, respectively. Note that the tangential force
described above is identical to the classical Cundall–Strack
spring only in the limits µ = µs = µd , i.e., φd = 1, and
γt = 0. The sequence of computations and the definitions
and mappings into the tangential direction can be used in 3D
as well as in 2D.

2.5.2 Rolling resistance model

The three new parameters for rolling resistance are kr , µr ,
and γr , while φr = φd is used from the friction law. The
new parameters account for rolling stiffness, a static rolling
“friction” coefficient, and rolling viscosity, respectively. In
the subroutine called, the rolling velocity vr is used instead
of vt and the computed quasi-force f r is used to compute
the torques, qrolling, on the particles.

2.5.3 Torsion resistance model

The three new parameters for rolling resistance are ko, µo,
and γo, while φo = φd is used from the friction law. The
new parameters account for torsion stiffness, a static torsion
“friction” coefficient, and torsion viscosity, respectively. In
the subroutine, the torsion velocityvo is used instead ofvt and
the projection is a projection along the normal unit-vector,
not into the tangential plane as for the other two models. The
computed quasi-force f o is then used to compute the torques,
q torsion, on the particles.

2.6 Background friction

Note that the viscous dissipation takes place in a two-particle
contact. In the bulk material, where many particles are in con-
tact with each other, this dissipation mode is very inefficient
for long-wavelength cooperative modes of motion [47,48].
Therefore, an additional damping with the background can
be introduced, so that the total force on particle i is

f i =
∑

j

(
f nn + f t t

) − γbvi , (22)

Table 1 The microscopic contact model parameters

Property Symbol

Time unit tu

Length unit xu

Mass unit mu

Particle radius a0

Material density ρ

Elastic stiffness (variable) k2

Maximal elastic stiffness (constant) k = k̂2

Plastic stiffness k1/k

Adhesion “stiffness” kc/k

Friction stiffness kt/k

Rolling stiffness kr /k

Torsion stiffness ko/k

Plasticity depth φ f

Coulomb friction coefficient µ = µd = µs

Dynamic to static friction ratio φd = µd/µs

Rolling “friction” coefficient µr

Torsion “friction” coefficient µo

Normal viscosity γ = γn

Friction viscosity γt/γ

Rolling viscosity γr /γ

Torsion viscosity γo/γ

Background viscosity γb/γ

Background viscous torque γbr /γ

and the total torque

qi =
∑

j

(
qfriction + qrolling + qtorsion

)
− γbr a2

i ωi , (23)

with the damping artificially enhanced in the spirit of a rapid
relaxation and equilibration. The sum in Eqs. (22) and (23)
takes into account all contact partners j of particle i , but
the background dissipation can be attributed to the medium
between the particles. Note that the effect of γb andγbr should
be checked for each set of parameters: it should be small in
order to exclude artificial over-damping.

The set of parameters is summarized in Table 1. Note that
only a few parameters are specified with dimensions, while
the other paramters are expressed as ratios.

3 Tension test simulation results

In this section, uni-axial tension tests and a few compression
tests are presented. The tests consists of three stages: (i) pres-
sure sintering, (ii) stress-relaxation, and (iii) the compression-
or tension-test itself. The contact parameters, as introduced
in the previous section, are summarized in Table 1 and
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typical values are given in Table 2. These parameters are used
for particle–particle contacts, the same for all stages, unless
explicitly specified.

For pressure sintering, a loose assembly of particles is
first compressed with an isotropic stress ps2a/k̂2 ≈ 0.02 in a
cuboid volume. The adhesive contact forces are activated this
way. Two of the six walls are adhesive, with kwall

c /k̂2 = 20,
so that the sample sticks to them, while all other walls are
adhesionless, so that they can be easily removed in the second
stage. (During compression and sintering, the walls could all
be without adhesion, since the high pressure used keeps the
sample together anyway—only later for relaxation, adhesion
must switched on. If not the sample does not remain a solid,
and it also could lose contact with the walls, which are later
used to apply the tensile strain.)

Note that all walls are frictionless during sintering, while
the particles are slightly adhesive and frictional. (If the walls
would be frictional, the pressure from a certain wall would
not be transferred completely to the respective opposite wall,
since frictional forces carry part of the load—an effect that
is known since the early work of Janssen [23,77,86].)

Pressure-sintering is stopped when the kinetic energy of
the sample is many orders of magnitude smaller than the
potential energy—typically ten orders of magnitude.

During stress-relaxation all wall stresses are slowly
released to pr/ps � 1 and the sample is relaxed until the
kinetic energy is much smaller than the potential energy. The
sample is ready for the tension tests. In fact, the same initial
configuration is used for all the tests presented below. Note
that the non-adhesive side walls still feel a very small exter-
nal stress that is not big enough to affect the dynamics of the
tension test, it is just convenient to keep the walls close to
the sample.

For the tension test wall friction is typically active, but
some variation does not show a big effect. One of the sticky
walls is slowly and smoothly moved outwards like described
and applied in earlier studies [42,45], following a prescribed
cosine-function with time.

3.1 Model parameters

The system contains N = 1728 particles with radii ai drawn
from a Gaussian distribution around a = 0.005 mm [13,14].
The contact model parameters are summarized in Tables 1
and 2. The volume fraction, ν = ∑

i V (ai )/V , with the par-
ticle volume V (ai ) = (4/3)πa3

i , reached during pressure
sintering with 2aps/k̂2 = 0.02 is νs = 0.6754. The coordina-
tion number is C ≈ 7.16 in this state. After stress-relaxation,
these values have changed to ν ≈ 0.629 and C ≈ 6.19.
A different preparation procedure (with adhesion kc/k̂2 = 0
during sintering) does not lead to a difference in density after
sintering. However, one observes ν ≈ 0.630 and C ≈ 6.23

Table 2 Microscopic material parameters used (second column)

Symbol Value rescaled units SI-units

tu 1 1µs 10−6 s

xu 1 1 mm 10−3 m

mu 1 1 mg 10−6 kg

a0 0.005 5 µm 5.10−6m

ρ 2 2 mg/mm3 2,000 kg/m3

k = k̂2 5 5 mg/µs2 5.106 kg/s2

k1/k 0.5

kc/k 0.5

kt/k 0.2

kr /k = ko/k 0.1

φ f 0.05

µ = µd = µs 1

φd = µd/µs 1

µr = µo 0.1

γ = γn 5.10−5 5.10−5 mg/µs 5.101 kg/s

γt/γ 0.2

γr /γ = γo/γ 0.05

γb/γ 4.0

γbr /γ 1.0

The third column contains these values in the appropriate units, i.e.,
when the time-, length-, and mass-unit are µs, mm, and mg, respec-
tively. Column four contains the parameters in SI-units. Energy, force,
acceleration, and stress have to be scaled with factors of 1, 103, 109,
and 109, respectively, for a transition from rescaled to SI-units

after relaxation. For both preparation procedures the tension
test results are virtually identical, so that only the first pro-
cedure is used in the following.

The material parameters used for the particle contacts are
given in Table 2. The particle-wall contact parameters are the
same, except for cohesion and friction, for which kwall

c /k̂2 =
20 and µwall = 10 are used—the former during all stages,
the latter only during tensile testing.

The choice of numbers and units is such that the parti-
cles correspond to spheres with several microns in radius.
The magnitude of stiffness k cannot be compared directly
with the material bulk modulus C , since it is a contact prop-
erty. However, there are relations from micro-macro transi-
tion analysis, which allow to relate k and C ∼ kCa2/V [42].

Using the parameter k = k̂2 in Eq. (4) leads to a typical
contact duration (half-period) tc ≈ 6.5 10−4 µs, for a nor-
mal collision of a large and a small particle with γ = 0.
Accordingly, an integration time-step of tMD = 5.10−6 µs is
used, in order to allow for a “safe” integration of the equa-
tions of motion. Note that not only the normal “eigenfre-
quency” but also the eigenfrequencies in tangential and rota-
tional direction have to be considered as well as the viscous
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Fig. 2 Top Axial tensile stress plotted against tensile strain for simu-
lations with weak, moderate and strong particle contact adhesion; the
kc/k values are given in the inset. The line gives a fit to the linear elastic
regime with Ct = 3.1011 N/m2. Bottom Axial compressive stress plot-
ted against compressive strain for two of the parameter sets from the
top panel. The initial slope is the same as in the top panel, indicating
that the linear elastic regime is identical for tension and compression

response times tγ ≈ m/γ . All of the physical time-scales
should be considerably larger than tMD, whereas the viscous
response times should be even larger, so that tγ > tc > tMD.
A more detailed discussion of all the effects due to the inter-
play between the model parameters and the related times is,
however, far from the scope of this paper.

3.2 Tensile strength and contact adhesion

The tensile (compressive) test is performed uni-axially in x-
direction by increasing (reducing) slowly and smoothly the
distance between the two sticky walls. (The same initial sam-
ple, prepared with kc/k = 1/2, is used for all tests reported
here.) The stress-strain curves for different cohesion are plot-
ted in Fig. 2, for both tension and compression.

Fig. 3 Color online Snapshot from a tensile test with kc/k = 1/2 at
horizontal strain of εxx ≈ 0.8. The color code denotes the distance
from the viewer: blue, green, and red correspond to large, moderate,
and short distance

The axial tensile stress initially increases linearly with
strain, practically independent from the contact adhesion
strength. With increasing strain, a considerable number of
contacts are opened due to tension—contacts open more eas-
ily for smaller adhesion (data not shown). This leads to a
decrease of the stress-strain slope, then the stress reaches a
maximum and, for larger strain, turns into a softening fail-
ure mode. As expected, the maximal stress is increasing with
contact adhesion kc/k. The compressive strength is 6–7 times
larger than the tensile strength, and a larger adhesion force
also allows for larger deformation before failure. The sample
with weakest adhesion, kc/k = 1/2, shows tensile and com-
pressive failure at strains εxx ≈ −0.006 and εxx ≈ 0.045,
respectively.

Note that for tension, the post-peak behavior for the test
with kc/k = 20 is different from the other two cases, due to
the strong particle-particle contact adhesion. In this case, the
tensile fracture occurs at the wall (except for a few particles
that remain in contact with the wall). This is in contrast to
the other two cases with smaller bulk-adhesion, where the
fracture occurs in the bulk, see Fig. 3.

3.3 Tensile strength and friction

In Fig. 4, the rather weak effect of various values of friction,
rolling- and torsion-resistance becomes evident. For the ten-
sile tests presented here, even the largest friction, rolling- and
torsion-resistance used µ = µr = µo = 100 does not lead
to a considerable increase of tensile strength. Furthermore,
simulations with different static and dynamic friction coef-
ficients, µs = 1 and µd = 0.5, also do not lead to different
behavior under tension; they rather show, that the contact
model is able to deal with different coefficients.

4 Conclusion

The present study reviews many issues related to soft particle
force models. As compromise between simplicity and reality,
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Fig. 4 Tensile stress plotted against tensile strain for simulations with
weak contact adhesion kc/k = 1/2, and with different rolling- and
torsion friction coefficients, as given in the inset. The lines show the
same fit as in Fig. 2

a special contact model is introduced, involving elastic-visco-
plastic normal contact forces, adhesion, friction, and rolling-
as well as torsion resistance—all in one. A set of exemplary
parameters is used to model cohesive powder in the 3–7µm
range. The powder-sample is first pressure-sintered, then the
walls are removed from the solid cuboid sample, and finally
the sample is subjected to uni-axial, strain-controlled tension
until it fails. Stronger contact adhesion leads to considerably
larger tensile strength, while the effect of rolling- and torsion-
resistance is very weak for the parameter combinations used
here—for related results, see Refs. [43,44,46,51].

The samples are sintered using the force- and torque-
models described in Sect. 2—most parameters are kept
constant throughout the three phases of the tensile test,
proving that the advanced model is able to mimick a wealth
of different behavior without further adjustments. The con-
tact model presented here, besides many model assumptions,

still involves a considerable number of parameters. As the
tension test has shown, some of them (rolling- and torsion-
resistance) seem less important for specific physical proper-
ties than others. Naturally, contact adhesion is most important
for the tensile strength of the material, but also friction shows
an effect to be examined further. Note that some important
model parameters, like the ratios k1/k and kt/k were not yet
studied in detail.

The quantitative tuning of the DEM model to real exper-
imental data remains the challenge for future research. The
results presented here have units that were not supposed to
exactly mimick a real material, but should be rather close to
those of fine powders. Some tuning can be done by rescal-
ing, but a real fine-adjustement will require a more system-
atic study of all contact model parameters—to be done in the
future.
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