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Abstract. We classify all totally geodesic submanifolds of connected irreducible Rie-
mannian symmetric spaces of noncompact type which arise as a singular orbit of a cohomo-
geneity one action on the symmetric space.

1. Introduction. The motivation for this paper is the classification problem for all
isometric cohomogeneity one actions on connected irreducible Riemannian symmetric spaces
of noncompact type. An isometric action of a connected Lie group on a Riemannian manifold
is of cohomogeneity one if the codimension of a generic orbit is one. Two isometric cohomo-
geneity one actions on a Riemannian manifold areorbit equivalent if there exists an isometry
of the manifold mapping the orbits of one of these actions onto the orbits of the other action.
The general problem of our study is to determine the cohomogeneity one actions on a given
Riemannian manifold.

LetM be a connected irreducible Riemannian symmetric space of noncompact type. It is
known that any such action onM either induces a foliation onM or has exactly one singular
orbit [1, Proposition 1]. This induces a disjoint union of the moduli space of cohomogeneity
one actions onM, M = MF ∪ MS , whereMF is the set of all homogeneous codimension
one foliations onM modulo isometric congruence andMS is the set of all cohomogeneity
one actions onM with a singular orbitF modulo orbit equivalence. In [2] we derived a
complete description of the moduli spaceMF . In this case, cohomogeneity one actions are
orbit equivalent if and only if the induced foliations are isometric congruent.

Low-dimensional singular orbits of cohomogeneity one actions on Riemannian mani-
foldsM are necessarily totally geodesic. More precisely, if the dimension of a singular orbit
is less than(1/2)(dim M−1), then it is totally geodesic [1]. This motivates to begin the inves-
tigation of singular orbits by concentrating first on totally geodesic singular orbits. In this pa-
per, we determine the subsetM

tg
S ⊂ MS of equivalent classes of cohomogeneity one actions

on M with totally geodesic singular orbits whenM is a connected irreducible Riemannian
symmetric space of noncompact type. It is enough to classify totally geodesic submanifolds
F in M which arise as the singular orbits of cohomogeneity one actions, sinceF determine
the cohomogeneity one actions up to orbit equivalence. In fact, given a singular orbitF of an
isometric cohomogeneity one action onM, the other orbits are then just the tubes of different
radii aroundF .
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A totally geodesic submanifoldF of M is reflective if the geodesic reflection inF is a
globally well-defined isometry ofM. Reflective submanifolds always arise in pairs(F, F⊥),
whereF⊥ is also a reflective submanifold ofM with the property that it is tangent to any
normal space ofF via some suitable isometry ofM. The main result of this paper is stated as
follows.

THEOREM. Let M be a connected irreducible Riemannian symmetric space of non-
compact type and F a totally geodesic submanifold of M . Then F arises as the singular orbit
of a cohomonegeity one action on M if and only if F is a reflective submanifold of M for
which the rank of F⊥ is one, or if F is one of the following totally geodesic non-reflective
submanifolds:

(1) F = G2
2/SO(4) ⊂ M = G∗

3(R
7) = SOo(3, 4)/SO(3)SO(4),

(2) F = GC
2 /G2 ⊂ M = SO(7, C)/SO(7),

(3) F = CH 2 ⊂ M = G2
2/SO(4),

(4) F = SL(3, R)/SO(3) ⊂ M = G2
2/SO(4),

(5) F = SL(3, C)/SU(3) ⊂ M = GC
2/G2.

It is quite remarkable that all non-reflective examples are related to the exceptional Lie
algebrag2. A complete list of the reflective submanifoldsF of M for which F⊥ has rank
one can be found in Section 3. A look at this list exhibits the following facts. The setM

tg
S

is empty for the exceptional symmetric spaces ofEC
7 andEC

8 and all their noncompact real
forms, and ofEC

6 and its split real form. For all othersymmetric spaces, which include all

classical symmetric spaces,M
tg
S is nonempty and finite. From the above theorem we deduce

that #M
tg
S = n > 3 only for the hyperbolic spacesRHn+1, CHn−1 andHHn−1. For the

symmetric spacesRH 4, CH 2, HH 2, OH 2, G∗
3(R

7), G∗
2(R

2n) (n ≥ 3) andG∗
2(C

2n) (n ≥ 3),

we have #Mtg
S = 3. For the symmetric spacesRH 3, G∗

k(R
n) (1 < k < n − k, (k, n) �=

(3, 7), (2, 2m),m > 2), G∗
3(R

6), G∗
k(C

n) (1 < k < n−k, (k, n) �= (2, 2m),m > 2), G∗
k(H

n)

(1 < k < n− k), SL(3, H)/Sp(3), SL(3, C)/SU(3), SL(4, C)/SU(4) = SO(6, C)/SO(6),
SO(7, C)/SO(7), G2

2/SO(4) andE−24
6 /F4, we have #Mtg

S = 2. In the remaining cases we

have #Mtg
S = 1.

We finally mention that, by a classical result of E. Cartan [3],MS = M
tg
S for the real

hyperbolic spaceRHn. However, as was shown in [1],Mtg
S is strictly contained inMS for

the other hyperbolic spacesCHn, HHn andOH 2. The problem to determineMS \ M
tg
S is

still open for these hyperbolic spaces, as well as for the symmetric spaces of higher rank.
The paper is organized as follows. In Section 2 we explain a duality between totally

geodesic singular orbits of cohomogeneity one actions on Riemannian symmetric spaces of
noncompact type and of those on Riemannian symmetric spaces of compact type, respec-
tively. We also relate reflective singular orbits to a certain type of action. In Section 3 we
classify the reflective submanifolds of irreducible Riemannian symmetric spaces of noncom-
pact type which arise as a singular orbit of a cohomogeneity one action on the symmetric
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space. In Section 4 we derive the analogous classification for totally geodesic non-reflective
submanifolds.

We are grateful for the financial support we received from the University of Hull Re-
search Support Fund. We thank the referee for reading carefully the original version of the
manuscript and for the suggestions for improvement.

2. Duality. In this section we describe a duality between the totally geodesic singular
orbits of cohomogeneity one actions on a noncompact Riemannian symmetric space and those
on its dual simply connected compact Riemannian symmetric space. LetM = G/K be
a connected Riemannian symmetric space of noncompact type, whereG = Io(M) is the
connected component of the full isometry groupI (M) of M andK is the isotropy subgroup
of G at some pointo ∈ M. It is known thatG is a noncompact semisimple real Lie group and
K is a maximal compact subgroup ofG. Moreover, since every Riemannian symmetric space
of noncompact type is simply connected,K is connected. Letg andk be the Lie algebra ofG
andK, respectively, andg = k⊕p the corresponding Cartan decomposition ofg. We identify
p with the tangent spaceToM of M ato in the usual way. LetgC be the complexification ofg
andg∗ = k⊕ip ⊂ gC. Theng∗ is a compact real form ofgC. The connected, simply connected
Riemannian symmetric spaceM∗ associated with the pair(g∗, k) is called thecompact dual
space of M. Note thatM∗ can be represented asM∗ = G∗/K, whereG∗ is the connected,
simply connected Lie group with Lie algebrag∗. We denote byo∗ the corresponding origin
in M∗.

Now, let F be a totally geodesic singular orbit of a cohomogeneity one action onM.
We may assume thato ∈ F . Let ToF be the tangent space ofF at o, which we consider as
a subspace ofp ∼= ToM. SinceF is totally geodesic inM, the tangent spaceToF is a Lie
triple system inp, that is,[[ToF, ToF ], ToF ] ⊂ ToF . We denote byN�(ToF ) the normalizer
of ToF in k. As ToF is a Lie triple system inp, it is easy to see thath = N�(ToF ) ⊕ ToF is
a Lie subalgebra ofg. Let H be the connected closed subgroup ofG with Lie algebrah. We
claim thatH acts onM with cohomogeneity one and a singular orbitF = H · o.

By construction,h is invariant under the Cartan involution ong with respect to the Cartan
decompositiong = k ⊕ p. This implies that the orbitH · o of H througho is totally geodesic
in M. Moreover, the tangent space ofH ·o ato is ToF by construction ofh. BothF andH ·o
are connected, complete, totally geodesic submanifolds ofM with the same tangent space at
o, and hence they must coincide.

Let k ∈ K be an isometry that leavesF invariant, that is,k(F ) = F . Then we have
Ad(k)ToF = k∗oToF = ToF , wherek∗o denotes the differential ofk at o, and hencek ∈
NK(ToF ), the normalizer ofToF in K. By assumption there exists a connected Lie subgroup
H ′ of G acting onM with cohomogeneity one such thatF = H ′ · o = H ′/H ′

o. The above
argument shows that the slice representation ofH ′

o on the normal spaceνoF of F at o is just
the restriction of the slice representation ofNK(ToF ) on νoF . Since by assumptionH ′

o acts
transitively on the unit sphere inνoF , NK(ToF ) must also act transitively on the unit sphere
in νoF . We conclude thatH acts onM with cohomogeneity one andF = H · o.
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SinceToF is a Lie triple system inp, the linear subspaceiToF is a Lie triple system in
ip. Thus there exists a unique connected, complete, totally geodesic submanifoldF ∗ of M∗
with o∗ ∈ F ∗ andTo∗F ∗ = iToF . Let H ∗ be the connected Lie subgroup ofG∗ with Lie
algebrah∗ = N�(ToF ) ⊕ iToF ⊂ g∗. As above, we see that the orbitH ∗ · o∗ of H ∗ through
o∗ coincides withF ∗. Moreover, by construction, the slice representations ofNK(ToF ) on
νoF and onνo∗F ∗ are equivalent. ThusH ∗ acts onM∗ with cohomogeneity one andF ∗ =
H ∗ ·o∗ is a totally geodesic singular orbit of this action. Of course, the construction described
above can also be done in the other direction, starting from a Riemannian symmetric space of
compact type. We summarize this in

PROPOSITION 2.1. Let F be a totally geodesic singular orbit of a cohomogeneity one
action on M and H be the connected Lie subgroup of G with Lie algebra h = N�(ToF )⊕ToF .
Then H acts on M with cohomogeneity one such that F = H · o. Moreover, let H ∗ be the
connected Lie subgroup of G∗ with Lie algebra h∗ = N�(ToF ) ⊕ iToF ⊂ g∗. Then H ∗ acts
on M∗ with cohomogeneity one such that F ∗ = H ∗ · o∗ is a totally geodesic singular orbit of
this action.

Conversely, let F ∗ be a totally geodesic singular orbit of a cohomogeneity one action on
M∗ and H ∗ be the connected Lie subgroup of G∗ with Lie algebra h∗ = N�(To∗F ∗)⊕iTo∗F ∗.
Then H ∗ acts on M∗ with cohomogeneity one such that F ∗ = H ∗ · o∗. Moreover, let H be
the connected Lie subgroup of G with Lie algebra h = N�(To∗F ∗) ⊕ To∗F ∗ ⊂ g. Then H

acts on M with cohomogeneity one such that F = H · o is a totally geodesic singular orbit of
this action.

Thus we see that there is a one-to-one correspondence between the congruence classes
of totally geodesic singular orbits of cohomogeneity one actions onM and those of totally
geodesic singular orbits of cohomogeneity one actions on the dual spaceM∗. We empha-
size that this does not yield a one-to-one correspondence between cohomogeneity one actions
with a totally geodesic singular orbit onM and those onM∗. The reason is that a cohomo-
geneity one action onM has at most one singular orbit, whereas a cohomogeneity one action
on M∗ has exactly two singular orbits. Indeed, if the action onM∗ has two non-congruent
totally geodesic singular orbits, then the above construction gives two non-conjugate co-
homogeneity one actions onM. For example, letM∗ = Sn = SO(n + 1)/SO(n) and
M = RHn = SOo(1, n)/SO(n). The action ofH ∗ = SO(k + 1)SO(n − k) ⊂ SO(n + 1)

on Sn is of cohomogeneity one with two totally geodesic singular orbitsSk andSn−k−1. If
we chooseF ∗ = Sk , then the corresponding cohomogeneity one action onRHn is given by
H = SOo(1, k)SO(n − k) with F = RHk as a totally geodesic singular orbit. But if we
chooseF ∗ = Sn−k−1, thenH = SOo(1, n − k − 1)SO(k + 1) with F = RHn−k−1 as a
totally geodesic singular orbit.

The classification of cohomogeneity one actions on connected, simply connected, ir-
reducible Riemannian symmetric spaces of compact type has been obtained by Hsiang and
Lawson (for spheres), Takagi, Uchida and Iwata (for other rank one spaces), and Kollross (for
higher rank cases, see [6] for details). An obvious method for obtaining now the classification
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of cohomogeneity one actions onM with a totally geodesic singular orbit would be to deter-
mine the totally geodesic singular orbits of the cohomogeneity one actions onM∗ in the list
provided by Kollross. Nevertheless, this is a tedious task which we prefer to avoid as long as
possible by employing general theory.

We recall that a connected submanifoldF of a Riemannian manifoldM is reflective if the
geodesic reflection inF is a globally well-defined isometry ofM, and reflective submanifolds
are necessarily totally geodesic. However, note that a totally geodesic submanifold is not
always reflective. IfM = G/K is a connected, simply connected, Riemannian symmetric
space of compact or of noncompact type, there is a simple criterion to decide whether a
totally geodesic submanifoldF is reflective or not. WhenF is totally geodesic, then the
tangent spaceToF of F at any pointo is a Lie triple system in the vector spacep of the
corresponding Cartan decomposition ofg. ThenF is reflective if and only if the normal
spaceνoF is also a Lie triple system inp. The simplest example of a non-reflective totally
geodesic submanifold is ak-dimensional real hyperbolic spaceRHk canonically embedded
in n-dimensional complex hyperbolic spaceCHn as a totally geodesic submanifold for all
k < n. Fork = n, RHn is a reflective submanifold ofCHn.

The following proposition will be very useful for classification purposes.

PROPOSITION 2.2. Let F ∗ be a totally geodesic singular orbit of a cohomogeneity one
action on M∗ = G∗/K by a connected subgroup H ∗ of G∗. Then F ∗ is reflective if and only
if there exists a connected, simply connected Riemannian symmetric space M ′ = G∗/K ′ such
that the actions of H ∗ and K ′ on M∗ have the same orbits.

PROOF. We first assume thatF ∗ is reflective. LetF ∗⊥ be the reflective submanifold
of M∗ with o∗ ∈ F ∗⊥ andTo∗F ∗⊥ = νo∗F ∗. Let g∗ = k ⊕ p∗ be the Cartan decomposition
of g∗ at o∗. We denote by〈·, ·〉 the negative of the Killing form ofg∗. We decomposep∗
orthogonally intop∗ = To∗F ∗ ⊕ To∗F ∗⊥ and define an involutionσ ′ ong∗ by

σ ′X =
{

X if X ∈ N�(To∗F ∗) ⊕ To∗F ∗ ,

−X if X ∈ (N�(To∗F ∗))⊥ ⊕ To∗F ∗⊥ ,

where(N�(To∗F ∗))⊥ is the orthogonal complement ofN�(To∗F ∗) in k. Note that we have
N�(To∗F ∗) = N�(To∗F ∗⊥). Since bothTo∗F ∗ andTo∗F ∗⊥ are Lie triple systems, one can
show thatσ ′ is a Lie algebra automorphism. Indeed, sinceTo∗F ∗⊥ is a Lie triple system, we
have

[To∗F ∗⊥, To∗F ∗⊥] ⊂ N�(To∗F ∗⊥) = N�(To∗F ∗) ,

which implies〈[To∗F ∗⊥, To∗F ∗⊥], (N�(To∗F ∗)⊥)〉 = 0 and hence[(N�(To∗F ∗)⊥), To∗F ∗⊥]
⊂ To∗F ∗ by means of the Jacobi identity. The other relevant inclusions can be deduced
in a similar fashion. Thusσ ′ is an involutive Lie algebra automorphism ofg∗ and hence
induces a Cartan decompositiong∗ = k′ ⊕ p′ with k′ = N�(To∗F ∗) ⊕ To∗F ∗ and p′ =
(N�(To∗F ∗))⊥ ⊕ To∗F ∗⊥. Let K ′ be the connected closed subgroup ofG∗ with Lie algebra
k′. ThenG∗/K ′ is a connected, simply connected Riemannian symmetric space of compact
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type. By construction, the orbitK ′ · o∗ of K ′ througho∗ ∈ M∗ coincides with the reflective
submanifoldF ∗. Since the Lie algebrah∗ of H ∗ is contained ink′ andH ∗ acts onM∗ with
cohomogeneity one, the cohomogeneity of the action ofK ′ on M∗ must also be one. This
implies that the orbits of the actions ofH ∗ andK ′ onM∗ coincide.

Conversely, assume that there exists a connected, simply connected Riemannian sym-
metric spaceM ′ = G∗/K ′ such that the actions ofH ∗ andK ′ on M∗ have the same orbits.
Let σ ∗ and σ ′ be the Cartan involutions ofg∗ with respect tok and k′, respectively, and
g∗ = k ⊕ p∗ be the Cartan decomposition ofg∗ with respect toσ ∗. SinceF ∗ is totally ge-
odesic, it follows by a result of Hermann [5] thatσ ∗ andσ ′ commute. Thusσ ′ induces an
orthogonal decomposition

g∗ = (k+ ⊕ k−) ⊕ (p∗+ ⊕ p∗−) ,

where the indices± indicate the intersections ofk and p with the ±1-eigenspaces ofσ ′,
respectively. By construction, we havep∗+ = To∗F ∗ andp∗− = νo∗F ∗. Standard properties of
Cartan decompositions imply[p∗−, p∗−] ⊂ k+ and[k+, p∗−] ⊂ p∗−, which shows thatp∗− is a
Lie triple system inp∗. ThusF ∗ is a reflective submanifold ofM∗.

If G∗/K andG∗/K ′ are two connected, simply connected Riemannian symmetric spaces
of compact type, then the action of each isotropy group on the other symmetric space is often
called aHermann action. Hermann proved that such an action is variationally complete in the
sense of Bott and Samelson. Proposition 2.2 thus says that a totally geodesic singular orbit of
a cohomogeneity one action on a connected, simply connected Riemannian symmetric space
is reflective if and only if it is a totally geodesic orbit of a Hermann action.

In the next section we will investigate which reflective submanifolds can be the singular
orbit of a cohomogeneity one action.

3. Reflective singular orbits. The totally geodesic singular orbits of cohomogeneity
one actions on the rank one symmetric spaces of noncompact type, that is, on the hyperbolic
spacesRHn, CHn, HHn andOH 2, have been classified by the first author and Brück in [1]
as follows.

THEOREM 3.1 ([1]). A totally geodesic submanifold of M ∈{RHn, CHn, HHn, OH 2},
n > 1, is the singular orbit of a cohomogeneity one action on M if and only if it is one of the
following reflective submanifolds:

RHn : pt, RH 1, . . . , RHn−2,
CHn : pt, CH 1, . . . , CHn−1, RHn,
HHn : pt, HH 1, . . . , HHn−1, CHn,
OH 2 : pt, OH 1, HH 2.

Here, pt means a point, which arises as a singular orbit of the action of the isotropy group
K. For rank one symmetric spaces the action of the isotropy group is obviously of cohomo-
geneity one. All submanifolds in the above list are reflective submanifolds. Indeed, it follows
from this classification that a totally geodesic submanifoldF in one of these hyperbolic spaces
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is a singular orbit of a cohomogeneity one action on that space if and only ifF is reflective.
We thus have only to deal with the case of higher ranks, that is, rank greater than one.

We keep the notation introduced in Section 2. LetF be a reflective submanifold of
M andF⊥ be its complement ato ∈ F , that is, the connected, complete, totally geodesic
submanifold ofM with ToF

⊥ = νoF . Note thatF⊥ is reflective as well. We recall that a
connected, complete, totally geodesic submanifold of a Riemannian symmetric space is itself
a Riemannian symmetric space. The restrictions of the geodesic symmetries of the ambient
space to the submanifold provide the geodesic symmetries. The following result yields a
simple criterion for deciding whether a reflective submanifold arises as a singular orbit of a
cohomogeneity one action.

PROPOSITION 3.2. Let F be a reflective submanifold of a connected Riemannian sym-
metric space M of noncompact type. Then F is a singular orbit of a cohomogeneity one action
on M if and only if the rank of F⊥ is one.

PROOF. We can assume thatM has rank greater than one, since the rank one case has
been settled by Theorem 3.1.

First assume thatF is a singular orbit of a cohomogeneity one action onM. We may
assume thato ∈ F . Then there exists a Lie subgroupH of G acting onM with cohomogeneity
one and withF = H ·o = H/Ho. By assumption, the slice representation ofHo on the normal
spaceνoF is transitive on the unit sphere inνoF . SinceF⊥ is totally geodesic, any isometry
in Ho restricts to an isometry ofF⊥. This shows that the slice representation ofHo on νoF

is the restriction toHo of the isotropy representation ofF⊥ on ToF
⊥. It follows that the

isotropy subgroup ofF⊥ is also transitive on the unit sphere inToF
⊥, and henceF⊥ is a rank

one symmetric space.
Conversely, assume that the rank ofF⊥ is one. We define a linear subspaceh of g by

h = N�(ToF ) ⊕ ToF ⊂ k ⊕ p. SinceToF is a Lie triple system inp, the subspaceh is a Lie
subalgebra ofg. Let H be the connected closed subgroup ofG with Lie algebrah. Then, as
shown above, we haveH · o = F . Let k be an isometry ofF⊥ in the identity component
of the isometry group ofF⊥ and assume thatk fixeso. SinceM has rank greater than one,
we must have dimF⊥ > 1. The assumption thatF⊥ has rank one now implies that it is
semisimple. Thusk is generated by some curvature transformationRF⊥

(X, Y ) : ToF
⊥ →

ToF
⊥, X,Y ∈ ToF

⊥. This is because the isotropy algebra coincides with the holonomy
algebra for semisimple Riemannian symmetric spaces. SinceF⊥ is totally geodesic inM,
RF⊥

(X, Y ) is just the restriction of the curvature transformationRM(X, Y ) : ToM → ToM

toToF
⊥. SinceM is also semisimple by assumption, it follows thatk extends to an isometryk′

of M. Then Ad(k′) normalizesToF , and the isotropy representation ofF⊥ in o is a restriction
of the slice representation ofHo on νoF = ToF

⊥. SinceF⊥ has rank one, we eventually
conclude thatHo acts transitively on the unit sphere inνoF , which means thatH acts with
cohomogeneity one onM.
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Leung classified in [7] and [8] the reflective submanifolds of connected, simply con-
nected, irreducible Riemannian symmetricspaces of compact type. Using duality and Propo-
sition 3.2, we now obtain the classification of reflective submanifolds of connected, irre-
ducible Riemannian symmetric spaces of noncompact type which arise as a singular orbit of
a cohomogeneity one action. We use the following notation for hyperbolic Grassmann mani-
folds: G∗

k(R
n) = SOo(k, n−k)/SO(k)SO(n−k), G∗

k(C
n) = SU(k, n−k)/S(U(k)U(n−k))

andG∗
k(H

n) = Sp(k, n − k)/Sp(k)Sp(n − k).

THEOREM 3.3. Let M be a connected, irreducible Riemannian symmetric space of
noncompact type and rank greater than one. Let F be a reflective submanifold of M . Then
F is the singular orbit of a cohomogeneity one action on M if and only if F is one of the
following reflective submanifolds:

G∗
k(R

n) (1 < k < n − k, (k, n) �= (2, 2m),m > 2) : G∗
k−1(R

n−1), G∗
k(R

n−1),

G∗
k(R

2k) (k ≥ 4) : G∗
k−1(R

2k−1) = G∗
k(R

2k−1),

G∗
2(R

2n) (n ≥ 3) : G∗
1(R

2n−1) = RH 2n−2, G∗
2(R

2n−1), G∗
1(C

n) = CHn−1,

G∗
3(R

6) = SL(4, R)/SO(4) : G∗
2(R

5) = G∗
3(R

5), SL(3, R)/SO(3) × R,

G∗
k(C

n) (1 < k < n − k, (k, n) �= (2, 2m),m > 2) : G∗
k−1(C

n−1), G∗
k(C

n−1),

G∗
k(C

2k) (k ≥ 3) : G∗
k−1(C

2k−1) = G∗
k(C

2k−1),

G∗
2(C

2n) (n ≥ 3) : G∗
1(C

2n−1) = CH 2n−2, G∗
2(C

2n−1), G∗
1(H

n) = HHn−1,

G∗
k(H

n) (1 < k < n − k) : G∗
k−1(H

n−1), G∗
k(H

n−1),

G∗
k(H

2k) (k ≥ 2) : G∗
k−1(H

2k−1) = G∗
k(H

2k−1),

SL(n, R)/SO(n) (n = 3 or n ≥ 5) : SL(n − 1, R)/SO(n − 1) × R,

SL(n, H)/Sp(n) (n ≥ 4) : SL(n − 1, H)/Sp(n − 1) × R,

SL(3, H)/Sp(3) : SL(2, H)/Sp(2) × R = RH 5 × R, SL(3, C)/SU(3),

SO(n, H)/U(n) (n ≥ 5) : SO(n − 1, H)/U(n − 1),

Sp(n, R)/U(n) (n ≥ 3) : Sp(n − 1, R)/U(n − 1) × RH 2,

SL(n, C)/SU(n) (n ≥ 5) : SL(n − 1, C)/SU(n − 1) × R,

SL(4, C)/SU(4) = SO(6, C)/SO(6) : SL(3, C)/SU(3) × R, SO(5, C)/SO(5),

SL(3, C)/SU(3) : SL(2, C)/SU(2) × R = RH 3 × R, SL(3, R)/SO(3),

SO(n, C)/SO(n) (n = 5 or n ≥ 7) : SO(n − 1, C)/SO(n − 1),

Sp(n, C)/Sp(n) (n ≥ 3) : Sp(n − 1, C)/Sp(n − 1) × Sp(1, C)/Sp(1),

E2
6/SU(6)SU(2) : F 4

4 /Sp(3)SU(2),

E−14
6 /Spin(10)SO(2) : OH 2,

E−24
6 /F4 : RH 9 × R , SL(3, H)/Sp(3),

F 4
4 /Sp(3)SU(2) : G∗

4(R
9),

F C
4 /F4 : SO(9, C)/SO(9).

We finally remark that any two isometric reflective submanifolds in a connected, irre-
ducible Riemannian symmetric space of noncompact type are congruent by an element in the
full isometry group (Leung [8]). This implies that from each of the above reflective submani-
folds we obtain indeed only one cohomogeneity one action onM up to orbit equivalence.
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4. Non-reflective singular orbits. The classification (up to orbit equivalence) of co-
homogeneity one actions on connected irreducible Riemannian symmetric spaces of noncom-
pact type with a reflective singular orbit turned out to be quite simple due to Leung’s classifi-
cation of reflective submanifolds. We will now investigate the case of non-reflective singular
orbits. In this case it is a problem whether such actions exist. It follows from Theorem 3.1
that any totally geodesic orbit of a cohomogeneity one action must be reflective if the rank of
M is one. In this section we will show that this is no longer true if the rank is greater than one.

We start with a lemma useful for the case whenM∗ is a compact Lie group.

LEMMA 4.1. Let G∗ be a connected, simply connected, compact Lie group and H ∗
1 ,H ∗

2
be connected maximal subgroups of G∗. Consider the action of H ∗

1 × H ∗
2 on G∗ defined by

(h1, h2) · g = h1gh−1
2 for all h1 ∈ H ∗

1 , h2 ∈ H ∗
2 and g ∈ G∗. Assume that this action is

of cohomogeneity one and that an orbit (H ∗
1 × H ∗

2 ) · g through g ∈ G∗ is a totally geodesic
singular orbit. Then H ∗

1 = H ∗
2 and g is in the normalizer NG∗(H ∗

1 ) of H ∗
1 in G∗.

PROOF. Assume that(H ∗
1 × H ∗

2 ) · g is a totally geodesic singular orbit. First of all, the
stabilizer ofH ∗

1 × H ∗
2 at g is

H ∗
1 ∩ gH ∗

2 g−1 = {(gh2g−1, h2) | h2 ∈ H ∗
2 , gh2g−1 ∈ H ∗

1 } ,

and hence

(H ∗
1 × H ∗

2 ) · g = H ∗
1 × H ∗

2

H ∗
1 ∩ gH ∗

2 g−1 .

As (H ∗
1 × H ∗

2 ) · g is a singular orbit, the stabilizer atg must act transitively on a sphere of
positive dimension. Moreover, since(H ∗

1 × H ∗
2 ) · g is totally geodesic, the singular orbit is

also a symmetric space. Altogether this can happen only ifH ∗
2 = H ∗

1 = gH ∗
2 g−1.

Assume thatH acts onM with cohomogeneity one with a totally geodesic non-reflective
singular orbitF . According to Proposition 2.1, we canthen construct a cohomogeneity one
action of a subgroupH ∗ ⊂ Io(M∗) on the simply connected dual spaceM∗ with a totally
geodesic non-reflective singular orbitF ∗. The action ofH ∗ must be orbit equivalent to a
cohomogeneity one action in the list provided by Kollross [6]. Because of Theorem 3.1 we
may assume that the rank ofM, and hence ofM∗, is greater than one. Taking into account of
Proposition 2.2 and Lemma 4.1 the only possibilities for a cohomogeneity one action onM∗
with a non-reflective totally geodesic singular orbit are the following:

(a) the action ofSO(2n − 2) onSO(2n − 1)/U(n − 1) = SO(2n)/U(n) (n ≥ 4),
(b) the action ofG2 onSO(7)/SO(3)SO(4) = G+

3 (R7),
(c) the action ofG2 on SO(7)/U(3) = SO(8)/U(4) = SO(8)/SO(2)SO(6) =

G+
2 (R8),

(d) the action ofSpin(9) onSO(16)/SO(2)SO(14) = G+
2 (R16),

(e) the action ofSp(n)Sp(1) onSO(4n)/SO(2)SO(4n − 2) = G+
2 (R4n) (n ≥ 2),

(f) the action ofSU(3) onG2/SO(4),
(g) the action ofG2 × G2 onSpin(7),
(h) the action ofSU(3) × SU(3) onG2.
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We will now discuss these actions individually.
(a) SO(2n − 2) is contained inSO(2n − 1), and since both groups act with coho-

mogeneity one onSO(2n)/U(n), they must be orbit equivalent. According to Proposition
2.2, every totally geodesic singular orbit of the action ofSO(2n − 1) on SO(2n)/U(n) is
reflective, and hence we can ignore this action.

(b) We decompose the Lie algebraso(7) orthogonally into

so(7) = g2 ⊕ R7 ,

whereR7 is the 7-dimensional irreducible representation ofg2. Let h be a Cartan subalgebra
of g2 and

g2 = h ⊕
⊕

α∈Σ+
gα

be the corresponding root space decomposition ofg2 with

Σ+ = {α1, α2, α1 + α2, 2α1 + α2, 3α1 + α2, 3α1 + 2α2} .

The fundamental weight of the irreducible representation ofg2 on R7 is 2α1 + α2, and the
weight space decomposition ofR7 is

R7 = V0 ⊕ Vα1 ⊕ Vα1+α2 ⊕ V2α1+α2 ,

whereV0 is one-dimensional and the other three weight spaces are two-dimensional. Note
that h ⊕ V0 is a Cartan subalgebra ofso(7), and weight spaces satisfy the general relation
[Vα, Vβ ] ⊂ Vα±β ⊕ gα±β . We now define a linear subspacek of so(7) by

k = h ⊕ gα1 ⊕ g3α1+2α2 ⊕ V0 ⊕ Vα1 .

It follows from the bracket relations for root and weight spaces thatk is a subalgebra ofso(7).
We choose a nonzero vectorH ∈ h with α1(H) = 0. ThenRH ⊕g3α1+2α2 is an ideal ink and
is isomorphic toso(3). It is now immediate thatk is isomorphic toso(3) ⊕ so(4). The Cartan
decomposition ofso(7) with respect tok is given byso(7) = k ⊕ p with

p = gα2 ⊕ gα1+α2 ⊕ g2α1+α2 ⊕ g3α1+α2 ⊕ Vα1+α2 ⊕ V2α1+α2 .

Sinceg2 is invariant under the Cartan involution ofso(7) with respect to the Cartan decompo-
sitionso(7) = k ⊕ p, the orbitF ∗ of G2 through the origino∗ of M∗ = SO(7)/SO(3)SO(4)
is totally geodesic. Moreover, since

g2 ∩ (so(3) ⊕ so(4)) = h ⊕ gα1 ⊕ g3α1+2α2 = so(3) ⊕ so(3) = so(4) ,

we haveF ∗ = G2/SO(4). The normal spaceνo∗F ∗ of F ∗ ato∗ is

νo∗F ∗ = Vα1+α2 ⊕ V2α1+α2.

Note that the action ofso(4) on this 4-dimensional space is the standard one, which confirms
that the action ofG2 onM∗ is indeed of cohomogeneity one. Using again the bracket relations
for weight spaces, we get

[νo∗F ∗, νo∗F ∗] ⊂ h ⊕ gα1 ⊕ g3α1+2α2 ⊕ V0 ⊕ Vα1 .
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But

[Vα1, Vα1+α2] ⊂ gα2 ⊕ g2α1+α2 ⊕ V2α1+α2 ,

which readily implies thatνo∗F ∗ is not a Lie triple system inp. HenceF ∗ is non-reflective.
SinceG2 is connected, it preserves the orientation of 3-planes inR7. Therefore the second
singular orbit isρ∗(F ∗), whereρ∗ is the natural orientation-reversing isometry ofG+

3 (R7).
Clearly, ρ∗(F ∗) is another copy ofG2/SO(4) embedded inG+

3 (R7) as a totally geodesic
non-reflective submanifold. Using Proposition 2.1, from each of the two totally geodesic
singular orbits we can now construct a cohomogeneity one action onM = G∗

3(R
7) =

SOo(3, 4)/SO(3)SO(4). In both cases the corresponding subgroup ofSOo(3, 4) is the split
real formG2

2 of GC
2 . The isometryρ∗ of M∗ gives rise to an isometryρ of M under which

the two cohomogeneity one actions onM are conjugate. Thus, to sum up, the action ofG2 on
G+

3 (R7) induces exactly one (up to orbit equivalence) cohomogeneity one action onG∗
3(R

7).
The corresponding subgroup ofSOo(3, 4) is G2

2, and the totally geodesic non-reflective sin-
gular orbit is isometric to the noncompact symmetric spaceG2

2/SO(4).
(c) The action ofG2 on G+

2 (R8) can be seen by identifyingR8 with the octonionsO
and taking into account thatG2 is the automorphism group ofO. The stabilizer ofG2 at a
unit vectoru ∈ Im O is SU(3), and that ofSU(3) at a unit vectorv ∈ Im O perpendicular to
u is SU(2). Thus the stabilizer ofG2 at the 2-planeV spanned byu andv is U(2), and hence
G2 · V = G2/U(2) = G+

2 (R7). The stabilizer ofG2 at the 2-planeU spanned by 1∈ ReO
andu is SU(3), and henceG2 · U = G2/SU(3) = S6. These two singular orbits coincide
with the singular orbits of the cohomogeneity one action ofSO(7) on G+

2 (R8), where the
SO(7) sits insideSO(8) according to the decompositionR8 = R ⊕ R7 = ReO ⊕ Im O.
This implies that the action ofG2 on G+

2 (R8) is orbit equivalent to the action ofSO(7) on
G+

2 (R8), which is an action of the type described in Proposition 2.2. Hence the action ofG2

onG+
2 (R8) has no totally geodesic non-reflective singular orbits.
(d) The stabilizer ofSpin(9) at a unit vectoru ∈ R16 is Spin(7). The representation of

thisSpin(7) onR16 has three irreducible componentsRu⊕R7⊕R8, where the representation
onRu is trivial, the one onR7 is the standard one, and the one onR8 is the spin representation.
Take unit vectorsv ∈ R7 andw ∈ R8. One can see that the orbit through the 2-plane spanned
by u andv (resp. u andw) is Spin(9)/Spin(6)SO(2) (resp. Spin(9)/G2SO(2)). A di-
mension argument shows that they are the singular orbits of theSpin(9)-action onG+

2 (R16).
Since both singular orbits are not symmetric, they cannot be totally geodesic. Thus we can
ignore this action.

(e) The stabilizer ofSp(n)Sp(1) at a unit vectoru ∈ R4n is Sp(n − 1)Sp(1). The
representation of thisSp(n − 1)Sp(1) on R4n has three irreducible componentsRu ⊕ R3 ⊕
R4n−4, where the representation onRu is trivial, the one onR3 is equivalent to the standard
representation ofSp(1) on R3, and the one onR4n−4 is the standard representation. Similar
to the argument of case (d), one can obtain the singular orbits by taking unit vectorsv ∈ R3

andw ∈ R4n−4. The orbit through the 2-plane spanned byu andv is Sp(n)Sp(1)/Sp(n −
1)U(1)U(1) = CP 2n−1 × CP 1. This is symmetric, but it follows from the classification
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of totally geodesic submanifolds in real Grassmannians of oriented 2-planes by Chen and
Nagano [4] that it cannot be totally geodesic. The other singular orbit is the orbit through the
2-plane spanned byu andw, Sp(n)Sp(1)/Sp(n − 2)U(1)Sp(1) = Sp(n)/Sp(n − 2)U(1),
which is not symmetric. Thus we can ignore this action.

(f) Let h be a Cartan subalgebra ofg2 and

g2 = h ⊕
⊕

α∈Σ+
gα

the corresponding root space decomposition ofg2, where we use the same notation for the
roots ofg2 as in case (b). We define two subalgebras ofg2 respectively by

so(4) = h ⊕ gα1 ⊕ g3α1+2α2

and
su(3) = h ⊕ gα2 ⊕ g3α1+α2 ⊕ g3α1+2α2 .

The first subalgebra gives the Cartan decompositiong2 = so(4) ⊕ p with

p = gα2 ⊕ gα1+α2 ⊕ g2α1+α2 ⊕ g3α1+α2 .

Since the second subalgebrasu(3) is invariant under the Cartan involution ofg2 with respect
to g2 = so(4) ⊕ p, the orbitSU(3) · o∗ of SU(3) through the origino∗ ∈ M∗ = G2/SO(4)

is totally geodesic. Since

su(3) ∩ so(4) = h ⊕ g3α1+2α2 = R ⊕ su(2) = u(2) ,

we see thatSU(3) · o∗ is a complex projective planeCP 2 = SU(3)/U(2). The tangent and
the normal space ofCP 2 ato∗ is given by

To∗CP 2 = gα2 ⊕ g3α1+α2 and νo∗CP 2 = gα1+α2 ⊕ g2α1+α2 ,

respectively. The action ofu(2) on νo∗CP 2 is equivalent to the action ofu(2) on C2, which
implies that the slice representation ofU(2) is transitive on the unit sphere inνo∗CH 2. This
shows that the action ofSU(3) on G2/SO(4) is of cohomogeneity one. Finally, the bracket
relations for root spaces show that

[g2α1+α2, gα1+α2] ⊂ gα1 ⊕ g3α1+2α2 ⊂ so(4) ,

and taking bracket again withg2α1+α gives ag3α1+α2-component, which implies thatνoCP 2

is not a Lie triple system inp, and henceCP 2 is non-reflective. We now construct the dual
action onM = G2

2/SO(4) according to Proposition 2.1. The corresponding group acting on
M with cohomogeneity one isSU(1, 2), and the totally geodesic non-reflective singular orbit
is a complex hyperbolic planeCH 2 = SU(1, 2)/S(U(1)U(2)).

We now investigate the second singular orbit of theSU(3)-action onM∗ = G2/SO(4).
For this we move the origin ofG2/SO(4) to a suitable point. The starting point is now the
Cartan decompositiong = k ⊕ p, whereg = g2 and k = so(4), and a maximal abelian
subspacea in p, which leads to the root space decomposition

so(4) = k =
⊕

α∈Σ+
kα and p = a ⊕

⊕
α∈Σ+

pα.
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Then we have

su(3) = (kα2 ⊕ k3α1+α2 ⊕ k3α1+2α2) ⊕ (a ⊕ pα2 ⊕ p3α1+α2 ⊕ p3α1+2α2) .

Sincesu(3) is invariant under the Cartan involution with respect tog = k ⊕ p, the orbitF ∗ of
SU(3) through the origino∗ is totally geodesic inM∗. Moreover, since

su(3) ∩ so(4) = kα2 ⊕ k3α1+α2 ⊕ k3α1+2α2 = so(3) ,

the singular orbitF ∗ is isometric to the symmetric spaceSU(3)/SO(3). The tangent and the
normal space ofF ∗ ato∗ is

To∗F ∗ = a ⊕ pα2 ⊕ p3α1+α2 ⊕ p3α1+2α2 and νo∗F ∗ = pα1 ⊕ pα1+α2 ⊕ p2α1+α2 = R3 .

The action ofso(3) on the normal spaceR3 is the standard one, which implies that the action
of SU(3) is of cohomogeneity one. Since there is only oneSU(3)-action onG2/SO(4)

up to conjugation, we conclude that theSU(3)-action onG2/SO(4) has indeed two totally
geodesic singular orbitsCP 2 andSU(3)/SO(3). The bracket relations for root spaces imply
thatνo∗F ∗ is not a Lie triple system inp, which shows thatSU(3)/SO(3) is non-reflective.
We again apply the construction described in Proposition 2.1 to get a second cohomogeneity
one action onM = G2

2/SO(4). This timeSL(3, R) is the subgroup ofG2
2 which acts with

cohomogeneity one onG2
2/SO(4), and the totally geodesic non-reflective singular orbit is

SL(3, R)/SO(3).
(g) The orbitF ∗ of the action ofG2 × G2 through the identitye of Spin(7) is clearly

the totally geodesic subgroupG2 = (G2 ×G2)/∆G2, where∆G2 is the diagonal embedding
of G2 in G2 × G2. On algebra level we have the following situation. Consider the Cartan
decomposition ofspin(7) ⊕ spin(7) = k ⊕ p with

k = {(X,X) | X ∈ spin(7)} and p = {(X,−X) | X ∈ spin(7)} ,

and the decompositionspin(7) = g2 ⊕ R7, whereR7 is the 7-dimensional irreducible repre-
sentation ofg2. Then we have

TeF
∗ = {(X,−X) | X ∈ g2} and νeF

∗ = {(X,−X) | X ∈ R7} ,

and

N�(νeF
∗) = N�(TeF

∗) = {(X,X) | X ∈ g2} = g2 .

Clearly, the slice representation ofNK(TeF
∗) = G2 is transitive on the unit sphere inνeF

∗ =
R7, which shows that the action ofG2 ×G2 onSpin(7) is indeed of cohomogeneity one. But
νeF

∗ cannot be a Lie triple system, since otherwise[νeF
∗, νeF

∗] ⊂ N�(TeF
∗) = g2, which

would imply that(spin(7), g2) is a symmetric pair, which is not true. Hence it follows that
F ∗ is non-reflective. We now construct the dual action according to Proposition 2.1, which
is the action ofGC

2 on SO(7, C)/SO(7). This action is of cohomogeneity one with a totally
geodesic non-reflective singular orbitGC

2 /G2.
We also have to consider the second singular orbit of the action ofG2 × G2 onSpin(7).

Let z ∈ Spin(7) be the generator of the centerZ2 of Spin(7). SinceG2 has trivial center,z is
not contained inF ∗ = G2 ⊂ Spin(7), and hence the(G2 × G2)-orbit throughz is different
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from the orbit throughe. Moreover, we have(h1, h2) · z = h1zh
−1
2 = z(h1h

−1
2 ) for all

h1, h2 ∈ G2, which shows that the(G2×G2)-orbit throughz is the left translate inSpin(7) of
the totally geodesic(G2×G2)-orbit throughe. Since left translation is an isometry, we see that
the second singular orbit of the action is another totally geodesic non-reflectiveG2 in Spin(7)

(which is obviously not a subgroup). Since both singular orbits are conjugate via some left
translation inSpin(7), the cohomogeneity one action onSO(7, C)/SO(7) constructed from
the second singular orbit is orbit equivalent to the one constructed from the first one.

(h) The story for the action ofSU(3) × SU(3) on G2 is more or less the same as
in the previous case. We have to replacespin(7) by g2, g2 by su(3), and the decomposition
spin(7) = g2⊕R7 byg2 = su(3)⊕R6, respectively. The dual action is the action ofSL(3, C)

on GC
2/G2 with totally geodesic non-reflective singular orbitSL(3, C)/SU(3). The second

singular orbit goes through an elementz in the centralizer ofSU(3) in G2, which is not
contained in the center ofSU(3).

Summing up, we have now obtained the following theorem, which implies the main
result in the introduction.

THEOREM 4.2. Let M be a connected, irreducible Riemannian symmetric space of
noncompact type and F a totally geodesic non-reflective submanifold of M . Then F is the
singular orbit of a cohomogeneity one action on M if and only if F is one of the following
totally geodesic non-reflective submanifolds:

G∗
3(R

7) : G2
2/SO(4),

SO(7, C)/SO(7) : GC
2 /G2,

G2
2/SO(4) : CH 2, SL(3, R)/SO(3),

GC
2/G2 : SL(3, C)/SU(3).
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