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COHOMOGENEITY ONE ACTIONS
ON NONCOMPACT SYMMETRIC SPACES

OF RANK ONE

JÜRGEN BERNDT AND HIROSHI TAMARU

Abstract. We classify, up to orbit equivalence, all cohomogeneity one actions
on the hyperbolic planes over the complex, quaternionic and Cayley numbers,
and on the complex hyperbolic spaces CHn, n ≥ 3. For the quaternionic
hyperbolic spaces HHn, n ≥ 3, we reduce the classification problem to a
problem in quaternionic linear algebra and obtain partial results. For real

hyperbolic spaces, this classification problem was essentially solved by Élie
Cartan.

1. Introduction

An isometric action on a Riemannian manifold is of cohomogeneity one if its
orbit space is one-dimensional. Cohomogeneity one actions are of current interest
for the construction of geometrical structures on manifolds, e.g., Einstein metrics
and metrics with special holonomies. The reason is that a cohomogeneity one
action can be used to reduce the system of partial differential equations describing
such a geometrical structure to a nonlinear ordinary differential equation for which
one might be able to find explicit solutions. Given a Riemannian manifold M , it
is natural to find all cohomogeneity one actions on it, perhaps just up to orbit
equivalence. Two cohomogeneity one actions on M are orbit equivalent if there
exists an isometry of M that maps the orbits of one action onto the orbits of
the other action. It is worthwhile to mention that the classification problem of
cohomogeneity one actions up to orbit equivalence is equivalent to the classification
problem of homogeneous hypersurfaces up to isometric congruence. The latter is a
classical problem in submanifold theory.

The cohomogeneity one actions on spheres, equipped with their standard metric
of constant curvature, have been classified by Hsiang and Lawson [14]. Remarkably,
any such action is orbit equivalent to the isotropy representation of a Riemannian
symmetric space of rank two. For the other compact symmetric spaces of rank
one the classifications were obtained by Takagi [21] for the complex projective
spaces and by Iwata [15], [16] for the quaternionic projective spaces and the Cayley
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projective plane. For simply connected irreducible Riemannian symmetric spaces
of higher rank the classification was established by Kollross [17].

The methods employed by the above authors do not work for the noncompact
dual symmetric spaces. The noncompactness of the isometry group turns out to be a
subtle point. There can be uncountably many families of nonisomorphic subgroups
of the isometry group that act orbit equivalently by cohomogeneity one. By using
the classification of isoparametric hypersurfaces on the Euclidean space R

n and the
real hyperbolic space RHn by Levi-Civita [18], Segre [20] and Cartan [10], one can
obtain all cohomogeneity one actions on these spaces up to orbit equivalence. In
both cases the orbit structure is either a Riemannian foliation, or a totally geodesic
subspace together with the distance tubes around it. It is a general fact that
a cohomogeneity one action on a symmetric space of noncompact type, or more
generally on a Hadamard manifold, induces either a Riemannian foliation, or has
exactly one singular orbit and the generic orbits are the distance tubes around it
(see [3] for details and references).

In [4] we obtained the classification, up to orbit equivalence, of all cohomogeneity
one actions on irreducible symmetric spaces of noncompact type that induce a
Riemannian foliation, that is, have no singular orbit. A surprising consequence of
this result is that the moduli space of all such actions just depends on the rank
of the symmetric space and possible duality or triality principles on the space. In
particular, on each noncompact symmetric space of rank one this moduli space
consists of just two elements. The corresponding foliations are the horosphere
foliation and a foliation with exactly one minimal leaf whose geometry has been
investigated in [2].

The classification of all cohomogeneity one actions on irreducible symmetric
spaces of noncompact type that have a totally geodesic singular orbit has been
achieved in [5]. It thus remains to investigate the case of a non-totally-geodesic
singular orbit. As mentioned above, in the case of R

n and RHn a singular orbit
is necessarily totally geodesic. It is remarkable that this is no longer true for the
other noncompact symmetric spaces of rank one: the complex hyperbolic spaces
CHn (n ≥ 2), the quaternionic hyperbolic spaces HHn (n ≥ 2), and the Cayley
hyperbolic plane OH2. The first author and Brück constructed in [3] many ex-
amples of cohomogeneity one actions on these hyperbolic spaces (except for CH2)
with a non-totally-geodesic singular orbit. The main result of this paper says that,
up to orbit equivalence, there are no further cohomogeneity one actions on CHn

(n ≥ 3), HH2 and OH2. We also show that every singular orbit of a cohomogene-
ity one action on CH2 is totally geodesic. For the quaternionic hyperbolic space
HHn, n ≥ 3, we prove that the set of orbit equivalence classes of cohomogeneity
one actions with a singular orbit of codimension 2 is parametrized by the closed
interval [0, π/2].

The results of this paper were partially obtained during a common visit to the
Mathematical Research Institute Oberwolfach (Research in Pairs programme). We
would like to thank the Institute for its support and hospitality.

2. Preliminaries

Let M be a noncompact symmetric space of rank one. Then M is either a real
hyperbolic space RHn, a complex hyperbolic space CHn, a quaternionic hyperbolic
space HHn, or a Cayley hyperbolic plane OH2, where n ≥ 2. We denote by F one of
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the real division algebras R, C, H or O, and by FHn the corresponding hyperbolic
space, where we assume n = 2 if F = O. Let G be the identity component of
the full isometry group of M ; that is, G = SOo(n, 1), SU(n, 1), Sp(n, 1), F−20

4 for
F = R, C, H, O, respectively. We fix a point o ∈ M and denote by K the isotropy
subgroup of G at o; that is, K = SO(n), S(U(n)U(1)), Sp(n)Sp(1), Spin(9). Then,
as a homogeneous space, M is isomorphic to G/K. We denote by g and k the Lie
algebras of G and K. Let B be the Killing form of g and θ the Cartan involution of
g with respect to k. Then 〈X, Y 〉 = −B(X, θY ) is a positive definite inner product
on g. Let g = k+ p be the Cartan decomposition of g induced by θ. The restriction
of 〈·, ·〉 to p induces a Riemannian metric on G/K turning it into a Riemannian
symmetric space of rank one. We normalize the Riemannian metric on M so that
it becomes isometric to G/K with the induced metric we just described.

Let a be a maximal abelian subspace of p, which is just a one-dimensional linear
subspace since the rank of M is one, and let

g = g−2α + gα + g0 + gα + g2α

be the corresponding restricted root space decomposition of g. Note that g−2α and
g2α are trivial if F = R. Then

g = k + a + n with n = gα + g2α

is an Iwasawa decomposition of g. The subalgebra n of g is abelian if F = R and
two-step nilpotent otherwise. In fact, n is isomorphic to the (2n − 1)-dimensional
Heisenberg algebra if F = C, and to a certain generalized Heisenberg algebra if
F ∈ {H, O} (see [6] for more details on this). Moreover, z = g2α is the center of
n and equal to the derived subalgebra [n, n] of n. The dimension of z is equal to
1, 3, 7 for F = C, H, O, respectively. The subalgebra a + n of g is solvable and n is
the derived subalgebra of a + n.

We denote by A resp. N the connected closed subgroup of G with Lie algebra
a resp. n. Then G = KAN is an Iwasawa decomposition of G and, since K is the
isotropy subgroup of G at o, the solvable subgroup AN of G acts simply transitively
on M . Thus M is isometric to the solvable Lie group AN equipped with a suitable
left-invariant Riemannian metric.

We define v = gα. Then we can identify v with Rn−1, Cn−1, Hn−1, O for F =
R, C, H, O, respectively. More precisely, if F = R, then v is isomorphic to Rn−1 as a
real vector space. If F = C, the Kähler structure on CHn induces a complex vector
space structure on v so that it becomes isomorphic to Cn−1, and if F = H, the
quaternionic Kähler structure on HHn induces a (right) quaternionic vector space
structure on v so that it becomes isomorphic to the (right) quaternionic vector
space H

n−1. For F = O we simply identify O with R
8, and v becomes isomorphic

to O as a real vector space.

3. The reduction

In this section we reduce our classification problem to the problem of classifying
certain subalgebras of a + n. We start with a general result about cohomogeneity
one actions on Hadamard manifolds, i.e., connected, simply connected, complete
Riemannian manifolds of nonpositive curvature. Every symmetric space of noncom-
pact type is a Hadamard manifold. We recall that Cartan’s Fixed Point Theorem
states that the action of any compact subgroup of the isometry group of a Hadamard
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manifold has a fixed point. We refer to [12] for more details on Hadamard manifolds
and Cartan’s Fixed Point Theorem.

Proposition 3.1. Let M be a Hadamard manifold and H a connected subgroup of
the isometry group of M that acts with cohomogeneity one on M and has a singular
orbit F . Then there exists a connected solvable subgroup of H that acts transitively
on F .

Proof. We choose a Levi-Malcev decomposition

h = hss + hsolv

of the Lie algebra h of H into the semidirect sum of a semisimple subalgebra hss

and a solvable ideal hsolv. For the semisimple subalgebra hss we choose an Iwasawa
decomposition

hss = h
cpct
ss + h

solv
ss

of hss into the vector space direct sum of a compact subalgebra hcpct
ss and a solvable

subalgebra hsolv
ss . Then

h = h
cpct
ss + (hsolv

ss + hsolv) ,

where hsolv
ss +hsolv is a semidirect sum of the two solvable subalgebras so that hsolv

is the ideal in it. Note that the semidirect sum of two solvable Lie algebras is
solvable as well. We denote by Hcpct

ss and Hsolv the connected subgroup of H with
Lie algebra hcpct

ss and hsolv
ss + hsolv, respectively.

By Cartan’s Fixed Point Theorem, there exists a point p ∈ M that is fixed under
the action of the compact group Hcpct

ss . If p ∈ F , then clearly the solvable group
Hsolv acts transitively on F . If p /∈ F , then p is on a principal orbit of the H-action
on M , and it follows that the solvable group Hsolv acts transitively on this principal
orbit. Since the action of H on M is of cohomogeneity one, we easily see that Hsolv

acts transitively on each orbit of the H-action and, in particular, also transitively
on the singular orbit F . This finishes the proof of Proposition 3.1. �

We denote by M(∞) the ideal boundary of M whose points are given by the
equivalence classes of asymptotic geodesics in M , and equip M̄ = M ∪M(∞) with
the cone topology. The action of H on M extends canonically to an action of H on
M̄ .

From now on we assume that M = FHn and that the singular orbit F of the
cohomogeneity one action by H on M is not totally geodesic. Then none of the
H-orbits on M is totally geodesic, and a result by Alekseevsky and Di Scala [1]
implies that there exists a unique point x ∈ M(∞) that is fixed under the H-action
on M(∞). We fix a point o ∈ F and consider the Iwasawa decomposition

g = k + a + n

that is determined by o and x. Since H · x = x, we have

h ⊂ kx + a + n ,

where kx is the centralizer of a in k. We denote by Kx the connected subgroup of
K with Lie algebra kx. Then we have

Kx = SO(n − 1), S(U(n − 1)U(1)), Sp(n− 1)Sp(1), Spin(7)

for F = R, C, H, O, respectively, and H ⊂ KxAN .
By Proposition 3.1 there exists a solvable subgroup S of H that acts transitively

on the singular orbit F . We denote by s the subalgebra of h corresponding to S ⊂ H.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



COHOMOGENEITY ONE ACTIONS ON NONCOMPACT SYMMETRIC SPACES 3429

We recall that we may write the nilpotent subalgebra n in the form n = gα + g2α

with some suitable root spaces gα and g2α. Since kx centralizes a, it normalizes
each root space and hence n, which implies that a+n is an ideal in kx +a+n. Thus
the canonical projection

π : kx + a + n → kx

is a Lie algebra homomorphism, and it follows that

sc = π(s)

is a solvable subalgebra of kx. Since every solvable subalgebra of a compact Lie
algebra is abelian, we conclude that

(3.1) sc is an abelian subalgebra of kx.

Let
τ : kx + a + n → a + n

be the canonical projection and define

sn = τ (s) .

It is clear that

(3.2) dim sn = dimF .

Our aim is to show that sn is a subalgebra of a + n and that the orbit through o of
the action of the corresponding subgroup Sn of AN is just the singular orbit F . For
each k ∈ Kx the differential dok of k at o is given by dok = Ad(k)|(a + n), where
we identify ToM with a + n by means of M = G/K = AN . Since the isotropy
subgroup Ho of H at o acts transitively on the unit sphere in the normal space νoF
of F at o, and as kx centralizes a, we necessarily have

(3.3) νoF ⊂ n

and hence

(3.4) a ⊂ sn .

We shall now prove that

(3.5) [s, s] = sn ∩ n .

Since s ⊂ sc + sn, we have

[s, s] ⊂ [sc, sc] + [sc, sn] + [sn, sn] .

The subalgebra [sc, sc] is trivial since sc is abelian according to (3.1). Since sc ⊂ kx,
sn ⊂ a + n and kx centralizes a and normalizes n, we have [sc, sn] ⊂ [kx, a + n] ⊂ n.
Finally, since sn ⊂ a + n and n is the derived subalgebra of a + n, we see that
[sn, sn] ⊂ n. Altogether this implies [s, s] ⊂ n, which readily yields [s, s] ⊂ sn ∩ n.
For the converse, we fix the element B ∈ a for which [B, V ] = V and [B, Z] = 2Z
holds for all V ∈ v = gα and Z ∈ z = g2α. Because of (3.4) there exists an element
B̃ ∈ sc so that B̃ + B ∈ s. Let X = V + Z ∈ v + z be an arbitrary element in the
orthogonal complement of [s, s] in sn ∩n. Then there exists a vector X̃ ∈ sc so that
X̃ + X ∈ s, and we have

0 = 〈X, [B̃ + B, X̃ + X]〉 = 〈X, [B̃, X̃] + [B̃, X] + [B, X̃] + [B, X]〉 .
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Since sc is abelian we have [B̃, X̃] = 0. Since ad(B̃) is a skewsymmetric transfor-
mation we have 〈X, [B̃, X]〉 = 0, and since sc ⊂ kx and kx centralizes a we have
[B, X̃] = 0. This implies

0 = 〈X, [B, X]〉 = 〈V + Z, V + 2Z〉 = 〈V, V 〉 + 2〈Z, Z〉 ,

and hence V = 0 = Z. Thus X = 0, which implies that the orthogonal complement
of [s, s] in sn ∩ n is trivial. This establishes the proof of (3.5).

Our next aim is to prove that

(3.6) νoF ⊂ v = gα .

From (3.3) we already know that νoF ⊂ n. If νoF ∩ v 
= 0, we readily get νoF ⊂ v,
because Ad(Ho) acts transitively on the unit sphere in νoF and preserves v. Now
assume that νoF ∩ v = 0. Then (3.5) implies that the canonical projection of
[s, s] ⊂ v + z onto v is the entire space v. Thus, for each V ∈ v there exists an
element V ′ ∈ z so that V + V ′ ∈ [s, s]. Since [s, s] is a subalgebra, we get

[V, W ] = [V + V ′, W + W ′] ∈ [s, s]

for all V, W ∈ v. But since [v, v] = [gα, gα] = g2α = z, this implies z ⊂ [s, s] and
hence νoF ⊂ v. This establishes the proof of (3.6).

From (3.6) we see that there exists a linear subspace vo of v so that sn = a+vo+z.
Using the Lie algebra structure of a + n, we get:

(3.7) sn is a subalgebra of a + n .

Let Sn be the connected subgroup of AN with Lie algebra sn. Our next aim is
to show that the orbit Sn · o of Sn through o coincides with the singular orbit F .
For this purpose we define

t = kx ∩ s ⊂ sc and s
′ = R(B̃ + B) + [s, s] ,

where B ∈ a and B̃ ∈ sc are defined as above. Since t ⊂ sc, B̃ ∈ sc and sc is abelian
we have [t, B̃] = 0, and since t ⊂ kx and kx centralizes a we have [t, B] = 0. Clearly,
we also have [t, [s, s]] ⊂ [s, s] ⊂ s′ since t ⊂ s and [s, s] ⊂ s. Altogether this implies
[t, s′] ⊂ s′. Moreover, since s′ ⊂ s, we have [s′, s′] ⊂ [s, s] ⊂ s′, which shows that
s′ is a subalgebra of s. It follows that s′ is an ideal in s and s = t + s′ (semidirect
sum). Let S′ be the connected subgroup of S with Lie algebra s′. Since t ⊂ ho we
see that S′ acts transitively on F , i.e., S′ · o = F . For all V + Z ∈ [s, s] ⊂ n = v + z

we have

(3.8) [B̃, V + Z] + V + 2Z = [B̃, V + Z] + [B, V + Z] = [B̃ + B, V + Z] ∈ s
′

since s′ is a subalgebra. But A and V +Z are in sn according to (3.4) and (3.5), and
since sn is a subalgebra by (3.7), we have V +2Z = [B, V +Z] ∈ sn ∩n = [s, s] ⊂ s′

by (3.5). By (3.8) this implies [B̃, V + Z] ∈ s′. But B̃ ∈ sc ⊂ kx and thus ad(B̃)
leaves v and z invariant, which implies that [B̃, V + Z] ∈ s′ ∩ n ⊂ [s, s] ⊂ sn. We
thus have proved that sn is normalized by B̃, i.e., [B̃, sn] ⊂ sn. Let Exp be the Lie
exponential map of g. We now get

F = S′ · o ⊂ Exp(RB̃)Sn · o = SnExp(RB̃) · o = Sn · o

since Exp(RB̃) normalizes Sn and Exp(RB̃) · o ⊂ Ho · o = o. Finally, by (3.2) the
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dimensions of F and Sn coincide, and since both F and Sn · o are complete, we
must have F = Sn · o. We thus have proved:

Theorem 3.2. Let H be a connected subgroup of G = Io(FHn) that acts on FHn

with cohomogeneity one and with a non-totally-geodesic singular orbit F . Then
there exists a unique point x ∈ M(∞) that is fixed under the induced action of H
on M(∞). Let o ∈ F , K the isotropy group of G at o, and g = k+a+n the Iwasawa
decomposition of g that is induced by o and x. Then there exists a subalgebra s of
a + n of the form s = a + vo + z with some linear subspace vo of v, so that F is the
orbit of the connected subgroup S of AN with Lie algebra s.

4. The classification

In this section we discuss the classification of cohomogeneity one actions on
noncompact symmetric spaces of rank one up to orbit equivalence. Recall that
such an action has either no singular orbit or exactly one singular orbit.

No singular orbit. In [4] it was shown that there exist only two such actions
without a singular orbit. The first one is given by the action of the nilpotent
group N in an Iwasawa decomposition G = KAN of G = Io(FHn), and the
orbits form a horosphere foliation. The second one is given by the subgroup S
of AN with Lie algebra s = a + vo + z, where vo is a linear subspace of v with
codimension one. The corresponding foliation has exactly one minimal leaf and has
been investigated in detail in [2]. In the case of RHn the minimal leaf is a totally
geodesic RHn−1 ⊂ RHn.

Totally geodesic singular orbit. The cohomogeneity one actions on FHn with
a totally geodesic singular orbit F are given by:

M = RHn : F ∈ {pt, RH1, . . . , RHn−2};
M = CHn : F ∈ {pt, CH1, . . . , CHn−1, RHn};
M = HHn : F ∈ {pt, HH1, . . . , HHn−1, CHn};
M = OH2 : F ∈ {pt, OH1, HH2}.

Here, pt is a point in FHn, and the corresponding cohomogeneity one action is just
the action of the isotropy group of Io(FHn) at that point. More details about this
can be found in [3].

Non-totally-geodesic singular orbit. We now come to the classification of co-
homogeneity one actions with a non-totally-geodesic singular orbit F . We will use
the same notation as in the previous section. Let H be the connected component
of the group of isometries of M that leave F invariant. By Theorem 3.2 there exists
a unique point x ∈ M(∞) that is fixed under the induced action of H on M(∞).
Let o ∈ F , K the isotropy group of G at o, and g = k + a + n the Iwasawa decom-
position of g that is induced by o and x. Using again Theorem 3.2, there exists a
subalgebra s of a + n of the form s = a + vo + z with some linear subspace vo of v,
so that F is the orbit of the connected subgroup S of AN with Lie algebra s. From
the construction it is clear that the identity component of Ho coincides with the
identity component No

K(s) of the normalizer NK(s) of s in K. In order that H acts
with cohomogeneity one it is therefore necessary and sufficient that the action of
No

K(s) on the normal space νoF is transitive on the unit sphere in νoF . Note that
No

K(s) ⊂ Kx. Since all Iwasawa decompositions of g are conjugate to each other
under an inner automorphism of g, it therefore remains to classify all subalgebras
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3432 JÜRGEN BERNDT AND HIROSHI TAMARU

s of a + n of the form s = a + vo + z with some linear subspace vo of v such that
No

K(s) acts transitively on the unit sphere in v⊥o , the orthogonal complement of vo

in v. This proves the first part of the following theorem:

Theorem 4.1. Let g = k + a + n be the Iwasawa decomposition induced by o ∈ M
and x ∈ M(∞).

(i) Let vo be a linear subspace of v so that dim v⊥o ≥ 2 and No
Kx

(vo) acts
transitively on the unit sphere in v⊥o . Then the connected subgroup of G
with Lie algebra No

kx
(vo) + a + vo + z acts on M with cohomogeneity one

so that the orbit through o is singular. Furthermore, every cohomogeneity
one action on M with a non-totally-geodesic singular orbit can be obtained
in this way up to orbit equivalence.

(ii) Let vo and v′o be linear subspaces of v as in (i), and assume that the cor-
responding cohomogeneity one actions have non-totally-geodesic singular
orbits. Then, these actions are orbit equivalent if and only if there exists
an isometry k ∈ Kx so that Ad(k)vo = v′o.

Proof. It remains to prove part (ii). The “if”-part of the statement is obvious.
Conversely, assume that the two cohomogeneity one actions are orbit equivalent.
Then the corresponding singular orbits, say S and S′, are congruent under an
isometry k of M . We may assume that k fixes o. By construction, the normal-
izers NG(S) and NG(S′) fix x, the point at infinity that determines our Iwasawa
decomposition. Then k must fix x as well, since kNG(S)k−1 = NG(S′) and x is the
unique fixed point in M(∞) of NG(S) and of NG(S′). Therefore we conclude that
Ad(k)vo = v′o. �

We now discuss the four different hyperbolic spaces individually.
M = RHn It follows from the classification of isoparametric hypersurfaces in

RHn by Cartan [10] that there exist no such actions. Since a singular orbit of a
cohomogeneity one action is necessarily minimal, one can also apply a result by Di
Scala and Olmos [11] stating that every minimal homogeneous submanifold of RHn

is totally geodesic.
The classification also follows easily from Theorem 4.1: Assume there is a coho-

mogeneity one action on RHn with a non-totally-geodesic singular orbit F . The-
orem 4.1 implies that the action is orbit equivalent to the H-action induced from
h = No

kx
(vo) + a + vo for some suitable subspace vo of v. But for such an H-action

the orbit F = H · o is totally geodesic, which is a contradiction.
M = CHn In this case the Kähler structure on CHn induces a complex struc-

ture J on v so that v is isomorphic to Cn−1 as a complex vector subspace. Let vo

be a linear subspace of v so that dimR v⊥o ≥ 2. Recall that the Kähler angle of a
nonzero vector v ∈ v⊥o ⊂ Cn−1 is defined as the angle between Jv and v⊥o . In order
that No

K(s) acts transitively on the unit sphere in v⊥o it is necessary that the Kähler
angle of v⊥o does not depend on the choice of the unit vector in v⊥o . We thus assume
that for all nonzero vectors v ∈ v⊥o the Kähler angle is equal to some ϕ ∈ [0, π/2].
In the special case that ϕ = 0, v⊥o is a complex subspace of v, and if ϕ = π/2, then
v⊥o is a real subspace of v. The subspaces of complex vector spaces with constant
Kähler angle have been classified in [3]. For ϕ = 0 we just have the complex sub-
spaces and for ϕ = π/2 the real subspaces, and in both cases the congruence classes
(under the action of Kx = U(n−1) on v = Cn−1) are parametrized by the complex,
resp. real, dimension. For ϕ ∈ (0, π/2) there exists exactly one congruence class
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of subspaces with constant Kähler angle ϕ for each dimension 0 < 2k ≤ n − 1.
For any such subspace the resulting action on CHn is of cohomogeneity one and F
is a non-totally-geodesic singular orbit unless ϕ = 0 (then F is a totally geodesic
complex submanifold). Using Theorem 4.1 we therefore conclude:

Theorem 4.2. The moduli space of all cohomogeneity one actions on CHn, n ≥ 2,
with a non-totally-geodesic singular orbit (up to orbit equivalence) is isomorphic to
the disjoint union

{2, . . . , n − 1} ∪ ((0, π/2) × {2k | k ∈ Z , 0 < 2k < n}) .

The integer in {2, . . . , n − 1} indicates the codimension of the singular orbit if the
normal spaces are real, and the integer in {2k | k ∈ Z , 0 < 2k < n} indicates the
codimension of the singular orbit if the normal spaces have constant Kähler angle
ϕ ∈ (0, π/2).

Corollary 4.3. Any singular orbit of a cohomogeneity one action on CH2 is totally
geodesic.

Note that by this result we now have a complete classification of the homogeneous
hypersurfaces in CHn for all n ≥ 2. In view of [9], we call a submanifold M normally
homogeneous if M is homogeneous and if the slice representation at p ∈ M acts
transitively on the unit sphere in νpM . A singular orbit of a cohomogeneity one
action is clearly a normally homogeneous submanifold. The above shows that for
each k ∈ {2, . . . , n − 1} there exists, up to holomorphic congruence, exactly one
normally homogeneous submanifold Fk of CHn with real normal bundle of rank k,
and for each k ∈ {1, . . . , [(n−1)/2]} and each ϕ ∈ (0, π/2) there exists exactly one,
up to holomorphic congruence, normally homogeneous submanifold Fk,ϕ of CHn

with normal bundle of rank 2k and constant Kähler angle ϕ.

Theorem 4.4. Let M be a homogeneous hypersurface in CHn, n ≥ 2. Then M is
holomorphically congruent to one of the following hypersurfaces:

(1) a tube of radius r ∈ R+ around the totally geodesic CHk ⊂ CHn for some
k ∈ {0, . . . , n − 1};

(2) a tube of radius r ∈ R+ around the totally geodesic RHn ⊂ CHn;
(3) a horosphere in CHn;
(4) the minimal ruled real hypersurface S determined by a horocycle in a totally

geodesic RH2 ⊂ CHn, or an equidistant hypersurface to S;
(5) a tube of radius r ∈ R+ around the normally homogeneous submanifold Fk

of CHn with real normal bundle of rank k, k ∈ {2, . . . , n − 1};
(6) a tube of radius r ∈ R+ around the normally homogeneous submanifold Fk,ϕ

of CHn with normal bundle of rank 2k ∈ {2, . . . , 2[(n−1)/2]} and constant
Kähler angle ϕ ∈ (0, π/2).

M = HHn In this case the quaternionic Kähler structure on HHn induces a
quaternionic structure J on v so that v is isomorphic to Hn−1 as a (right) quater-
nionic vector subspace. Let vo be a linear subspace of v so that dimR v⊥o ≥ 2. In [3]
the first author and Brück introduced the notion of a quaternionic Kähler angle,
which is defined as follows. Let S2 be the two-sphere of all almost Hermitian struc-
tures in J. For each nonzero vector v ∈ v⊥o and each J ∈ S2 denote by ϕ(v, J) the
Kähler angle of Jv and v⊥o in the complex vector space (v, J). Since S2 is compact,
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there exist a minimum and a maximum for these Kähler angles. It was shown in
[3] that for each nonzero v there always exists a canonical basis J1, J2, J3 of ele-
ments in S2 (i.e., JνJν+1 = Jν+2 = −Jν+1Jν , index modulo 3) such that ϕ(v, J1)
is the minimum ϕ1(v) of these Kähler angles and ϕ(v, J3) is the maximum ϕ3(v) of
these Kähler angles. For any canonical basis with this property the Kähler angle
ϕ2(v) = ϕ(v, J2) attains the same value. The triple Φ(v) = (ϕ1(v), ϕ2(v), ϕ3(v)) of
Kähler angles is called the quaternionic Kähler angle of v⊥o with respect to v. For a
cohomogeneity one action the quaternionic Kähler angle of v⊥o must be independent
of the choice of the unit vector in v⊥o . In [3] several examples of subspaces of Hn−1

with constant quaternionic Kähler angle were given, but a complete classification
is still missing. The examples are as follows:

(a) Φ = (0, 0, 0). The linear subspaces of v with constant quaternionic Kähler
angle Φ = (0, 0, 0) are the quaternionic subspaces. A linear subspace V ⊂ v is
quaternionic if JV ⊂ V holds for all J ∈ J. For each integer k with 0 < k < n there
exists exactly one (up to orbit equivalence) cohomogeneity one action on HHn with
a singular orbit F of real codimension 4k with the property that the normal spaces
of F have constant quaternionic Kähler angle Φ = (0, 0, 0), and F is congruent to
the totally geodesic HHn−k ⊂ HHn.

(b) Φ = (0, π/2, π/2). The linear subspaces of v with constant quaternionic
Kähler angle Φ = (0, π/2, π/2) are the totally complex subspaces. A linear subspace
V ⊂ v is totally complex if there exists an almost Hermitian structure J1 ∈ J such
that J1V ⊂ V and JV ⊂ V ⊥ for all J ∈ J perpendicular to J1. For each integer
k ∈ {1, . . . , n− 1} there exists exactly one (up to orbit equivalence) cohomogeneity
one action on HHn with a non-totally-geodesic singular orbit F of real codimension
2k with the property that the normal spaces of F have constant quaternionic Kähler
angle Φ = (0, π/2, π/2).

(c) Φ = (π/2, π/2, π/2). The linear subspaces of v with constant quaternionic
Kähler angle Φ = (π/2, π/2, π/2) are the totally real subspaces. A linear subspace
V ⊂ v is totally real if JV ⊂ V ⊥ holds for all J ∈ J. For each integer k ∈
{2, . . . , n− 1} there exists exactly one (up to orbit equivalence) cohomogeneity one
action on HHn with a non-totally-geodesic singular orbit F of real codimension k
with the property that the normal spaces of F have constant quaternionic Kähler
angle Φ = (π/2, π/2, π/2).

(d) Φ = (0, 0, π/2). The linear subspaces of v with constant quaternionic Kähler
angle Φ = (0, 0, π/2) are the 3-dimensional subspaces of the form (ImH)v for some
unit vector v ∈ v. There exists exactly one (up to orbit equivalence) cohomogeneity
one action on HHn with a non-totally-geodesic singular orbit F of real codimension
3 with the property that the normal spaces of F have constant quaternionic Kähler
angle Φ = (0, 0, π/2).

(e) Φ = (ϕ, π/2, π/2), ϕ ∈ (0, π/2). The linear subspaces of v with constant
quaternionic Kähler angle Φ = (ϕ, π/2, π/2), ϕ ∈ (0, π/2), are the linear subspaces
with constant Kähler angle ϕ in a totally complex subspace V of v. Here, the
Kähler angle in V is measured with respect to the almost Hermitian structure J1

as described in (b). For each integer k ∈ {1, . . . , [(n− 1)/2]} and each ϕ ∈ (0, π/2)
there exists exactly one (up to orbit equivalence) cohomogeneity one action on
HHn with a non-totally-geodesic singular orbit F of real codimension 2k with the
property that the normal spaces of F have constant quaternionic Kähler angle
Φ = (ϕ, π/2, π/2).
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(f) Φ = (0, ϕ, ϕ), ϕ ∈ (0, π/2). The linear subspaces of v with constant quater-
nionic Kähler angle Φ = (0, ϕ, ϕ), ϕ ∈ (0, π/2), are the complexifications of linear
subspaces with constant Kähler angle ϕ in a totally complex subspace w of v.
More precisely, let J2 ∈ J be an almost Hermitian structure and consider v as
the complexification of w with respect to an almost Hermitian structure J1 ∈ J

orthogonal to J2; that is, v = w + J1w with a J2-invariant linear subspace w ⊂ v.
Let W be a linear subspace of the complex vector space (w, J2) with constant
Kähler angle ϕ. Then the complexification of W with respect to J1 is a linear
subspace of v with constant quaternionic Kähler angle Φ = (0, ϕ, ϕ). For each in-
teger k ∈ {1, . . . , [(n − 1)/2]} and each ϕ ∈ (0, π/2) there exists exactly one (up to
orbit equivalence) cohomogeneity one action on HHn with a non-totally-geodesic
singular orbit F of real codimension 4k with the property that the normal spaces
of F have constant quaternionic Kähler angle Φ = (0, ϕ, ϕ).

We conjecture that each cohomogeneity one action on HHn with a non-totally-
geodesic singular orbit is orbit equivalent to one of these examples. This is true for
n = 2, and for the case that the singular orbit has codimension 2.

Theorem 4.5. The moduli space of all cohomogeneity one actions on HH2 with
a non-totally-geodesic singular orbit (up to orbit equivalence) is isomorphic to the
set {2, 3}. The number k ∈ {2, 3} parametrizes the unique (up to orbit equivalence)
cohomogeneity one action on HH2 with a non-totally-geodesic singular orbit of
codimension k.

Proof. In the case of HH2 the quaternionic vector space v has quaternionic dimen-
sion one. It is easy to see that every 2-dimensional subspace of a one-dimensional
quaternionic subspace has constant quaternionic Kähler angle Φ = (0, π/2, π/2),
and every 3-dimensional subspace of a one-dimensional quaternionic subspace has
constant quaternionic Kähler angle Φ = (0, 0, π/2). The result then follows from
(b) and (d) above. Note that codimension 4 occurs for quaternionic Kähler angle
Φ = (0, 0, 0), which leads to a totally geodesic singular orbit. �

Theorem 4.6. The moduli space of all cohomogeneity one actions on HHn, n > 2,
with a non-totally-geodesic singular orbit with codimension 2 (up to orbit equiv-
alence) is isomorphic to the closed interval [0, π/2]. The number ϕ ∈ [0, π/2]
parametrizes the unique (up to orbit equivalence) cohomogeneity one action on HHn

with a non-totally-geodesic singular orbit of codimension 2 for which the normal
spaces have constant quaternionic Kähler angle Φ = (ϕ, π/2, π/2).

Proof. Every 2-dimensional subspace of v has constant quaternionic Kähler angle
Φ = (ϕ, π/2, π/2) for some ϕ ∈ [0, π/2]. The result then follows from (b), (c) and
(e) above. �

M = OH2 In [3] the first author and Brück classified all subspaces vo of v = R8

for which there exists a subgroup of Kx = Spin(7) that acts transitively on the unit
sphere in v⊥o . In fact, any subspace vo of v with dimension k ∈ {1, 2, 4, 5, 6} has this
property, but there are no 3-dimensional subspaces with this property. We denote
by G+

k (R8) the Grassmann manifold of oriented k-planes in R8, and by Gk(R8) the
Grassmann manifold of (unoriented) k-planes in R8. It is clear that G+

k (R8) is a
two-fold covering of Gk(R8), and that there is a natural isomorphism between the
Grassmann manifolds of k- and (8 − k)-planes in R8.
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The Lie group Spin(7) acts on R8 by its irreducible 8-dimensional spin repre-
sentation. This naturally induces actions of Spin(7) on G+

k (R8) and Gk(R8). For
k = 1, it was proved by Borel [7] that Spin(7) acts transitively on G+

1 (R8) = S7

and that S7 = Spin(7)/G2. For k = 2 we also have a transitive action, so that
G+

2 (R8) = Spin(7)/U(3) (see e.g. [8]), and hence also G+
6 (R8) = Spin(7)/U(3).

Also for k = 3 the action is transitive, and we have G+
3 (R8) = Spin(7)/SO(4) (see

e.g. [19]), and thus also G+
5 (R8) = Spin(7)/SO(4).

The action of Spin(7) on G+
4 (R8) is not transitive, but of cohomogeneity one (see

[8] and [13] for details). One singular orbit of this action consists of the so-called
Cayley 4-planes in O introduced by Harvey and Lawson [13]. The submanifolds of
O all of whose tangent spaces are Cayley 4-planes are so-called Cayley submanifolds
of O and provide a beautiful example of a calibrated geometry. This singular orbit
is isomorphic to Spin(7)/(SU(2)3/Z2), and the second singular orbit consists just
of the Cayley 4-planes with opposite orientation. This can also be seen in the
following way. Let V ∈ G+

3 (R8) be an oriented 3-plane in R
8. We know from the

above that Spin(7) acts transitively on G+
3 (R8) and the isotropy group at V is some

SO(4) ⊂ Spin(7). There is a unique unit vector ξ in the orthogonal complement
V ⊥ of V in R8 so that the 4-plane V ⊕Rξ is a Cayley 4-plane. Then V ⊕R(−ξ) is the
same 4-plane with opposite orientation. The action of SO(4) on the unit sphere
S4 in V ⊥ is the standard action determined by the two fixed points ±ξ. The
principal orbits are the 3-spheres in S4 with center ξ. Each such orbit parametrizes
in a canonical way a set of oriented 4-planes in R8 containing the 3-dimensional
subspace V . We now turn to the induced action of Spin(7) on the Grassmannian
G4(R8) of unoriented 4-planes in R

8. This action is clearly of cohomogeneity one
as well. The two singular orbits on G+

4 (R8) become identified under the two-fold
covering map G+

4 (R8) → G4(R8) and provide one singular orbit of the action. The
second singular orbit in G4(R8) is the projection of the principal orbit on G+

4 (R8)
containing 4-planes of both orientations. This orbit contains the 4-planes that are
constructed from the unique totally geodesic principal orbit of the SO(4)-action on
S4 ⊂ V ⊥. The second singular orbit in G4(R8) is therefore a 2-fold subcovering of
any principal orbit and thus has the same dimension as the principal orbits.

From Theorem 4.1 it is clear that if the action of Spin(7) is transitive on Gk(R8),
then all cohomogeneity one actions constructed from a k-dimensional subspace of
v are orbit equivalent. In the case k = 4, the cohomogeneity one actions induced
from a 4-dimensional subspace of v up to orbit equivalence are in one-to-one corre-
spondence with the orbits of the action of Spin(7) on G4(R8). Altogether this now
implies:

Theorem 4.7. The moduli space of all cohomogeneity one actions on OH2 with
a non-totally-geodesic singular orbit (up to orbit equivalence) is isomorphic to the
disjoint union

{2, 3, 6, 7} ∪ ({4} × [0, 1]) .

The number k ∈ {2, 3, 6, 7} parametrizes the unique (up to orbit equivalence) co-
homogeneity one action on OH2 with a singular orbit of codimension k. The set
{4} × [0, 1] parametrizes the cohomogeneity one actions on OH2 with a singular
orbit of codimension 4 (up to orbit equivalence).

The above result says that for each k ∈ {2, 3, 6, 7} there exists exactly one, up to
isometric congruence, normally homogeneous submanifold Fk of OH2 with normal

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



COHOMOGENEITY ONE ACTIONS ON NONCOMPACT SYMMETRIC SPACES 3437

bundle of rank k, and for each ϕ ∈ [0, 1] there exists exactly one, up to isometric
congruence, normally homogeneous submanifold F4,ϕ of OH2 with normal bundle
of rank 4. We now have a complete classification of the homogeneous hypersurfaces
in the Cayley hyperbolic plane.

Theorem 4.8. Let M be a homogeneous hypersurface in OH2. Then M is iso-
metrically congruent to one of the following hypersurfaces:

(1) a geodesic hypersphere of radius r ∈ R+ in OH2;
(2) a tube of radius r ∈ R+ around the totally geodesic OH1 ⊂ OH2;
(3) a tube of radius r ∈ R+ around the totally geodesic HH2 ⊂ OH2;
(4) a horosphere in OH2;
(5) the minimal homogeneous hypersurface S in OH2, or an equidistant hyper-

surface to S;
(6) a tube of radius r ∈ R+ around the normally homogeneous submanifold Fk

of OH2 with normal bundle of rank k, k ∈ {2, 3, 6, 7};
(7) a tube of radius r ∈ R+ around the normally homogeneous submanifold F4,ϕ

of OH2 with normal bundle of rank 4 and ϕ ∈ [0, 1].
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