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COHOMOGENEITY ONE MANIFOLDS
OF EVEN DIMENSION

WITH STRICTLY POSITIVE SECTIONAL CURVATURE

Luigi Verdiani

Abstract

We show that the only compact positively curved Riemannian
manifolds of even dimension acted on by a simple group with a
codimension one orbit are the compact rank one symmetric spaces.

1. Introduction

In this paper, we deal with simply connected compact Riemannian
manifolds with strictly positive sectional curvature. These manifolds
have been studied by several authors and, in particular, the homoge-
neous ones have been classified by Wallach [29] and Berard-Bergery [5].
The only known non-homogeneous examples are biquotiens (i.e., quo-
tients of a Lie group G with respect to the free action of a subgroup of
G×G from the left and the right) and have been found by Eschenburg
[9], [10] in dimensions 6 and 7, and then by Bazaikin [4] in dimension
13. When looking for new examples, it seems natural to consider the
class of cohomogeneity one manifolds, that is Riemannian manifolds
(M, 〈·, ·〉) which admit an action of a compact group G of isometries
with a codimension one orbit. Our main result is the following.

Theorem 1.1. Let (M, 〈·, ·〉) be an even dimensional compact, simply
connected cohomogeneity one G-manifold with positive sectional curva-
ture. If G is a compact Lie group, then M is equivariantly diffeomorphic
to a compact rank one symmetric space.

The statement is proved in [23] and [28] for the case of G non-
semisimple and semisimple (but not simple), respectively. In this paper,
we deal with the case of G simple. In some small dimensional case, the
same result was obtained by Hamilton [14] (for dim M = 3), Hsiang–
Kleiner [15] (for dim M = 4) and Searle [25] (for dim M = 5, 6), see
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also [12]. We mention here that, in the odd dimensional case, exam-
ples other than the compact rank one symmetric spaces can occur. In
[24], the authors prove that, when dimM = 7, this is possible only if
G = SU(2) × SU(2). In [13], the authors prove that indeed this group
acts with cohomogeneity one on some of the Eschenburg spaces.

Recently, very strong results on the topology of compact positively
curved manifolds M have been proved by Wilking [30], [31], [32] assum-
ing the existence of totally geodesic submanifolds of small codimension.
As a consequence, the author can prove that M is up to homotopy, a
rank one symmetric spaces provided that its isometry group is large or
contains a large torus. In most cases, these obstructions seem to indi-
cate that the only ‘large class’ of positively curved manifolds is given
by the rank one symmetric spaces.

The strategy of the proof of our main theorem is as follows. A stan-
dard result (see e.g. [23]) implies that there is a singular orbit G/H
such that H has maximal rank in G. Maximal subalgebras h of maxi-
mal rank of simple Lie algebras g are classified (see e.g. [11]) and we
list them in Table 1. Using iteration, we have an algorithm to get any
maximal rank subalgebra of g. In general, at every step, we increase
either the number of simple ideals or the dimension of the center of h.
In Section 3, we give a bound on the number of simple ideals in h and
in Section 4, we bound the dimension of the center of h. Hence, the
algorithm is applied only a ‘few’ times and reduces the problem to a
short list of candidates. In Section 5, we examine all these cases.

2. Preliminary results

Let (M, 〈·, ·〉) be a Riemannian manifold and let G be a compact Lie
group acting by isometries on (M, 〈·, ·〉) with a codimension one orbit.
We say that (M, 〈·, ·〉) is a cohomogeneity one G-manifold. The geom-
etry of cohomogeneity one manifolds is now well understood. After the
pioneer work of Mostert [19] and Nagano [21], they have been stud-
ied by several authors. For the basic results on the structure of these
manifolds and for the notations used throughout the paper, we refer to
Alekseevski [1], [2] and Bredon [7].

We study the case of a compact cohomogeneity one G-manifold with
positive sectional curvature acted (almost) effectively by a compact sim-
ple Lie group G. Since the manifold is compact and positively curved,
the fundamental group of M is finite and we will suppose that M is
simply connected. Then, the orbit space M/G is homeomorphic to a
closed interval [0, 1], and there are exactly two singular orbits for the
G action on M which we denote by P and P ′. Let γ(t) be a normal
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geodesic in (M, 〈·, ·〉) and denote by H and H ′ the isotropy subgroups
of γ(0) ∈ P, γ(t0) ∈ P ′ and by K the isotropy subgroup of the regular
points γ(t), 0 < t < t0 (in fact K will fix the entire normal geodesic).
Then, P = G/H,P ′ = G/H ′ and H/K,H ′/K are diffeomorphic to
spheres of positive dimension; indeed, simply connected cohomogeneity
one manifolds admit no exceptional orbits ([7], Theorem 3.12, p. 185).

The study of the singular orbits will be the key for the proof of the
main result of this paper. First, we use the following fact (see e.g. [23],
Lemma 3.2).

Lemma 2.1. Let (M, 〈·, ·〉) be a compact cohomogeneity one G-ma-
nifold with positive sectional curvature. If dim M is even, then there
exists a singular orbit with positive Euler characteristic.

This lemma implies that there is a singular orbit G/H, with H maxi-
mal rank subgroup of G. We denote by gothic letters the corresponding
Lie subalgebras. The pairs (g, h), where h is maximal, have been classi-
fied by Borel and Siebenthal. We list them in Table 1 and refer to [11]
(Section 8.4) for the details.

Table 1. Maximal subalgebras h of maximal rank in g.

g h

an R + an−1, R + ap + aq n = p + q + 1; p, q > 0

bn dp + bq, R + bn−1, dn, 2a1 + bn−2 n = p + q; p, q > 0

cn cp + cq, a1 + cn−1, R + an−1 n = p + q

dn dp + dq, 2a1 + dn−2, R + an−1, R + dn−1 n = p + q

g2 a2, 2a1

f4 b4, 2a2, a1 + c3

e6 a1 + a5, 3a2, R + d5

e7 a1 + d6, a2 + a5, a7, R + e6

e8 a2 + e6, 2a4, a8, a1 + e7, d8

Note that maximal connected subgroups of maximal rank of G having
isomorphic Lie algebras are conjugated through an element of G (cf.
[11], Section 8.3). This allows us to choose the embedding of h in g.
When we ‘iterate’ the algorithm for finding maximal rank subalgebras of
g, it may happen that the corresponding subgroups are not conjugated
through an inner automorphism. In these cases, we will consider a
different embedding of h for any inner conjugation class of subgroups.
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In many cases, the proofs are similar and we will sometimes just give
an indication of the proof.

As a first consequence of the fact that h has maximal rank in g, we
have that h is a regular subalgebra. In order to make the definition pre-
cise, we recall here some basic facts about the root space decomposition
of a simple Lie algebra.

Let g be a simple Lie algebra, denoted by gC = cC +
∑

α∈∆ gC
α, the

decomposition of the complexified algebra gC associated to the choice of
a Cartan subalgebra c of g and a simple root system ∆. Then, g admits
a decomposition of the form

(1) g = c +
∑

α∈∆+

gα

where gα = (gC
α ⊕ gC−α) ∩ g and ∆+ is the set of the positive roots

with respect to a Weyl chamber. This decomposition has the following
properties:

(1) If α �= ±β

[gα, gβ] ⊂ gα+β ⊕ gα−β

where gγ = 0 if γ /∈ ∆;
(2) There exists Hα ∈ c such that

[gα, gα] = R Hα

and, for any H ∈ c, α(H) = B(Hα,H), where B is the Killing
form of g;

(3) There exist a B-orthonormal basis Xα, Yα of gα such that, for any
H ∈ c,

[H,Xα] = α(H)Yα, [H,Yα] = −α(H)Xα.

Then, a regular subalgebra h is a subalgebra which can be written as

h = c +
∑

α∈Γ

gα, Γ ⊂ ∆+

for a suitable choice of c and of a Weyl chamber.
We now wish to prove the main tool for our classification. In order

to fix the notations, we choose a singular point p ∈ G/H such that
H ·p = p and a singular geodesic γ(t) through p = γ(0). We denote also
by K the isotropy subgroup of the regular points of γ, and by k its Lie
algebra. We consider the Ad (H)-invariant complement m of h in g, and
an Ad (K)-invariant complement p of k in h. Both p and m are acted
on by K by isotropy representation at the regular points of γ(t), and g
admits a decomposition of the form

(2) g = k + p0 + · · · + pr + m10 + · · · + m1,s1 + · · · + mq,sq ,
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Table 2. Wallach’s list.

g h M

an R + an−1 CPn

a2 R2 SU(3)/T 2

bn dn S2n

cn cn−1 + a1 HPn

cn cn−1 + R CP2n−1

c3 a1 + a1 + a1 Sp(3)/SU(2)3

f4 b4 CaP2

f4 d4 F4/Spin (8)
g2 a2 S6

where p0 and mi,0 (1 ≤ i ≤ q) are trivial K-modules while pi (1 ≤ i ≤ r)

and mi,j (1 ≤ i ≤ q, 1 ≤ j ≤ sq) are irreducible K-modules and mi,j1,mi,j2

belong to the same irreducible H module mi.

Remark 2.1. Since H/K is equivariantly diffeomorphic to a sphere,
there exists an element σ in the normalizer of K in H such that σ(γ′(0)) =
−γ′(0). σ acts on m through isotropy representation at p = γ(0). In
particular, if X ∈ m and σ(X) belongs to the K-orbit of X, then

〈X,X〉|γ(t) = 〈σ(X), σ(X)〉|γ(−t) = 〈X,X〉|γ(−t),

where, in the last equality, we have used the Ad (K)-invariance of the
metric along γ(t). This implies that 〈X,X〉|γ(t) is an even function of t,
hence

〈∇XX, γ′(t)〉p = γ′(t)〈X,X〉p = 0.

As a particular case, if m is the sum of irreducible inequivalent K-
modules (as m is Ad (H)-invariant, this can be checked for a particu-
lar choice of a normal geodesic), and each of them is preserved by σ,
then the singular orbit is totally geodesic. In fact, if ∇XY is not tan-
gent to the singular orbit, there exists a normal geodesic γ(t) such that
γ(0) = p and 〈∇XY, γ′(t)〉p = γ′(0)〈X,Y 〉p �= 0. This is impossible since
〈X,Y 〉|γ(t) is is an even function of t.

Then, G/H is a simply connected compact positively curved manifold
of even dimension. These manifolds are classified in [29] (Proposition
6.1) and we list the pairs (g, h) in Table 2.

Lemma 2.2. Let G be a semisimple Lie group acting by isometries
on a compact manifold (M, 〈 ., . 〉) with a codimension one orbit. Let p be
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a singular point, and let γ(t) be any normal geodesic through p = γ(0).
Denoted by H (resp. K), the isotropy subgroup of p (resp. any regular
point in γ(t)). Assume that H has maximal rank in G and denoted by
∆(resp.∆h ⊂ ∆), a root system associated with the choice of a Cartan
subalgebra c of the Lie algebra g of G (resp. h ⊂ g, which is a regular
subalgebra). If α, β ∈ ∆ are such that

(1) α, β /∈ ∆h,
(2) α ± β /∈ ∆,
(3) gα and gβ are orthogonal with respect to any Ad (K)-invariant

scalar product on g,
(4) gα and σ(gα) are contained in the same non-trivial K-orbit.

then (M, 〈 ., . 〉) is not positively curved.

Proof. Let X ∈ gα and Y ∈ gβ. Then, by (1), X and Y belong to
the Ad (H)-invariant complement m of h in g. In particular, X and Y
are non-zero at the singular point p. By (2), X and Y commute, hence

RXY XY = 〈∇XY,∇XY 〉 − 〈∇XX,∇Y Y 〉.
This condition implies also that 〈∇XY,Z〉p and 〈∇Y Y,Z〉p are zero if Z
is tangent at p to the singular orbit G/H. In fact,

2 〈∇XY,Z〉 = 〈[X,Z], Y 〉 − 〈[Y,Z],X〉
and, if Z ∈ gγ , [X,Z] ∈ gα+γ ⊕ gα−γ , [Y,Z] ∈ gβ+γ ⊕ gβ−γ . Since H
has maximal rank, if i �= j, gi and gj are orthogonal with respect to any
Ad (H)-invariant scalar product. Since, by (2), α±γ �= β and β±γ �= α,
the assertion is proved. Then, at the point p

∇XY = 〈∇XY,N1〉N1 = −1
2
N1〈X,Y 〉N1

and

∇XX = −1
2
N2〈X,X〉N2,

where N1, N2 are orthogonal to G/H at p. By (3), 〈gα, gβ〉 = 0 along any
normal geodesic through p, that is, N1〈X,Y 〉p = 0. By (4), the norm
of X is an even function of t along any normal geodesic γ(t) through
p = γ(0), that is N2〈X,X〉p = 0. This implies RXY XY = 0 at p. q.e.d.

Remark 2.2. In some cases, we will use the result of Lemma 2.2
under weaker assumptions:

(1) If gα and gβ are not orthogonal with respect to a generic Ad (K)-
invariant scalar product, but 〈σ(X), σ(Y )〉γ(−t) = 〈X,Y 〉γ(t) along
any normal geodesic γ(t) through p = γ(0), then N〈X,Y 〉p = 0
since 〈X,Y 〉 is an even function of t. Then, the result of Lemma
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2.2 remains true. This happens, in particular, when σ acts as id
(or −id) on gα ⊕ gβ.

(2) If X ∈ gα and Y ∈ m are commuting vector fields such that for
any Z ∈ m, 〈[Z,X], Y 〉p = 〈[Z, Y ],X〉p = 0 (this implies that
(〈∇XY,Z〉)p = 0) and for any choice of a normal geodesic through
p, gα is preserved by σ and 〈X,Y 〉 = 0 along γ(t), then the result
of Lemma 2.2 remains true.

The proof of these facts is identical to the proof of Lemma 2.2.

In the cases when Lemma 2.2 fails, we can use the following tool from
[28], which is substantially based on the fact that a strictly concave non-
negative function must have a zero.

Lemma 2.3. Let (M,g) be a compact positively curved manifold and
let G be a compact Lie group acting on (M,g) by isometries. Let p be a
singular point and let K be the principal isotropy subgroup at the points
of a normal geodesic γ(t) through p. Let n be an irreducible K-module in
Tγ(t)G/K which is not equivalent to any other K module in Tγ(t)G/K.
Then, the Killing vector fields in n must vanish at some point of γ(t).

A result in the same direction which strongly improves Lemma 2.3
has recently been obtained by Wilking [30]. As this work is not easily
accessible, we will not make use of it.

The proof of the main theorem can be made shorter using the follow-
ing result from [12] (see Theorems 3.7, 3.9 and 3.11).

Theorem 2.1. Let M be a simply connected closed manifold with pos-
itive sectional curvature, and let g be the Lie algebra of a compact con-
nected Lie group acting (almost) effectively by isometries on M . Then:

(a) If g = an and dim(M) ≤ 4n − 2 for n > 2 and dim(M) ≤ 7, 4
for n = 2, 1, then M is diffeomorphic to one of either a sphere, a
complex projective space, SU(3)/T 2, SU(5)/(Sp(2) × T 1).

(b) If g = bn and dim(M) ≤ 4n for n > 2, then M is diffeomorphic
to one of either a sphere, a complex projective space, the Cayley
projective plane.

(c) If g = cn and dim(M) ≤ 8n − 11 for n > 2 and dim(M) ≤ 8 for
n = 2, then M is diffeomorphic to one of either a sphere, a complex
or quaternionic projective space, Sp(3)/Sp(1)3, Sp(2)/SU(2).

(d) If g = dn and dim(M) ≤ 4n−2 for n > 3, then M is diffeomorphic
to one of either a sphere or a complex projective space.

3. Structure of the semisimple part of g

We use the previous lemmata to analyze the structure of the semi-
simple part of h.
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Proposition 3.1. Using the notations of Lemma 2.2, if (M,g) is
positively curved, then

(1) h contains at most two simple ideals,
(2) the kernel of the slice representation ν at the singular orbit P

contains at most one simple ideal of h,
(3) if h contains two simple ideals h1, h2 and h1 ⊂ ker(ν) then h1 
 a1.

Proof. The result is proven with a case by case check on the list of
simple Lie algebras. We consider the decomposition h = Rs+h1+· · ·+hr,
where hi are simple ideals of h. Denote by ∆i the set of roots of h with
support in hi and let δi ∈ ∆i. Since hi are distinct ideals of h, the roots
δi are strongly orthogonal i.e., δi ± δj /∈ ∆.

We list in Tables 3 and 4 the pairs of strongly orthogonal roots of a
simple Lie algebra (using the notations of [22], Table 1, p. 224).

Table 3. Pairs of strongly orthogonal roots in classical
Lie algebras.

g δ1 δ2

an εi − εj εr − εs {i, j} ∩ {r, s} = ∅
bn εi + εj εi − εj

εr ± εs {i, j} ∩ {r, s} = ∅
εr r /∈ {i, j}

εi − εj εi + εj

εr ± εs {i, j} ∩ {r, s} = ∅
εr r /∈ {i, j}

εi εr ± εs i /∈ {r, s}
cn εi ± εj εr ± εs {i, j} ∩ {r, s} = ∅

2εr r /∈ {i, j}
2εi εr ± εs i /∈ {r, s}

2εr r �= i

dn εi + εj εi − εj

εr ± εs {i, j} ∩ {r, s} = ∅
εi − εj εi + εj

εr ± εs {i, j} ∩ {r, s} = ∅

Consider a normal geodesic γ(t) through p = γ(0) and denote by k the
Lie algebra of the regular isotropy subgroup of γ(t). ν(h) acts effectively
and transitively on a sphere, and the pairs (ν(h), ν(k)) are classified [6].
We list them in Table 5 (extracted from [3]).
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Table 4. Pairs of strongly orthogonal roots in excep-
tional Lie algebras.

g δ1 δ2

f4 εi εr ± εs i /∈ {r, s}
εi + εj εi − εj

(εi − εj ± εr ± εs)/2
εr ± εs {i, j} ∩ {r, s} = ∅
εr r /∈ {i, j}

(εi ± εj ± εr ± εs)/2 εi ∓ εj

e6 εi − εj εr − εs {i, j} ∩ {r, s} = ∅
2ε
εi + εj + εk ± ε

2ε εi − εj

εi + εj + εk ± ε εi − εj

εi + εj + εr ∓ ε r �= k

e7 εi − εj εr − εs {i, j} ∩ {r, s} = ∅
εi + εj + εr + εs

εi + εj + εk + εl εi − εj

εr − εs {i, j, k, l} ∩ {r, s} = ∅
εi + εj + εr + εs {k, l} ∩ {r, s} = ∅

e8 εi − εj εr − εs {i, j} ∩ {r, s} = ∅
εi + εj + εr

εp + εq + εr {i, j} ∩ {p, q, r} = ∅
εi + εj + εk εi − εj

εr − εs {i, j, k} ∩ {r, s} = ∅
εi + εr + εs {j, k} ∩ {r, s} = ∅

In particular, ν(h) contains at most two simple ideals and this occurs
only if (ν(h), ν(k)) = (a1+cm, a∆

1 +cm−1), where a∆
1 is diagonally embed-

ded in ν(h). One further peculiarity of this last case is that σ belongs
to the center of H. In particular, every root space gα is preserved by σ.

Expecting a contradiction, in order to prove (1), we may assume that
r ≥ 3 and that, if ν(h) contains two simple ideals, h1 ⊂ ker(ν) and k
has a surjective projection over h2 
 a1. If ν(h) contains at most one
simple ideal, then h1, h2 ⊆ ker(ν). In order to prove (2), we assume
r = 2 and h1, h2 ⊂ ker(ν). In order to prove that (3) holds, we assume
r = 2, h1 ⊂ ker(ν) and rank(hi) > 1 for i = 1, 2.
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Table 5. Transitive actions of H on spheres Sk = H/K.

h k k H/K

an an−1 2n + 1 SU(n + 1)/SU(n) n ≥ 1

bn dn 2n SO(2n + 1)/SO(2n) n ≥ 1

cn cn−1 4n − 1 Sp(n)/Sp(n− 1) n ≥ 2

dn bn−1 2n − 1 SO(2n)/SO(2n − 1) n ≥ 3

R + an−1 R + an−2 2n − 1 U(n)/U(n − 1) n ≥ 2

R + cn−1 R + cn−2 4n − 5 U(1) · Sp(n − 1)/U(1) · Sp(n − 2) n ≥ 3

a1 + cn−1 a1 + cn−2 4n − 5 Sp(1) · Sp(n − 1)/Sp(1) · Sp(n − 2) n ≥ 2

g2 a2 6 G2/SU(3)
b3 g2 7 Spin (7)/G2

b4 b3 15 Spin (9)/Spin (7)
R 0 1 SO(2)/{1}
0 0 0 Z2/{1}

Lemma 3.1. Proposition 3.1 in the case of g = an.

Proof. (1) Let δ1 = εi − εj, δ2 = εr − εs, δ3 = εp − εq and define
α = εi − εr and β = εs − εq. We have α ± β /∈ ∆ and gα ⊂ m, gβ ⊂ m
since α and β are not orthogonal to some roots of distinct ideals of h.
Moreover, gα is contained in a non-trivial K-orbit since it is acted on
irreducibly by RHδ1 . These two root spaces are orthogonal with respect
to any Ad (K)-invariant scalar product in g since Hδ1 acts trivially on
gβ. The K-orbit of gα is preserved by σ. In fact, if ν(h) contains
two simple ideals, then σ belongs to the center of H and preserves gα.
Otherwise, if σ has a projection on gγ , gγ � h1, h2, then γ is strongly
orthogonal to α. This implies that σ can act on gα at most like an
element of the Cartan subalgebra of g. In any case, gα is preserved by
σ. We can then apply Lemma 2.2 to obtain a contradiction.

(2) If n > 3, let δ1 = εi−εj and δ2 = εr−εs. We may define α = εi−εr

and β = εj−εt, with εt orthogonal to the roots of h1 (exchanging h1 and
h2 if needed). Then, the corresponding root spaces are orthogonal with
respect to any Ad (K)-invariant scalar product since Hδ2 acts trivially
on gβ. The root space gα is preserved by σ. This is trivially true if σ
belongs to the Cartan subalgebra of h. If not, we may choose σ such
that it has a projection on gγ only if γ is orthogonal to α since any root
of ∆h \ ∆k is orthogonal to α. We can conclude using Lemma 2.2.

If n = 3, we have h = a1 + a1 + R, k = a1 + a1. We consider the one
dimensional subgroup T corresponding to R(Hδ1 +Hδ2). One connected
component of the fixed point set of T is a 6 dimensional totally geodesic
submanifold Mt of M , which is acted on with cohomogeneity one by a
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subgroup of G with Lie algebra t = a1 +a1 ⊂ g. The triple associated to
this action is (R+R = t∩h, R = t∩k, t∩h′). According to the main result
of [25] and the list of cohomogeneity one action on spheres and complex
projective spaces [16], [26], [27], Mt is equivariantly diffeomorphic to
CP3. In this case, h′∩t = b1 and K has two connected components. This
is possible only if h′ = b2. In this case, M is equivariantly diffeomorphic
to CP5 as described in [26].

(3) We have a contradiction assuming h1 ⊂ ker(ν) and rank(h1) > 1.
In fact, consider the regular subalgebras h1 
 ap, h2 
 aq for some p > 1
and q ≥ 1. Here ν(h) = R + aq and ν(k) = R∆ + aq−1 since the center
of h never lies in the kernel of the slice representation (see, for instance,
[17] Section 5.6, p. 497). This implies that σ does not depend on the
choice of the normal geodesic and preserves any root space. We may
assume δ1a = εi − εa, δ1b = εi − εb ∈ ∆h1 and δ2 = εr − εs. Define
α = εr − εi and β = εb − εs. Then, we may apply Lemma 2.2. q.e.d.

Lemma 3.2. Proposition 3.1 in the case of g = bn.

Proof.
(1) If g = bn, we have 8 possible choices for (δ1, δ2). We give the proof

for the case δ1 = εi + εj , the same proof works, with minor changes, also
for the case δ1 = εi − εj , which will be omitted.

If δ2 = εi−εj, then we define α = εi and β± = εj±εr, where εr is non-
orthogonal to some root of ∆h3. Then, α±β± /∈ ∆ and gα ⊂ m, gβ± ⊂ m
since α and β± are not orthogonal to some roots of two distinct ideals
of h. gα and gβ+ or gβ− are orthogonal with respect to any Ad (K)-
invariant scalar product: if ν(h) contains just one simple ideal, then the
root vector Hεi belongs to K and acts trivially on gβ±. If ν(h) contains
two simple ideals, then K has a surjective projection on h2. Then, by a
linear combination of an element of K which projects on Hδ2 and Hδ1 ,
it is possible to find an element of K which acts trivially on gα and non-
trivially on gβ+ or gβ− . Any root γ of ∆h such that gγ does not belong
to h1 or h2 is orthogonal to εi. This implies that σ preserves gα, which
is entirely contained in a K-orbit since k has a surjective projection on
RHεi. We can then apply Lemma 2.2 to obtain a contradiction.

If δ2 = εr ± εs, we divide the proof in two cases, according to gεi ⊂ h
or gεi � h. In the first case, define α = εi + εr, β = εj + εs. Then, since
Hεi ∈ k, the corresponding root spaces are orthogonal with respect to
any Ad (K)-invariant scalar product. gα is preserved by σ since any root
γ ∈ δh which is not orthogonal to εi is such that gγ ⊂ k. In the second
case, define α = εi, β = εj + εr. The corresponding root spaces are
orthogonal with respect to any Ad (K)-invariant scalar product. This
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is immediate if h2 ⊂ k, if not, proceeding as in the case δ2 = εi − εj ,
it is possible to find an element of K which acts trivially on gα and
non-trivially on gβ. The only root of ∆h \ ∆k which is not orthogonal
to α is εi − εj . We may assume that gεi−εj � h, then gα is preserved by
σ. Since gεj is in the K-orbit of gα, we may conclude using Lemma 2.2.

If δ2 = εr, we define α = εi + εr and β = εj + εs (where εr is non-
orthogonal to some root of ∆h3) if εi ∈ ∆h, and α = εi, β = εr + εs if
gεi � h. We omit the proof which is similar to the one of the previous
case.

The only case left is δ1 = εi and δ2 = εr ± εs. In this case, we may
assume that h2 never lies in the kernel of the slice representation unless
we are in one of the previously considered cases. Then, σ preserves any
root space. We define α = εi + εr and β = εs. We get a contradiction
using Lemma 2.2.

(2) Since rank (k) < rank (h), the same proof given for the case (1)
works also in this case except when δ1 = εi ± εj and δ2 = εr. Here, we
must define α = εi and β = εj + εr. Then, we get a contradiction using
Lemma 2.2.

(3) Here, we get a contradiction assuming h1 ⊂ ker(ν) and rank (h1) >
1. Since the slice representation is at the singular orbit, P is even
dimensional and h is a maximal rank subalgebra of bn. We may always
assume that σ acts on m as an element of the center of H. In particular,
any root space is preserved by σ.

We consider, first, the case when δ1a = εi ± εj, δ1b = εi ± εr ∈ ∆h1

with r �= j and δ2 = εp +εq. Then, we define α = εj +εp and β = εr +εq.
If δ1a = εi ± εj , δ1b = εi ± εr and δ2 = εp, then we define α = εr + εp

and β = εi ∓ εj (note that in this case, we may assume that gεi � h).
If δ1a = εi ± εj , δ1b = εi and δ2 = εp + εq, then we define α = εi + εp

and β = εj + εq.
The corresponding root spaces are orthogonal with respect to any

choice of Ad (K)-invariant scalar product, then we may apply Lemma
2.2. q.e.d.

Lemma 3.3. Proposition 3.1 in the case of g = cn.

Proof. In this case, as the slice representation at the first singular
orbit is even dimensional and h is a maximal rank subalgebra of cn, we
may always assume that σ belongs to the center of H. In particular,
any root space is preserved by σ.

(1) We consider, first, the case when δ1 = εi + εj.
If δ2 = εr+εs, we define α = εi+εr and β = εj−εs. The corresponding

root spaces are always orthogonal with respect to any Ad (K)-invariant
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scalar product. In fact, if we denote by Hδ an element of K which
projects on Hδ2, the action of Hδ and Hδ2 is not compatible with any
equivariant equivalence between gα and gβ. gα is preserved by σ. We
have to prove it only in the case when h2 ⊂ ker(ν). But then, σ has
always a trivial projection on the root spaces gγ ⊂ h \ k with γ non-
orthogonal to α.

The case δ2 = εr − εs can be treated in the same way.
If δ2 = 2εr, we define α = 2εi and β = εj + εr if 2εi /∈ ∆h (the

corresponding root spaces are orthogonal unless we are in one of the
previous cases) and α = εi + εr and β = εj − εs (where εs is non
orthogonal to some root of ∆h3) if 2εi ∈ ∆h. Then, the proof is similar
to the proof of the previous cases.

The cases δ1 = εi − εj and δ1 = 2εi, δ2 = εr ± εs can be treated in the
same way.

We are left with the case δ1 = 2εi and δ2 = 2εr. If there exists an
index s such that 2εs /∈ ∆h, then we define α = εi − εr and β = 2εs. If,
for any index s, 2εs ∈ ∆h and n > 3, we define α = εi−εr and β = εj−εs.
In both these cases, the proof is similar to the one in the previous cases.
If g = c3, h = a1 + a1 + a1 and k = a1 + a1, the complement m of h in g
is the sum of irreducible K-modules, each preserved by σ. This implies
that the singular orbit is totally geodesic. Up to an exchange of the role
played by h and h′, the only case we have to consider is h′ = h. This
implies that the singular orbits are both totally geodesic and we obtain
a contradiction using Frankel’s theorem.

(2) We omit the proof which is similar to the one of case (1).
(3) We prove that rank (h1) > 1 implies that M is diffeomorphic to a

compact rank one symmetric space.
Assume, first, δ1a = εi + εj and δ1b = εi + εr (with 2εi /∈ ∆h). If

δ2 = εp + εq, then let α = εi + εp, β = εr + εq. If δ2 = 2εp, let α = εi − εj

and β = εr + εp. Then, we may apply Lemma 2.2.
If δ1a = εi + εj, δ1b = 2εi and δ2 = εr ± εs, then let α = εi + εr and

β = εj + εs. Then, apply Lemma 2.2.
If δ1a = εi + εj, δ1b = 2εi and δ2 = 2ε2, and we are not in one of the

previous cases, then h = a1 + cn−1, k = cn−1. Then, m is irreducible as
K-module, this implies h′ = cn and M is equivariantly diffeomorphic to
HPn as described in [17] (Section 4.2, p. 487). q.e.d.

Lemma 3.4. Proposition 3.1 in the case of g = dn.

Proof. We assume n > 3. Note that in this case, the simple factors in
a maximal rank subalgebra of dn are ap or dp. Moreover, since the slice
representation at the first singular orbit is even dimensional, the case
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ν(h) = ap never occurs when p is even since we have always SU(p+1) ⊂
U(p + q) and the center of U(p + 1) never lies in the kernel of the slice
representation. Hence, we may always assume that σ belongs to the
center of H and any root space is preserved by σ. Note also that ν(h)
contains two simple ideals only in the case ν(h) = a1 + a1.

(1) Consider, first, the case when δ1 = εi + εj and δ2 = εi − εj. If
gδ2 ⊂ ker(ν), then define α = εi + εr and β = εj + εs where δ3 = εr + εs.
Otherwise, we may assume that εr − εs /∈ ∆h3 and let α = εi + εr and
β = εr − εs. The corresponding root spaces are orthogonal with respect
to any Ad (K)-invariant scalar product and we may apply Lemma 2.2.
The case corresponding to the choice δ3 = εr − εs can be treated in the
same way.

If δ1 = εi + εj and δ2 = εr + εs, we define α = εi + εr and β = εj − εs.
The corresponding root spaces are trivially inequivalent if gδ2 ⊂ ker(ν)
or gεi−εj ⊂ ker(ν). Otherwise, ν(h) = a1 +a1 and ker(ν) contains H ∈ c

such that δ1(H) = δ2(H) = 0, but εi(H) �= 0. Then again, we can prove
that gα and gβ are orthogonal with respect to any Ad (K)-invariant
scalar product and we can conclude using Lemma 2.2. The proof for
the cases left is similar and we omit it.

(2) The proof given in (1) also covers this case.
(3) We obtain a contradiction assuming that ker(ν) contains simple

ideals of rank greater than one isomorphic to either ap or dp. Let δ1a =
εi + εj, δ1b = εi + εr and δ2 = εp + εq. Then, let α = εi + εq and β =
εr + εq. The corresponding root spaces are orthogonal with respect to
any Ad (K)-invariant scalar product, and we can conclude using Lemma
2.2. A similar proof works for the remaining cases and we omit it. q.e.d.

Lemma 3.5. Proposition 3.1 in the case of g = f4.

Proof.
(1) We give the proof for the case δ1 = (ε1+ε2+ε3+ε4)/2, δ2 = ε1−ε2,

δ3 = ε3 − ε4. The proof in the omitted cases is either similar to this one
or to one in Lemma 3.2. If δ = ε1 + ε2 ∈ ∆h, then let α = ε1 and β = ε3.
Since δ is not orthogonal to δ1, Hδ ∈ k. Then, gα and gβ are orthogonal
with respect to any Ad (K)-invariant scalar product. gα is preserved by
σ since either σ belongs to the center of H or σ acts trivially on gα.

If ε1 + ε2 /∈ ∆h, let α = ε1 + ε2 and β = εp. In both cases, we can
conclude using Lemma 2.2.

(2) We omit the proof which is similar to the one of the previous case.
(3) There is only one case to consider, h = a2 + a2, and we may

assume a2 ⊂ ker(ν). Since the maximal subgroup corresponding to h is
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SU(3)×SU(3)/∆Z3, ν(h) cannot act transitively on a sphere, and this
case does not occur. q.e.d.

Lemma 3.6. Proposition 3.1 in the case of g = e6.

Proof.
(1) If δ1 = εi − εj and δ2 = εr − εs, the following are possible cases for

δ3: εp − εq, 2ε, εi + εj + εp ± ε, εr + εs + εp ± ε where p �= q /∈ {i, j, r, s}.
First, note that a maximal rank subalgebra of e6 never contains a simple
ideal 
 cn for n > 1. Then, the only case when ν(h) contains two simple
ideals is ν(h) = a1 + a1. In this case, σ preserves any root space, and
we can choose α = εi − εr and β = εs − εp or β = εs + εp + εq + ε. The
corresponding root spaces are in m and we may apply Lemma 2.2. We
are left with the case h1, h2 ⊂ ker(ν). If rank (h3) = 1, we let (α, β) be
equal to (εi − εr, εs − εp), (εi − εr, εs + εp + εq + ε), (εi − εp, εs − εq) or
(εi − εq, εr − εp) according to the different choices of δ3. If rank (h3) =
2, then h3 
 a2. We may assume that a2 corresponds to one of the
following choices of root spaces {εp− εq, εi + εj + εp + ε, εi + εj + εq + ε) or
{2ε, εi+εj +εp+ε, εi+εj +εp−ε). In the first case, let α = εj +εr +εs−ε,
β = εi + εr + εp + ε, in the second, α = εj − εp, β = εr − εq. If
rank (h3) = 3, then h3 
 a3 
 d3 and σ preserves any root space. We
may then conclude as in the case of ν(h) = a1 + a1.

If δ1 = εi − εj, δ2 = 2ε, then δ3 = εr − εs with {r, s} ∩ {i, j} = ∅.
If ν(h) = a1 + a1, then let α = εi + εr + εs + ε, β = εp − εq with
{p, q} ∩ {r, s} = ∅ and apply Lemma 2.2. Now, we may assume that
ν(h) contains just one simple ideal. If this ideal has rank 3, then σ
preserves any root space. Otherwise, we may assume Hγ ⊂ ker(εp) for
any γ ∈ h3. In both cases, let α = εi − εp and β = εr + εs + εq + ε and
apply Lemma 2.2.

If δ1 = εi − εj, δ2 = εi + εj + εr + ε and ν(h) = a1 + a1, we have to
consider the cases δ3 = εp − εq, δ3 = εr + εp + εq + ε, δ3 = εs + εp + εq + ε
where {p, q, s}∩{i, j, r} = ∅. Then, let (α, β) be equal to (εj + εr + εp +
ε, εr + εp + εs − ε) in the first case, and (εi − εp, εr − εq) in the last two
cases.

If ν(h) contains just one simple ideal and rank (h3) = 3, then σ pre-
serves any root space and we let α = εi−εr, β = εj−εq. If rank (h3) < 3,
then h3 
 a1 or h3 
 a2. In both these cases (according to the different
possible embeddings of h3 in e6), it is possible to find α and β such that
all of the hypothesis of Lemma 2.2 are satisfied.

We omit the proof of the remaining cases since it is similar to the one
in the cases already considered.
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(2) The proof can be easily deduced from the one of case (1) and we
omit it.

(3) The semisimple part of h is either of the form a1+ai with 2 ≤ i ≤ 5
or a2 +a2. In the first case, we assume ai ⊂ ker(ν). Then, since the slice
representation is even dimensional, σ preserves any root space. If i > 2,
then the semisimple part of h is a regular subalgebra of a1 + a5 and,
assuming that a1 corresponds to the root 2ε and a5 corresponds to the
roots (the proof in the other cases is similar) εi − εj , with 1 ≤ i, j ≤ 6,
we may apply Lemma 2.2 with α = ε1 + ε2 + ε3 + ε β = ε1 + ε2 + ε4 − ε.
For i = 2, the proof divides in several cases according to the possible
embeddings of h in g, but it is similar to the previous one and we omit
it.

In the second case, note that we cannot have ν(h) = a2. If h ⊂
3a2, this follows from the fact that corresponding maximal subgroup is
SU(3)3/∆Z3, and if h ⊂ a1 + a5, we already used this fact in the case
g = an. Then, σ preserves any root space and we may conclude as in
the previous cases. q.e.d.

Lemma 3.7. Proposition 3.1 in the case of g = e7.

Proof.
(1) If δ1 = εi − εj , δ2 = εr − εs, we have two possible choices for δ3:

δ3 = εi +εj +εr +εs or δ3 = εp−εq with {p, q}∩{i, j, r, s} = ∅. Then, we
may apply Lemma 2.2 with α = εi − εr, β = εs − εq where q /∈ {i, j, r, s}
in the first case, and α = εi − εr, β = εs − εq in the second.

If δ1 = εi − εj , δ2 = εi + εj + εk + εl, we give the proof in the case
δ3 = εk − εl as the proof in the other cases is simpler. Note that a
simple factor in ν(h) is either of the form am or dm. We may assume
ν(h) �= a4 since there is no such factor in a maximal subalgebra of e7
containing three simple ideals. Then, with the only exception of the
case ν(h) = a2, we may assume that σ preserves any root space.Then,
if ν(h) �= a2, we may apply Lemma 2.2 with α = εi − εp and β = εk − εq

with {p, q} ∩ {i, j, k, l} = ∅. If ν(h) = a2, we may assume rank (hi) ≤ 2
for i = 1, 2 or hi = a1 for i = 1 or i = 2. In both cases, it is possible
to find r, s such that the root spaces corresponding to α = εi − εr and
β = εk − εs are in m and gα is preserved by σ. Then, we may conclude
using Lemma 2.2.

The proof in the remaining cases is similar and we omit it.
(2) We omit the proof which is similar to the one of case (1).
(3) We give the proof for the case δ1 = εi − εj, δ2 = εi + εj + εk + εl,

the proof in the remaining cases is similar. The root system of h1 must
contain a root γ which is not orthogonal to δ1 and it is orthogonal
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to δ2, we may assume it is of the form εi − εk. If ν(h) �= a2, we define
α = εi−εp and β = εj−εq with {p, q}∩{i, j, k, l} = ∅. The corresponding
root spaces ore orthogonal because of the action of Hγ . If ν(h) = a2, the
centralizer of h in g contains a simple ideal which is not in h (this follows
also from the form of the maximal subgroups of G corresponding to the
maximal rank subalgebras of g). We may then assume the existence of
a root δ = εp − εq which is strongly orthogonal to the roots of h. The
center of ker(ν) contains also an element which acts non-trivially on gδ.
We may, then, define α = εp − εq, β = εi − εr with r /∈ {i, j, k, l} and
conclude using Lemma 2.2. q.e.d.

Lemma 3.8. Proposition 3.1 in the case of g = e8.

Proof. We omit the proof which is similar to the one of the case e7.
q.e.d.

This concludes the proof of Proposition 3.1. q.e.d.

4. Structure of the center of g

Now, we prove that the center of h is at most one dimensional. First,
we exclude the case when h is abelian, then we consider the case when
h contains at least one simple factor.

Proposition 4.1. Under the assumptions of Lemma 2.2, if (M,g) is
positively curved, then h is not abelian.

Proof. Let h = Rn, k = Rn−1 and let α and β be two strongly orthog-
onal roots. Then, in order to apply Lemma 2.2, it is sufficient to prove
that the corresponding root spaces are inequivalent as K-modules, in
fact each root space is preserved by σ.

Suppose that φ : gα → gβ is an equivalence between K-modules.
Then, ∀Z ∈ k,∀X ∈ gC

α, ad(Z)φ(X) = φ([Z,X]). Hence, α(Z) =
±β(Z). Since dim k = n−1, this implies k = ker(α+β) or k = ker(α−β).

If g = an, since n ≥ 3, we have at least 3 pairs of strongly orthogonal
roots. If, for a given choice of k, α and β are strongly orthogonal and
such that gα and gβ are equivalent as K-modules, it is always possible
to find another pair of strongly orthogonal roots such that the corre-
sponding root spaces are inequivalent non-trivial K-modules. If, for
example, k = ker(ε1 − ε2 − ε3 + ε4), then α = ε1 − ε4 and β = ε2 − ε3 are
inequivalent and non-trivial. We may then apply Lemma 2.2 to obtain
a contradiction.
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If g = bn, let α = ε1 − ε2 and β = ε1 + ε2, unless k = ker(α ±
β) the corresponding root spaces are orthogonal with respect to any
Ad (K)-invariant scalar product. If K is connected, we may still apply
a slightly modified version of Lemma 2.2 (see Remark 2.2) to obtain
a contradiction since σ acts as −id on both the root spaces. So, we
will assume that K is not connected and k = ker(ε2). In this case,
gε1 is a 2-dimensional irreducible K-module which is not equivalent
to any other K-module. For a given X ∈ gε1, it is possible to find
Y ∈ gα ⊕ gβ such that [X,Y ] = 0 and such that for any Z ∈ m + p, we
have 〈[Z,X], Y 〉p = 〈[Z, Y ],X〉p = 0. Since gε1 is preserved by σ, we get
a contradiction using the proof of Lemma 2.2 (see Remark 2.2).

If g = cn, as c2 
 b2, we may assume n ≥ 3. If k �= ker(2ε1±2ε2), then
let α = 2ε1 and β = 2ε2. At least one of these root spaces is non-trivial
as K-module and we may apply Lemma 2.2. Otherwise, define α = 2εi

and β = 2εr.
If g = dn, we may assume n > 3. Let δ1 = εi+εj and δ2 = εi−εj. The

corresponding root spaces are equivalent as K-modules if k = ker(εi) or
k = ker(εj). In any case, it is possible to find two strongly orthogonal
roots α = εr+εs and β = εr−εs such that gα and gβ are orthogonal with
respect to any Ad (K)-invariant scalar product. Then, we can conclude
using Lemma 2.2.

If g = f4, let α = ε1 + ε2, β1 = ε1 − ε2, β2 = ε3 − ε4. For any possible
choice of ker(ν), we may apply Lemma 2.2 to one of the pairs (α, β1) or
(α, β2).

If g = ei, i = 6, 7, 8, we can conclude using a proof similar to the one
of the case an. q.e.d.

Proposition 4.2. Under the assumptions of Lemma 2.2, if (M,g) is
positively curved, then the center of h is at most one dimensional.

Proof. We prove the result by contradiction. By Proposition 4.1, we
may suppose h = Rk+h0, where k ≥ 2 and h0 is a non-trivial semisimple
factor.

Lemma 4.1. Proposition 4.2 in the case of g = an.

Proof. We have two possible choices for h: (1) h = Rk + an−k or
(2) h = Rk + a1 + an−k−1.

(1) We may assume that n ≥ 3 and that there exists p0 ≥ 2 such that
an−k ⊂ ker(εp) for p ≤ p0 and εp− εq is a root of an−k for p, q > p0. The
possible choices for k are k = Rk−1 + an−k, k = Rk−1 + R∆ + an−k−1,
k = Rk + an−k−1, where ∆ denotes a diagonal embedding.
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When k = Rk−1 + an−k, σ lies in the center of H. Hence, in order to
apply Lemma 2.2, we must show that two root spaces are orthogonal
with respect to any Ad (K)-invariant scalar product.

If n − k ≥ 2, let α = εi − εp, β = εj − εq, with i < j ≤ p0 and
q > p > p0. These roots are strongly orthogonal and the corresponding
root spaces are orthogonal with respect to any Ad (K)-invariant scalar
product, due to the action of the elements of the Cartan subalgebra of
an−k.

If k > 2, let i < j < l ≤ p0, p > p0. Let α = εi−εj and β = εl−εp. The
corresponding root spaces are orthogonal with respect to any Ad (K)-
invariant scalar product since the simple factor in h acts trivially on gα

and non-trivially on gβ.
If n = 3 and h = R2 + a1, if α = ε1 − ε3 and ε2 − ε4 (p = 2), the

corresponding root spaces are inequivalent as K-modules except when
diag(1,−1, 0, 0) lies in the kernel of the slice representation. But in this
case, we have k ⊂ a1 + a1 and the same proof of Lemma 3.1, case 2)
gives us the result.

If k = Rk−1 + R∆ + an−k−1, and k ≥ 3, we get a contradiction with
the same proof of Proposition 4.1. Let us assume that k = 2 and
p0 = 2. The element ν(σ) does not depend on the choice of the normal
geodesic γ(t) through p = γ(0) and belongs to the center of ν(H), i.e.,
we may assume that σ belongs to the orthogonal complement of the
kernel of the slice representation in the center of h. The kernel of the
slice representation is one dimensional and is generated by an element
T which commutes with an−k. Define α = ε1− ε3 and β = ε2− ε4. If the
corresponding root spaces are equivalent as K-modules, then we may
assume T = (i,−i, 0, . . . , 0) or T = (i, i, ai, . . . , ai), a = − 2

(n−2) . In both
cases, σ acts as −id on gα ⊕ gβ. This implies that, even if these root
spaces are non-orthogonal for the generic choice of an Ad (K)-invariant
scalar product in m, at p the scalar product 〈gα, gβ〉|γ(t) is an even
function of t. Since both the root spaces are preserved by σ and are
entirely contained in some K-orbits, we may apply a slightly modified
version of Lemma 2.2 to obtain a contradiction (see Remark 2.2). For
any other choice of T , the two root spaces are inequivalent and we may
apply Lemma 2.2.

If k = Rk + an−k−1, we get a contradiction with the same proof of
Proposition 4.1.

(2) We may assume that n ≥ 3 and that there exists p0 > 2 such that
an−k−1 ⊂ ker(εp) for p ≤ p0, εp − εq is a root of an−k−1 for p, q > p0 and
that ε1 − ε2 is a root for a1.
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The possible choices for ν(h) are ν(h) = R + an−k−1, ν(h) = an−k−1,
ν(h) = a1 + a1.

If ν(h) = R + an−k−1, then let α = ε1 − εr and β = εp0 − εs with
r, s > p0. The corresponding root spaces are orthogonal with respect to
any Ad (K)-invariant scalar product since the a1 factor acts trivially on
gβ. Both are preserved by σ which belongs to the center of H.

If ν(h) = an−k−1, then let α = ε1 − εp0 and β = ε2 − εr with r > p0. k
contains an element of the form diag(0, . . . , 0, (n − k − 1)i,−i, . . . ,−i).
Hence, gα and gβ are inequivalent as K-modules. The K-orbit contain-
ing gα is preserved by σ.

If ν(h) = a1+a1, then let α = ε1−εp0 and β = ε2−εr with r > p0. As
in the previous case, the corresponding root spaces are orthogonal with
respect to any Ad (K)-invariant scalar product. Both are preserved by
σ which belongs to the center of H.

In all of these cases, we may then apply Lemma 2.2 to obtain a
contradiction. q.e.d.

Lemma 4.2. Proposition 4.2 in the case of g = bn.

Proof. Let c0 = h0 ∩ c, we may assume that one of the following
occurs: (1) c0 ⊂ ker(ε1)∩ker(ε2), (2) c0 ⊂ ker(ε1)∩ker(ε2± ε3), (3) c0 ⊂
ker(ε1 ± ε2) ∩ ker(ε3 ± ε4), (4) c0 ⊂ ker(ε1) ∩ ker(

∑
i>1 εi).

(1) Let α = ε1 and β± = ε2 ± εr for some r > 2. Since the kernel of
the slice representation contains an Rk−1 factor, we may assume that gα

is non-trivial as K-module (otherwise, define α = ε2 and β± = ε1 ± εr).
Then, gα is preserved by σ and it is non equivalent, as K-module, to
at least one between gβ+ and gβ− . We may then apply Lemma 2.2 to
obtain a contradiction.

(2) We give the proof for the case c0 ⊂ ker(ε1) ∩ ker(ε2 + ε3), the
remaining case can be treated in the same way. If the center of h lies in
the kernel of the slice representation, we let α = ε1 and β = ε2 +ε3. The
corresponding root spaces are orthogonal with respect to any Ad (K)-
invariant scalar product due to the action of Rk. Since gα is preserved
by σ, we may apply Lemma 2.2. Otherwise, ker(ν) contains Rk−1. In
this case, σ preserves any root space. If gα and gβ are not orthogonal,
we may define α = εr and β± = εi ± εs. For at least one choice of the
sign, the corresponding root spaces are orthogonal and we may apply
Lemma 2.2.

(3) we give the proof for the case c0 ⊂ ker(ε1 + ε2)∩ker(ε3 + ε4) since
the proof in the other cases is similar. Let α = ε1 + ε2 and β = ε3 + ε4.
At least one of them (say gα) is preserved by σ. If the corresponding
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root spaces are not orthogonal, then define β = εr. We may then apply
Lemma 2.2.

(4) Let α = ε1 and β = ε2+ε3. It is always possible to find an element
in k which acts trivially on gα and non-trivially on gβ. At least one of
these root spaces is preserved by σ and lies in a non-trivial K-module.

q.e.d.

Lemma 4.3. Proposition 4.2 in the case of g = cn.

Proof. Let c0 = h0 ∩ c, we may assume that one of the following
occurs: (1) c0 ⊂ ker(ε1) ∩ ker(ε2), (2) c0 ⊂ ker(ε1) ∩ ker(ε2 + · · · + εn),
(3) c0 ⊂ ker(ε1 + · · · + εp) ∩ ker(εp+1 + · · · + εn).

In case (1), let α = 2ε1 and β = 2ε2. The corresponding root spaces
are non-equivalent with respect to any Ad (K)-invariant scalar product.
At least one of them is non-trivial and it is preserved by σ. Then, we
may apply Lemma 2.2.

In case (2), let α = 2ε1 and β1 = ε2 + ε3, β2 = 2ε2. For at least
one index i, gα and gβi

are non-equivalent with respect to any Ad (K)-
invariant scalar product. At least one of these root spaces is non-trivial
as K-module and it is preserved by σ.

In case (3), let α = 2ε1 and β1 = 2ε2, β2 = 2ε3. Then, the proof is
the same of the previous case. q.e.d.

Lemma 4.4. Proposition 4.2 in the case of g = dn.

Proof. Let c0 = h0 ∩ c, we assume that one of the following occurs:
(1) c0 ⊂ ker(ε1) ∩ ker(ε2), (2) c0 ⊂ ker(ε1) ∩ ker(ε2 + · · · + εn), (3)
c0 ⊂ ker(ε1 + · · · + εp) ∩ ker(εp+1 + · · · + εq).

The proof in the remaining cases is similar and we omit it.
In case (1), let α = ε1 + ε2 and β = ε1 − ε2. The corresponding

root spaces are orthogonal with respect to any Ad (K)-invariant scalar
product. This is trivial if Rk ⊂ ker(ν), otherwise k has a surjective
projection on Rk and acts on gα and gβ as Rk. Then, we may apply
Lemma 2.2.

In case (2), let δ1 = ε1 + ε2 and δ2 = ε1 − ε2. The corresponding
root spaces are orthogonal with respect to any Ad (K)-invariant scalar
product in m unless ker(ν) contains Hε1 or Hε2 + · · · + Hεn . In both
cases, we may define α = ε1 + ε1 and β = ε3 + ε4. The corresponding
root spaces are orthogonal and we may apply Lemma 2.2.

In case (3), let α = ε1+εp and β = ε2−εp+1. If the corresponding root
spaces are equivalent as ker(ν)-modules, then we may choose α = ε1+ε2

and β = εp + εp+1. For at least one choice of α, β, we may apply
Lemma 2.2. q.e.d.
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Lemma 4.5. Proposition 4.2 in the case of g = f4.

Proof. We have dim(h0) ≤ 2. First, we consider the case when
dim(h0) = 1. Then, we may assume that gγ ⊂ h0 for one of the following
(1) γ = ε1 , (2) γ = ε1 − ε2, (3) γ = (ε1+ε2+ε3+ε4)

2 . If z(h) ⊂ ker(ν),
then let (α, β) = (ε2 + ε3, ε4) in case (1), (ε1 + ε2, ε3 + ε4) in case (2) and
(ε1−ε2, ε1+ε2) in case (3). In the remaining cases, we have that any root
space is preserved by σ. If h0 ⊂ ker(ν), then let (α, β) = (ε1 +ε2, ε3 +ε4)
in case (1), (ε1, ε3 + ε4) in the other cases. If ν(h) = R + a1, then k has
a surjective projection over the center of h and the proof is similar to
the previous ones since it is possible to choose α strongly orthogonal to
the root corresponding to the simple part of h. In any of these cases,
we may conclude using Lemma 2.2.

The proof in the case dim(h0) = 2 is similar and we omit it. q.e.d.

Lemma 4.6. Proposition 4.2 in the case of g = e6.

Proof. If h ⊂ a1 +a5 and k > 2, then we may use the proof of the case
a5. Then, we have h = R2 + a4 or h = R2 + a1 + a3. If the projection of
the center of h over the a5 factor is two-dimensional, then we may again
use the proof of the main result for the case an. Then, assuming that the
a1 factor is generated by the root 2ε while a5 corresponds to the roots
of the form εi − εj , we may find roots of the form α = εi − εj and β = 2ε
such that the corresponding root spaces are in m. Since gβ is preserved
by σ, we may apply Lemma 2.2. We can treat in a similar way the case
when h ⊂ R + d5 and we omit this proof. If h ⊂ a3

2, the projection of
the center of h over one of the a2 factors must be surjective and it must
also be non-trivial over some other factor. Then, it is possible to choose
roots α = εi − εj , β = εi + εj + εk + ε and we may apply Lemma 2.2 (up
to an exchange of the role of α and β in certain cases). q.e.d.

Lemma 4.7. Proposition 4.2 in the case of g = e7.

Proof. If the dimension of the center of h is at least 3, its projection
over at least one simple factor in a maximal subalgebra of maximal rank
of g has dimension at least 2 and we may adapt one of the previous
proofs. We are then left with the cases (1) h = R2 + a5, (2) h =
R2 + a1 + a4 and (3) h = R2 + d5.

In case (1), by the previous remark, we have h ⊂ a1+d6 or h ⊂ R+e6.
In the first case, we may assume that a5 corresponds to the roots εi − εj

with 1 ≤ i, j ≤ 6 while the center is spanned by Hε7−ε8 and Hε1+ε2+ε3+ε4.
If ν(h) = R, we let α = ε1 + ε2 + ε3 + ε7, β = ε1 + ε2 + ε4 + ε8, if
ν(h) = R+a5, we let α = ε7−ε8, β = ε1+ε2+ε7+ε8. The orthogonality
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between the corresponding root spaces is trivial in the first case and
follows from the fact that k has a surjective projection over the center of
h. Since σ preserves all the root spaces, we may conclude using Lemma
2.2. In the second case, we have a different embedding for the center
which can be assumed to be spanned by Hε7−ε8 and Hε7 + Hε8. Then,
let α = ε1− ε7, β = ε2− ε8 or α = ε7− ε8, β = ε1 + ε2 + ε7 + ε8 according
to the two possibilities for ν(h).

In case (2), we have to consider only the cases when h ⊂ a2 + a5 or
h ⊂ R + e6. There are two possible choices for ν(h), ν(h) = R or R + a4.
In any of these cases, σ preserves all the root spaces and we omit the
proof as it is similar to the one of the previous case.

In case (3), we have to consider the cases when h ⊂ a1 + d6 or h ⊂
R+e6. There are two possible choices for ν(h), ν(h) = R or d5−→. In any
of these cases, σ preserves all the root spaces and the proof is similar to
the one of the previous cases. q.e.d.

Lemma 4.8. Proposition 4.2 in the case of g = e8.

Proof. We omit the proof which is similar to the one of the case e7.
q.e.d.

This concludes the proof of Proposition 4.2. q.e.d.

5. Proof of the main theorem

We are now ready to prove the main theorem of this paper. The
results of the previous sections imply that we may restrict to the case
when there is a singular orbit G/H such that the Lie algebra of the
group H contains at most two simple factors and its center is at most
one-dimensional. We analyze the possible cases left by a case by case
check on the list of simple Lie algebras g.

5.1. Proof of the main Theorem in the case of g = an. Using
the results of the previous sections, we are left with the cases h =
R + a1 + an−2 or h = R + an−1.

The possible choices for (ν(h), ν(k)) are listed in Table 6.

(1) In this case, m contains an irreducible 4-dimensional K module
m1. This K-module is not equivalent to any other K-module in m + p
and it is preserved by σ. For a fixed normal geodesic γ(t) through
p = γ(0), let t′ be the minimum t > 0 such that γ(t) is singular.

If n > 4, any admissible choice for the singular isotropy subgroup H ′
of γ(t′) is such that m1 is preserved by σ′ (the element of H ′ such that
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Table 6. g = an.

h ν(h) ν(k) ker(ν) dim(M)

1 R + a1 + an−2 R + an−2 R∆ + an−3 a1 6n + 8 n ≥ 3

2 ” a1 + a1 a∆
1 R 12 n = 3

3 ” an−2 an−3 R + a1 6n + 8 n ≥ 3

4 ” d3 b2 R + a1 22 n = 5

5 R + an−1 R + an−1 R∆ + an−2 0 4n n ≥ 3

6 ” an−1 an−2 R 4n n ≥ 3

7 ” R 0 an−1 2n + 2 n ≥ 3

8 ” d3 b2 R 14 n = 4

σ′γ(t0 − t) = γ(t0 + t)). This implies that any Killing vector field in m1

never vanishes along γ(t). This gives a contradiction using Lemma 2.3.
If n = 4, there is one more choice for H ′ due to the isomorphisms

d2 
 a1 + a1 and b2 
 c2 ⊂ R + a3. In this case, m1 is not preserved by
σ′ and we cannot apply the previous argument. But in this case, the
manifold is equivariantly diffeomorphic to CP9 as described in [26] (see
the case (ii) at p. 188 for more details).

If n = 3, m is the sum of two irreducible K-modules. These modules
are inequivalent since the R factor in k centralizes the kernel of the slice
representation and is diagonally embedded in R + a1, and they are not
equivalent to any other K-module in m+p. Both the modules are sums
of root spaces and therefore, are preserved by σ which lies in the center
of H. This implies that the singular orbit is totally geodesic. Since the
pair (an, R + a1 + an−2) do not appear in Wallach’s list, this case can
be excluded.

(2) m is the sum of two irreducible and inequivalent K-modules, which
are preserved by σ since they have different dimensions. Since they are
not equivalent to any other K-module in m + p, this implies that the
singular orbit is totally geodesic, giving a contradiction.

(3) If n �= 3, m is the sum of two irreducible and inequivalent K-
modules, both preserved by σ since they have different dimensions and
σ sends K-modules into K-modules. Since they are not equivalent to
any other K-module in m + p, this implies that the singular orbit is
totally geodesic and we can conclude as in the previous case.

If n = 3, m is the sum of two equivalent 4-dimensional irreducible K-
modules. Since σ, which does not depend on the choice of the normal
geodesic, can be chosen to act as −id on both of them, the singular
orbit is once again totally geodesic, giving a contradiction.
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(4) Assume a1 ⊂ ker(εi) for i > 2 and let α = ε1 − ε3, β = ε2 − ε4.
The corresponding root spaces are entirely contained in non-trivial K-
orbits. They are orthogonal with respect to any Ad (K)-invariant scalar
product, due to the action of the kernel of the slice representation. Since
σ does not depend on the choice of the normal geodesic and belongs to
the center of ν(H), gα and gβ are preserved by σ. We can exclude this
case using Lemma 2.2.

(5) Let γ(t) be a normal geodesic through p = γ(0), denote by K the
regular isotropy of the points of γ(t) and let H ′ be defined as in case
(a). There is a unique irreducible 2-dimensional K-module in m which
is not equivalent to any other K-module in m + p. This K-module is
preserved by σ. Looking at the possible choices for H ′, there is only one
case where one does not obtain a contradiction using Lemma 2.3, given
by h′ = a1 + an−2. With this choice, M is equivariantly diffeomorphic
to HPn as described in [17] (Section 5.6, p. 497).

(6) This case cannot occur since the slice representation is not trivial
on the center of h (see [17], Section 5.6, p. 497).

(7) In this case, m is irreducible as K-module hence the singular orbit
is totally geodesic. Here, the only possible choices for H ′ are H ′ = H.
In the first case, we have a contradiction using Frankel’s theorem. In the
second case, M is equivariantly diffeomorphic to a complex projective
space as described in [26] (see Section 8.2, p. 172).

(8) This case cannot occur, if the center of h lies in the kernel of the
slice representation the subgroup corresponding to the d3 factor cannot
act transitively on S5.

5.2. Proof of the main Theorem in the case of g = bn. Using the
results of the previous sections, we are left with the possible choices for
(ν(h), ν(k)) listed in Table 7.

(1) and (2) These cases are ruled out with Theorem 2.1.
(3) In this case, since n ≥ 3, m is the sum of two irreducible K-

modules of different dimensions. This implies that these modules are
preserved by σ and the singular orbit is totally geodesic.

(4) This case can be ruled out with Theorem 2.1.
(5) In this case, b3 ⊂ d4 is non-standard. m decomposes as the sum

of two irreducible K-modules of dimension 16 and 2. Then, the singular
orbit is totally geodesic.

(6) In this case, m is irreducible as K-module and the singular orbit
is totally geodesic.

(7) In this case, m is the sum of three irreducible and inequivalent
K-modules (two 4-dimensional and one 2-dimensional). Each of them
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Table 7. g = bn.

h ν(h) ν(k) ker(ν) dim(M)

1 dn dn bn−1 0 4n n ≥ 2

2 a1 + a1 a1 0 a1 8 n = 2

3 dn−1 + b1 dn−1 bn−2 b1 8n − 8 n ≥ 4

4 R + bn−1 R 0 bn−1 4n n ≥ 2

5 R + b4 b4 b3 R 34 n = 5

6 R + b3 b3 g2 R 22 n = 4

7 R + b2 R + c2 R∆ + c1 0 18 n = 3

8 ” c2 c1 R 18 n = 3

9 R + dn−1 R 0 dn−1 6n − 2 n ≥ 4

10 ” dn−1 bn−2 R 8n − 6 n ≥ 3

11 R + d2 R + a1 R∆ a1 18 n = 3

12 ” a1 0 R + a1 18 n = 3

13 R + an−1 R + an−1 R∆ + an−2 0 n2 + 3n n ≥ 2

14 ” R 0 an−1 n2 + n + 2 n ≥ 2

15 ” an−1 an−2 R n2 + 3n n ≥ 2

16 R + dn−2 + b1 dn−2 bn−3 R + b1 12n − 18 n ≥ 5

17 R + an−2 + b1 R + an−2 R∆ + an−3 b1 n2 + 5n − 6 n ≥ 3

18 ” an−2 an−3 R + b1 n2 + 5n + 6 n ≥ 3

19 R + a1 + b4 b4 b3 R + a1 54 n = 6

20 R + a1 + b3 b3 g2 R + a1 38 n = 5

21 R + a1 + b2 R + c2 R∆ + c1 a1 30 n = 4

22 ” c2 c1 R + a1 30 n = 4

23 ” a1 + c2 a∆
1 + c1 R 30 n = 4

24 R + d3 + a1 R + a3 R∆ + a2 a1 44 n = 5

25 ” a3 a2 R + a1 44 n = 5

is preserved by σ, and this implies that the singular orbit is totally
geodesic (see Remark 2.1).

(8) In this case, m is the sum of three 2-dimensional irreducible
K-modules. Two of them are equivalent. Since σ preserves all these
modules and we can choose it such that it acts as −id on the sum of
the two equivalent modules, the singular orbit is totally geodesic.

(9) Assume dn−1 ∩ c ⊂ ker(ε1) and let α = ε2, β = ε1 + ε3. The
corresponding root spaces are orthogonal with respect to any Ad (K)-
invariant scalar product, both are preserved by σ. We may then apply
Lemma 2.2 to obtain a contradiction.
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(10) Assume dn−1 ∩ c ⊂ ker(ε1) and let α = ε1 + ε2, β = ε3. The
corresponding root spaces are orthogonal with respect to any Ad (K)-
invariant scalar product (due to the action of the kernel of the slice
representation), gα is entirely contained in a K-orbit and it is preserved
by σ. We may then apply Lemma 2.2 to obtain a contradiction.

(11) and (12) The proof given in case (10) also works in this case.

(13) We choose a normal geodesic γ(t) through p. If n > 4, the com-
plement of an−2 in dn−1 ⊂ dn is an irreducible K-module non-equivalent
to any other K-module and it is preserved by σ. By Lemma 2.3, this
module must be included in the Lie algebra of a singular isotropy group
H ′ along γ(t). Then, R + dn−1 ⊂ h′ and we are back to one of the
previous cases.

If n = 4, there is always at least one irreducible K-module n ⊂ m
(depending on the slice representation) which is preserved by σ and it
is not equivalent to any other K-module in m+ p and we can show that
the corresponding Killing vector fields must vanish at some singular
point of γ(t)∩G/H ′. If n has dimension 2, then we can conclude using
Lemma 2.2 (using the fact there is an a2 factor in the kernel of the slice
representation at the second singular orbit). If n has dimension 6, then
we can prove that k ⊂ d3 
 a3 ⊂ h′ and we get a contradiction since
H ′/K is a sphere.

If n = 3, we may find again an irreducible K-module n1 preserved by
σ and non-equivalent to any other K-module. If n has dimension 2, the
corresponding Killing vector fields must vanish along γ at some point
of the second singular orbit. But this is impossible for any admissible
choice of h′. If n has dimension 4 and n ⊂ h′, then h′ = R + a2 and we
obtain a contradiction since the center of h′ is then orthogonal to the
center of k. If the Killing vector fields corresponding to elements of n
vanish at some point of the first singular orbit, then there is only one
possible choice for h′ (since σ′ never preserves all the K-modules in m),
h′ = a1 + a1 at some point γ(t0). This is possible only if the three 4-
dimensional K-modules in m+p, n1, n2, n3 are mutually orthogonal along
γ(t). This can be proved using the action of the cyclic group generated
by σ′ on the tangent space at the second singular orbit. This implies that
σ′ acts as an element of order 3 on n = n1⊕n2⊕n3 and as an element of
order 2 on the slice. As a consequence, 〈X,X〉γ(t−t0) = 〈X,X〉γ(t+t0) for
any X ∈ n. Then, we may apply a slightly modified version of Lemma
2.2 to any pair gα ⊂ n, gβ ⊂ n with α and β strongly orthogonal.

If n = 2 and a1 is generated by a short root, then σ preserves any K-
module and it is compatible with any equivalence between K-modules
since it acts as −id on the sum of the equivalent modules (if any). This
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follows from the fact that the slice representation is a 2-dimensional
irreducible representation of U(2). Then, the singular orbit is totally
geodesic and we may apply a slightly modified version of Lemma 2.2
where gα and gβ are such that α and β are strongly orthogonal.

If a1 is generated by a long root, for any possible choice of k, there is
at least one short root α such that gα is not equivalent to any other K-
module in m+p. Then, there are two possible choices for h′, h′ = R+a1

and h′ = a1. In the first case, we are back to the preceding step. In
the second case, K fixes a 4 dimensional submanifold of M on which a
group with Lie algebra a1 acts with cohomogeneity one and no singular
orbits, giving a contradiction.

(14) If n > 3, it is possible to find two strongly orthogonal roots α
and β such that gα ⊂ b3 \d3 and gβ ⊂ d3. Then, the corresponding root
spaces are non-equivalent with respect to any Ad (K)-invariant scalar
product. Then, we may apply Lemma 2.2.

If n = 3, we may consider the fixed point set of R ⊂ k ∩ c. This is
a 6-dimensional totally geodesic submanifold acted with cohomogeneity
one by a group with Lie algebra a1 +a1. The admissible group diagrams
for such manifold implies that the only possible choice for h′ is h′ = g2.
Since NSpin (7)(G2) = Z2, we have two possible choices for the regular
isotropy K. If K = SU(3), then the first singular orbit is totally geo-
desic and we get a contradiction. In the second case, M is equivariantly
diffeomorphic to CP7 as described in [26] (Section 9.7, p. 188).

The case n = 2 can be ruled out using Theorem 2.1.

(15) If n > 2, there is a unique irreducible 2-dimensional K-module
in m + p. This implies that the only possible choice for h′ is h′ =
a1 + an−2. Then, it is possible to find two strongly orthogonal roots
α and β such that the corresponding root spaces are in m′ and are
orthogonal with respect to any Ad (K)-invariant scalar product along
any normal geodesic through the singular point p′ fixed by H ′ (due
to the projection of k on the a1 factor). One of these root spaces is
contained in a non-trivial K-module and it is preserved by σ. Then, we
may conclude using Lemma 2.2.

(16) Assume that b1 is generated by the root ε1, and that the R
factor is spanned by Hε2. Then, define α = ε1 + ε2 and β = ε3. The
corresponding root spaces are orthogonal with respect to any Ad (K)-
invariant scalar product and gα is preserved by σ. Then, we may apply
Lemma 2.2.

(17) The proof is similar to the one of case (16). In this case, σ
preserves any root space.
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(18) We omit the proof for these cases since it is similar to the one
of case (16).

(19) Assume that the a1 factor is spanned by ε1 − ε2 and that the R
factor is spanned by Hε1+ε2. Then, let α = ε1, β = ε2 + ε3. Since σ may
be chosen in the center of H, we may apply Lemma 2.2.

(20) We omit the proof which is similar to the one of case (19).
(21) In this case, m is the sum of irreducible, non-equivalent, K-

modules. All these modules are preserved by σ. Then, the singular
orbit is totally geodesic and we get a contradiction.

(22) Assume that a1 is generated by ε1 − ε2 and R is generated by
Hε1+ε2. Let α = ε1 + ε3, β = ε2 + ε4. Then, we may apply Lemma 2.2
since σ preserves any root space.

(23) m is the sum of irreducible, inequivalent K-modules, preserved by
σ, then the singular orbit is totally geodesic and we get a contradiction.

(24) Assume that a1 is generated by ε1 and R is generated by Hε2.
Let α = ε1 + ε3, β = ε2 + ε4. Then, we may apply Lemma 2.2 since σ
preserves any root space.

(25) Assume that a1 is generated by ε1 and R is generated by Hε2. Let
α = ε2, β = ε1 + ε3. Then, we may apply Lemma 2.2 since σ preserves
gα.

5.3. Proof of the main Theorem in the case of g = cn. Using the
results of the previous sections, we may assume that n ≥ 3 and we are
left with the possible choices for (ν(h), ν(k)) listed in Table 8.

(1) Let γ(t) be a normal geodesic through p. There is a four-dimen-
sional irreducible K-module n which is not equivalent to any other K-
module in m + p. By Lemma 2.3, it must be contained in some singular
isotropy along γ(t). This is possible only if n ⊂ h′. Then h′ = c2 +
cn−2 with ν ′(h′) = c2. But then, a1 ⊂ c2 is such that H ′/K is not
diffeomorphic to a sphere and this case cannot occur.

(2) In this case, m is irreducible as K-module, this forces h′ = cn and
M is a rank one symmetric space.

(3) Let γ(t) be a normal geodesic through p. In this case, m is the
sum of two irreducible K-modules which are not equivalent to any other
K-module. By Lemma 2.3, the corresponding Killing vector fields must
vanish at some singular point of γ(t). Then, h′ has maximal rank and
hence never contains two ideals of rank greater than one. This implies
that the only possible case is when n = 3, h′ = c2 
 b2. But then, M is
equivariantly diffeomorphic to CaP2 as described in [18] (cf. Proposition
3, p. 438).
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Table 8. g = cn.

h ν(h) ν(k) ker(ν) dim(M)

1 a1 + cn−1 a1 + cn−1 a∆
1 + cn−2 0 8n − 8 n ≥ 3

2 ” a1 0 cn−1 4n ”

3 ” cn−1 cn−2 a1 8n − 8 ”

4 R + cn−1 R + cn−1 R∆ + cn−2 0 8n − 10 ”

5 ” R 0 cn−1 4n ”

6 ” cn−1 cn−2 R 8n − 10 ”

7 R + an−1 R + an−1 R∆ + an−2 0 n2 + 3n ”

8 ” R 0 an−1 n2 + n + 2 ”

9 R + a1 + cn−2 R + a1 R∆ cn−2 n2 + 3n ”

10 ” R + cn−2 R∆ + cn−3 a1 12n − 18 ”

11 ” a1 + cn−2 a∆
1 + cn−3 R 12n − 18 ”

12 ” R 0 a1 + cn−2 8n − 8 ”

13 ” a1 0 R + cn−2 8n − 10 ”

14 ” cn−2 cn−3 R + a1 12n − 18 ”

15 R + a1 + an−2 R + a1 R∆ an−2 n2 + 4n ”

16 ” R + an−2 R∆ + an−3 a1 n2 + 5n − 6 ”

17 ” R 0 a1 + an−2 n2 + 4n − 2 ”

18 ” a1 0 R + an−2 n2 + 4n ”

19 R + a1 + a3 d3 b2 R + a1 42 n = 5

20 R + a3 d3 b2 R 26 n = 4

(4) In this case, M contains a totally geodesic submanifold acted
with cohomogeneity one by a group with Lie algebra c2 
 b2 and group
diagram (R + a1, R∆, h′ ∩ c2). Then, we may use the proof of case (13)
in Section 5.2.

(5) The result follows from Theorem 2.1.

(6) In this case, M contains a totally geodesic submanifold acted
with cohomogeneity one by a group with Lie algebra c2 
 b2 and group
diagram (R + a1, R, h′ ∩ c2). Then, we may use the proof of case (15) in
Section 5.2.

(7) Let γ(t) be a fixed normal geodesic through p. Then, m contains
one trivial K-module and two irreducible K-modules. One of them has
dimension n(n − 1), and it is not equivalent to any other K-module
in m + p and it is preserved by σ. The corresponding Killing vector
fields must vanish by Lemma 2.3 at some point of the second singular
orbit. We may exclude this case since it is not possible to find a singular
isotropy subalgebra which contains this module.
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(8) We may assume that an−1 corresponds to the roots εi − εj with
1 ≤ i �= j < n. Then, let α = 2ε1, β = 2ε2. Since n ≥ 3, we may
conclude using Lemma 2.2.

(9) We have two cases to consider, according to h ⊂ c2 + cn − 2 or
h ⊂ a1 + cn−1. We assume that cn−2 is generated by the roots 2εi, εi± εj

with i, j ≥ 3 and that the a1 factor corresponds to the long root 2ε2

in the first case and to the short root ε1 − ε2 in the second. Then, let
α = ε2 + ε3, β = 2ε1. Since σ preserves any root space, we can conclude
(in both cases) using Lemma 2.2.

(10) With the notations of case (9), we let α = 2ε1, β = ε2 + ε3 in
the first case (the corresponding root spaces are always orthogonal with
respect to any Ad (K)-invariant scalar product since the R factor has
a surjective projection on H2ε1) and α = 2ε1, β = 2ε2 in the second.
Then, we use Lemma 2.2.

(11) With the notations of case (9), we let α = 2ε1, β = ε2 + ε3 in
the first case and α = 2ε1, β = 2ε2 in the second (the corresponding
root spaces are always orthogonal with respect to any Ad (K)-invariant
scalar product since k has a surjective projection on the a1 factor). Then,
we use Lemma 2.2.

(12) With the notations of case (9), we let α = ε2 + ε3, β = 2ε1 in the
first case and α = 2ε1, β = ε2 + ε3 in the second. Then, we use Lemma
2.2.

(13) With the notations of case (9), we let α = 2ε1, β = ε2 + ε3. The
corresponding root spaces are orthogonal with respect to any Ad (K)-
invariant scalar product because of the action of ker(ν). Since ν(H) =
SU(2), σ preserves any root space and we can use Lemma 2.2.

(14) We omit the proof which is similar to the one of case (13).

(15) In this case, h ⊂ a1 + cn−1. It is sufficient to consider the case
when a1 is generated by 2ε1 and an−1 by the roots εi − εj with 2 ≤
i �= j ≤ n. The center of k has a surjective projection on Hε2+ε3, since
Hε2−ε3 belongs to k, if we let α = 2ε2 and β = 2ε3, the corresponding
root spaces are orthogonal with respect to any Ad (K)-invariant scalar
product. Since σ preserves any root space, we can apply Lemma 2.2.

(16) Using the notations of case (15), we let α = ε1 + ε3 and β = 2ε2.
The action of the kernel of the slice representation makes the corre-
sponding root spaces orthogonal with respect to any Ad (K)-invariant
scalar product. Then, we use Lemma 2.2.

(17)–(19) We omit the proof which is similar to the one of case (16).
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Table 9. g = dn.

h ν(h) ν(k) ker(ν) dim(M)

1 R + dn−1 R 0 dn−1 4n − 2 n ≥ 4

2 ” dn−1 bn−2 R 6n − 6 ”

3 R + d3 R + a3 R∆ + a2 0 20 n = 4

4 ” a3 a2 R ” ”

5 R + an−1 R + an−1 R∆ + an−2 0 n2 + n n ≥ 4

6 ” R 0 an−1 n2 − n + 2 ”

7 R + a1 + dn−2 R + a1 R∆ dn−2 8n − 10 n ≥ 5

8 ” R 0 a1 + dn−2 8n − 12 ”

9 ” dn−2 bn−3 R + a1 10n − 18 ”

10 R + a1 + d3 R + a3 R∆ + a2 a1 34 n = 5

11 ” a3 a2 R + a1 34 ”

(20) In this case, m is irreducible as H-module and it remains ir-
reducible as K-module. This implies that the singular orbit is totally
geodesic and we get a contradiction.

5.4. Proof of the main Theorem in the case of g = dn. Using the
results of the previous sections, we may assume that n ≥ 4 and we are
left with the possible choices for (ν(h), ν(k)) listed in Table 9.

(1) This case can be ruled out using Theorem 2.1.
(2) In this case, m is the sum of two irreducible K-modules of different

dimensions. Both are preserved by σ and the singular orbit is totally
geodesic. This gives a contradiction.

(3) In this case, m is the sum of two irreducible K-modules. These
modules are not equivalent as K-modules and are preserved by σ. Then,
the singular orbit is totally geodesic.

(4) The proof of (3) works also in this case.
(5) If n > 5, the singular orbit is totally geodesic since m is the sum

of two irreducible K-modules of different dimensions. If n = 5, then
m contains a 12-dimensional K-module n1 which is irreducible except
for one choice of R∆. When n is irreducible, it is not equivalent to
any other K-module in m + p and should be contained in the singular
isotropy subalgebra of the second singular orbit. But this is impossible
since H ′/K must be a sphere. Then, we may assume that n is the sum of
two irreducible six-dimensional K-modules n1 and n2. If these modules
are equivalent as K-modules, then σ is compatible with this equivalence
and the singular orbit is totally geodesic. If they are not equivalent, by
Lemma 2.3, they must be contained in the singular isotropy subalge-
bra at the second singular orbit. This is possible only if h′ = R + b3
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and σ(n1) = n2. Then, M is equivariantly diffeomorphic to CP15 as
described in [26] (see Section 9.7, p. 188 or [8]).

(6) Assume that R is spanned by
∑

Hεi . Then, let α = ε1 + ε2

and β = ε3 + ε4. The corresponding root spaces are orthogonal with
respect to any Ad (K)-invariant scalar product because of the action of
c ∩ ker(ν). It is then possible to apply Lemma 2.2. The proof in the
other cases is similar and we omit it.

(7) Assume that a1 is generated by gε1−ε2. Then, let α = ε1 + ε3

and β = ε2 − ε4. The corresponding root spaces are orthogonal with
respect to any Ad (K)-invariant scalar product because of the action of
c ∩ ker(ν). It is then possible to apply Lemma 2.2. The proof in the
other cases is similar and we omit it.

(8) The proof is identical to the proof of case (7).
(9) Assume that a1 is generated by gε1−ε2. Then, let α = ε1 + ε3

and β = ε2 + ε4. The corresponding root spaces are orthogonal with
respect to any Ad (K)-invariant scalar product because of the action of
c ∩ ker(ν). It is then possible to apply Lemma 2.2. The proof in the
other cases is similar and we omit it.

(10) Let γ(t) be a normal geodesic through p. m contains an irre-
ducible two-dimensional K-module which is not equivalent to any other
K-module in m + p. By Lemma 2.3, this module must be contained
in the isotropy subalgebra at some singular point of γ(t) in the second
singular orbit. Then h′ must contains two ideals of rank greater then 1.
By Proposition 3.1, this is possible only if h′ has rank 4. But this is not
possible since h′ is a sum of K-modules and H ′/K is a sphere.

(11) The proof is identical to the proof of case (9).

5.5. Proof of the main Theorem in the case of g = g2. In order
to fix the notations, we assume that the decomposition (1) has the form

g = R2 + gα + gα+β + g2α+3β + gα+2β + gα+3β + gβ,

where α is a long root and β is a short root.
The possibile choices for h are listed in Table 10.

(1) In this case, we must have k 
 R. k is contained in the kernel of
the slice representation and does not depend on the choice of the normal
geodesic through p. In this case, the decomposition (2) takes the form

g = k + R + gα + gα+β + g2α+3β + gα+2β + gα+3β + gβ.

Note that gγ are also irreducible inequivalent H-modules. We con-
sider the 3 pairs (gγ1 , gγ2), where Hγ1 and Hγ2 are orthogonal. At most,
two of these pairs are made by equivalent K-modules. In fact, if gγ1 and
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Table 10. g = g2.

h ν(h) ν(k) ker(ν) dim(M)

1 R2 R 0 R 14

2 a1 + a1 a1 + a1 a∆
1 0 12

3 a2 a2 a1 0 12

4 R + a1 R 0 a1 12

5 ” a1 0 R 14

gγ2 are equivalent, then k coincides with ker(γ1 + γ2) or ker(γ1 − γ2).
Even in this case, it is possible to find a pair (gγ1 , gγ2) such that gγ1 and
gγ2 are non-equivalent as K-modules and at least one of them, say gγ1, is
irreducible. We choose X ∈ gγ1 and Y ∈ gγ2 . Then, for Z ∈ ∑

α∈∆+ gα,

2〈∇XY,Z〉p = 〈[X,Z], Y 〉p + 〈[Y,Z],X〉p
since gγ1 + gγ2 and gγ1 − gγ2 are not roots, and gγ are not equivalent as
H-modules, we can conclude that (∇XY )T = 0. For the same reason,
(∇XX)T = 0. Since gγ1 and gγ2 are not equivalent as K-modules, we
have 〈X,Y 〉γ(t) = 0, hence 〈∇XY,N〉p = −1

2N〈X,Y 〉p = 0. Since gγ1

is irreducible and it is preserved by σ, we have that 〈X,X〉γ(t) is an
even function of t, hence 〈∇XX,N〉p = −1

2N〈X,X〉p = 0. Since this
construction does not depend on the choice of the normal geodesic γ(t),
then (∇XY )p = (∇XX)p = 0 and (RXY XY )p = 0.

(2) We may assume h = a1 +a1, where a1 is generated by a short root
and a1 is generated by a long root. The maximal connected subgroup
of G2 of type a1 +a1 is SO(4). Since H/K is a sphere, we have the only
choice k = a∆

1 , where ∆ denotes a diagonal embedding. In this case, the
decomposition (2) takes the form

g = k + a∆
1 + m11,

where m11 is an irreducible eight-dimensional K-module. This module
is preserved by σ and it is not equivalent to any other K-module. Then,
for X,Y ∈ m11, 〈X,Y 〉γ(t) is an even function of t and, as before, we
have 〈∇XY,N〉p = 0. This fact does not depend on the choice of the
normal geodesic through p. Hence, the singular orbit G/H is totally
geodesic, but this is impossible since the pair (g2, a1 + a1) does not
appear in Wallach’s list 2.

(3) In this case, there is just one possibility for k, k = a1. The
decomposition (2) takes the form

g = k + R + p11 + R2 + m11,
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where p11 and m11 are 4-dimensional irreducible K-modules. The mod-
ule m11 is preserved by σ since it is the only 4-dimensional K-module
in m. In order to study the action of σ on the trivial module R2,
we consider the slice representation ν : H → O(6). Since H acts
transitively on S5, this representation is uniquely determined up to
equivalence, and we may assume that it coincides with the restric-
tion to G2 of the linear action of SO(7) on R7 = span {e1, . . . , e7} 

Im (O). The connected subgroup U 
 SU(3) corresponding to a2 may
be viewed as the isotropy subgroup of e3, while a1 ⊂ R + a1 ⊂ a2

fixes e1, e2, e3 (note that, since U is a maximal connected subgroup of
G2 and NG2(U)/U 
 Z2, there are just two possible choices for H,
H = U or H = Z2 · U , in fact H/K must be a sphere). We may choose
σ = diag (−1,−1, 1, 1,−1,−1, 1) ∈ SO(7). Then, σ = exp(Σ1), where
Σ ∈ R + a1 = span {2E12 + E56 −E47, E56 + E47, E45 + E67, E46 −E57}
and Eij is the standard basis for so(7). The element σ acts as −I2 on
the trivial module R2, this implies that, for any X,Y ∈ m, 〈X,Y 〉γ(t) is
an even function of t, and one may conclude that the singular orbit is
totally geodesic. By Frankel’s theorem, we exclude the case h2 = a2. So,
the only possibility for the second singular isotropy remains h2 = R+a1.
The corresponding decomposition is

g2 = k + R + n11 + n21 + R2.

First, we consider the case when K is connected. Then, σ′ does not
depend on the choice of the normal geodesic and preserves n11 and n21.
We may assume that a1 is generated by a long root (say 2α + 3β) and
that n11 = gα ⊕ gα+3β . Then, [n11, n11] ⊂ k and it is possible to find
X ∈ gα, Y ∈ gα+3β such that [X,Y ] = 0. This implies that 〈∇XY,Z〉 =
〈[X,Z], Y 〉 + 〈[Y,Z],X〉 must vanish at the singular point p′ for any
Z ∈ m. X and Y belong to the same irreducible K module and are
orthogonal along any normal geodesic through p′, i.e., 〈∇XY,N〉 = 0.
Hence, ∇XY vanishes at p′. Similarly, we can prove that ∇XX vanishes
at p′, then RXY XY = 0 at p′.

If K is not connected, then K = Z2 · SU(2) ⊂ NG2(U) and H ′ =
NG2(K)0 � SU(3). In this case, the modules m11 and m21, which are
equivalent as SU(2)-modules, are not equivalent as K-modules. By
Lemma 2.3, the Killing vector fields corresponding to elements of m11

m21 must have zero at some point of γ(t). This is possible if and only
if σ′(m11) = m21 (hence in this case, the proof we gave for K connected
fails). In this case, M 
 CP6, as described in [26] (Section 7.4).

(4) We have to consider only the case h′ = R + a1.
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If k is generated by a short root, we have the decomposition

g2 = k + R + m11 + R2,

where m11 is an irreducible eight-dimensional module. This K-module
is preserved by both σ and σ′. Then, the corresponding Killing vector
fields cannot have a zero along γ(t) and we get a contradiction using
Lemma 2.3.

If k is generated by a long root, then using the same proof of the previ-
ous case (which used just a tubular neighborhood of the second singular
orbit), we may assume that K is not connected. This implies that m11

and m21 are not equivalent as K-modules. m11 ⊕ m21 is preserved by
the group generated by σ and σ′. Then, the vector fields corresponding
to m11 cannot have a zero along γ(t) and we get a contradiction using
Lemma 2.3.

(5) Again, we have to consider only the case h′ = R + a1. If k = R,
then the decomposition (2) takes the form

g = k + R + R2 + m11 + m21 + m31 + m41.

The element σ belongs to the center of H and preserves the modules
mj1. Since at most one of them is contained in h′, we get a contradiction
as in the previous cases.

5.6. Proof of the main Theorem in the case of g = f4. Using the
results of the previous sections, we are left with the possible choices for
(ν(h), ν(k)) listed in Table 11. Due to the fact that the maximal con-
nected subgroup corresponding to a1+c3 is Sp(1)×Sp(3)/Z2, some pairs
(h, k) do not appear in the table since they do not lead to cohomogeneity
one manifolds.

(1) Denote by m the Ad (H)-invariant complement of h in g. Then,
m = R + m1 + m2, where dim m1 = 7 and dimm2 = 8. By Lemma 2.3,
the only possibility for h′ is h′ = R + b3 (note that R + b3 is unique
up to conjugation inside f4). Since b3 lies in the kernel of the slice
representation at the second singular orbit, where ν ′(h′) = R, we may
exclude this case using Lemma 2.2 with α = ε1 + ε4 and β = (ε1 + ε2 +
ε3 − ε4)/2.

(2) In this case, we have m = R + m1 + m2 + m3, where dim m1 = 7
and dim m2 = dim m3 = 8. We omit the proof which is similar to the
one of the previous case.

(3) In this case, we have m = m1 + m2 + m3, where dimm1 = 8,
dim m2 = 5 and dim m3 = 15. Then, we may exclude this case applying
Lemma 2.2 to m3.

(4) We give the proof for the case when a3 is the regular subalgebra
of f4 corresponding to the roots εi − εj , i �= j = 1, . . . , 4, the proof in
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Table 11. g = f4.

h ν(h) ν(k) ker(ν) dim(M)

1 b4 b4 b3 0 32

2 d4 d4 b3 0 ”

3 a1 + c3 a1 + c3 a∆
1 + c2 0 40

4 R + a3 R + a3 R∆ + a2 0 44

5 ” R 0 a3 38

6 ” a3 a2 R 44

7 ” d3 b2 R 42

8 R + b3 R 0 b3 32

9 ” b3 g2 R 38

10 R + c3 R + c3 R∆ + c2 0 42

11 ” R 0 c3 32

12 R + a1 + a2 R + a2 R∆ + a1 a1 46

13 ” a2 a1 R + a1 ”

14 R + a1 + c2 R + a1 R∆ c2 42

15 ” R + c2 R∆ + c1 a1 46

16 ” a1 + c2 a∆
1 + a1 R ”

17 ” a1 0 R + c2 42

18 ” c2 c1 R + a1 46

any other case is similar. Then, let α = ε1 + ε2, β = ε3 + ε4. The
corresponding root spaces are orthogonal with respect to any Ad (K)-
invariant scalar product since R∆ ⊂ k has always a non-trivial compo-
nent on the R factor in h. Since σ preserves any root space, we may
exclude this case using Lemma 2.2.

(5) We give the proof for a3 ⊂ f4 as in (4). Then, let α = ε1 + ε2 and
β = (ε1 − ε2 + ε3 − ε4)/2 and apply Lemma 2.2.

(6) Let a3 ⊂ f4 be as above. Since σ belongs to the center of H, it
preserves any root space. Let α = ε1 + ε2 and β = (ε1 − ε2 + ε3 + ε4),
then α ± β is not orthogonal to R = ker(ν). Hence, the corresponding
root spaces are orthogonal with respect to any Ad (K)-invariant scalar
product, and gα is acted on non-trivially by K. We may then apply
Lemma 2.2.

(7) The proof is similar to the one of case (6) and we omit it.
(8) We give the proof for the case when b3 ⊂ b4 is generated by εi,

i = 1, 2, 3. In this case, σ preserves any root space, let α = ε1 + ε4 and
β = (ε1 − ε2 + ε3 − ε4)/2. The corresponding root spaces are orthogonal
with respect to any Ad (K)-invariant scalar product due to the action
of ker(ν) and we may conclude using Lemma 2.2.
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(9) The proof is identical to the one of case (6) and we omit it.
(10) We give the proof for the case when c3 ⊂ f4 as in (3), the proof

in any other case is similar. We consider a normal geodesic through p,
m contains an irreducible K-module m1 of dimension 10. By Lemma
2.3, the corresponding Killing vector fields must vanish at some point
of the normal geodesic, but this is not possible since we cannot find a
singular isotropy subalgebra h′ such that m1 ⊂ h′.

(11) Let c3 ⊂ f4 as above. In this case, σ preserves any root space
and we let α = ε1 + ε3 and β = ε2 + ε4. We may then exclude this case
using Lemma 2.2.

(12) In this case, a1 +R+a2 ⊂ a1 +c3 and we may assume a1+c3 ⊂ f4
as in (3). We give the proof for the case when a2 corresponds to the
roots ε1, (ε1 ± (ε2 + ε3 + ε4))/2. Then, let α = ε1 − ε3 and β = ε2. Since
σ preserves any root space, we may conclude using Lemma 2.2.

(13) Let a1+R+a2 be as above. Then, let α = ε2−ε3 and β = ε4. The
K-module containing the root space gα is non-trivial and it is preserved
by σ which acts on it through an element of K. The two root spaces are
orthogonal with respect to any Ad (K)-invariant scalar product since
α ± β is not orthogonal to some component of ker(ν). Then, apply
Lemma 2.2.

(14) Let a1 and c3 be as in (3). We prove the result for the case
when c2 corresponds to the roots ε1, ε2, ε1 ± ε2. Then, let α = ε1 + ε3,
β = ε2 + ε4, all the conditions to apply Lemma 2.2 are satisfied.

(15) Assume the embeddings of the subalgebras are as above. Then,
let α = ε1 + ε3 and β = (ε1 + ε2 − ε3 − ε4)/2 and conclude using Lemma
2.2.

(16)–(18) With the embeddings described above, let α = ε1 + ε4 and
β = (ε1 + ε2 + ε3 − ε4)/2. We can conclude using Lemma 2.2.
5.7. Proof of the main Theorem in the case of g = e6. Using the
results of the previous sections, we are left with the possible choices for
(ν(h), ν(k)) listed in Table 12. Due to the form of the maximal connected
subgroup corresponding to maximal subalgebras of maximal rank in e6,
some pairs (h, k) which are admissible from the point of view of Table 5
do not appear in the table since they do not lead to cohomogeneity one
manifolds.

(1) In this case, σ preserves all the root spaces. Assuming that a5

corresponds to the roots of the form εi−εj, we may set α = ε1+ε2+ε3+ε,
β = ε1+ε2+ε4−ε. The corresponding root spaces are orthogonal because
of the action of ker(ν) and we may apply Lemma 2.2.

(2) We may assume that a4 corresponds to the roots of the form
εi − εj with 1 ≤ i, j ≤ 5 and a1 corresponds to the root 2ε. Then, let
α = ε1 + ε2 + ε6 + ε, β = ε1 − ε6 and apply Lemma 2.2.
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Table 12. g = e6.

h ν(h) ν(k) ker(ν) dim(M)

1 R + a5 R 0 a5 44

2 R + a1 + a4 R + a4 R∆ + a3 a1 60

3 R + d5 R 0 d5 34

Table 13. g = e7.

h ν(h) ν(k) ker(ν) dim(M)

1 R + d6 R 0 d6 68

2 R + a1 + a5 R + a5 R∆ + a4 a1 106

3 R + a6 R 0 a6 86

4 ” R + a6 R∆ + a5 0 98

(3) We omit the proof which is similar to the ones of the previous
cases.

5.8. Proof of the main Theorem in the case of g = e7. Using the
results of the previous sections, we are left with the possible choices for
(ν(h), ν(k)) listed in Table 13. Again, due to the form of the maximal
connected subgroup corresponding to maximal subalgebras of maximal
rank in e7, some pairs (h, k) which are admissible from the point of
view of Table 5 do not appear in the table since they do not lead to
cohomogeneity one manifolds. We recall here that these groups are
(Spin (12)×SU(2))/∆Z2 , (SU(3)×SU(6))/∆Z3, SU(8)/Z2 and (E(6)×
U(1))/∆Z3.

(1) We may assume that d6 corresponds to the roots εi − εj , εi + εj +
ε7 + ε8 with 1 ≤ i, j ≤ 6. Then, let α = ε1 − ε7, β = ε2 − ε8. As σ
preserves the root spaces, we may conclude using Lemma 2.2.

(2) If h ⊂ a1 + d6, then we may assume that a1 corresponds to ε7 − ε8

and a5 to the roots εi − εj 1 ≤ i, j ≤ 6. Then, let α = ε1 − ε7, β =
ε1 + ε2 + ε7 + ε8. As σ preserves all the root spaces, we may conclude
using Lemma 2.2. If h ⊂ R + e6, the proof is similar. If h ⊂ a2 + a5,
we assume that the a1 factor corresponds to ε7 − ε8 and a5 to the roots
εi − εj, ε1 + ε2 + ε3 + εi, 4 ≤ i, j ≤ 8. Then, let α = ε1 − ε4, β = ε3 − ε5

and conclude using Lemma 2.2. If h ⊂ a7, the proof is similar to the
one of the previous cases and we omit it.

(3) In this case, we have h ⊂ a7. We may assume that a6 corresponds
to the roots εi − εj with 1 ≤ i, j ≤ 7. Then, let α = ε1 − ε8, β =
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ε1 + ε2 + ε3 + ε8. σ preserves all the root spaces and we may conclude
using Lemma 2.2.

(4) In this case, m contains an irreducible K-module n of dimension
30 which is not equivalent to any other K-module in m + p. By Lemma
2.3, the corresponding Killing vector fields must vanish. This must
happen at the points of the second singular orbit as p never contains
any such-module. But Table 5 shows that it is impossible to have n ⊂ h′.

We omit the proof of the case e8 which is very similar to the one of
the case e7.
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