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COHOMOGENEITY ONE SPECIAL LAGRANGIAN SUBMANIFOLDS
IN THE COTANGENT BUNDLE OF THE SPHERE
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Abstract. We classify cohomogeneity one special Lagrangian submanifolds in the
cotangent bundle of the sphere Sn invariant under SO(p) × SO(n + 1 − p) with respect to
the Stenzel metric and a Ricci-flat cone Kähler metric. Moreover, we describe the asymptotic
behavior and singularities of such special Lagrangian submanifolds.

1. Introduction. In their pioneering paper [5], Harvey and Lawson gave an impor-
tant method to study homologically volume minimizing submanifolds by using calibrations.
Let M be a Calabi-Yau manifold with a complex volume form Ω . Then naturally Re Ω is a
calibration on M , and a calibrated submanifold is called a special Lagrangian (SL) subman-
ifold. Strominger, Yau and Zaslow [19] suggested that, from the view point of geometry, the
mirror symmetry between Calabi-Yau 3-folds should be explained in terms of dual fibrations
by special Lagrangian 3-tori, that is the so-called SYZ conjecture. According to the rela-
tionship with string theory, today many mathematicians pay attention to special Lagrangian
submanifolds, especially their singularities. In his series of papers ([10], [11], [12], [13] and
[15]), Joyce constructed many interesting examples of special Lagrangian submanifolds in
Cn, using various methods. Castro and Urbano [3] gave a construction of special Lagrangian
immersions with cohomogeneity one or two in Cn, from minimal Legendrian submanifolds
in S2n−1. Haskins [6] studied special Lagrangian cones in C3. There are fruitful results in Cn,
although Cn is flat and its holonomy group is trivial.

On the other hand, now we know interesting examples of non-flat Calabi-Yau manifolds.
In 1993, Stenzel [18] constructed complete Ricci-flat Kähler metrics on the cotangent bun-
dles of compact rank one symmetric spaces. Karigiannis and Min-Oo [17] proved that the
conormal bundle of a submanifold M of the sphere Sn is an SL submanifold in the cotangent
bundle T ∗Sn, equipped with the Stenzel metric, if and only if M is austere. That is a natural
generalization of the construction of special Lagrangian conormal bundles in T ∗Rn ∼= Cn

due to Harvey and Lawson. The Lie group SO(n + 1) acts on T ∗Sn with cohomogeneity
one preserving the Stenzel metric. Using this large symmetry, Anciaux [1] constructed SL
submanifolds in T ∗Sn invariant under SO(n). Using the moment map technique, Ionel and
Min-Oo [9] studied SL submanifolds in T ∗S3 invariant under the 2-torus T 2 or SO(3). In the
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present paper, as a generalization of the above results, we study cohomogeneity one special
Lagrangian submanifolds in T ∗Sn invariant under SO(p)×SO(q) (p +q = n+1). First we
construct Lagrangian submanifolds by the moment map technique. Since these Lagrangian
submanifolds are of cohomogeneity one, the condition to be special Lagrangian is reduced
to certain ordinary differential equations (ODE). We analyze the solutions of the ODE, and
investigate the asymptotic behavior and singularities of the corresponding SL submanifolds.
In general, the condition to be special Lagrangian is given by a partial differential equation
(PDE). Let G be a Lie group with Lie algebra g. Assume that G acts on a Calabi-Yau n-fold
with a moment map µ preserving the Calabi-Yau structure. If the G-action on the level set
µ−1(c) for some element c of the center Z(g∗) of g∗ has (n − 1)-dimensional principal or-
bits, then the PDE to be special Lagrangian is reduced to a (first order) ODE defined on the
orbit space µ−1(c)/G of the G-action on µ−1(c). On a Calabi-Yau manifold, the calibra-
tion is given as an S1-family Re (e

√−1θΩ) in general, here θ is called the phase. It is quite
non-trivial to describe cohomogeneity one SL submanifolds of arbitrary phase θ in our cases,
because we work in non-flat Calabi-Yau manifolds other than Cn. We illustrate how our solu-
tion curves change when the phase varies (see Examples 5.3 and 5.5). When SO(p)×SO(q)

is abelian (i.e., p = q = 2 or p = 1, q = 2), then T ∗Sn admits an S1-family of special
Lagrangian foliations, however there exist singular leaves (Remarks 3.7 and 3.9). We note
that SL submanifolds with this kind of symmetry were also constructed by Kanemitsu [16]
independently. Recently Haskins and Kapouleas [7] investigated SL cones in Cn invariant
under SO(p) × SO(q).

This paper is organized as follows. In Section 2, we prepare some basics of special
Lagrangian geometry, and explain the moment map technique to construct cohomogeneity
one special Lagrangian submanifolds. Applying this, in Section 3, we construct special La-
grangian submanifolds in T ∗Sn invariant under SO(p) × SO(q). To describe the asymptotic
behavior of those SL submanifolds in T ∗Sn, in Section 4, we give a (singular) Calabi-Yau
metric on the complex cone Qn

0 as the limit of the Stenzel metric, and construct special La-
grangian submanifolds in Qn

0. In Section 5, we observe the asymptotic behavior of the ends
and singularities of SL submanifolds in T ∗Sn.

Acknowledgments. The authors would like to thank Professor Yoshihiro Ohnita for helpful dis-
cussions.

2. Preliminaries.
2.1. Calabi-Yau manifolds and special Lagrangian submanifolds. We shall review

some definitions and basic notions of Calabi-Yau manifolds and special Lagrangian subman-
ifolds. See [14] for details.

There are several different definitions of Calabi-Yau manifolds. In this paper, we use the
following definition.

DEFINITION 2.1. Let n ≥ 2. An almost Calabi-Yau n-fold is a quadruple (M, J, ω,

Ω) such that (M, J, ω) is a Kähler manifold of complex dimension n with a complex structure
J and a Kähler form ω, and Ω is a nonvanishing holomorphic (n, 0)-form on M . In addition,
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if ω and Ω satisfy

(2.1)
ωn

n! = (−1)n(n−1)/2
(√−1

2

)n

Ω ∧ Ω̄ ,

then we call (M, J, ω,Ω) a Calabi-Yau n-fold.

If ω and Ω satisfy (2.1), then the Kähler metric g of (M, J, ω) is Ricci-flat. Its holonomy
group Hol(g) is a subgroup of SU(n), and this is another definition of a Calabi-Yau manifold.

A closed p-form ϕ on a Riemannian manifold (M, g) is called a calibration if ϕ|V ≤
volV for any oriented p-plane V ⊂ TxM for all x ∈ M . A p-dimensional submanifold N of
M is said to be calibrated by a calibration ϕ if ϕ|TxN = volTxN for all x ∈ N .

REMARK 2.2. The constant factor in (2.1) is chosen so that Re(e
√−1θΩ) is a calibra-

tion for any θ ∈ R.

DEFINITION 2.3. Let (M, J, ω,Ω) be a Calabi-Yau n-fold and L be a real
n-dimensional submanifold of M . Then, for θ ∈ R, L is called a special Lagrangian sub-
manifold of phase θ if it is calibrated by the calibration Re(e

√−1θΩ).

We often abbreviate special Lagrangian by SL. Harvey and Lawson gave the following
alternative characterization of SL submanifolds.

PROPOSITION 2.4 ([5]). Let (M, J, ω,Ω) be a Calabi-Yau n-fold and L be a real n-
dimensional submanifold of M . Then L is a special Lagrangian submanifold of phase θ if
and only if ω|L ≡ 0 and Im(e

√−1θΩ)|L ≡ 0.

2.2. Stenzel metric on the cotangent bundle of the sphere. In [18], Stenzel con-
structed complete Ricci-flat Kähler metrics on the cotangent bundles of compact rank one
symmetric spaces. For our use, here we shall recall the Stenzel metric on the cotangent bun-
dle of the sphere. We describe the cotangent bundle of the n-sphere Sn ∼= SO(n + 1)/SO(n)

by
T ∗Sn = {(x, ξ) ∈ Rn+1 × Rn+1; ‖x‖ = 1, 〈x, ξ〉 = 0} .

We identify the tangent bundle and the cotangent bundle of Sn by the Riemannian metric on
Sn. Since any unit cotangent vector of Sn can be translated to another one, the Lie group
SO(n+1) acts on T ∗Sn with cohomogeneity one by g ·(x, ξ) = (gx, gξ) for g ∈ SO(n+1).
Let Qn be a complex quadric in Cn+1 defined by

Qn =
{
z = (z1, . . . , zn+1) ∈ Cn+1;

n+1∑
i=1

z2
i = 1

}
.

The Lie group SO(n + 1, C) acts on Qn transitively, hence Qn ∼= SO(n + 1, C)/SO(n, C).
According to Szöke [20], we can identify T ∗Sn with Qn by the diffeomorphism
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Φ : T ∗Sn −→ Qn

∈ ∈

(x, ξ) �−→ x cosh(‖ξ‖) + √−1
ξ

‖ξ‖ sinh(‖ξ‖) .

The diffeomorphism Φ is equivariant under the action of SO(n + 1). Thus we frequently
identify T ∗Sn with Qn. We give the complex structure on T ∗Sn by pulling back the com-
plex structure J of Qn via the map Φ. With respect to this complex structure, Stenzel [18]
constructed a complete Ricci-flat Kähler metric on Qn, whose Kähler form is given by

ωStz = √−1∂∂̄u(r2) = √−1
n+1∑
i,j=1

∂2

∂zi∂z̄j

u(r2)dzi ∧ dz̄j ,

where r2 = ‖z‖2 = ∑n+1
i=1 zi z̄i and u is a smooth real function satisfying the differential

equation

(2.2)
d

dt
(U ′(t))n = cn(sinh t)n−1 (c > 0) ,

where U(t) = u(cosh t). In the case of n = 2, the Stenzel metric coincides with the hy-
perkähler metric on T ∗S2 discovered by Eguchi and Hanson [4]. The Calabi-Yau metric on
Q3 ∼= T ∗S3 was first studied by Candelas and de la Ossa [2].

The Kähler form ωStz is exact and ωStz = dαStz for the 1-form αStz = −Im
(
∂̄u(r2)

)
.

We give the Liouville form α0 on Cn+1 by α0(v) = 〈Jz, v〉, where 〈 , 〉 and J are the
standard real inner product and complex structure on Cn+1, respectively. Then one can show
that αStz = u′(r2)α0. Hence αStz has the expression

αStz(v) = u′(r2)α0(v) = u′(r2)〈Jz, v〉 (v ∈ TzQ
n, z ∈ Qn) .

From this, ωStz can be evaluated as

ωStz(v,w) = dαStz(v,w)

= v(αStz(w)) − w(αStz(v)) − αStz([v,w])
= 2u′(r2)〈Jv,w〉 + 2u′′(r2)(〈z, v〉〈Jz,w〉 − 〈z,w〉〈Jz, v〉)

(2.3)

for v,w ∈ TzQ
n and z ∈ Qn.

The holomorphic (n, 0)-form ΩStz on Qn is given by

1

2
d(z2

1 + z2
2 + · · · + z2

n+1 − 1) ∧ ΩStz = Ω0 ,

where Ω0 = dz1 ∧ · · · ∧ dzn+1 is the standard holomorphic (n+ 1, 0)-form on Cn+1. We can
express ΩStz as

ΩStz(v1, . . . , vn) = Ω0(z, v1, . . . , vn)

and also

ΩStz(v1, . . . , vn) = 1

‖z‖2
Ω0(z̄, v1, . . . , vn) ,
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where v1, . . . , vn ∈ TzQ
n, z ∈ Qn and z = z1∂/∂z1 + · · · + zn+1∂/∂zn+1, z̄ = z̄1∂/∂z1 +

· · · + z̄n+1∂/∂zn+1.
Clearly the action of SO(n + 1) on Qn preserves J , ωStz and ΩStz. Moreover one can

show that there exists a constant λ ∈ R such that

ωn
Stz

n! = (−1)n(n−1)/2

(√−1

2

)n

λ2ΩStz ∧ Ω̄Stz .

Hence (T ∗Sn ∼= Qn, J, ωStz, λΩStz) is a cohomogeneity one Calabi-Yau manifold with re-
spect to the action of SO(n + 1).

2.3. Moment maps and Lagrangian submanifolds. Let (M,ω) be a symplectic
manifold, and G be a Lie group acting on M . We denote the Lie algebra of G by g. Let
X∗ denote the fundamental vector field of X ∈ g on M , i.e.,

X∗
x = d

dt

∣∣∣
t=0

exp(tX)x (x ∈ M) .

Now we suppose that the action of G on M is Hamiltonian with the moment map µ : M → g∗.
We define the center of g∗ to be Z(g∗) = {X ∈ g∗; Ad∗(g)X = X for all g ∈ G}. It is easy
to see that the inverse image µ−1(c) of c ∈ g∗ is G-invariant if and only if c ∈ Z(g∗).

PROPOSITION 2.5. Let L be a connected isotropic submanifold, i.e., ω|L ≡ 0, of M

invariant under the action of G. Then L ⊂ µ−1(c) for some c ∈ Z(g∗).

PROOF. For X ∈ g, we define a function µX on M by µX(x) = (µ(x))(X). Then,
from the definition of the moment map, µX is the Hamiltonian function of X∗. Since L is an
isotropic submanifold of M , we have

LY (µX) = dµX(Y ) = ω(X∗
x , Y ) = 0

for all X ∈ g, Y ∈ TxL and x ∈ L. Since L is connected, this implies that µX is constant on
L for all X ∈ g, hence µ : M → g∗ is also constant on L. Thus L ⊂ µ−1(c) for some c ∈ g∗.
Moreover, since L is G-invariant, we have c ∈ Z(g∗). �

PROPOSITION 2.6. Let L be a connected submanifold of M invariant under the action
of G. Suppose that the action of G on L is cohomogeneity one (possibly transitive). Then L

is an isotropic submanifold, i.e., ω|L ≡ 0, if and only if L ⊂ µ−1(c) for some c ∈ Z(g∗).

PROOF. By Proposition 2.5, we know that L ⊂ µ−1(c) for some c ∈ Z(g∗) if L is
isotropic. So it suffices to prove the converse.

Suppose that L ⊂ µ−1(c) for some c ∈ Z(g∗). This means that µ is constant on L, so
µX is also constant on L for all X ∈ g. Therefore

ω(X∗
x, Y ) = LY (µX) = 0

for all X ∈ g, Y ∈ TxL and x ∈ L. Let x ∈ L be a regular point of the action of G on
L. It is known that the set of regular points is open dense in L. Since the action of G on L

is cohomogeneity one, if we take Y1 ∈ TxL which is transverse to the orbit of G at x, then
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TxL = span{X∗
x, Y1; X ∈ g}. Therefore ω|TxL ≡ 0. Since ω vanishes on an open dense

subset of L, it vanishes on L entirely. Thus L is isotropic. �

3. Construction of cohomogeneity one special Lagrangian submanifolds in T ∗Sn.
In this section we shall construct cohomogeneity one special Lagrangian submanifolds in
T ∗Sn with respect to the Stenzel metric, using the moment map technique. Since the zero-
section Sn of T ∗Sn is a Lagrangian submanifold, a hypersurface N in Sn is an (n − 1)-
dimensional isotropic submanifold in T ∗Sn. In particular when N is homogeneous, evolving it
to an n-dimensional submanifold in T ∗Sn, we can construct a cohomogeneity one Lagrangian
submanifold. For such a Lagrangian submanifold, the condition to be special Lagrangian can
be described by an ordinary differential equation.

Let G be a compact Lie subgroup of SO(n+ 1) and g its Lie algebra. Then the action of
G on Qn is Hamiltonian, and its moment map µ : Qn → g∗ is given by

(3.1) (µ(z))(X) = µX(z) = αStz(X
∗
z ) = αStz(Xz) = u′(r2)〈Jz,Xz〉 (z ∈ Qn,X ∈ g) .

In this paper we shall study special Lagrangian submanifolds invariant under

G =
(

SO(p) O

O SO(q)

)
∼= SO(p) × SO(q) (p + q = n + 1, 1 ≤ p ≤ q ≤ n) .

In this case, the G-action on Sn is cohomogeneity one, and its principal orbits are diffeomor-
phic to Sp−1 × Sq−1. Let us take

Xij = Eji − Eij ∈ so(n + 1) ,

where Eij denotes the (n + 1) × (n + 1)-matrix whose (i, j)-component is 1 and all others
are 0. Then

{Xij ; 1 ≤ i < j ≤ p} ∪ {Xij ; p + 1 ≤ i < j ≤ n + 1}
forms a basis of the Lie algebra g = so(p) ⊕ so(q) of G. We denote by {θij } the dual basis of
{Xij }. Then the moment map µ : Qn → g∗ of the G-action on Qn can be expressed as

µ(z) =
∑
i,j

µij (z)θij ,

where µij is defined by µij (z) = µXij (z) = (µ(z))(Xij ) and the summation is over 1 ≤ i <

j ≤ p and p + 1 ≤ i < j ≤ n + 1. From (3.1) we have

µij (z) = u′(r2)〈Jz,Xij z〉 = 2u′(r2)Im(zi z̄j ) .

Thus, using the basis {θij } of g∗, the moment map µ : Qn → g∗ of the G-action on Qn can
be evaluated as

µ(z) = 2u′(r2)(Im(zi z̄j )1≤i<j≤p , Im(zi z̄j )p+1≤i<j≤n+1) .

From Proposition 2.6, a Lagrangian submanifold of Qn invariant under G should be
contained in µ−1(c) for some c ∈ Z(g∗). In the case of p = 2 or q = 2, since SO(2) is
abelian, g∗ has the non-trivial center. In the case of p = 1, the orbit space of the G-action
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on the zero-section Sn is different from the case of p ≥ 2. Therefore we shall discuss the
following five cases individually.

(1) 3 ≤ p ≤ q, (2) p = 1, q ≥ 3, (3) p = 2, q ≥ 3, (4) p = q = 2, (5) p = 1, q = 2 .

In the case of p = 1, we have SL submanifolds invariant under SO(n), which were first
studied by Anciaux [1]. Ionel and Min-Oo [9] investigated SL submanifolds in Q3 invariant
under SO(2) × SO(2) or SO(3).

3.1. The case of 3 ≤ p ≤ q . We give a parametrization of the orbit space of the
action of G = SO(p) × SO(q) on T ∗Sn = {(x, ξ) ∈ Rn+1 × Rn+1; ‖x‖ = 1, 〈x, ξ〉 = 0}.
First, x ∈ Sn can be moved to

x = (
(1)

cos t , 0, . . . , 0,
(p+1)

sin t , 0, . . . , 0) (t ∈ R)

by the action of G. Furthermore ξ ∈ T ∗
x Sn can be moved to

ξ = (
(1)

−ξ1 sin t ,
(2)

ξ 2, 0, . . . , 0,
(p+1)

ξ1 cos t,
(p+2)

ξ3 , 0, . . . , 0) (ξ1, ξ2, ξ3 ∈ R)

by the action of the isotropy subgroup Gx = {g ∈ G; g · x = x} at x. Therefore we define a
subset Σ of T ∗Sn by

Σ =
{
(x, ξ) ; x = (cos t, 0, . . . , 0, sin t, 0, . . . , 0)

ξ = (−ξ1 sin t, ξ2, 0, . . . , 0, ξ1 cos t, ξ3, 0, . . . , 0)

}
.

Then every G-orbit in T ∗Sn meets Σ , i.e., G · Σ = T ∗Sn.
In this case, the center of g∗ is Z(g∗) = {0}. We determine the subset µ−1(0) ∩ Φ(Σ)

of Qn. Now z = Φ(x, ξ) ∈ Φ(Σ) can be expressed as

z =
(

cos t cosh ρ − √−1
ξ1 sin t

ρ
sinh ρ,

√−1
ξ2

ρ
sinh ρ, 0, . . . , 0,

sin t cosh ρ + √−1
ξ1 cos t

ρ
sinh ρ,

√−1
ξ3

ρ
sinh ρ, 0, . . . , 0

)
,

where ρ = ‖ξ‖ =
√

ξ2
1 + ξ2

2 + ξ2
3 . Then µ(z) = 0 if and only if

0 = Im(z1z̄2) = −ξ2

ρ
cos t sinh ρ cosh ρ ,

0 = Im(zp+1z̄p+2) = −ξ3

ρ
sin t sinh ρ cosh ρ .

So we have ξ2 = ξ3 = 0, hence

z = (
cos(t + √−1ξ1), 0, . . . , 0, sin(t + √−1ξ1), 0, . . . , 0

)
.

Consequently, we obtain

µ−1(0) ∩ Φ(Σ) = {
(cos τ, 0, . . . , 0, sin τ, 0, . . . , 0) ; τ = t + √−1ξ1 (t, ξ1 ∈ R)

}
.

Since µ−1(0) is G-invariant, we have

µ−1(0) = G · (µ−1(0) ∩ Φ(Σ)) .
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Thus the orbit space µ−1(0)/G of the G-action on µ−1(0) is parametrized by t and ξ1.

REMARK 3.1. The (t, ξ1)-plane can be regarded as the covering space of the orbit
space µ−1(0)/G. In fact, we can take t ∈ [0, π/2], and µ−1(0)/G ∼= C/(Z × Z2 × Z2),
where the action of Z on C is the parallel translation of period 2π and the actions of Z2 are
reflections across the points (t, ξ1) = (0, 0) and (π/2, 0), respectively. Principal orbits of
the G-action on µ−1(0) are diffeomorphic to Sp−1 × Sq−1. There are two singular orbits
Sp−1 and Sq−1 at (t, ξ1) = (0, 0) and (π/2, 0), respectively. This implies that the orbit space
µ−1(0)/G is an orbifold with two singular points. (See Figures in Example 5.3.)

THEOREM 3.2. Let τ be a regular curve in the complex plane C. We define a curve σ

in µ−1(0) ∩ Φ(Σ) by

σ(s) = (cos τ (s), 0, . . . , 0, sin τ (s), 0, . . . , 0) .

Then the G-orbit L = G · σ through σ is a Lagrangian submanifold (possibly with
singularities) in Qn. Moreover, the smooth part of L is a special Lagrangian submanifold
of phase θ if and only if there exists a constant c ∈ R such that τ satisfies

(3.2) Im

(
e
√−1θ

∫ τ (s)

0
(cos w)p−1(sin w)q−1dw

)
= c .

PROOF. Since L = G ·σ is a cohomogeneity one (possibly homogeneous) submanifold
of dimension n contained in µ−1(0), it follows from Proposition 2.6 that L is a Lagrangian
submanifold in Qn. We look for σ such that L is a special Lagrangian submanifold in Qn.
We take a basis of the tangent space Tσ(s)L of L at σ(s) as follows:

X∗
1,2 = X1,2σ(s) = (0,

(2)

cos τ (s), 0, . . . , 0) ,

...

X∗
1,p = X1,pσ (s) = (0, . . . , 0,

(p)

cos τ (s), 0, . . . , 0) ,

X∗
p+1,p+2 = Xp+1,p+2σ(s) = (0, . . . , 0,

(p+2)

sin τ (s), 0, . . . , 0) ,

...

X∗
p+1,n+1 = Xp+1,n+1σ(s) = (0, . . . , 0,

(n+1)

sin τ (s)) ,

σ ′(s) = (
(1)

−τ ′(s) sin τ (s), 0, . . . , 0 ,
(p+1)

τ ′(s) cos τ (s), 0, . . . , 0) .

Then we have

ΩStz(X
∗
1,2, . . . , X

∗
1,p, σ ′(s),X∗

p+1,p+2, . . . , X
∗
p+1,n+1)

= (dz1 ∧ dz2 ∧ · · · ∧ dzn+1)(σ (s),X∗
1,2, . . . , X

∗
1,p, σ ′(s),X∗

p+1,p+2, . . . , X
∗
p+1,n+1)
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=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

cos τ (s) 0 · · · 0 −τ ′(s) sin τ (s) 0 · · · 0

0 cos τ (s)
... 0

...
...

... 0
. . . 0

...
...

...

0
... cos τ (s) 0

...
...

sin τ (s)
... 0 τ ′(s) cos τ (s) 0

...

0
...

... 0 sin τ (s)
...

...
...

...
... 0

. . . 0
0 0 . . . 0 0 0 0 sin τ (s)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= τ ′(s)(cos τ (s))p−1(sin τ (s))q−1 .

Thus L is a special Lagrangian submanifold of phase θ if and only if τ satisfies

(3.3) Im
(
e
√−1θ τ ′(s)(cos τ (s))p−1(sin τ (s))q−1) = 0 .

This condition is equivalent to (3.2) for some c ∈ R. �

For a curve τ in the complex plane C, L coincides with the image of the map

Ψ : I × Sp−1 × Sq−1 −→ Qn

∈ ∈

(s, x, y) �−→ (cos τ (s)x1, . . . , cos τ (s)xp, sin τ (s)y1, . . . , sin τ (s)yq) .

Here I is an open interval in R. When τ passes through mπ/2 (m ∈ Z), the map Ψ degenerates
at that point. If τ does not pass through mπ/2 (m ∈ Z), then L is diffeomorphic to I ×Sp−1 ×
Sq−1 and immersed in Qn by the map Ψ . (See Figures in Example 5.3.)

3.2. The case of p = 1, q ≥ 3. The orbit space of the action of

G =
(

1 O

O SO(n)

)
∼= SO(n)

on T ∗Sn is parametrized as

Σ =
{
(x, ξ) ; x = (cos t, sin t, 0, . . . , 0)

ξ = (−ξ1 sin t, ξ1 cos t, ξ2, 0, . . . , 0)

}
.

Then every G-orbit in T ∗Sn meets Σ , i.e., G · Σ = T ∗Sn.
In this case, the center of g∗ is Z(g∗) = {0}. For z = Φ(x, ξ) ∈ Φ(Σ), the equality

µ(z) = 0 is satisfied if and only if ξ2 = 0. So we have

µ−1(0) ∩ Φ(Σ) =
{
(cos τ, sin τ, 0, . . . , 0) ; τ = t + √−1ξ1 (t, ξ1 ∈ R)

}
,

and

µ−1(0) = G · (µ−1(0) ∩ Φ(Σ)) .

Thus the orbit space µ−1(0)/G of the G-action on µ−1(0) is parametrized by t and ξ1.
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REMARK 3.3. In this case, we can take t ∈ [0, π], and µ−1(0)/G ∼= C/(Z × Z2).
Principal orbits of the G-action on µ−1(0) are diffeomorphic to Sn−1. There are two singular
orbits at (t, ξ1) = (0, 0) and (π, 0), that is, fixed orbits at the north pole and the south pole of
the zero-section Sn. Thus the orbit space µ−1(0)/G is an orbifold with two singular points.
(See Figures in Example 5.5.)

THEOREM 3.4. Let τ be a regular curve in the complex plane C. We define a curve σ

in µ−1(0) ∩ Φ(Σ) by

σ(s) = (cos τ (s), sin τ (s), 0, . . . , 0) .

Then the G-orbit L = G · σ through σ is a Lagrangian submanifold (possibly with
singularities) in Qn. Moreover, the smooth part of L is a special Lagrangian submanifold
of phase θ if and only if there exists a constant c ∈ R such that τ satisfies

(3.4) Im

(
e
√−1θ

∫ τ (s)

0
(sin w)n−1dw

)
= c .

PROOF. Similarly to Theorem 3.2, we can see that L is a special Lagrangian submani-
fold of phase θ if and only if τ satisfies

(3.5) Im
(
e
√−1θ τ ′(s)(sin τ (s))n−1) = 0 .

This condition is equivalent to (3.4) for some c ∈ R. �

For a curve τ in the complex plane C, L coincides with the image of the map

Ψ : I × Sn−1 −→ Qn

∈ ∈

(s, y) �−→ (cos τ (s), sin τ (s)y1, . . . , sin τ (s)yn) .

When τ passes through mπ (m ∈ Z), the map Ψ degenerates at that point. If τ does not
pass through mπ (m ∈ Z), then L is diffeomorphic to I × Sn−1 immersed in Qn by Ψ . (See
Figures in Example 5.5.)

3.3. The case of p = 2, q ≥ 3. The orbit space of the action of

G =
(

SO(2) O

O SO(n − 1)

)
∼= SO(2) × SO(n − 1)

on T ∗Sn is parametrized as

Σ =
{
(x, ξ) ; x = (cos t, 0, sin t, 0, . . . , 0)

ξ = (−ξ1 sin t, ξ2, ξ1 cos t, ξ3, 0, . . . , 0)

}
.

Then every G-orbit in T ∗Sn meets Σ , i.e., G · Σ = T ∗Sn.
In this case, the center of g∗ is Z(g∗) = Rθ12. For c1 ∈ R, we determine the subset

µ−1(c1θ12) ∩ Φ(Σ) of Qn. For z = Φ(x, ξ) ∈ Φ(Σ), the equality µ(z) = c1θ12 is satisfied
if and only if

c1 = 2u′(r2)Im(z1z̄2) = −2u′(cosh(2ρ))
ξ2

ρ
cos t sinh ρ cosh ρ ,
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0 = Im(z3z̄4) = −ξ3

ρ
sin t sinh ρ cosh ρ ,

where ρ = ‖ξ‖ =
√

ξ2
1 + ξ2

2 + ξ2
3 . Thus ξ3 = 0 and we obtain

Φ−1(µ−1(c1θ12)) ∩ Σ =

(x, ξ) ;

x = (cos t, 0, sin t, 0, . . . , 0)

ξ = (−ξ1 sin t, ξ2, ξ1 cos t, 0, . . . , 0)

c1 = −u′(cosh(2ρ))(ξ2/ρ) cos t sinh(2ρ)


 .

Since µ−1(c1θ12) is G-invariant, we have

µ−1(c1θ12) = G · (µ−1(c1θ12) ∩ Φ(Σ)) .

THEOREM 3.5. Let σ be a regular curve in µ−1(c1θ12) ∩ Φ(Σ). We express σ as

σ(s) = (z1(s), z2(s), z3(s), 0, . . . , 0) .

Then the G-orbit L = G · σ through σ is a Lagrangian submanifold (possibly with
singularities) in Qn. Moreover, the smooth part of L is a special Lagrangian submanifold
of phase θ if and only if there exists a constant c2 ∈ R such that σ satisfies

(3.6) Im
(
e
√−1θ z3(s)

n−1) = c2 .

PROOF. Since L = G ·σ is a cohomogeneity one submanifold contained in µ−1(c1θ12),
it follows from Proposition 2.6 that L is a Lagrangian submanifold in Qn. We look for σ such
that L is a special Lagrangian submanifold in Qn. We take a basis of the tangent space Tσ(s)L

of L at σ(s) as follows:

X∗
12 = X12σ(s) = (−z2(s), z1(s), 0, . . . , 0) ,

X∗
34 = X34σ(s) = (0, 0, 0, z3(s), 0, . . . , 0) ,

...

X∗
3,n+1 = X3,n+1σ(s) = (0, . . . , 0, z3(s)) ,

σ ′(s) = (z′
1(s), z

′
2(s), z

′
3(s), 0, . . . , 0) .

Since z is in Qn, we note

z1(s)
2 + z2(s)

2 + z3(s)
2 = 1 ,

z1(s)z
′
1(s) + z2(s)z

′
2(s) + z3(s)z

′
3(s) = 0 .

Using these equalities, we have

ΩStz(X
∗
12, σ

′(s),X∗
34, . . . , X

∗
3,n+1)

= (dz1 ∧ dz2 ∧ · · · ∧ dzn+1)(σ (s),X∗
12, σ

′(s),X∗
34, . . . , X

∗
3,n+1)
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=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

z1(s) −z2(s) z′
1(s) 0 · · · 0

z2(s) z1(s) z′
2(s) 0 · · · 0

z3(s) 0 z′
3(s) 0 · · · 0

0
... 0 z3(s)

...
...

...
...

. . . 0
0 0 0 · · · 0 z3(s)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= z3(s)

n−2z′
3(s) .

Therefore L is a special Lagrangian submanifold of phase θ in Qn if and only if σ satisfies

Im
(
e
√−1θ z3(s)

n−2z′
3(s)

) = 0 .

This condition is equivalent to (3.6) for some c2 ∈ R. �

For a curve σ in µ−1(c1θ12) ∩ Φ(Σ), L coincides with the image of the map

Ψ : I × S1 × Sn−2 −→ Qn

∈ ∈

(s, x, y) �−→ (z1(s)x1 − z2(s)x2, z1(s)x2 + z2(s)x1, z3(s)y1, . . . , z3(s)yn−1) .

When σ passes through z = (± cosh(ξ2),
√−1 sinh(ξ2), 0, . . . , 0) or z = (0, 0,±1, 0, . . . ,

0), the map Ψ degenerates at that point. If σ does not pass through the points of singular
orbits, L is diffeomorphic to I × S1 × Sn−2 and immersed in Qn by Ψ .

3.4. The case of p = q = 2. The orbit space of the action of

G =
(

SO(2) O

O SO(2)

)
∼= SO(2) × SO(2)

on T ∗S3 is parametrized as

Σ =
{
(x, ξ) ; x = (cos t, 0, sin t, 0)

ξ = (−ξ1 sin t, ξ2, ξ1 cos t, ξ3)

}
.

Then every G-orbit in T ∗S3 meets Σ , i.e., G · Σ = T ∗S3.
In this case, the center of g∗ is Z(g∗) = Rθ12 +Rθ34 = g∗. For c1, c2 ∈ R, we can verify

Φ−1(µ−1(c1θ12 + c2θ34)) ∩ Σ =


(x, ξ) ;

x = (cos t, 0, sin t, 0)

ξ = (−ξ1 sin t, ξ2, ξ1 cos t, ξ3)

c1 = −u′(cosh(2ρ))(ξ2/ρ) cos t sinh(2ρ)

c2 = −u′(cosh(2ρ))(ξ3/ρ) sin t sinh(2ρ)


 ,

and

µ−1(c1θ12 + c2θ34) = G · (µ−1(c1θ12 + c2θ34) ∩ Φ(Σ)) .

THEOREM 3.6. Let σ be a regular curve in µ−1(c1θ12 + c2θ34) ∩ Φ(Σ). We express
σ as

σ(s) = (z1(s), z2(s), z3(s), z4(s)) .
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Then the G-orbit L = G · σ through σ is a Lagrangian submanifold (possibly with
singularities) in Q3. Moreover, the smooth part of L is a special Lagrangian submanifold
of phase θ if and only if there exists a constant c3 ∈ R such that σ satisfies

(3.7) Im
(
e
√−1θ (z1(s)

2 + z2(s)
2)
) = c3 .

PROOF. The proof is similar to the previous theorem. We take a basis of the tangent
space Tσ(s)L of L at σ(s) as follows:

X∗
12 = X12σ(s) = (−z2(s), z1(s), 0, 0) ,

X∗
34 = X34σ(s) = (0, 0,−z4(s), z3(s)) ,

σ ′(s) = (z′
1(s), z

′
2(s), z

′
3(s), z

′
4(s)) .

Then we have

ΩStz(X
∗
12,X

∗
34, σ

′(s)) = (dz1 ∧ dz2 ∧ dz3 ∧ dz4)(σ (s),X∗
12,X

∗
34, σ

′(s))

=

∣∣∣∣∣∣∣∣
z1(s) −z2(s) 0 z′

1(s)

z2(s) z1(s) 0 z′
2(s)

z3(s) 0 −z4(s) z′
3(s)

z4(s) 0 z3(s) z′
4(s)

∣∣∣∣∣∣∣∣
= z1(s)z

′
1(s) + z2(s)z

′
2(s) .

Therefore L is a special Lagrangian submanifold of phase θ in Q3 if and only if

Im
(
e
√−1θ (z1(s)z

′
1(s) + z2(s)z

′
2(s))

) = 0 .

This condition is equivalent to (3.7) for some c3 ∈ R. �

REMARK 3.7. Since G = SO(2) × SO(2) is abelian and Z(g∗) = g∗, arbitrary z ∈
Q3 lies in µ−1(c1θ12 + c2θ34) for some c1, c2 ∈ R. Furthermore, z ∈ Q3 satisfies (3.7) for
some c3 ∈ R. This yields that, for a fixed θ , the family of special Lagrangian submanifolds,
which is constructed in Theorem 3.6, gives a foliation of T ∗S3 ∼= Q3 with singular leaves.

For a curve σ in µ−1(c1θ12 + c2θ34) ∩ Φ(Σ), L coincides with the image of the map

Ψ : I × S1 × S1 −→ Q3

∈ ∈

(s, x, y) �−→ (z1(s)x1 − z2(s)x2, z1(s)x2 + z2(s)x1 ,

z3(s)y1 − z4(s)y2, z3(s)y2 + z4(s)y1) .

When σ passes through z = (± cosh(ξ2),
√−1 sinh(ξ2), 0, 0) or (0, 0,± cosh(ξ3),√−1 sinh(ξ3)), the map Ψ degenerates at that point. If σ does not pass through the points

of singular orbits, then L is diffeomorphic to I × S1 × S1 and immersed in Q3 by Ψ .
3.5. The case of p = 1, q = 2. The orbit space of the action of

G =
(

1 O

O SO(2)

)
∼= SO(2)
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on T ∗S2 is parametrized as

Σ =
{
(x, ξ) ; x = (cos t, sin t, 0)

ξ = (−ξ1 sin t, ξ1 cos t, ξ2)

}
.

Then every G-orbit in T ∗S2 meets Σ , i.e., G · Σ = T ∗S2.
In this case, the center of g∗ is Z(g∗) = Rθ23 = g∗. For c1 ∈ R, we can verify

Φ−1(µ−1(c1θ23)) ∩ Σ =

(x, ξ) ;

x = (cos t, sin t, 0)

ξ = (−ξ1 sin t, ξ1 cos t, ξ2)

c1 = −u′(cosh(2ρ))(ξ2/ρ) sin t sinh(2ρ)


 ,

and

µ−1(c1θ23) = G · (µ−1(c1θ23) ∩ Φ(Σ)) .

THEOREM 3.8. Let σ be a regular curve in µ−1(c1θ23) ∩ Φ(Σ). We express σ as

σ(s) = (z1(s), z2(s), z3(s)) .

Then the G-orbit L = G · σ through σ is a Lagrangian submanifold (possibly with
singularities) in Q2. Moreover, the smooth part of L is a special Lagrangian submanifold
of phase θ if and only if there exists a constant c2 ∈ R such that σ satisfies

(3.8) Im
(
e
√−1θ z1(s)

) = c2 .

PROOF. The proof is similar to the previous theorems. �

REMARK 3.9. Since G = SO(2) is abelian and Z(g∗) = g∗, for a fixed θ , the family
of special Lagrangian submanifolds, which is constructed in Theorem 3.8, gives a foliation of
T ∗S2 ∼= Q2 with singular leaves.

For a curve σ in µ−1(c1θ23) ∩ Φ(Σ), L coincides with the image of the map

Ψ : I × S1 −→ Q2

∈ ∈

(s, y) �−→ (z1(s), z2(s)y1 − z3(s)y2, z2(s)y2 + z3(s)y1) .

When σ passes through z = (±1, 0, 0), the map Ψ degenerates at that point. If σ does not
pass through z = (±1, 0, 0), then L is diffeomorphic to I × S1 and immersed in Q2 by Ψ .

3.6. Conormal bundle special Lagrangian submanifolds. Harvey and Lawson [5]
introduced the notion of austere submanifolds in order to construct special Lagrangian sub-
manifolds in T ∗Rn ∼= Cn as the conormal bundles of submanifolds in Rn. A submanifold M

of a Riemannian manifold M̃ is said to be austere if the set of eigenvalues of the shape op-
erator of M is invariant under the multiplication by −1 concerning the multiplicities. Clearly
an austere submanifold is minimal. As a generalization of Harvey and Lawson’s construction,
Karigiannis and Min-Oo proved the following theorem.

THEOREM 3.10 ([17]). The conormal bundle N∗M of a submanifold M ⊂ Sn is spe-
cial Lagrangian in T ∗Sn equipped with the Stenzel metric if and only if M is austere in Sn.
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In [8], we determined all austere orbits of the isotropy representations of irreducible
symmetric spaces of compact type. All austere orbits of the action of SO(p) × SO(q) (p +
q = n + 1) on Sn are the following (in this situation, however, the symmetric space is not
irreducible).

(1) When p = q , a minimal principal orbit of the action of SO(p) × SO(p) on Sn,
that is called a minimal Clifford hypersurface Sp−1(1/

√
2) × Sp−1(1/

√
2) ⊂ Sn(1).

(2) When p = 1, a minimal principal orbit of the action of SO(1) × SO(n) on Sn,
that is a totally geodesic hypersphere Sn−1(1) ⊂ Sn(1).

(3) Singular orbits of the action of SO(p) × SO(q) on Sn, that are totally geodesic
spheres Sp−1(1) ⊂ Sn(1) and Sq−1(1) ⊂ Sn(1).

From Theorem 3.10, the conormal bundles of the above austere orbits are special La-
grangian in T ∗Sn. In fact, we can describe these SL submanifolds by the construction we
gave in this section.

(1) Let τ (s) = π/4 + √−1s and define a curve σ in µ−1(0) ∩ Φ(Σ) by

σ(s) = (
(1)

cos τ (s), 0, . . . , 0,
(p+1)

sin τ (s), 0, . . . , 0) .

Then the orbit L = G · σ of the action of G = SO(p) × SO(p) through σ is the conormal
bundle of a minimal Clifford hypersurface in Qn ∼= T ∗Sn. In fact, τ satisfies (3.3) for θ =
π/2, hence L is an SL submanifold of phase π/2 in Qn.

(2) Let τ (s) = π/2 + √−1s and define a curve σ in µ−1(0) ∩ Φ(Σ) by

σ(s) = (cos τ (s), sin τ (s), 0, . . . , 0) .

Then the orbit L = G · σ of the action of SO(1) × SO(n) through σ is the conormal bundle
of a totally geodesic hypersphere in Qn ∼= T ∗Sn. In fact, τ satisfies (3.5) for θ = π/2, hence
L is an SL submanifold of phase π/2 in Qn.

(3) Let τ (s) = 0 + √−1s and define a curve σ in µ−1(0) ∩ Φ(Σ) by

σ(s) = (
(1)

cos τ (s), 0, . . . , 0,
(p+1)

sin τ (s), 0, . . . , 0) .

Then the orbit L = G · σ of the action of SO(p) × SO(q) through σ is the conormal bundle
of a totally geodesic sphere Sp−1 in Qn ∼= T ∗Sn. In fact, when q is even (resp. odd), L is an
SL submanifold of phase 0 (resp. π/2) in Qn.

4. Ricci-flat Kähler metric and special Lagrangian submanifolds in the complex
cone. We define the complex cone Qn

0 in Cn+1 by

Qn
0 =

{
z = (z1, . . . , zn+1) ∈ Cn+1;

n+1∑
i=1

z2
i = 0

}
.

Qn
0 has a (unique) singularity at the origin of Cn+1. As r = ‖z‖ tends to ∞, Qn is asymptotic

to Qn
0 in Cn+1. In this section, we give a (singular) Ricci-flat Kähler metric on Qn

0 as the limit
of the Stenzel metric on Qn.
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The holomorphic (n, 0)-form Ωcone on Qn
0 is given by

1

2
d(z2

1 + · · · + z2
n+1) ∧ Ωcone = Ω0 .

We can express Ωcone as

Ωcone(v1, . . . , vn) = 1

‖z‖2
(dz1 ∧ · · · ∧ dzn+1)(z̄, v1, . . . , vn)

for v1, . . . , vn ∈ TzQ
n and z ∈ Qn.

As t → ∞, the differential equation (2.2) is asymptotic to

d

dt
(F ′(t))n =

(
1

2

)n−1

ncet(n−1) (c > 0) .

Then

F(t) =
(

1

2

)(n−1)/n(
n

n − 1

)(n+1)/n

c1/ne(n−1)t/n

is a solution of the above differential equation. Since cosh t → (1/2)et as t → ∞, we define
a function f as F(t) = f ((1/2)et). Then we have

f (t) =
(

n

n − 1

)(n+1)/n

c1/nt(n−1)/n .

PROPOSITION 4.1. Let fcone(t) = c t(n−1)/n (c > 0) and define a Kähler form ωcone

on Qn
0 by

ωcone = √−1∂∂̄fcone(r
2) = √−1

n+1∑
i,j=1

∂2

∂zi∂z̄j

fcone(r
2)dzi ∧ dz̄j .

Then ωcone gives a Ricci-flat Kähler metric on Qn
0 .

REMARK 4.2. When n = 3, the above Kähler metric coincides with the the Ricci-flat
metric on Q3

0 due to Candelas and de la Ossa [2].

PROOF OF PROPOSITION 4.1. Henceforth we write f for fcone. In a way similar to
(2.3), we can evaluate

ωcone(v,w) = 2f ′(r2)〈Jv,w〉 + 2f ′′(r2)(〈v, z〉〈Jz,w〉 − 〈w, z〉〈Jz, v〉)
for v,w ∈ TzQ

n
0, z ∈ Qn

0. From this, it follows

ωcone(v, w̄) = 2
√−1

(
f ′(r2)(v,w) + 2f ′′(r2)(v, z)(z,w)

)
,

where ( , ) is the standard Hermitian inner product on Cn+1.
Now we show that there exists a constant λ ∈ R such that

(4.1)
ωn

cone

n! = (−1)n(n−1)/2

(√−1

2

)n

λΩcone ∧ Ω̄cone .
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Let v1, . . . , vn be a basis of TzQ
n
0 which satisfies (vi , vj ) = δij , and θ1, . . . , θn be its dual

basis. Using this basis, we can express ωcone as

ωcone =
n∑

i,j=1

ωij θi ∧ θ̄j ,

where

ωij = ωcone(vi , v̄j ) = 2
√−1

(
f ′(r2)δij + 2f ′′(r2)(vi , z)(z, vj )

)
.

Then the left-hand side of (4.1) is

ωn
cone

n! = (−1)n(n−1)/2 det(ωij )θ1 ∧ · · · ∧ θn ∧ θ̄1 ∧ · · · ∧ θ̄n .

Here we can compute

(4.2)
det(ωij ) = (2

√−1)n(f ′(r2))n
(

1 + 2
f ′′(r2)

f ′(r2)
(|(v1, z)|2 + · · · + |(vn, z)|2t)

)

= (2
√−1)n

(
c(n − 1)

n

)n(
n − 2

n

)
1

r2
.

On the other hand, Ωcone can be computed as follows:

Ωcone(v1, . . . , vn) = 1

‖z‖2 (dz1 ∧ · · · ∧ dzn+1)(z̄, v1, . . . , vn)

= 1

‖z‖ det

(
z̄

‖z‖ , v1, . . . , vn

)
.

Here z̄ is orthogonal to v1, . . . , vn with respect to the Hermitian inner product, since z ∈ Qn
0.

Therefore z̄/‖z‖, v1, . . . , vn forms a unitary basis of Cn+1. Hence we have

(4.3) Ωcone ∧ Ω̄cone(v1, . . . , vn, v̄1, . . . , v̄n) = 1

‖z‖2 = 1

r2 .

From (4.2) and (4.3), consequently we obtain

ωn
cone

n! = (−1)n(n−1)/2

(√−1

2

)n (
4c(n − 1)

n

)n (
n − 2

n

)
Ωcone ∧ Ω̄cone .

Thus (Qn
0, J, ωcone,Ωcone) is Calabi-Yau, hence it is Ricci-flat. �

We shall construct cohomogeneity one special Lagrangian submanifolds in Qn
0 in a way

similar to the previous section, using the moment map technique.
Let T ◦Sn denote the subset of T ∗Sn excluding the zero-section. Then we can identify

T ◦Sn and Qn
0\{0} by the diffeomorphism (see [21])

Π : T ◦Sn −→ Qn
0 \ {0}

∈ ∈

(x, ξ) �−→ ‖ξ‖x + √−1ξ .

The diffeomorphism Π is equivariant under the action of SO(n + 1).
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Here we consider a Lie subgroup

G =
(

SO(p) O

O SO(q)

)
∼= SO(p) × SO(q) (p + q = n + 1, 1 ≤ p ≤ q ≤ n)

of SO(n + 1). The action of G on Qn
0 is Hamiltonian, and its moment map µ : Qn

0 → g∗ can
be expressed as

µ(z) = 2f ′(r2)(Im(zi z̄j )1≤i<j≤p, Im(zi z̄j )p+1≤i<j≤n+1)

using the basis {θij } of g∗.
From Proposition 2.6, an SL submanifold of Qn

0 invariant under G should be contained
in the inverse image µ−1(c) of some c ∈ Z(g∗). Although we should discuss each type of
the center Z(g∗) individually, here we shall work on the generic case, 3 ≤ p ≤ q . For other
cases, we can study in a way similar to the previous section.

4.1. The case of 3 ≤ p ≤ q . The orbit space of the action of G = SO(p) × SO(q)

on T ◦Sn is parametrized as

Σ =

(x, ξ) ;

x = (cos t, 0, . . . , 0, sin t, 0, . . . , 0)

ξ = (−ξ1 sin t, ξ2, 0, . . . , 0, ξ1 cos t, ξ3, 0, . . . , 0)

(ξ1, ξ2, ξ3) �= (0, 0, 0)


 .

Then every G-orbit in T ◦Sn meets Σ , i.e., G · Σ = T ◦Sn.
In this case, the center of g∗ is Z(g∗) = {0}. We determine the subset µ−1(0) ∩ Π(Σ)

of Qn
0. Now z ∈ Π(x, ξ) ∈ Π(Σ) can be expressed as

z = (ρ cos t − √−1ξ1 sin t,
√−1ξ2, 0, . . . , 0, ρ sin t + √−1ξ1 cos t,

√−1ξ3, 0, . . . , 0) ,

where ρ = ‖ξ‖ =
√

ξ2
1 + ξ2

2 + ξ2
3 . Then µ(z) = 0 if and only if

0 = Im(z1z̄2) = −ξ2ρ cos t ,

0 = Im(zp+1z̄p+2) = −ξ3ρ sin t .

Thus ξ2 = ξ3 = 0 and we obtain

µ−1(0) ∩ Π(Σ)

= {(|ξ1| cos t − √−1ξ1 sin t, 0, . . . , 0, |ξ1| sin t + √−1ξ1 cos t, 0, . . . , 0
) ; ξ1 �= 0

}
.

Since µ−1(0) is G-invariant, we have

µ−1(0) = G · (µ−1(0) ∩ Π(Σ)) .

Thus the orbit space µ−1(0)/G of the G-action on µ−1(0) is parametrized by t and ξ1.

PROPOSITION 4.3. Let σ be a curve in µ−1(0) ∩ Π(Σ). We express σ as

σ(s) = (z1(s), 0, . . . , 0, zp+1(s), 0, . . . , 0) .

Then the G-orbit L = G · σ through σ is a Lagrangian submanifold in Qn
0 . Moreover, L is

a special Lagrangian submanifold of phase θ if and only if there exists a constant c ∈ R such
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that σ satisfies

(4.4) Im
(
e
√−1θ (−1)q/2z1(s)

n−1) = c .

PROOF. Since L = G·σ is a cohomogeneity one submanifold of dimension n contained
in µ−1(0), it follows from Proposition 2.6 that L is a Lagrangian submanifold in Qn

0. We look
for σ such that L is an SL submanifold in Qn

0. Since σ(s) ∈ Qn
0, we note

z2
1(s) + z2

p+1(s) = 0 ,

z1(s)z
′
1(s) + zp+1(s)z

′
p+1(s) = 0 .

We take a basis of the tangent space Tσ(s)L of L at σ(s) as follows:

X∗
1,2 = X1,2σ(s) = (0,

(2)

z1(s), 0, . . . , 0) ,

...

X∗
1,p = X1,pσ (s) = (0, . . . , 0,

(p)

z1(s), 0, . . . , 0) ,

X∗
p+1,p+2 = Xp+1,p+2σ(s) = (0, . . . , 0,

(p+2)

zp+1(s), 0, . . . , 0) ,

...

X∗
p+1,n+1 = Xp+1,n+1σ(s) = (0, . . . , 0,

(n+1)

zp+1(s)) ,

σ ′(s) = (
(1)

z′
1(s), 0, . . . , 0 ,

(p+1)

z′
p+1(s), 0, . . . , 0) .

Then we have

Ωcone(X
∗
1,2, . . . , X

∗
1,p, σ ′(s),X∗

p+1,p+2, . . . , X
∗
p+1,n+1)

= 1

‖z‖2
(dz1 ∧ dz2 ∧ · · · ∧ dzn+1)(σ (s),X∗

1,2, . . . , X
∗
1,p, σ ′(s),X∗

p+1,p+2, . . . , X
∗
p+1,n+1)

= 1

‖z‖2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

z̄1(s) 0 · · · 0 z′
1(s) 0 · · · 0

0 z1(s)
... 0

...
...

... 0
. . . 0

...
...

...

0
... z1(s) 0

...
...

z̄p+1(s)
... 0 z′

p+1(s) 0
...

0
...

... 0 zp+1(s)
...

...
...

...
... 0

. . . 0
0 0 . . . 0 0 0 0 zp+1(s)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= (−1)q/2z1(s)

n−2z′
1(s) .
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Thus L is a special Lagrangian submanifold of phase θ if and only of σ satisfies

Im
(
e
√−1θ (−1)q/2z1(s)

n−2z′
1(s)

) = 0 .

This condition is equivalent to (4.4) for some c ∈ R. �

We express z1 = |ξ1| cos t − √−1ξ1 sin t . When ξ1 > 0, the condition (4.4) becomes

(4.5) Im
(
(−1)q/2e

√−1(θ−(n−1)t)
) = c

for some c ∈ R. In particular, when c = 0 we have

θ − (n − 1)t =
{

0 (mod π) (q : even) ,

π/2 (mod π) (q : odd) .

When c �= 0, solution curves of (4.5) are asymptotic to the lines{
τ = t + √−1ξ1 ; t = θ − kπ

n − 1
, ξ1 ∈ R

}
(k ∈ Z) (q : even) ,{

τ = t + √−1ξ1 ; t = 2θ − (2k + 1)π

2(n − 1)
, ξ1 ∈ R

}
(k ∈ Z) (q : odd) .

Therefore, when c = 0, the cones over the orbits of the action of SO(p) × SO(q) through

1√
2

(
e
√−1(kπ−θ)/(n−1), 0, . . . , 0 ,

√−1e
√−1(kπ−θ)/(n−1), 0, . . . , 0

)
(q : even) ,

1√
2

(
e
√−1((2k+1)π−2θ)/(2(n−1)), 0, . . . , 0 ,

√−1e
√−1((2k+1)π−2θ)/(2(n−1)), 0, . . . , 0

)
(q : odd)

are special Lagrangian cones of phase θ in Qn
0. When c �= 0, SL submanifolds are diffeomor-

phic to R × Sp−1 × Sq−1, and their ends are asymptotic to the above SL cones.

5. Asymptotic behavior of cohomogeneity one special Lagrangian submanifolds in
T ∗Sn. Cohomogeneity one special Lagrangian submanifolds in Qn which we constructed
in Section 3 are diffeomorphic to R ×Sp−1 ×Sq−1 generically. In this section, we shall study
the asymptotic behavior of their ends and the singular sets.

5.1. The case of 3 ≤ p ≤ q . We shall analyze solution curves of the differential
equation (3.3), that is equivalent to (3.2). In the phase space C, the orbit space of the G-action
on µ−1(0) can be reduced to{

τ = t + √−1ξ1 ; 0 ≤ t ≤ π

2
, ξ1 ∈ R

}
.

In this area, (3.3) has singularities at 0 and π/2. When θ = 0, the real segment [0, π/2] is a
trivial solution, and its corresponding SL submanifold is the zero-section Sn of T ∗Sn.

As ξ1 tends to ∞, cos τ and sin τ are asymptotic to

cos τ → 1

2
e−√−1τ , sin τ →

√−1

2
e−√−1τ .
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Then (3.3) is asymptotic to

Im
(√−1

q−1
τ ′(s)e

√−1(θ−(n−1)τ (s))
) = 0 .

This condition becomes

Im
(√−1τ ′(s)e

√−1(θ−(n−1)τ (s))
) = 0 (q : even) ,

Im
(
τ ′(s)e

√−1(θ−(n−1)τ (s))
) = 0 (q : odd) ,

and it is equivalent to the equation

Im
(
e
√−1(θ−(n−1)τ )

) = c (q : even) ,(5.1)

Re
(
e
√−1(θ−(n−1)τ )

) = c (q : odd)

for some c ∈ R. In particular, when c = 0 we have

θ − (n − 1)t = 0 (mod π) (q : even) ,

θ − (n − 1)t = π

2
(mod π) (q : odd) .

When c �= 0, solution curves of (5.1) are asymptotic to these lines. Therefore, as ξ1 → ∞,
solution curves of (3.3) are asymptotic to the lines{

τ = t + √−1ξ1 ; t = θ − kπ

n − 1
, ξ1 ∈ R

}
(k ∈ Z) (q : even) ,{

τ = t + √−1ξ1 ; t = 2θ − (2k + 1)π

2(n − 1)
, ξ1 ∈ R

}
(k ∈ Z) (q : odd) .

A special Lagrangian submanifold L in Qn is given as the orbit through a curve

σ(s) = (
(1)

cos τ (s), 0, . . . , 0,
(p+1)

sin τ (s), 0, . . . , 0)

in µ−1(0) ∩ Φ(Σ) by the action of SO(p) × SO(q). The unit vector is

σ

‖σ‖ → 1√
2

(
e
√−1(kπ−θ)/(n−1), 0, . . . , 0 ,

√−1e
√−1(kπ−θ)/(n−1), 0, . . . , 0

)
(q : even) ,

σ

‖σ‖ → 1√
2

(
e
√−1((2k+1)π−2θ)/(2(n−1)), 0, . . . , 0 ,

√−1e
√−1((2k+1)π−2θ)/(2(n−1)), 0, . . . , 0

)
(q : odd)

as ξ1 → ∞.
As τ approaches 0, cos τ and sin τ are asymptotic to

cos τ → 1 , sin τ → τ .

Then (3.3) is asymptotic to

Im
(
e
√−1θ τ ′(s)τ (s)q−1) = 0 ,

and it is equivalent to the equation

Im
(
e
√−1θ τ q

) = c
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for some c ∈ R. In particular, when c = 0 solutions of the above equation are the half-lines{
τ = t + √−1ξ1 ; arg(τ ) = kπ − θ

q

}
(k = 0, 1, 2, . . . , 2q − 1) .

Therefore the solution of (3.3) branches to 2q curves at 0, and those curves are asymptotic
to the above half-lines around 0. The orbit of the action of SO(p) × SO(q) through z =
(1, 0, . . . , 0) is a singular orbit, which is diffeomorphic to Sp−1.

As τ → π/2, cos τ and sin τ are asymptotic to

cos τ → π

2
− τ , sin τ → 1 .

Then (3.3) is asymptotic to

Im

(
e
√−1θ τ ′(s)

(
π

2
− τ (s)

)p−1)
= 0 ,

and it is equivalent to the equation

Im

(
e
√−1θ

(
τ − π

2

)p)
= c

for some c ∈ R. In particular, when c = 0, solutions of the above equation are the half-lines{
τ = t + √−1ξ1 ; arg

(
τ − π

2

)
= kπ − θ

p

}
(k = 0, 1, 2, . . . , 2p − 1) .

Therefore the solution of (3.3) branches to 2p curves at π/2, and those curves are asymptotic
to the above half-lines around π/2. The orbit of the action of SO(p) × SO(q) through

z = (0, . . . , 0,
(p+1)

1 , 0, . . . , 0)

is a singular orbit, which is diffeomorphic to Sq−1.
Consequently we obtain the following observations.

THEOREM 5.1. In the case of 3 ≤ p ≤ q , cohomogeneity one special Lagrangian
submanifolds L invariant under SO(p) × SO(q) are diffeomorphic to I × Sp−1 × Sq−1 and
embedded in T ∗Sn ∼= Qn generically.

(1) Two ends of L in Qn are asymptotic to special Lagrangian cones in Qn
0 which are

the cones over the orbits through

1√
2

(
e
√−1(kπ−θ)/(n−1), 0, . . . , 0 ,

√−1e
√−1(kπ−θ)/(n−1), 0, . . . , 0

)
(k ∈ Z) (q : even) ,

1√
2

(
e
√−1((2k+1)π−2θ)/(2(n−1)), 0, . . . , 0 ,

√−1e
√−1((2k+1)π−2θ)/(2(n−1)), 0, . . . , 0

)
(k ∈ Z)

(q : odd)

by the action of SO(p) × SO(q).
(2) When the curve τ passes through 0, the map Ψ : I × Sp−1 × Sq−1 → Qn degen-

erates, and q special Lagrangian submanifolds of Qn meet at the singular set Sp−1.
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(3) When τ passes through π/2, the map Ψ : I × Sp−1 × Sq−1 → Qn degenerates,
and p special Lagrangian submanifolds of Qn meet at the singular set Sq−1.

Furthermore we observe the following.

REMARK 5.2. A smooth solution of (3.2) approaches a singular one as c → 0. This
shows that a smooth SL submanifold is deformed to a singular one. In other words, a branched
SL submanifold can be deformed to a smooth one.

EXAMPLE 5.3. In the case of n = 6, p = 3, q = 4, the equation (3.2) is

Im

(
e
√−1θ

(
1

5
cos5 τ − 1

3
cos3 τ

))
= c .

Figures 1, 2 and 3 show solution curves of this equation when θ = 0, π/4 and π/2. Each
solution curve corresponds to a special Lagrangian submanifold in Qn.

In each of these figures, there exist two branched points at 0 and π/2, which shows that
four smooth special Lagrangian submanifolds meet at a singular set S2 and three meet at S3.
In Figure 1, a real segment [0, π/2] corresponds to the zero-section S6 of T ∗S6, which is the
only compact SL submanifold in this case. When θ varies, the branches around each branched
point 0 and π/2 rotate clockwise.

5.2. The case of p = 1, q ≥ 3. In the phase space C, the orbit space of the G-action
on µ−1(0) can be reduced to

{τ = t + √−1ξ1 ; 0 ≤ t ≤ π, ξ1 ∈ R} .

In this area, (3.5) has singularities at 0 and π . When θ = 0, the real segment [0, π] is a
trivial solution, and its corresponding special Lagrangian submanifold is the zero-section Sn

of T ∗Sn.
In a way similar to the previous case, we see that solution curves of (3.5) are asymptotic

to the lines{
τ = t + √−1ξ1 ; t = θ − kπ

n − 1
, ξ1 ∈ R

}
(k ∈ Z) (n : even) ,{

τ = t + √−1ξ1 ; t = 2θ − (2k + 1)π

2(n − 1)
, ξ1 ∈ R

}
(k ∈ Z) (n : odd)

as ξ1 → ∞.
The solution of (3.5) branches to 2n curves at 0 and π , and these curves are asymptotic

to the half-lines{
τ = t + √−1ξ1 ; arg(τ ) = kπ − θ

n

}
,{

τ = t + √−1ξ1 ; arg(τ − π) = kπ − θ

n

}
(k = 0, 1, 2, . . . , 2n − 1)

around 0 and π , respectively. The orbits of the action of SO(n) through z = (±1, 0, . . . , 0)

are singular orbits, that is, fixed orbits.
Therefore we obtain the following observations.
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FIGURE 1. θ = 0.

FIGURE 2. θ = π/4. FIGURE 3. θ = π/2.

THEOREM 5.4. In the case of p = 1, q ≥ 3, cohomogeneity one special Lagrangian
submanifolds L invariant under SO(n) are diffeomorphic to I × Sn−1 and embedded in
T ∗Sn ∼= Qn generically.

(1) Two ends of L in Qn are asymptotic to special Lagrangian cones in Qn
0 which are

the cones over the orbit through

1√
2

(
e
√−1(kπ−θ)/(n−1),

√−1e
√−1(kπ−θ)/(n−1), 0, . . . , 0

)
(k ∈ Z) (n : even) ,

1√
2

(
e
√−1((2k+1)π−2θ)/(2(n−1)),

√−1e
√−1((2k+1)π−2θ)/(2(n−1)), 0, . . . , 0

)
(k ∈ Z)

(n : odd)
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by the action of SO(n).
(2) When the curve τ passes through 0 or π , the map Ψ : I ×Sn−1 → Qn degenerates,

and n special Lagrangian submanifolds of Qn meet at the singular point z = (±1, 0, . . . , 0).

EXAMPLE 5.5. In the case of n = 4, p = 1, q = 4, the equation (3.4) is

Im

(
e
√−1θ

(
1

3
cos3 τ + cos τ

))
= c .

Figures 4, 5 and 6 show solution curves of this equation when θ = 0, π/4 and π/2.

FIGURE 4. θ = 0.

FIGURE 5. θ = π/4. FIGURE 6. θ = π/2.
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5.3. The case of p = 2, q ≥ 3. We express z ∈ Φ(Σ) as

z = (z1, z2, z3, 0, . . . , 0) ,

where

z1 = cos t cosh ρ − √−1
ξ1

ρ
sin t sinh ρ ,

z2 = √−1
ξ2

ρ
sinh ρ ,

z3 = sin t cosh ρ + √−1
ξ1

ρ
cos t sinh ρ .

Then the condition for that z ∈ µ−1(c1θ12) is

c1 = −u′(cosh(2ρ))
ξ2

ρ
cos t sinh(2ρ) .

This equation approaches the condition for that z ∈ µ−1(0) as ρ → ∞. Thus µ−1(c1θ12) ∩
Φ(Σ) is asymptotic to µ−1(0) ∩ Φ(Σ) as ρ → ∞. Therefore, we shall describe the asymp-
totic behavior of SL submanifolds in the case of c1 = 0.

When c1 = 0, the orbit space µ−1(0)/G of the G-action on µ−1(0) is parametrized as

µ−1(0) ∩ Φ(Σ) = {(cos τ, 0, sin τ, 0, . . . , 0) ; τ = t + √−1ξ1 (t, ξ1 ∈ R)} .

Let τ be a regular curve in the complex plane C. We define a curve σ in µ−1(0) ∩ Φ(Σ) by

σ(s) = (cos τ (s), 0, sin τ (s), 0, . . . , 0) .

Then the G-orbit L = G · σ through σ is a Lagrangian submanifold in Qn. For a curve τ , L

coincides with the image of the map

Ψ0 : I × S1 × Sn−2 −→ Qn

∈ ∈

(s, x, y) �−→ (cos τ (s)x1, cos τ (s)x2, sin τ (s)y1, . . . , sin τ (s)yn−1) .

When τ passes through mπ/2 (m ∈ Z), the map Ψ0 degenerates at that point. If τ does not
pass through mπ/2 (m ∈ Z), then L is diffeomorphic to I × S1 × Sn−2 and immersed in Qn

by the map Ψ0. Moreover, L is a special Lagrangian submanifold of phase θ if and only if τ

satisfies

(5.2) Im
(
e
√−1θ τ ′(s) cos τ (s)(sin τ (s))n−2) = 0 .

This condition is equivalent to the equation

Im
(
e
√−1θ (sin τ )n−1) = c2

for some c2 ∈ R. In the phase space C, the orbit space of the G-action on µ−1(0) can be
reduced to

{τ = t + √−1ξ1 ; 0 ≤ t ≤ π

2
, ξ1 ∈ R} .
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In this area, (5.2) has singularities at 0 and π/2. When θ = 0, the real segment [0, π/2] is a
trivial solution, and its corresponding SL submanifold is the zero-section Sn of T ∗Sn.

Then, similarly to the previous cases, we obtain the following observations.

THEOREM 5.6. In the case of p = 2, q ≥ 3, cohomogeneity one special Lagrangian
submanifolds L invariant under SO(2)×SO(n− 2) are diffeomorphic to I ×S1 ×Sn−2 and
embedded in T ∗Sn ∼= Qn generically.

(1) Two ends of L in Qn are asymptotic to special Lagrangian cones in Qn
0 which are

the cones over the orbits through

1√
2

(
e
√−1(kπ−θ)/(n−1), 0,

√−1e
√−1(kπ−θ)/(n−1), 0, . . . , 0

)
(k ∈ Z) (n : odd) ,

1√
2

(
e
√−1((2k+1)π−2θ)/(2(n−1)), 0,

√−1e
√−1((2k+1)π−2θ)/(2(n−1)), 0, . . . , 0

)
(k ∈ Z)

(n : even)

by the action of SO(2) × SO(n − 1).
(2) When the curve σ in µ−1(c1θ12) ∩ Φ(Σ) passes through z = (± cosh(ξ2),

√−1
sinh(ξ2), 0, . . . , 0), the map Ψ : I × S1 × Sn−2 → Qn degenerates at that point. Especially
when σ passes through z = (±1, 0, . . . , 0), then (n − 1) special Lagrangian submanifolds of
Qn meet at the singular set S1.

(3) When σ passes through z = (0, 0,±1, 0, . . . , 0), the map Ψ : I ×S1×Sn−2 → Qn

degenerates, and 2 special Lagrangian submanifolds of Qn meet at the singular set Sn−2.

5.4. The case of p = q = 2. Similarly to the previous case, we can see that µ−1(c1

θ12 + c2θ34) ∩ Φ(Σ) is asymptotic to µ−1(0) ∩ Φ(Σ) as ρ → ∞ for any c1, c2 ∈ R. Then
we obtain the following observations.

THEOREM 5.7. In the case of p = q = 2, cohomogeneity one special Lagrangian
submanifolds L invariant under SO(2) × SO(2) are diffeomorphic to I × S1 × S1 and em-
bedded in T ∗S3 ∼= Q3 generically.

(1) Two ends of L in Q3 are asymptotic to special Lagrangian cones in Q3
0 which are

the cones over the orbits through

1√
2

(
e
√−1(kπ−θ)/2, 0,

√−1e
√−1(kπ−θ)/2, 0

)
(k ∈ Z)

by the action of SO(2) × SO(2).
(2) When the curve σ in µ−1(c1θ12 + c2θ34) ∩ Φ(Σ) passes through z = (± cosh(ξ2),√−1 sinh(ξ2), 0, 0) or (0, 0,± cosh(ξ3),

√−1 sinh(ξ3)), the map Ψ : I ×S1 ×S1 → Q3 de-
generates at that point. Especially when σ passes through z = (±1, 0, 0, 0) or (0, 0,±1, 0),
then 2 special Lagrangian submanifolds of Q3 meet at the singular set S1.
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5.5. The case of p = 1, q = 2.

THEOREM 5.8. In the case of p = 1, q = 2, cohomogeneity one special Lagrangian
submanifolds L invariant under SO(2) are diffeomorphic to I ×S1 and embedded in T ∗S2 ∼=
Q2 generically.

(1) Two ends of L in Q2 are asymptotic to special Lagrangian cones in Q2
0 which are

the cones over the orbits through

1√
2

(
e
√−1(kπ−θ),

√−1e
√−1(kπ−θ), 0

)
(k ∈ Z)

by the action of SO(2).
(2) When the curve σ in µ−1(c1θ23) ∩ Φ(Σ) passes through z = (±1, 0, 0), the map

Ψ : I × S1 → Q2 degenerates, and 2 special Lagrangian submanifolds of Q2 meet at the
singular point z = (±1, 0, 0).
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