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COHOMOLOGICAL DIMENSION
AND METRIZABLE SPACES

JERZY DYDAK

Abstract. The purpose of this paper is to address several problems posed by
V. I. Kuzminov [Ku] regarding cohomological dimension of noncompact spaces.
In particular, we prove the following results:

Theorem A. Suppose X is metrizable and G is the direct limit of the direct
system {Gs, hs* s, S} of abelian groups. Then,

dime X < max{dimGj X\s € S} .

Theorem B. Let X be a metrizable space and let G be an abelian group. Let
I = {p\p • (G/TotG) ¿ G/TorG} .

(a) If G = Tor G, then dimc X = max{dimw X\H e a(G)} ,
(b) dimG X = max{dimTorG X, dimG/TorC X} ,
(c) dimG X > dimQ X if G ¿ Tor G ,
(d) dime X > dime X , where Z¡ is the group of l-adic integers,•
(e) max(dimG X, dimQ X + 1) > maxjdim// X\H e ff(G)} ,
(f) dimG X < dimZ; X < dimG X + 1  // G ^ 0 is torsion-free.

Theorem B generalizes a well-known result of M. F. Bockstein [B].

1. Introduction

Of primary importance in cohomological dimension theory of compact spaces
(see [Ku]) are the following results of Bockstein [B]:

Bockstein Inequalities. For any compact Hausdorff space X and any short exact
sequence of abelian groups 0-»C7—>£->Il-tO the following inequalities hold:

(a) dim£ X < max(dimG X, dimn X),
(b) dime X < max(dim£ X, dimn X + 1 ),
(c) dimn X < max(dim£ X, dimG X - 1 ).

In particular, for any prime p :
( 1 ) dimz/poo X < dimz/;, X = dimz/p* X < dimz/i,oo X + 1,
(2) dimQ X < dimZp X,
(3) dimz/pX < dimZ(,X,
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220 JERZY DYDAK

(4) dimZ/poo X < max(dimQ X, dimZ;; X - 1 ),
(5) dimZp X < max(dimQ X, dimz/p00 X + 1).

Bockstein Theorem. For any abelian group G and a compact Hausdorff space
X,

dimGX = max{dim// X\H G o(G)}.

Our notation is that of D. Sullivan [Su]: Given a prime p, Z/p = Z/pZ,
Zp = {m/n £ Q|« is not divisible by p} (Q being the rationals) and Z/p°° =
lim (Z/p -♦ Z/p2 -♦...-> Z/p" — • • • )  is Q/Zp.   More generally, given
any set / of primes, Z¡ = {m/n £ Q|« is not divisible by any p £ 1} and
Z//°° := Q/Z/ = 0p6/Z/p°°  (see [Su, p. 2.25]).  In particular, Z¿ = Q and
^{all primes} = ^ •

The group Zp of p-adic integers is the completion of Z in the topology
generated by pk -Z, k = I, ... , as the system of neighborhoods of 0 (see [Su,
p. 1.18]). Similarly, there is a group of /-adic integers % and % « \\p€lZp
(see [Ma, p. 475]).

Given an abelian group G its Bockstein basis a(G) is a subset of {Q} U
\Jp{Zp, Z/p, Z/p00}  (p is a prime) defined as follows:

(a) Q G a(G) iff G/TorG ¿ 0 (TorG := {g G G\m ■ g = 0 for some
mGZ-{0}}),

(b) Zp£cj(G) iff G/Tor G is not divisible by p ,
(c) Z/p G ct(G) iff p-TotG is not divisible by p (p-TorG := {g G C7|pm •

g = 0 for some m > 1}),
(d) Z/p°° G a(G) iff p-Tor 07 # 0 is divisible by p .

Examples, (a) a(Z) = {Q} U {Zp|p prime},
(b) <7(Q) = {Q} ,
(c) a(Zp) = {Q,Zp},
(d) a(Z/p) = {Z/p} ,
(e) <7(Z/p°°) = {Z/p~}.
The proof of the Bockstein Theorem for compact spaces (see [Ku, pp. 11-

12]) relies heavily on the following two results (see [S, p. 246] and [W, p. 251]
or [Ku, p. 31]):

Universal Coefficient Formula.
0 -» Hn(X, A ; Z) ® G -> Hn(X, A ; G) - Hn+X (X, A ; Z) * G -» 0

is exact for any compact pair (X, A) and any abelian group G.

Bockstein Exact Sequence. If 0 ^ G —> E —>I1—>0 is a short exact sequence
of abelian groups, then there is a natural exact sequence
-► Hn(X, A ; G) -► H"(X, A ; E) -> Hn(X, A ; n) - Hn+X (X, A ; G) - • • •

./or a«y paracompact space X and its closed subspace A . Here Hn(X, A; G)
stands for the nth Cech cohomology group of the pair (X, A) with coefficients
in G.

The reason Bockstein results are useful lies in the fact that Q, Zp and Z/p
are principal ideal domains and there are certain geometrical constructions for
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COHOMOLOGICAL DIMENSION 221

Q, Zp and Z/p (see [Di and D-W3]) whose existence for arbitrary abelian
groups is unknown.

While the Bockstein Inequalities are valid for paracompact spaces (they are
a straightforward consequence of the Bockstein Exact Sequence—see [Ku]), the
question of validity of Bockstein's Theorem in the realm of paracompact spaces
is still open (compare [Ku, p. 32]).

Since the Universal Coefficient Formula is not known to be valid for noncom-
pact spaces, one needs to develop entirely new techniques to be able to prove
the Bockstein Theorem for noncompact spaces.

The purpose of this paper is to prove the following results (compare Theorem
A with Theorem 19 in [Ku]):

Theorem A. Suppose X is metrizable and G is the direct limit of the direct
system {Gs, hsi tS, S} of abelian groups. Then

dimG X < max{dimGs X\s G S}.

Theorem B. Let X be a metrizable space and let G be an abelian group. Let
I = {p\p . (C7/TorC7) ¿ G/ Tot G}.

(a) If G = Tor G, then dimG X = max{dimtf X\H G a(G)},
(b) dimG X = max{dimTorG X, dimG/TorG X},
(c) dimG X > dimQ X if G ¿Tor G,
(d) dimG X > dim~ X, where Z¡ is the group of l-adic integers,
(e) max(dimGX, dimQX+ 1) > max{diraHX\H £ a(G)},
(f) dimG X < dimZ/ X < dimG X + 1, if G ¿ 0 is torsion-free.

Remarks. The inequality dimG X > dimTorG X solves the second part of Prob-
lem 6 in [Ku] (asked for arbitrary paracompact spaces). Our proofs of both of
the above theorems are valid for compactly generated paracompact spaces X
such that CW complexes are absolute neighborhood extensors of X x /.

2. Absolute extensors and cohomological dimension

2.1. Definition. A space Y is an absolute (neighborhood) extensor of the space
X (notation: Y G AE(X) or Y e ANE(X)) if every map /: A — Y, A closed
in X, extends over X (over a neighborhood U of A in X).

If ^ is a class of spaces, then Y £ AE(W) (Y £ ANE(W)) means Y £
AE(X)   (Y£ANE(W)) for all X in f.
2.2. Theorem (Y. Kodama [Ko]). K g ANE (metrizable spaces) for any CW
complex K.
2.3. Theorem. Suppose p: E -> B is a map, B is a regular cell complex and
X is a metrizable space such that p~x(o) £ AE(X) for each cell a in B. If

X —-^ B
is a commutative diagram where A is a closed subset of X and A —> X is
the inclusion, then there is an extension g: X —» F of g and a homotopy
H: X xl -> B joining pog' and f rel. A so that H(f~x(a) x /) c a for each
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222 JERZY DYDAK

cell a of B.  Consequently, E g AE(X) if B £ AE(X) and B g AE(X) if
E £ AE(X) and B £ ANE(X x /).
Proof. Recall that a regular cell complex (see [W, p. 81]) is a CW complex B
such that each closed «-cell e of B is homeomorphic to A" and its boundary
is the union of finitely many (« - l)-cells of B. Let Xn = A U {x G X\f(x)
lies in an «-cell of B} for each n > -1. We will construct by induction on
«>-l:

(1) a map an £ Ex" which is an extension of a„-X such that a„(f~x(a)) c
p~x(o) and an\f~x(a) is continuous for each A:-cell a of B, k < n ,

(2) a homotopy Hn: Xn x / —> B (which is an extension of //„_i) joining
p o an and f\Xn rel.A so that Hn(f~x(a) x /) c a and Hn(f~x(a) x /) is
continuous for each Är-cell a of B , k < n .

Notice that all the maps under construction are continuous. Indeed, if Hn :
X„ x / —► B is continuous and Hn+X(f~x(a) x /) c a and Hn+X\f~x(a) x /
is continuous for each k-ce\\ a of B, k < n + 1, then Hn+x\f~x(K) x / is
continuous for each finite subcomplex K of B . Since f(Z) is contained in a
finite subcomplex of B for any compact set Z in X, Hn+x\ZxI is continuous.
Thus, H„+x is continuous.

Put a_i = g and H_x(x, t) - f(x) for (x, t) £ A x /. Given an , Hn and
an (« + l)-cell a of B we define an+x\f~x(o) as an extension of

an\f-x(da): f~x(da) ->p~x(a) £ AE(X).

Hn+\\f~x(o) x I is an extension of F: f~x(a) x {0, 1} U f'x(da) x I -> o
defined by F\f~x(a) x {0} = p o an+x , F\f~x(a) x {1} = f\f~x(a), and
Fiy-Hôff) x / = Hn\f~x(da) x I. This induces a„ G £*»+' and Hn+X . The
family {a„}„>_i induces g' £ Ex and {/7„}„>_i induces H.

Assume B £ AE(X). Suppose g: A —» F is a map. Choose an extension
/: X —> F ofpog:/!—>F and use the first part of Theorem 2.3 to produce
an extension of g. Thus, E £ AE(X).

Assume F G AE(X). Suppose g: C -+ F is a map, C a closed subset of
X. Thus, using the first part of Theorem 2.3, we have a map a: C —> E such
that p o q and g are homotopic. Choose an extension a' : X -+ F. Then poa'
is a homotopy extension of g, so the Homotopy Extension Theorem (in view
of F G ANE(X x I)) implies that g extends over X. Thus, B £ AE(X).

Remark. Theorem 2.3 is based on an idea due to S. Ferry (see [Wa, Appendix
A]).
2.4. Definition. For a paracompact space X and an abelian group G we define
the cohomological dimension dimG X of X with coefficient group G as

min{«: there is a space Y £ AE(X) n /4/VF(paracompact) n K(G, n)}.

Here, K(G, n) stands for the class of spaces homotopy equivalent to a CW
complex F such that 7r„F « G and 7t¡F = 0 for i ¿ n (see [W and Ku]).

2.5. Theorem. For a metrizable space X and an abelian group G the following
conditions are equivalent:

(1) dimoA' < «,
(2) Hn+X (X,A;G) = 0 for all closed subsets A of X,
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(3) Hn(X; G) -> Hn(A; G) is an epimorphism for all closed subsets A of
X.
Proof. (1) -> (2). Choose a simplicial complex K £ K(G, n + 1) (equipped
with the Whitehead topology) with basepoint * . Let F be the space of paths
in K starting at *. n: P -» K is defined by %(co) = w(\). Notice that n
is a Hurewicz fibration (see [W, p. 42]) and n~x(*) = QF G F(G, «) (see
[M]). Therefore n~x(A) £ K(G, n) for each simplex A of F. Also, one can
check directly that n~x(A) £ ANE (metrizable spaces): map g: B —> re-1 (A),
B being a closed subset of a metrizable space Y, corresponds to a homotopy
H.BxI^K such that H(B x {0}) = {*} and H(B x {1}) c A. Therefore,
it extends to G: Y x {0, 1} U B x I -> F, so that G(F x {0}) = {*} and
G(Y x {1}) c A. Finally, G extends to a neighborhood of Y x {0, 1} Ufi x /
in T x / which contains L7 x / for some neighborhood U of B in Y. Thus,
7t_1(A) G y4F(X) for each simplex A of F.

Suppose /: (X, A) -> (F, *). By Theorem 2.3 there is g: (X, A) -» (P,
constant path) such that no g ^ frei. A . Thus / « 0  (P is contractible).

(2) —y (3). Follows from the Long Exact Sequence
■ ■ ■ H"-X(A) ̂  H"(X, A) ̂  H"(X) ^ H"(A) ^ Hn+x(X, A) ■ ■ ■ .

(3) -+ (1). Follows from the Homotopy Extension Theorem.

Remark. Theorem 2.5 was proved by H. Cohen [C] for locally compact spaces
and by Skljarenko (see [Ku]) for paracompact spaces.

Theorem A is an easy corollary to Theorem 2.3 and the following:

2.6. Lemma. Suppose {Gs,hsitS,S} is a direct system of abelian groups. Let
N be the simplicial complex whose set of vertices is S and (so---sm) is an
m-simplex in N iff So > ■ ■ ■ > sm . Then

(a) TV is contractible,
(b) there is a CW complex L of the type K( lim {Gs, hs<, s, S}, n) and a

map n : L —> N such that n~x(A) is a subcomplex of L of the type K(GS, n)
for each simplex A of N (here s is the maximal vertex of A).   Moreover,
the inclusion 7r_1(A') —► n~x(A) induces hs* s on the nth homotopy groups if
A'cA.
Proof, (a) Given any finite subcomplex N' of N choose s £ S such that s > v
for each vertex v of N'. Now, it is clear that 5 serves as the vertex of a cone
over N' in N. Thus, the inclusion N' —» N is homotopically trivial and TV is
contractible.

(b) Given 5 g S, let X(s) = Gs x Sn/Gs x {*} be the wedge of «-spheres.
Here * is the basepoint of S" and there are \GS\ (cardinality of Gs) spheres
in the wedge. Points of X(s) will be denoted by (g, x) with the convention
(g, *) = (h, *) for all g, h £ Gs. Notice that nnX(s) is the free (abelian if
« > 2) group F(GS) generated by Gs (as a set). If s' < s let fS'tS: X(s') —>
X(s) be the map defined by &<s(g, x) = (hs-,s(g), x) for (g, x) £ X(s').
Given a simplex A = (j0 • • • sm) in N, where so > ■ ■ ■ > sm , let so be denoted
by max(A) and let sm be denoted by min(A). We are going to construct,
by induction on dim A, CW complexes X(A) and maps n(A): X(A) -» A,
p(A): X(max(A)) xA-» X(A) such that the following conditions are satisfied:

(1) X(A) = X(s) if A ={s),
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224 JERZY DYDAK

(2) X(A') c X(A) if A' is a face of A,
(3) the inclusion X(max(A)) —► X(A) is a homotopy equivalence,
(4) n(A)\X(A') = n(A') if A' c A.
Suppose 7r(A): X(A) -* A and p(A): X(max(A)) xA^ A" (A) are defined

for all A with dim A < k, k > 1 . Given A with dim A = k, A'(A) is
defined as (X(max(A)) x A) UQ ((J{^(A')|A' c A}), where a: X(max(A)) x
(dA) -> (Ijp(A')IA' c A}) is defined as follows: on X(max(A)) x A', a is
the composition of /max(A) max(A') x id: X(max(A)) xA'-» A'(max(A')) x A' and
p(A'): X(max(A')) x A' -► X(A'). Define p(A): AT(max(A)) x A -> X(A) as the
projection. In view of condition (4) there is 7t(A): X(A) -» A.

Notice that there is n : X = [j X(A) -> N and X contains

N = \Jp(A)({*}xA)
so that n\N: N —> N is the identity. Therefore, when computing the homotopy
groups of X, we may replace X by X/N (in view of contractibility of tV) . The
CW complex L is constructed as follows: L = |J L(A), where L(A) contains
X(A) as a subcomplex and n: L —> N is an extension of n: X —» TV. First
of all, L(s) is obtained from X(s) by attaching (« + l)-cells to kill the kernel
of F(GS) —► Gs and by attaching (« + /)-cells, i > 2, to kill higher homotopy
groups of X(s). We send L(s) to s via n. Assume L(A) is defined for all
A with dim A < k, k>\. If dim A = Ä:, consider X(A) U \J{L(A')\A' c A}.
It contains X(A) U L(max(A)) which contains L(max(A)) as a deformation
retract. The (« + l)-cells contained in

X(A) U |J{L(A')|A' c A} - (X(A) U L(max(A)))
are attached along maps which are null-homotopic in A'(A)uL(max(A)). There-
fore, the «th homotopy group of X(A) U (J{L(A')|A' c A} is C7max(A) • L(A)
is formed from X(A) U U{L(A')|A' c A} by attaching (« + /)-cells, i > 2,
to kill higher homotopy groups. Once an open cell e is attached to X(A) U
U{L(A')|A' c A} , the map n is extended over e so that n(e) c intA.

Proof of Theorem A. Suppose « = max{dimGj X\s £ S}. Choose a CW complex
L of the type K(\im{Gs, hs* ,s, S}, n) and a map n: L —► N suchthat 7t~'(A)
is a subcomplex of L of the type K(GS, n) for each simplex A of N (here 5
is the maximal vertex of A). Thus, 7r_1(A) g AE(X) for each simplex A of
A^ and, since A^ G AE(X)   (N is contractible), L G AE(X) by 2.3.
2.7. Corollary. Suppose X is metrizable. If G = ©J€S Gs, then

dimG X = max{dimGj X\s £ S}.
Proof. Corollary 2.7 holds if S is finite as YlseS K5 is an

^F^nFJ©^,«]

if each Ks £ AE(X) n K(GS, «). If S is arbitrary, then ©ie5 Gs is a direct
limit of ©i67- Gs, where T varies through all finite subsets of S.

2.8. Corollary. Suppose X is metrizable and M is a torsion-free R-module,
R being both a principal ideal domain and an integral domain. Then

dirriM®RN X < dim^ X
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for any R-module N. In particular,
dimw X < dim/} X

for any R-module N.
Proof. By Corollary 2.7, Corollary 2.8 holds if A is a free F-module. From
the exactness of 0 —> F —> F -» R/m • F -> 0 one gets exactness of 0 —► M =
M®rR-> M®rR^> M®R(R/m-R) -» 0 and Bockstein Inequality (c) implies
dimMlg)R{R/m.R) X < dimA/A\ By Corollary 2.7, dimM®RN X < diniMA' for
each finitely generated F-module N. Since every F-module is a direct limit of
its finitely generated submodules and the torsion product commutes with taking
the direct limit, Corollary 2.8 follows.
2.9. Corollary. Suppose X is metrizable and G = YlseS Gs is the direct product
of torsion-free abelian groups {Gs}s€s such that for each prime number p the
set {s £ S\p -Gs ¿Gs} is finite. Then

dimG X = max{dimGj X\s £ S}.
Proof. Clearly, dimGX > max{dimGj X\s £ S} as each Gs is a direct Sum-
mand of G. Suppose max{dimGj X\s £ S} = «. Notice that H = G/G',
(G' - (&seSGs) is torsion-free and divisible. Hence, H is a direct sum of
copies of Q. Since dimQ X = dim// X = dim^Q X < « , the exact sequence
0-+G'-^G-+H^0 implies dimG X < n .
2.10. Corollary. If X is compact Hausdorff and G is a torsion-free abelian
group, then for any map f:X—> K(G, n) there is a finitely generated free sub-
group F of G such that f factors up to homotopy as X -» K(F, n) —> K(G, n).
Consequently, if 0 -» G" -» G' -» G -» 0 is exact, then Hn(X, A; G') -»
H"(X, A; G) is an epimorphism and

dimG' X = max(dimG X, dimG" X).
Proof. G is the direct limit of {Gs, hs> >s, S}, where each Gs is a finitely
generated free subgroup of G and each hS',s is an inclusion. Choose n: L -» N
as in Lemma 2.6. If f:(X,A)—>L is a map, % o f(X) is contained in a finite
subcomplex N' of N. Choose s £ S such that s > v for each vertex v of N'.
Now, it is clear that s serves as the vertex of a cone over N1 in N . Also, notice
that n~x(s) —> n~x(N') is a homotopy equivalence. Thus, / factors through
n-x(N') G K(GS, n). Hn(X,A;G') -» Hn(X, A; G) being an epimorphism
follows from the fact that any homomorphism F -* G, F being free, can be
factored as F —» <7' -» C7. Finally, dimG- X = max(dimG X, dimG" X) follows
from the Bockstein Exact Sequence

••• -► Hn+X(X,A; G")^Hn+x(X,A; G')
^Hn+X(X,A;G)-+ Hn+2(X, A ; G") -+■■■

and Theorem 2.5.
Remark. The second part of Corollary 2.10 is typically proved using the Uni-
versal Coefficient Formula (see [Ku]).

3. Proof of Theorem B
(a) Suppose G = Tor G = ©pp-TorC To show dimGA" = max{dim//X|

H £ a (G)} it suffices to prove dimoA' = max {dim// X\H £ a(G)} for any
group G = p- Tor G.
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If Z/p G a(G), then G is not equal to p • G, so (see [Sz]) Z/pk is a direct
summand of G for some k > 1 . Thus dimG X > dimZ/y X = dimZ/p X =
max{dim// X\H £ a(G)} . On the other hand, G = p-Tor G is a direct limit of
its finite subgroups which are direct sums of groups isomorphic to Z/pm for
some m. Thus, dimGX < dimz/pX = max{dim// X\H £ a(G)} by Theorem
A.

If Z/p°° G a(G), then G is equal to p • G, so G is isomorphic to a direct
sum of copies of Z/p°° (see [F, Chapter 4]). Thus, dimG X = dimZ/poo X =
max{dim// X\H £ er(G)} by Corollary 2.7.

(b) In view of exactness of 0 —> Tor G —> G —> G/ Tor G —> 0 we have

dimG/TorGX < max(dimG X, dimTorG^ - 1)

and
dimGX < max(dimG/TorGA', dim-iorc*)

(see Bockstein Inequalities (a), (c)). So, it suffices to prove dimG X > dimTorG X.
If Z/p G a (G), then Z/pk  is a direct summand of G  (see [Sz]) for some
k > 1. Thus, dimGX > dimz/p X. If Z/p°° G <t(G) , then Z/p°° is a direct
summand of G by [F, Chapter 4]. Thus, dimGX > dimZ/poc X. In view of
(a), dimGX > dimTorG X.

(c) Let dimG X = n . By Corollary 2.8, dimGlglQ X < « . Since G®Q contains
Q as a direct summand (it is a vector space over Q), dimq X < n .

(d) Let dimGX = n. We may assume Tor G = 0 (replace G by G/TorG
if necessary). Suppose p is a prime and p • G ¿ G. Put G' := G ® Zp . By
Corollary 2.8, dimG< X < n and dim,,  - X < n. Also, G' is not divisible
by p, so choose g £ G' which is not divisible by p . Notice that G' /Zp • g is
torsion-free. Indeed, if k-x = ™-g, k, m, n being integers and ™eZp, then
we may assume that one of k, m is not divisible by p . If k is not divisible
by p, then x = jjj¿ • g G Zp • g. If k is divisible by p, then g = ^ • x is
divisible by p, a contradiction. By tensoring 0 —► Zp • g —> G' —► G'/Zp • g —y 0
with Zp we get 0 -> (Zp • g) ®% -* G' ®% -> (C7'/Zp • #) <g> Zp -► 0. Since
(Zp • g) <g> Zp « Zp is algebraically compact and (G'/Zp -g)®Zp is torsion-free,
(Zp • g) <g>Zp is a direct summand of G' <8>Zp (see [F, Proposition 39.4]). Thus,
dim- X < « and dim- X < n by Corollary 2.9.

(e) In view of (a) and (b) it suffices to consider the case H = ZP . From the
exactness of 0 —> Zp —y Zp -» Zp/ Zp —» 0, we get (using Bockstein Inequality
(b)),

dimZp X < max(dim- X, dim^      X + 1 ).

Since Zp/Zp is a vector space over Q, dim- „ X = dimQ X by Corollary 2.7.
Thus,

max(dimG X, dimQ X + 1) > max{dim// X|/7 G o(G)}.
(f) Let dimz, X = « . Notice that G is a Z/-module. Thus, dimG X < n by

Corollary 2.8. If p G /, then dimGlgl(Z/p)X < dimGX by Corollary 2.8. Since
G 0 (Z/p) ^ 0 and <r(G ® (Z/p)) = {Z/p} (all the elements in G® (Z/p) are
of order p , so the group cannot be divisible by p), dimZ/p<=o X < dimZ/p X =
dimG(g,(Z/(p) X < dimG X . From the exactness of 0 -> Z¡ —> Q —► 0p€/ Z/p°° —>
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0, we conclude (see Bockstein Inequality (b)),

dimZ/ X < max(dimQ X, dimepe(Z/poo X + 1) < dimG X + 1.

3.1.   Corollary. Suppose X is metrizable. Then

dimG8// X < dimG X
for any abelian groups G and H.
Proof. If G is torsion-free it follows from Corollary 2.8. If G = p-Tor G, then
o-(image of G®H) c cr(G). Indeed, Z/p°° G a(G) iff G is a divisible p-group
and both operations of taking torsion product and taking the quotient group
preserve divisibility. Thus, a((G®H)/A) c a(G) for any torsion group G and
any subgroup A of G® H. From the exactness of (Tor G) ® H -» G <g> H —>
(G/TorG)®//^0 we get 0 -> ((TorG)®H)/A -» G®// -» (G/TorG)®// -►
0, where ^ = ker((Tor G) ® H -» G ® //), and by Theorem B(ab),

dimG^,//X < max(dim(TorG)(8l//X, dim(G/TorG)(8l//X) < dimGX.

4. Applications
Theorem C. Suppose X = AuB is metrizable and G is an abelian group. Then,

dimG X < max(dimG A, 2) + max(dimG B, 2) + 3.
Proof. Our goal is to show dim// X < max(dimG A, 2) + max(dimG F, 2) + 3
for all // G a (G) U {Z,} and then apply Theorem B(b), (f). It is shown in [D-
W3] that dimGX < max(dimG^, 2) + max(dimGF, 2) + 1 if G = Q, Zp , Z/
or Z/p . Therefore, if // = Q, Zp , Z, or Z/p, then

dim//X < max(dim// A,2) + max(dim//F, 2) + 1
< max(dimG A, 2) + 1 + max(dimG F, 2) + 1 + 1

(by Theorem B(f)). If // = Z/p°° , then
dimZ/poo X < dimz/p X

< max(dimz/p A, 2) + max(dimz/p F, 2) + 1
< max(dimz/poo ^, 2) + 1 + max(dimZ/poo B, 2) + 1 + 1

< max(dimTorG A, 2) + max(dimTorG B, 2) + 3
< max(dimG A, 2) + max(dimG B, 2) + 3.

Remark. Theorem C is related to Problem 10 of [Ku]: Does dimG(^ U B) <
dimG A + dimGF + 1 hold for hereditarily paracompact AiJBI Its solution for
metrizable spaces and G = Z was announced by L. Rubin [R]. It is shown in
[D-W3], that

dimG(^ UF) < max(dimG A, 2) + max(dimGF, 2) + 1
if G = Q, Z/ or Z/p and A U B is metrizable.
Theorem D. Suppose f: X -y Y is a proper map of metrizable spaces and G is
an abelian group.

(1) If for each k < dimGX + 1 all the groups {Hk(f~x(y); Z)\y £ Y} are
isomorphic and finitely generated, then

dimG Y < dimG X + 1,
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(2) // dimGX is finite and for each k > 0 there are only finitely many iso-
morphic classes among {Hk(f~x(y) ; Z)\y £ Y} and all these groups are finitely
generated, then dimG Y is finite.
Proof. Let 3(G) be obtained from a(G) U {Z¡} by replacing each Z/p°° with
Z/p . Thus, ô(G) consists of principal ideal domains only. Let

« = max{dim// X\H £ S(G)}

which is at most dimGX + 1 (see Theorem B(e), (f) and Bockstein Inequality

(1) Notice that for each pair of points y,z £ Y, Hk(f x(y); H) and
Hk(f~x(z); H) are isomorphic finitely generated //-modules for all k. In-
deed, if H is torsion-free, then Hk(f~x(y); H) « Hk(f~x(y); Z) ® H and
Hk(f-X(z) ; H) « Hk(f~x(z) ; Z) ® H as H modules. If H = Z/p, a field,
then each of

0 - Hk(f~x(y) ; Z) ® H - Hk(f~x(y) ; H) - Hk+X(f~x(y) ; Z) * H - 0

and

0 - Hk(f-X(z) ; Z) ® H - Hk(f-X(z) ; H) -» Hk+X(f-X(z) ; Z) * H -y 0

splits and Hk+x(f~x(z);Z) * (Z/p) C Hk+x(f~x(z);Z) * (Z/p°°) is trivial if
/c > dimG X + 1. Indeed,

0 - Hk(f~x(z) ; Z) ® (Z/p00) - Hk(f~x(z) ; Z/p°°)
-> Hk+X(f~x(z) ; Z) * (Z/p°°) - 0

is exact and Hk(f~x(z) ; Z/p°°) = 0 as dimz/poo X < dimGX . This proves that
Hk(f~x(y); H) and Hk(f~x(z); H) are isomorphic and finitely generated if
A:<dimGX+l. If k > dimGX+2, both Hk(f-x(y);H) and Hk(f~l(z);H)
are trivial as dim// X < dimG X+1 . Now, it is shown in [D-W4] that dim// y <
dim// X (see [D-W2] for the case H = Z) which completes the proof in view
of dim// X < dimG X + 1 (use Theorem B(e), (f)).

(2) Notice that Y is the union YXL¡ ■•■U Ym of finitely many of its subsets
so that for each pair of points y,z£ Y¡, Hk(f-x(y);Z) and Hk(f~x(z);Z)
are isomorphic if k < dimGX + 1. By (1), dimG Y, is finite for each i, which
is all we need in view of Theorem C.

4.1. Lemma. If X £ ANE (metrizable spaces) is metrizable and Y £ AE(X),
then K g AE(X) for any CW complex K weakly homotopically equivalent to
Y.
Proof. Let n: K -> Y be a weak homotopy equivalence (i.e., a map inducing
isomorphisms of all homotopy groups). The important property of n is that
7T* : [Z, K] -y [Z, Y] is a bijection for all spaces Z which are homotopy
equivalent to CW complexes. Suppose /: A —y K is a map and A is a closed
subset of X. Extend / to /' : V —* K, where F is a closed neighborhood of
A in X (see Theorem 2.2). Let F: X -♦ Y be an extension of n of: V —► Y
and choose F': X -* K so that F « n o F' (such F' exists since all metrizable
X G ANE (metrizable spaces) are homotopy equivalent to CW complexes—see
[M-S, p. 317]).  Then 7roF'|intF « F|intF = ti o /'|int K, so F'|intF «
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/'| int V and F'\A « f'\A = f. Thus, / extends over X up to homotopy, so
it extends over X by the Homotopy Extension Theorem.
Theorem E. Suppose X £ ANE (metrizable spaces) is metrizable and G =
rises' Gs is the direct product of abelian groups {Gs}ses ■ Then

dimG X = max{dimGs X|s g S} .
Proof. Clearly, dimGX > max{dimGj X\s £ S} as each Gs is a direct sum-
mand of G. Suppose max{dimGs X|s G S} = «. Choose a CW complex
Ks of the type K(Gs,n) for each s £ S. Clearly, the cartesian product
Y = llsesKs e AE(X) as each Ks £ AE(X) (see [H, Proposition 4.1 on
p. 39]). Now, any CW complex F weakly homotopically equivalent to Y (for
example, let K be the geometric realization of the singular complex of Y) is
of the type K(G, n) and K £ AE(X) by Lemma 4.1.
4.2.   Corollary. Suppose X £ ANE (metrizable spaces) is metrizable. Then

(a) dimZ/p X = dim- X for any prime p, where Zp is the group of p-adic
integers,

(b) if X is compact, then dimz/p X = dimZ() X for any prime p,
(c) dimG X > dimQ X for any abelian group G ¿0.

Proof. In view of Corollary 3.1 it suffices to show dimz/p X > dim- X  (Zp ®

(Z/p) = Zp/p • Zp ^ 0 and Z/p G a(Zp/p • %)). Let A = (Z/p) x (Z/p2) x
(Z/p3)-- be the countable direct product. Notice that A/ Tor A is not divisible
by p. Indeed, if ([1], [1], ...) = p • ([xx], [x2], ...) + ([tx], [t2], ...), where
Pk • {[h], [h], ■■■) - (0,0,...) for some k > 1, then there are numbers
y„ £ Z such that pk • t„ = p" • yn for all n > 1. Hence, tn = p"~k • y„ and
[1] = p • [JC„] + [i„] is divisible by p in Z/p" for « > k , a contradiction. Thus,
dimZ/p X = dim^ X > dim- X by Theorem B(d) and Theorem E.

(b) Follows from (a) and the Bockstein Theorem (in view of o(Zp) = {Q, Zp}).
(c) In view of Theorem B(a)-(c) and (a) it suffices to consider the case

Z/p°° G a(G) for some prime p. Notice that the countable direct product
A — (Z/p°°) x (Z/p°°) x •-■ is not a torsion group (consider (cx, c2, ...),
where c„ is of order p"). Hence dimQ X < dim^ X = dimz/poo X < dimG X.

Remark. Parts (b) and (c) of Corollary 4.2 were proved in [Ku, p. 25] (see also
[Dy]) for locally compact spaces which are cohomologically locally connected,
by using a different method based on the Universal Coefficient Formula.
Theorem F. Suppose X is metrizable and K is a connected C W complex. If
K is simply connected, then the following conditions are equivalent:

(a) dimÄm(/f) X < m for each m > 1,
(b) dimHm(K) X <m for each m > 1.

Proof. For brevity, let W(X, m) be the class of all abelian groups G such that
dimGX < m. Let « > 2. Suppose nm(K) g i?(X, m) if « > m > 1. Let / =
{p|Z/p°° G W(X, n-l)}. Let M be obtained from F by attaching («+/)-cells,
i > 1, so that nn+j(M) = 0 for / > 0. Then nn+x(M, K) « 7tn(F) (as 0 =
nn+x(M) -* nn+x(M, K) -> nn(K) —y nn(M) = 0 is exact) and nn+x(M, K) «
Hn+X(M, F; Z) by the Hurewicz Theorem. Thus, replacing Hn+X(M, K; Z)
by n„(K) in the homology exact sequence, the following sequence is exact:

Hn+X(K;Z) - Hn+l(M; Z) -y %n(K) -» H„(K; Z) -* Hn(M;Z) - 0.
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If q i I, then q-Tor(nm(K)) = 0 (otherwise, Z/q°° G W(X, « - 1), i.e.
q £ I). It follows from the exactness of 0 -» nm(M) ® (Z/q) -> nm(M' ; Z/tf) -»
7tm(M) * (Z/q) -» 0 (see [N]) that nm(M;Z/q) = 0 for all m. Hence,
Hm(M; Z/q) = 0 for all m (see the mod # Hurewicz Theorem in [N]) and
Hm(M; Z) ® (Z/q) = q-Tor(Hm(M; Z)) = 0 for all m .

Case I. Q £ W(X,n- 1).
Now, nm(K) are torsion groups for all m<n by Theorem B(c). Hence, each

Hm(M; Z) is a torsion group as all nm(M) are torsion groups (see [S, p. 508]).
By the exactness of Hn+X(M; Z) -* nn(K) -> Hn(K; Z) -► Hn(M; Z) -► 0 we
conclude q-Tor(nn(K)) « q-Tor(Hn(K; Z)) forq^l and

k„(K)/(Tor nn(K)) «//„(F/Z)/(Tor//„(F; Z)).

If 7tM(F) G W(X, n) (resp. Hn(K;Z) £ &(X, «)), then 7r„(F)/(Tor7t„(F))
« Hn(K;Z)/(TorHn(K;Z)) G ^(X, «) by Theorem B(b). If q £ I,
then q-Tor(7tn(K)) « q-Tor(Hn(K ; Z)) £ W(X, n). If p G /, then Z/p°° G
^(X, « - 1) which implies Z/p g W(X, n) (see (1) of the Bockstein In-
equality). Thus p-Tor(Hn(K;Z)) £ W(X, n) and p-Tor(7t„(F)) G W(X, n).
Consequently, Tor(Hn(K;Z)) G W(X, n) (resp. Tor?r„(F) G W(X, n)) by
Theorem B(a) and, by Theorem B(b), Hn(K; Z) £ W(X, n) (resp. 7t„(F) g
&(X,n)).

Case 11. QgtF(X,«- 1).
As Hm(M; Z) ® (Z/q) = q-Tor(Hm(M; Z)) = 0 for all m and q i I, each

Hm(M; Z) is a Z/-module (i.e., it is uniquely divisible by q £ I). From the
exactness of 0 -> Z¡ —y Q -> ®pe/ Z/p°° -> 0 we conclude (using Bockstein In-
equality (c)) that Z/ G W(X, «). Let A be the image of Hn+X(M; Z) -► 7t„(F).
If q $ I, then ¿7-Tor.4 is divisible by q and is contained in ^-Tor(7rn(F)).
Thus, if q-TorA ¿0, o(q-TorA) = {Z/q00} .

If nn(K) £ W(X,n), then q-TorA £ &(X,n) as o(q-Tor(nn(K))) c
W(X, n). If p G /, then Z/p°° G ̂ (X, « - 1) which implies Z/p G &(X, n)
(see Bockstein Inequality (1)). Thus p-TorA G ̂ (X, n) which implies Tor ,4 G
°?(X, «) by Theorem B(a). Since A/Tor A is divisible by all q $. I, it is
a Z/-module and A/Tor A G W(X, n) by Corollary 2.8. By Theorem B(b),
A £ W(X,n). Hence nn(K)/A g &(X, n) and Hn(K;Z) £ &(X, n) (use
Bockstein Inequality (a) in both cases).

Suppose Hn(K;Z) £ W(X, n) and H„+X(K; Z) g &(X, « + 1). First we
are going to show that Tor(7r„(F)) g W(X, n). As above, p-Tor(7t„(F)) g
^(X,«) if p G /. Suppose q i I. Let n„(K) -> H„(K;Z) be denoted
by p. Given a £ q - Tor (Hn(K ; Z)) there is ß G 7r„(F) with a = p(ß) as
q-Tor(Hn(M; Z)) = 0. Let k > 1 be an integer so that qk ■ a = 0. Then,
qk • ß £ A and there is ß' £ A with qk • ß' = qk ■ ß as /I is divisible by
q. Now, ß - ß' £ q-Tor(n„{K)) and /¿(/? - ß') = a. That demonstrates the
exactness of

0 -* tf-Tor,4 - tf-Tor(7T„(F)) -+ q-Tor(Hn(K ; Z)) -» 0.

If o-(^f-Tor(/7„(F;Z))) = {Z/?} , then q-Tor(nn(K)) G ^(X,«) by Corol-
lary 2.8. If a(q-Tor(Hn(K; Z))) = {Z/<7°°} then tf-Tor(7r„(F)) G ̂ (X, «) as
a(q-TorA) = {Z/q°°} . So, the only remaining case is q-Tor(Hn(K; Z)) = 0,
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q-TorA ¿ 0. Notice that Hn+X(K; Z)/(q-Tor(Hn+x(K; Z))) cannot be di-
visible by q in such a case. Indeed, Hn+x(K;Z)/(q-Tor(Hn+x(K;Z))) maps
onto ker(Hn+x(M; Z) -> A) which would make ker(Hn+x(M; Z) -> A) a Z[±]-
module. Since Hn+X(M;Z) isa Z[^]-module, ^ would be a Z[|]-module con-
tradicting q-TorA ¿0. Thus, Hn+X(K; Z)/(Tor(H„+x(K; Z))) is not divisible
by q, i.e. Z„ g a(Hn+x(K; Z)). By Theorem B(e), Zq £ %(X, « + 1) and by
the Bockstein Inequality (4), Z/<7°° G ̂ (X, «) which implies q-Tor(nn(K)) G
W(X, n) as a(q-Tor(nn(K))) = o(q-TorA) = {Z/q°°} .

Our second step is to show that 7r„(F)/Tor(7t„(F)) is a Z/-module which
implies Ttn(K)/Tor(nn(K)) £ W(X, «). Let /' = {all primes} - /. As

l'-Tor(Hn(M;Z)) = 0
and /'-Tor(7r„(F)) -y l'-Tor(Hn(K; Z)) is an epimorphism, we get that the
sequence

0 -+ A/(l'-TorA) - nn(K)/(l'-Tor(nn(K))
- Hn(K)/(l'-Tor(Hn(K))) - //„(M) - 0

is exact. Since both Hn(K)/(l'-Tor(Hn(K))) and Hn(M) are Z/-modules, the
kernel of Hn(K)/(V-Tor(Hn(K))) -> //„(Af) is a Z/-module which implies that
7t„(F)/(/'-Tor(7t„(F))) is a Z/-module as ^/(/'-Tor^) is a Z/-module. This
completes the proof of Theorem F in view of Theorem B(b).

Remark. The equivalence (a) <-> (b) is due to A. Dranishnikov [D2] for compact
spaces.
Theorem G. Suppose X is metrizable and K is a connected CW complex such
that dim,jm(K) X < m for each m>\. Then K g ,4F(X) in the following cases:

(a) 7tm(F) = 0 for m sufficiently large,
(b) dim X < oo,
(c) X G ANE (metrizable spaces).

Proof, (a) The proof is by induction on N(K) = min{k\njK = 0 for i > k} -
max{j|7r,F = 0 for i < j}. If N(K) = 0, then K e K(G, m) for some m and
K £ AE(X). Assume Theorem G holds for all L such that N(L) < n , « > 0,
and F is a CW complex with N(K) = n + 1 . Put m = min{/c|7r;F = 0 for
i > k} . Let L be the CW complex obtained from F by adding «-cells, n> m ,
so that the inclusion K -+ L induces isomorphisms of z'th homotopy groups for
/ < m and n¡L = 0 for i > m . Replace the inclusion K ^ L by a Hurewicz
fibration K' —> L', where L' is a simplicial complex homotopy equivalent to
L. The fiber F of F' -» L' is of type K(nmK, w), so F G AE(X) (F is
homotopy equivalent to a CW complex by [M]). By Theorem 2.3, F' G AE(X)
as L' G AE(X). Since F is homotopy equivalent to K', K £ AE(X).

(b) Let m = dimX. Let L be the CW complex obtained from K by
adding «-cells, n > m, so that the inclusion K -y L induces isomorphisms
of z'th homotopy groups for i < m + 2 and n¡L = 0 for i > m + 2. By
(a), L G AE(X). Given f:A—yK, A closed in X, choose an extension
/': X -> L of f: A -» L. By Theorem 5.6 of [Dyd] there is g: X -> F,
g « /' in L and g|^ « /. By the Homotopy Extension Theorem, / extends
over X, i.e., F G ̂ IF(X).

(c) For each m > 1 let Lm be the CW complex obtained from F by adding
«-cells, « > m , so that the inclusion im: K ^ Lm induces isomorphism of z'th
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homotopy groups for i < m and 7t,L = 0 for z" > m + 1. Notice that there are
maps pm,m+i : Lm+X -> Lm extending id: F -» F. Replace each pm,m+x by a
Hurewicz fibration qmym+x : Km+X —y Km , where Km is a metrizable space ho-
motopy equivalent to Lm , by induction on « . Notice that the fiber of qm¡m+x
is of type K(nm+XK, m + 1). Also, there are maps qm: F —> Km inducing
isomorphisms of z'th homotopy groups for i < m. Our plan is to show that
K' = invlim(«7m,m+i: Km+X -> Km) g AE(X). Suppose fm: A -» Km are
maps from a closed subset A of X so that qm>m+i ° /m+i = /m for m > 1.
Let Fm: X —> Fm be an extension of /m for some m > 1. By using The-
orem 2.3 (replace qm,m+x: Km+X —> Km with an equivalent fibration whose
base is a simplicial complex), there is G: X —> Km+X extending fm+x such that
Qm,m+\°G « Fm rel.-4 . Since Fm is metrizable, there is a lift Fm+1 : X —> Fm+1
of fm+x such that qm¡m+x o Fm+X = Fm (see [Du, p. 397]). This shows that
F' g AE(X). Since K' is weakly homotopically equivalent to K (see [Co]),
Fg^F(X) by Lemma 4.1.

Remark. Theorem G(b) is due to A. Dranishnikov [D2] for X compact.

5. Open problems

5.1. Problem. Does dimGX = max{dim//X|// G o(G)} hold for any abelian
group G and any metrizable space X ? What if G is countable?

5.2. Problem. Does dimG X > dimG< X hold if X is a metrizable space and
G' is a subgroup of G so that G/G' is torsion-free and divisible? What if G
is countable?

Remarks. Problem 5.2 is a special case of the first part of Problem 6 in [Ku].
Namely, there X is a paracompact space and G/G' is torsion-free. That prob-
lem is known to have a positive answer for compact spaces (see [Ku, Theorem
5]) which can be easily deduced from Corollary 2.10. A positive solution to
Problem 5.1 would imply a positive solution to Problem 5.2 in view of the
following observation: if G/G' is torsion-free, then a(G') c a(G). Indeed,
TorG' = Tor G in such a case and (G/ Tor G)/(G'Tor G') « G/G' is torsion-
free. Thus, if G/TorG is divisible by p, so is G'/TorG'.
5.3. Problem. Does dim- X = dimz„ X hold if X is a metrizable space and

Map "

Zp is the group of p-adic integers (i.e., it is the completion of Z in the topology
generated by pk • Z, k = 1, ... , as the system of neighborhoods of 0) ? More
generally, does dim-X = dimG X hold if X is a metrizable space, G is torsion-
free, nondivisible, and G is the profinite completion of G (see [Su]).

Remark. Problem 5.3 was posed in [Ku] (see Problem 7b) for paracompact
spaces. It has a positive solution for compact spaces as cr(Zp) = {Q, Zp}.
Notice that 5.3 is a special case of both 5.1 and 5.2 (zp/Zp is torsion-free and
divisible). Also, in view of Theorem B(d), a positive answer to Problem 5.3 for
all prime p would imply dimGX > max{dim//X|// G o(G)} .

5.4. Problem. Does there exist a compact metrizable space X G ANE (metriz-
able spaces) such that dimQ X < oo and dim X = oo ?

Remark. Problem 5.4 is equivalent to Problem 2 of [Di].
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5.5. Problem. Characterize functions m: {Q} U \Jp{Zp,Z/p,Z/p°°} -y Z+
such that there is a compact metrizable space X g ANE (metrizable spaces)
with dim// X = m(H) for each H g {Q}U|Jp{Zp, Z/p, Z/p00}  (p is a prime).

Remark. Problem 5.5 was asked by A. Dranishnikov [D] (Problem 1). It was
motivated by Dranishnikov's result that for any function

m: {Q} U (J{Zp, Z/p, Z/p°°} -» Z+
p

satisfying Bockstein Inequalities (l)-(5) there is a compact metrizable space X
with dim// X = m(H) for each // g {Q} u(Jp{Zp, Z/p, Z/p°°}  (p is a prime).

5.6. Problem. Suppose X is a metrizable space and G = f]^i G, is the direct
product of torsion-free abelian groups {G,};>i. Does dimGX = max{dimG. X|
z> 1} hold?
Remark. Problem 5.6 has a positive solution if X is compact as o-(níi G¡) =
Uí i °{Gi) if all G,, i > 1, are torsion-free. See also Corollary 2.9.
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