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Abstract. Let a be an ideal of a commutative Noetherian ring R. For finitely
generated R-modules M and N with SuppN ⊆ SuppM , it is shown that
cd(a, N) ≤ cd(a,M). Let N be a finitely generated module over a local ring

(R,m) such that Min
R̂
N̂ = Assh

R̂
N̂ . Using the above result and the notion

of connectedness dimension, it is proved that cd(a, N) ≥ dimN − c(N/aN) −
1. Here c(N) denotes the connectedness dimension of the topological space
SuppN . Finally, as a consequence of this inequality, two previously known
generalizations of Faltings’ connectedness theorem are improved.

1. Introduction

Throughout, let R denote a commutative Noetherian ring (with identity) and
a an ideal of R. The study of the cohomological dimension and connectedness
of algebraic varieties has produced some interesting results and problems in local
algebra. For an R-module M , the cohomological dimension of M with respect to a

is defined as

cd(a,M) := max{i ∈ Z : Hi
a(M) 6= 0}.

The cohomological dimension has been studied by several authors; see, for ex-
ample, Faltings [7], Hartshorne [9] and Huneke−Lyubeznik [11]. In particular in
[7] and [11], several upper bounds for cohomological dimension were obtained. The
main aim of this article is to establish lower bounds for cohomological dimension
of finitely generated modules over a local ring. This is done by using the notion of
connectedness dimension. For a Noetherian topological space X , the subdimension
and connectedness dimension of X are defined respectively as

s dimX : = min{dimZ : Z is an irreducible component of X}, and

c(X) : = min{dimZ : Z ⊆ X,Z is closed and X\Z is disconnected}.
For more details about these notions, we refer the reader to [3, Ch. 19]. In par-
ticular, if M is an R-module and SuppM is considered as a subspace of SpecR
equipped with Zariski topology, we denote c(SuppM) and s dim(SuppM) by c(M)
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and s dimM respectively. It is clear from the definition that a Noetherian topolog-
ical space X is connected if and only if c(X) ≥ 0. Recall that the dimension of the
empty space is defined to be −1.

We shall prove:

Theorem 1.1. Let (R,m) be a local ring and N a finitely generated R-module.
(i) If R is complete, then cd(a, N) ≥ min{c(N), s dimN − 1} − c(N/aN).
(ii) If MinR̂ N̂ = AsshR̂ N̂ , then cd(a, N) ≥ dimN − c(N/aN)− 1.

One of our tools for proving Theorem 1.1 is the following, which plays a key rôle
in this paper.

Theorem 1.2. Let M and N be finitely generated R-modules with SuppN ⊆
SuppM . Then cd(a, N) ≤ cd(a,M). In particular, cd(a, N) = cd(a,M) when-
ever SuppN = SuppM .

In [10], M. Hochster and C. Huneke generalized Faltings’ connectedness theorem
[6]. Also in [5], P. Schenzel and the first author have proved two generalizations of
Faltings’ connectedness theorem. As a consequence of Theorem 1.1(ii), we remove
the indecomposability condition in [10, Theorem 3.3] and [5, Theorem 4.3].

Our terminology follows that of [5]. Moreover for an R-module M , the set of
minimal elements of AssRM is denoted by MinRM and {p ∈ AssM : dimR/p =
dimM} by AsshRM .

2. Cohomological dimension

First of all, we collect the well known properties of the notion of cohomological
dimension in a lemma. Before stating the lemma, recall that the height of an ideal
a with respect to an R-module M is defined as htM a = min{dimMp : p ⊇ a}.

Lemma 2.1. Let a denote an ideal of R. Then:
(i) for an R-module M , htM a ≤ cd(a,M) ≤ dimM ,
(ii) cd(a, R) = max{cd(a, N) : N is an R-module}

= max{i ∈ Z : Hi
a(N) 6= 0 for some R-module N},

(iii) cd(a, R) ≤ ara(a), where ara(a) denotes the arithmetic rank of a, and
(iv) if f : R −→ R′ is a homomorphism of commutative Noetherian rings, then

cd(aR′, R′)≤cd(a, R) and, also for any R′-module M , cd(a,M)=cd(aR′,M).
Furthermore if f is faithfully flat, then cd(aR′, R′) = cd(a, R).

The following is one of the main results of this paper.

Theorem 2.2. Let a denote a proper ideal of R and M,N two finitely generated
R-modules such that SuppN ⊆ SuppM . Then cd(a, N) ≤ cd(a,M).

Proof. It is enough to show that Hi
a(N) = 0 for all i with cd(a,M) < i ≤ dimM +

1, and all finitely generated R-module N with SuppN ⊆ SuppM . We argue
this by descending induction on i. The assertion is clear for i = dimM + 1 by
Grothendieck vanishing theorem. Now, suppose i ≤ dimM . Since SuppN ⊆
SuppM , by Gruson’s theorem [12, Theorem 4.1], there is a chain

0 = N0 ⊂ N1 ⊂ N2 ⊂ · · · ⊂ Nk = N,

such that the factors Nj/Nj−1 are homomorphic images of a direct sum of finitely
many copies of M . By using short exact sequences, we may reduce the situation to
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the case k = 1. Then there is an exact sequence

0 −→ L −→Mn −→ N −→ 0

for some n ∈ N and some finitely generated R-module L. This induces a long exact
sequence of local cohomology modules

. . . −→ Hi
a(L) −→ Hi

a(Mn) −→ Hi
a(N) −→ Hi+1

a (L) −→ . . . ,

so that, by the inductive hypothesis, Hi+1
a (L) = 0. Hence Hi

a(N) = 0. Thus the
argument is complete by induction.

Corollary 2.3. (i) Let 0 −→ L −→ M −→ N −→ 0 be an exact sequence of
finitely generated R-modules. Then cd(a,M) = max{cd(a, L), cd(a, N)}.

(ii) Let f : R −→ S be a monomorphism of commutative Noetherian rings such
that S is finitely generated as an R-module. Then for any proper ideal a of R,
cd(a, R) = cd(aS, S).

(iii) If M is a finitely generated faithful R-module, then cd(a,M) = cd(a, R).

Proof. (i) From the long exact sequence

. . . −→ Hi
a(L) −→ Hi

a(M) −→ Hi
a(N) −→ Hi+1

a (L) −→ . . . ,

we deduce cd(a,M) ≤ max{cd(a, L), cd(a, N)}, while Theorem 2.2 implies
max{cd(a, L), cd(a, N)} ≤ cd(a,M). Therefore (i) holds.

(ii) follows by Lemma 2.1(iv) and Theorem 2.2.
(iii) Clearly SuppM = SpecR, and so the result follows by Theorem 2.2.

Remark 2.4. (i) One can deduce Lemma 2.1(ii) from Theorem 2.2 easily, because
Hi

a(·) commutes with direct limits.
(ii) Part (ii) of Corollary 2.3 is proved in [9, Proposition 2.1] by using methods

of algebraic geometry.
(iii) Let M and N be two finitely generated R-modules such that M 6= aM and

that Supp(N/Γa(N)) ⊆ Supp(M/Γa(M)). Then cd(a, N) ≤ cd(a,M).
(iv) Let M and N be two finitely generated R-modules. For each i ∈ N0,

max{cd(a,ExtiR(M,N)), cd(a,TorRi (M,N))} ≤ min{cd(a,M), cd(a, N)}.
(v) In view of Corollary 2.3(iii) results concerning cohomological dimension of R

with respect to an ideal a can be extended to cd(a,M) for any finitely generated
faithful R-module M . See for example [4, Theorem 2 and Remark].

We shall use the following result in the proof of Theorem 2.7.

Lemma 2.5. Let the situation be as in Lemma 2.1,and let x ∈ R. Then for an
R-module M ,

cd(a +Rx,M) ≤ cd(a,M) + 1.

Proof. Let b = a + Rx and cd(a,M) = r. By [3, Proposition 8.1.2], there is a long
exact sequence

. . . −→ H i
b(M) −→ Hi

a(M) −→ Hi
a(Mx) −→ Hi+1

b
(M) −→ Hi+1

a (M) −→ . . .

where Mx is the localization of M with respect to the multiplicatively closed subset
{xi : i ∈ N0} of R. Since Hi

a(M) = 0 for all i > r, it turns out that Hi
a(Mx) ∼=

H i+1
b

(M) for all i > r. Thus each element of Hi
a(Mx) is annihilated by some power

of b. By applying the functor Hi
a(·) on the isomorphism Mx

xn−→ Mx, n ∈ N, we
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deduce that Hi
a(Mx) xn−→ Hi

a(Mx) is an isomorphism. But each element of Hi
a(Mx)

is annihilated by xn for some n ∈ N. This yields that Hi
a(Mx) = 0 for all i > r.

Therefore H i
b(M) = 0 for all i > r + 1, as required.

We recall some properties of the notions c(N) and s dimN in the following lemma
(see [3, Ch. 19]).

Lemma 2.6. Let N be a finitely generated R-module. Then the following hold:
(i) s dimN = min{dimR/p : p ∈ MinRN},
(ii) c(N) = min{dim(R/(

⋂
p∈A p +

⋂
p∈B p)) : A and B are non-empty subsets of

MinRN such that A ∪B = MinRN},
(iii) c(N) ≤ s dimN , and
(iv) if (R,m) is local, then c(SuppN\{m}) = c(N)− 1.

Theorem 2.7. Let a, b be two ideals of a local ring (R,m) and N a finitely gener-
ated R-module such that min{dimN/aN, dimN/bN} > dimN/(a + b)N.

(i) If MinR̂ N̂ consists of a single prime p, then

cd(a ∩ b, N) ≥ dimN − dimN/(a + b)N − 1.

(ii) If R is complete, then

cd(a ∩ b, N) ≥ min{c(N), s dimN − 1} − dimN/(a + b)N.

Proof. Let R1 = R/AnnRN . Then cd(a ∩ b, N) = cd((a ∩ b)R1, R1), by Lemma
2.1(iv) and Theorem 2.2. On the other hand one can easily check that s dimN =
s dimR1 and that c(N) = c(R1). Therefore we may and do assume that N =
R. Now, by replacing ara(a ∩ b) by cd(a ∩ b, R) and using Lemma 2.5, we can
process similar to the proof of [3, Proposition 19.2.7] to deduce (i). Also, in view of
Lemma 2.1(i) and 2.1(iv), one can deduce (ii) by similar argument as in [3, Lemma
19.2.8].

Now, we are ready to state the next main theorem of this section, namely the
connectedness bound for a finitely generated module over a complete local ring
which is a generalization and refinement of Grothendieck’s connectedness theorem
(see [8, Expose XIII, Théorém 2.1]).

Theorem 2.8. Let a be a proper ideal of a complete local ring (R,m), and let N
be a finitely generated R-module. Then

cd(a, N) ≥ min{c(N), s dimN − 1} − c(N/aN).

Proof. Let MinR(N/aN) = {p1, . . . , pn} and c := c(N/aN). If n = 1, we have
c = dimR/p1 (see Lemma 2.6(ii)). Let p ∈ MinRN be such that p ⊆ p1. Then as
SuppR/p ⊆ SuppN , by virtue of Lemmas 2.1(i), 2.1(iv) and Theorem 2.2,

ht p1/p ≤ cd(p1/p, R/p) = cd(p1, R/p) ≤ cd(p1, N).

Because Rad(a + AnnRN) = p1, it turns out that cd(p1, N) = cd(a, N).
Next, since R/p is catenary, we deduce that c = dimR/p− ht p1/p ≥ s dimN −

cd(a, N), as desired. Accordingly, we may assume that n > 1. Then there exist
two non-empty subsets A,B of MinRN/aN for which A ∪B = MinRN/aN , and

c = dim(R
/

(
⋂
p∈A

p) + (
⋂

p∈B
p)).
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Moreover, we may assume that A ∩ B = ∅. Put b :=
⋂

p∈A p and c :=
⋂

p∈B p.
Then dimN/bN > c, dimN/cN > c and b ∩ c = Rad(a + AnnRN). Therefore the
proof finishes by Theorem 2.7(ii).

Corollary 2.9. Let the situation be as in Theorem 2.8. Then cd(a, N) ≥ c(N) −
c(N/aN)− 1. Moreover if |MinRN | > 1, then the inequality is strict.

Proof. The assertion is clear by Theorem 2.8, because, by Lemma 2.6(iii), c(N) ≤
s dimN , with strict inequality if |MinRN | > 1.

3. Connectedness theorem

In [10], M. Hochster and C. Huneke have extended Faltings’ original connected-
ness theorem [6] as follows. Let (R,m) be an equidimensional complete local ring
of dimension d, and a a proper ideal of R. If Hd

m(R) is indecomposable, then the
punctured spectrum of R/a is connected provided cd(a, R) ≤ d−2. Next this result
is generalized to finitely generated modules in [5]. In this section, our objective is
to remove the indecomposability assumption. To this end, we give a refinement
of Theorem 2.8 in Theorem 3.4. Before we do this, we bring some definitions and
lemmas.

Definition. Let (R,m) be a d-dimensional local ring. A finitely generated R-
moduleK is called the canonical module of R, if K⊗RR̂ ∼= HomR(Hd

m(R), E(R/m)).

Proposition 3.1. Let p1, . . . , pn be prime ideals of a finite dimensional Noetherian
ring R such that pi 6⊆ pj for all 1 ≤ i 6= j ≤ n. Suppose that R is (S2) and that Rp

possesses a canonical module for all p ∈ SpecR. Also, assume that for each prime
ideal p of R, dimR = dimR/p + ht p. Set a :=

⋂m
i=1 pi and b =

⋂n
i=m+1 pi for

some 1 ≤ m < n. Then

cd(a ∩ b, R) ≥ dimR− dimR/(a + b)− 1.

Proof. Let q be a prime ideal of R containing a + b such that dimR/(a + b) =
dimR/q. Our assumption on pi’s implies that the ideals aRq and bRq are not
qRq−primary. Now the claim follows immediately from Lemma 2.1(iv) and the
following lemma.

Lemma 3.2. Let (R,m) be a (S2) local ring which possesses a canonical module.
Let a and b be two non-m-primary ideals of R such that a + b is m-primary. Then

cd(a ∩ b, R) ≥ dimR− 1.

Proof. Assume that the contrary is true. Then the Mayer-Vietoris sequence (see
e.g. [3, 3.2.3]) yields the isomorphism

Hd
m(R) = Hd

a+b(R) ∼= Hd
a (R)⊕Hd

b(R).

The module Hd
m(R) is indecomposable by [2, Remark 1.4] and so either Hd

a (R) = 0
or Hd

b (R) = 0. Suppose Hd
b (R) = 0; then Hd

m(R) ∼= Hd
a (R). It follows from [2,

Proposition 1.2 and Lemma 1.1] that Assh R̂ = Ass R̂. By virtue of [3, Ex. 8.2.6],
once applied to m and a second time applied to a, it follows that dim R̂/aR̂+ p =
0 for all p ∈ Ass R̂. This leads that a is m-primary, which is a contradiction.
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Lemma 3.3. Let R be a Noetherian ring such that R is (S2) and that Rp has a
canonical module for all p ∈ SpecR. Assume that dim R is finite and that for each
p ∈ SpecR, dimR = dimR/p + ht p. Then for each proper ideal a of R,

cd(a, R) ≥ dimR− c(R/a)− 1.

Proof. Without loss of generality we can and do assume that a = Rad(a). Let
p1, . . . , pn be the distinct minimal primes of a, and let c := c(R/a). If n = 1, we
have a = p1 and c = dimR/p1. Hence

c = dimR − ht p1 ≥ dimR− cd(p1, R).

Consider now the case where n > 1. By Lemma 2.6(ii), there exist two disjoint
non-empty subsets A,B of {1, . . . , n} for which A ∪ B = {1, . . . , n} and c =
dim(R/(

⋂
i∈A pi) + (

⋂
j∈B pj)). Set b =

⋂
i∈A pi and c =

⋂
j∈B pj . Then pi 6⊆ pj

for all 1 ≤ i, j ≤ n, and b∩ c = a. We can now use Proposition 3.1 to complete the
proof.

Theorem 3.4. Let a be a proper ideal of a local ring (R,m) and let N be a finitely
generated R-module such that MinR̂ N̂ = AsshR̂ N̂ . Then

cd(a, N) ≥ dimN − c(N/aN)− 1.

Proof. Let R1 = R/AnnRN . Then c(N/aN) = c(R1/aR1) and cd(a, N) =
cd(aR1, R1) by Lemma 2.1(iv) and Theorem 2.2. On the other hand Min R̂1 =
Assh R̂1. Thus it is sufficient to prove the claim for the ring R itself. Since
c(R/a) ≥ c(R̂/aR̂) by [3, Lemma 19.3.1], we can assume that R is complete. Since
s dimR = dimR, in view of Theorem 2.8 it is enough to show that c(R) ≥ dimR−1.
Let J =

⋂
q, where q runs through all the primary components of the zero ideal

of R such that dimR/q = dimR. It is clear that dimR/J = dimR. Also, since
MinR = AsshR, it follows from Lemma 2.6(ii) that c(R/J) = c(R). Thus by re-
placing R with R/J , we may assume that AsshR = AssR. By [1, 1.11 and Theorem
3.2], there exists a commutative Noetherian semi-local ring S and a monomorphism
ϕ : R −→ S such that:

(i) S is finitely generated as an R-module,
(ii) S is (S2),
(iii) Sp has a canonical module for all p ∈ SpecS, and
(iv) every maximal chain of prime ideals in S is of length dimS.

Let p1, . . . , pn be the distinct minimal prime ideals of R. Then there exist two
non-empty subsets A,B of {1, . . . , n} for which A ∪B = {1, . . . , n} and

c(R) = dim(R/(
⋂
i∈A

pi) + (
⋂
j∈B

pj)).

Since by condition (i), S is integral over R, it follows that dimR = dimS and that
for each 1 ≤ i ≤ n there exists qi ∈ SpecS such that ϕ−1(qi) = pi. For a given
prime ideal q of S, we show that q ∈ MinS if and only if p = ϕ−1(q) ∈ MinR.
To this end, first note that the ring S/q is integral over the ring R/p, and so
dimS/q = dimR/p. Since AssR = AsshR, it turns out that p ∈MinR if and only
if dimR/p = dimR. On the other hand (iv) implies that q ∈ MinS if and only if

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



COHOMOLOGICAL DIMENSION OF CERTAIN ALGEBRAIC VARIETIES 3543

dimS/q = dimS. Therefore the claim is immediate. Put

A′ = {q ∈MinS : ϕ−1(q) = pi for some i ∈ A}

and B′ = {q ∈ MinS : ϕ−1(q) = pj for some j ∈ B}. So, we have

c(R) ≥ dimR
/
ϕ−1((

⋂
q∈A′

q) + (
⋂

q∈B′
q))

= dimS
/

(
⋂

q∈A′
q +

⋂
q∈B′

q) ≥ c(S).

Therefore the result follows by Lemma 3.3. Note that by (iv), for each prime
ideal p of S, dimS = dimS/p + ht p.

Now we are prepared to present the main result of this section which is a gener-
alization of [10, Theorem 3.3] and of [5, Corollary 4.2 and Theorem 4.3].

Corollary 3.5. Let a be a proper ideal of a local ring (R,m). Let N be a d-
dimensional finitely generated R-module such that AsshR̂ N̂ = MinR̂N̂ . Then
SuppN/aN\{m} is connected provided cd(a, N) ≤ d− 2.

Proof. By Lemma 2.6(iv), c(Supp(N/aN)\{m}) = c(N/aN)−1. Hence by Theorem
3.4, c(Supp(N/aN)\{m}) ≥ dimN − cd(a, N)− 2. Thus

c(Supp(N/aN)\{m}) ≥ 0,

and so Supp(N/aN)\{m} is connected, as desired.
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