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a symmetric quiver

Alexander I. Efimov

Abstract

In [M. Kontsevich and Y. Soibelman, Cohomological Hall algebra, exponential
Hodge structures and motivic Donaldson–Thomas invariants, Preprint (2011),
arXiv:1006.2706v2[math.AG]], the authors, in particular, associate to each finite quiver
Q with a set of vertices I the so-called cohomological Hall algebra H, which is ZI>0-
graded. Its graded component Hγ is defined as cohomology of the Artin moduli
stack of representations with dimension vector γ. The product comes from natural
correspondences which parameterize extensions of representations. In the case of a
symmetric quiver, one can refine the grading to ZI>0 × Z, and modify the product
by a sign to get a super-commutative algebra (H, ?) (with parity induced by the
Z-grading). It is conjectured in [M. Kontsevich and Y. Soibelman, Cohomological
Hall algebra, exponential Hodge structures and motivic Donaldson–Thomas invariants,
Preprint (2011), arXiv:1006.2706v2[math.AG]] that in this case the algebra (H⊗Q, ?)
is free super-commutative generated by a ZI>0 × Z-graded vector space of the form
V = V prim ⊗Q[x], where x is a variable of bidegree (0, 2) ∈ ZI>0 × Z, and all the spaces⊕

k∈Z V
prim
γ,k , γ ∈ ZI>0. are finite-dimensional. In this paper we prove this conjecture

(Theorem 1.1). We also prove some explicit bounds on pairs (γ, k) for which V prim
γ,k 6= 0

(Theorem 1.2). Passing to generating functions, we obtain the positivity result for
quantum Donaldson–Thomas invariants, which was used by Mozgovoy to prove Kac’s
conjecture for quivers with sufficiently many loops [S. Mozgovoy, Motivic Donaldson–
Thomas invariants and Kac conjecture, Preprint (2011), arXiv:1103.2100v2[math.AG]].
Finally, we mention a connection with the paper of Reineke [M. Reineke, Degenerate
cohomological Hall algebra and quantized Donaldson–Thomas invariants for m-loop
quivers, Preprint (2011), arXiv:1102.3978v1[math.RT]].

1. Introduction

In this paper we study the cohomological Hall algebra (COHA) introduced by Kontsevich and
Soibelman [KS11], in the case of a symmetric quiver without potential. Our main result is the
proof of the Kontsevich–Soibelman conjecture on the freeness of the COHA of a symmetric
quiver.

Consider a finite quiver Q with a set of vertices I and with aij edges from i ∈ I to j ∈ I,
so that aij ∈ Z>0. One can choose trivial stability conditions on the category of complex finite-
dimensional representations, so that stable representations are precisely the simple ones, and
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A. I. Efimov

they all have the same slope. In particular, each representation is semi-stable with the same
slope. Then, for each dimension vector

γ = {γi}i∈I ∈ ZI>0,

the moduli space of representations of Q is an Artin quotient stack Mγ/Gγ , where Mγ is an
affine space of all representations in coordinate vector spaces Cγi , Gγ =

∏
i∈I GL(γi, C), and the

action is by conjugation (see § 2.1). One then defines a ZI>0-graded Q-vector space H by the
formula

H=
⊕
γ∈ZI>0

Hγ , Hγ :=H•Gγ (Mγ ,Q).

Note that originally in [KS11], one takes cohomology with integer coefficients, but we will deal
only with the result of tensoring by Q.

Now, for every choice of two vectors γ1, γ2 ∈ ZI>0, one has a natural correspondence
Mγ1,γ2/Gγ1,γ2 between the stacks Mγ1/Gγ1 and Mγ2/Gγ2 , which parameterizes all extensions
(§ 2.1). We get natural maps of stacks

(Mγ1/Gγ1)× (Mγ2/Gγ2)←Mγ1,γ2/Gγ1,γ2 →Mγ1+γ2/Gγ1+γ2 ,

which allow one to define a multiplication

H•Gγ1
(Mγ1)⊗H•Gγ2 (Mγ2)→H

•−2χQ(γ1,γ2)
Gγ1+γ2

(Mγ1+γ2), (1.1)

where χQ(γ1, γ2) is the Euler form

χQ(γ1, γ2) =
∑
i∈I

γi1γ
i
2 −

∑
i,j∈I

aijγ
i
1γ
j
2.

It is proved in [KS11, Theorem 1] that the resulting product on H is associative, so this
makes H into a ZI>0-graded algebra, which is called the (rational) cohomological Hall algebra of
a quiver Q.

Now we restrict to the case of a symmetric quiver Q, i.e. to the case aij = aji. In this case the
Euler form χQ(γ1, γ2) is symmetric as well. One defines a (ZI>0 × Z)-graded algebra structure on
H, by assigning to a subspace Hk

Gγ
(Mγ) a bigrading (γ, k + χQ(γ, γ)). It follows from (1.1) that

the product is compatible with this grading. We also define a parity on H to be induced by the
Z-grading (see § 2.3).

In general, the algebra H for symmetric quiver is not super-commutative, but it becomes so
after twisting the product by a sign (§ 2.3). Denote by ? the resulting super-commutative product.
Our main result is the following theorem which was conjectured in [KS11, Conjecture 1].

Theorem 1.1. For any finite symmetric quiver Q, the (ZI>0 × Z)-graded algebra (H, ?) is a
free super-commutative algebra generated by a (ZI>0 × Z)-graded vector space V of the form
V = V prim ⊗Q[x], where x is a variable of degree (0, 2) ∈ ZI>0 × Z, and for any γ ∈ ZI>0 the

space V prim
γ,k is non-zero (and finite-dimensional) only for finitely many k ∈ Z.

The second result in this paper gives explicit bounds on pairs (γ, k) for which V prim
γ,k 6= 0. For

a given symmetric quiver Q, and γ ∈ ZI>0\{0}, we put

Nγ(Q) :=
1
2

(∑
i,j∈I,
i6=j

aijγ
iγj +

∑
i∈I

max(aii − 1, 0)γi(γi − 1)
)
−
∑
i∈I

γi + 2.
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Theorem 1.2. In the notation of Theorem 1.1, if V prim
γ,k 6= 0, then γ 6= 0,

k ≡ χQ(γ, γ) mod 2 and χQ(γ, γ) 6 k < χQ(γ, γ) + 2Nγ(Q).

The only non-trivial statement in Theorem 1.2 is the upper bound on k. In the proofs of both
theorems, we use explicit formulas for the product in H from [KS11, Theorem 2]. Namely, since
the affine space Mγ is Gγ-equivariantly contractible, we have

Hγ ∼=H•(BGγ),

and the right-hand side is isomorphic to the algebra of polynomials in xi,α, where i ∈ I,
1 6 α6 γi, which are invariant with respect to the product of symmetric groups Sγi . Then,
given two polynomials f1 ∈Hγ1 , f2 ∈Hγ2 , their product f1 · f2 ∈Hγ , γ = γ1 + γ2, equals the sum
over all shuffles (for any i ∈ I) of the following rational function in variables (x′i,α)i∈I,α∈{1,...,γi1},
(x′′i,α)i∈I,α∈{1,...,γi2}:

f1((x′i,α))f2((x′′i,α))

∏
i,j∈I

∏γi1
α1=1

∏γj2
α2=1(x′′j,α2

− x′i,α1
)aij∏

i∈I
∏γi1
α1=1

∏γi2
α2=1(x′′i,α2

− x′i,α1
)

.

Theorems 1.1 and 1.2 imply the corresponding results for the generating functions for
cohomological Hall algebras, and, in particular, positivity for quantum Donaldson–Thomas
invariants. The positivity result was used by Mozgovoy to prove Kac’s conjecture for quivers
with at least one loop at each vertex [Moz11].

The paper is organized as follows.
Section 2 is devoted to some preliminaries on cohomological Hall algebras for quivers. We

follow [KS11, § 2]. In § 2.1 we give a definition of the rational cohomological Hall algebra for an
arbitrary finite quiver. Section 2.2 is devoted to explicit formulas for the product in cohomological
Hall algebras. In § 2.3 we define an additional Z-grading on the COHA of a symmetric quiver,
so that we get a (ZI>0 × Z)-graded algebra. Then, we show how to modify the product on H by
a sign to get a super-commutative algebra (H, ?), with parity induced by the Z-grading.

Section 3 is devoted to the proofs of Theorem 1.1 (Theorem 3.1) and Theorem 1.2
(Theorem 3.10).

In § 4 we discuss applications of our results to the generating function of COHA, or, in other
words, to quantized Donaldson–Thomas invariants.

2. Preliminaries on cohomological Hall algebras

In this section we recall some definitions and results from [KS11, § 2].

2.1 COHA of a quiver

Let Q be a finite quiver. Denote its set of vertices by I, and let aij ∈ Z>0 be the number of
arrows from i to j, where i, j ∈ I. Fix a dimension vector γ = (γi)i∈I ∈ ZI>0. We have an affine
variety of representations of Q in complex coordinate vector spaces Cγi :

Mγ =
∏
i,j∈I

Caijγ
iγj .

The variety Mγ is acted on via conjugation by the complex algebraic group Gγ =
∏
i∈I GL(γi, C).

1135
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Recall that the infinite-dimensional Grassmannian

Gr(d,∞) = lim−→Gr(d, Cn), n→+∞,

is a model for the classifying space of GL(d, C). Put

BGγ :=
∏
i∈I

B GL(γi, C) =
∏
i∈I

Gr(γi,∞).

We have a standard universal Gγ-bundle EGγ → BGγ , and the Artin stack Mγ/Gγ gives a
universal family over BGγ :

Muniv
γ := (EGγ ×Mγ)/Gγ → EGγ/Gγ = BGγ .

Define a ZI>0-graded Q-vector space

H=
⊕
γ∈ZI>0

Hγ ,

putting

Hγ :=H•Gγ (Mγ ,Q) =
⊕
n>0

Hn(Muniv
γ ,Q).

Now we define a multiplication on H which makes it into an associative unital ZI>0-graded
algebra over Q. Take two vectors γ1, γ2 ∈ ZI>0, and put γ := γ1 + γ2. Consider the affine subspace
Mγ1,γ2 ⊂Mγ , which consists of representations for which the standard subspaces Cγi1 ⊂ Cγi

form a subrepresentation. The subspace Mγ1,γ2 is preserved by the action of the subgroup
Gγ1,γ2 ⊂Gγ which consists of transformations preserving the subspaces Cγi1 ⊂ Cγi . We use a
model for BGγ1,γ2 which is the total space of a bundle over BGγ with fiber Gγ/Gγ1,γ2 (i.e. a
product of infinite-dimensional partial flag varieties Fl(γi1, γi,∞)). We have a natural projection
EGγ → BGγ1,γ2 which is a universal Gγ1,γ2-bundle.

Now define the morphism

mγ1,γ2 :Hγ1 ⊗Hγ2 →Hγ
as the composition of the Künneth isomorphism

⊗ :H•Gγ1 (Mγ1,Q)⊗H•Gγ2 (M2,Q)
∼=−−→H•Gγ1×Gγ2

(Mγ1 ×Mγ2 ,Q)

and the following morphisms:

H•Gγ1×Gγ2
(Mγ1 ×Mγ2 ,Q)

∼=−−→H•Gγ1,Gγ2
(Mγ1,γ2 ,Q)→H•+2c1

Gγ1,γ2
(Mγ ,Q)→H•+2c1+2c2

Gγ
(Mγ).

Here the first map is induced by natural surjective homotopy equivalences

Mγ1,γ2
∼−−→Mγ1 ×Mγ2 , Gγ1,γ2 →Gγ1 ×Gγ2 .

The other two maps are natural pushforward morphisms, with

c1 = dimC Mγ − dimC Mγ1,γ2 , c2 = dimC Gγ1,γ2 − dimC Gγ .

Theorem 2.1 [KS11, Theorem 1]. The constructed product m on H is associative.

Note that

c1 + c2 =−χQ(γ1, γ2), (2.1)
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where

χQ(γ1, γ2) =
∑
i∈I

γi1γ
i
2 −

∑
i,j∈I

aijγ
i
1γ
j
2

is the Euler form of the quiver Q. That is, given two representations R1, R2 (over any field) of
the quiver Q, with dimension vectors γ1, γ2 respectively, one has∑

i

(−1)i dim Exti(R1, R2) = dim Hom(R1, R2)− dim Ext1(R1, R2) = χQ(γ1, γ2).

2.2 Explicit description of the COHA of a quiver

Since the affine spaces Mγ are Gγ-equivariantly contractible, we have natural isomorphisms

Hγ ∼=H•(BGγ ,Q) =
⊗
i∈I

H•(B GL(γi, C),Q).

Recall that

H•(B GL(d, C),Q)∼= Q[x1, . . . , xd]Sd .

For a vector γ ∈ ZI>0, introduce variables xi,α, where i ∈ I, α ∈ {1, . . . , γi}. Then, we get natural
isomorphisms

Hγ ∼= Q[{xi,α}i∈I,α∈{1,...,γi}]
∏
i∈I Sγi .

From this moment, we identify the elements of Hγ with the corresponding polynomials.

Definition 2.2. For non-negative integers p, q, we define a (p, q)-shuffle to be a permutation
σ ∈ Sp+q such that

σ(1)< · · ·< σ(p), σ(p+ 1)< · · ·< σ(p+ q).

Further, take a pair of dimension vectors γ1, γ2 ∈ ZI>0, and put γ := γ1 + γ2. We define a
(γ1, γ2)-shuffle to be an element σ ∈ Pγ :=

∏
i∈I Sγi such that for each i ∈ I the component

σi ∈ Sγi is a (γi1, γ
i
2)-shuffle.

Theorem 2.3 [KS11, Theorem 2]. Given two polynomials f1 ∈Hγ1 , f2 ∈Hγ2 , their product
f1 · f2 ∈Hγ , γ = γ1 + γ2, equals the sum over all (γ1, γ2)-shuffles of the following rational function
in variables (x′i,α)i∈I,α∈{1,...,γi1}, (x′′i,α)i∈I,α∈{1,...,γi2}:

f1((x′i,α))f2((x′′i,α))

∏
i,j∈I

∏γi1
α1=1

∏γj2
α2=1(x′′j,α2

− x′i,α1
)aij∏

i∈I
∏γi1
α1=1

∏γi2
α2=1(x′′i,α2

− x′i,α1
)

.

2.3 Additional grading in the symmetric case

Now assume that the quiver Q is symmetric, i.e. aij = aji, i, j ∈ I. Then the Euler form

χQ(γ1, γ2) =
∑
i∈I

γi1γ
i
2 −

∑
i,j∈I

aijγ
i
1γ
i
2

is symmetric as well.
We make H into a (ZI>0 × Z)-graded algebra as follows. For a polynomial f ∈Hγ of degree

k we define its bigrading to be (γ, 2k + χQ(γ, γ)). It follows from either (2.1) or Theorem 2.3
that the product on H is compatible with this bigrading. Define the super-structure on H to be
induced by the Z-grading.
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For two elements aγ,k ∈Hγ,k, aγ′,k′ ∈Hγ′,k′ , we have

aγ,kaγ′,k′ = (−1)χQ(γ,γ′)aγ′,k′aγ,k.

In general, this does not mean that H is super-commutative. However, it is easy to twist the
product by a sign, so that H becomes super-commutative. This can be done as follows.

Define the homomorphism of abelian groups ε : ZI → Z/2Z by the formula

ε(γ) = χQ(γ, γ) mod 2.

Note that the parity of the element aγ,k equals ε(γ) (by the definition). We have a bilinear form

ZI × ZI → Z/2Z, (γ1, γ2) 7→ (χQ(γ1, γ2) + ε(γ1)ε(γ2)) mod 2,

which induces a symmetric form β on the space (Z/2Z)I , such that β(γ, γ) = 0 for all γ ∈ (Z/2Z)I .
Hence, there exists a bilinear form ψ on (Z/2Z)I such that

ψ(γ1, γ2) + ψ(γ2, γ1) = β(γ1, γ2).

Then the twisted product on H is defined by the formula

aγ,k ? aγ′,k′ = (−1)ψ(γ,γ′)aγ,k · aγ′,k′ .

It follows from the definition that the product ? is associative, and the algebra (H, ?) is
super-commutative. From now on, we fix the choice of bilinear form ψ, and the corresponding
product ? on H.

3. Freeness of the COHA of a symmetric quiver

Theorem 3.1. For any finite symmetric quiver Q, the (ZI>0 × Z)-graded algebra (H, ?) is a
free super-commutative algebra generated by a (ZI>0 × Z)-graded vector space V of the form
V = V prim ⊗Q[x], where x is a variable of bidegree (0, 2) ∈ ZI>0 × Z, and for any γ ∈ ZI>0 the

space V prim
γ,k is non-zero (and finite-dimensional) only for finitely many k ∈ Z.

Before giving a proof of this theorem, we illustrate it in some examples.
Let Qd be a quiver with one vertex and d loops, d> 0. Then Hn,k is the space of symmetric

polynomials in n variables of degree (k − (1− d)n2)/2. In this case we do not need to modify
the product by a sign.

Example 3.2. For d= 0, the super-commutative algebra H is freely generated by odd elements
ψ2k+1 := xk1 ∈H1,2k+1, k ∈ Z>0, Thus V =H1 ⊂H, and the space V prim =H1,1 = Q · ψ1 is one-
dimensional.

Example 3.3. For d= 1, the super-commutative algebra H is freely generated by even elements
φ2k := xk1 ∈H1,2k, k ∈ Z>0, Thus again V =H1 ⊂H, and the space V prim =H1,0 = Q · φ0 is one-
dimensional.

These two cases were considered in [KS11, § 2.5]. However, for d> 2 the picture becomes
much more complicated.

Example 3.4. Consider the case d= 2. It is not hard to see that all the spaces Vn, n> 1, have to
be non-zero and contain 1 ∈Hn,−n2 . We write down here Vn and V prim

n for n6 3.
We have to take the component V1 =

⊕
k V1,k to be equal to H1 =

⊕
k>0 H1,2k−1, and hence

V prim
1 = V prim

1,−1 = Q · x0
1. Further, the subspace of H2 generated by H1 consists of symmetric
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polynomials divisible by (x1 − x2)2. Hence, we have to take V2 ⊂H2 to be some complementary
subspace, for example, V2 = Q[x1 + x2]⊂H2. Then V prim

2 = V prim
2,−4 = Q · (x1 + x2)0. One can

show that subspace of H3 generated by V1 ⊕ V2 consists of symmetric polynomials which vanish
on the line {x1 = x2 = x3}. Hence, we can choose V3 = Q[x1 + x2 + x3], and V prim

3 = V prim
3,−9 =

Q · (x1 + x2 + x3)0.

Proof. Our first step is to construct the space V . It will be convenient to treat Hγ itself as a
Z-graded algebra (with the usual multiplication of polynomials, and the standard even grading).
To distinguish between the product in Hγ and the product in H, we will always denote the latter
product by ‘?’.

For convenience, we put Aγ := Q[{xi,α}i∈I,16α6γi ] (considered as a Z-graded algebra) and
Pγ :=

∏
i∈I Sγi . Then we have that Hγ =A

Pγ
γ . Further, put

Aprim
γ := Q[(xj,α2 − xi,α1)i,j∈I,16α16γi,16α26γj ], σγ :=

∑
i∈I,

16α6γi

xi,α ∈Aγ .

Then Aγ =Aprim
γ ⊗Q[σγ ]. Further, we have

Hγ =Hprim
γ ⊗Q[σγ ], Hprim

γ := (Aprim
γ )Pγ .

Now, for each γ ∈ ZI>0, denote by Jγ the smallest Pγ-stable Aprim
γ -submodule of the

localization Aprim
γ [(xi,α2 − xi,α1)−1

i∈I,16α1<α26γi ], such that for all decompositions γ = γ1 + γ2,
γ1, γ2 ∈ ZI>0\{0}, we have that∏

i,j∈I
∏γi1
α1=1

∏γj

α2=γj1+1
(xj,α2 − xi,α1)aij∏

i∈I
∏γi1
α1=1

∏γi

α2=γi1+1
(xi,α2 − xi,α1)

∈ Jγ .

Remark 3.5. Some arguments below become simpler in the case when the quiver Q has at least
one loop at each vertex, i.e. aii > 1, i ∈ I. The reason is that in this case Jγ ⊂Aprim

γ , and we do
not need to take the localization.

It is not hard to see that JPγγ ⊂Hprim
γ . Namely, we have that

Jγ ⊂Aprim
γ ·M−1, M =

∏
i∈I

∏
16α<β6γi

(xi,β − xi,α),

and

(Aprim
γ ·M−1)Pγ ⊂ (Aγ ·M−1)Pγ =Hγ .

Define V prim
γ ⊂Hprim

γ to be a graded subspace such that

Hprim
γ = V prim

γ ⊕ JPγγ .

Further, put

Vγ := V prim
γ ⊗Q[σγ ]⊂Hγ , V :=

⊕
γ∈ZI>0

Vγ .

We will prove that V freely generates H, and that all the spaces V prim
γ are finite-dimensional

(this would imply the theorem).
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Lemma 3.6. The subspace V ⊂H generates H as an algebra.

Proof. Note that for each γ ∈ ZI>0, the image of the multiplication map⊕
γ1+γ2=γ,

γ1,γ2∈ZI>0\{0}

Hγ1 ⊗Hγ2 →Hγ

is precisely JPγγ ⊗Q[σγ ]. Indeed, this image clearly is contained in (Jγ ⊗Q[σγ ])Pγ = J
Pγ
γ ⊗Q[σγ ].

On the other hand, the latter space is linearly spanned by Pγ-symmetrizations of expressions of
the form

f1(xi,α, 1 6 α6 γi1)f2(xi,β+γi1
, 1 6 β 6 γi2) ·

∏
i,j∈I

∏γi1
α1=1

∏γj

α2=γj1+1
(xj,α2 − xi,α1)aij∏

i∈I
∏γi1
α1=1

∏γi

α2=γi1+1
(xi,α2 − xi,α1)

, (3.1)

where γ1 + γ2 = γ. Taking first symmetrization with respect to Pγ1 × Pγ2 ⊂ Pγ , we may consider
only expressions (3.1) with f1 ∈Hγ1 , f2 ∈Hγ2 . The Pγ-symmetrization of such an expression is,
up to a constant, just a product f1 ? f2.

Hence, it follows by induction on
∑

i∈I γ
i that the subspace Hγ is contained in the subalgebra

generated by V . This proves the lemma. 2

Remark 3.7. The proof of the above lemma shows that, for any possible choice of a free generating
subspace V , we have that Vγ ⊕ (JPγγ ⊗Q[σγ ]) =Hγ . Our choice just reflects the fact that
V ∼= V prim ⊗Q[x] as a graded vector space, with deg x= (0, 2).

Now we will show that the spaces V prim
γ are finite-dimensional.

Lemma 3.8. For each γ ∈ ZI>0, the space V prim
γ is finite-dimensional.

Proof. In other words, we need to show that the ideal JPγγ ⊂Hprim
γ has finite codimension. First

note that if we replace aii by aii + 1, then the fractional ideal Jγ would become smaller or equal.
Hence, we may and will assume that aii > 0 for i ∈ I, and so Jγ ⊂Aprim

γ .

Since we have natural injective morphisms

Hprim
γ /J

Pγ
γ ↪→Aprim

γ /Jγ ,

it suffices to show that the ideal Jγ ⊂Aprim
γ has finite codimension. It will be convenient to treat

the algebra Aprim
γ as the algebra of functions on the hyperplane W ⊂ A

∑
i∈I γ

i

Q , given by equation
σγ(x) = 0.

It suffices to show that

Supp(Aprim
γ /Jγ) = {0} ⊂W.

Assume the converse is true. Then there exists a point y ∈WQ̄, y 6= 0, such that all the functions
from Jγ vanish at y. Since σγ(y) = 0, we have that not all of the coordinates yi,α are equal to
each other. Since the ideal Jγ is Pγ-stable, we may assume that there exists a decomposition
γ = γ1 + γ2, γ1, γ2 ∈ ZI>0\{0}, such that

yi,α1 6= yj,α2 for 1 6 α1 6 γi1, γ
j
1 + 1 6 α2 6 γj .
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Then, however, the function∏
i,j∈I

∏γi1
α1=1

∏γj

α2=γj1+1
(xj,α2 − xi,α1)aij∏

i∈I
∏γi1
α1=1

∏γi

α2=γi1+1
(xi,α2 − xi,α1)

∈ Jγ

does not vanish at y, a contradiction.

The lemma is proved. 2

It remains to prove the freeness.

Lemma 3.9. The subspace V ⊂H freely generates H.

Proof. We have already shown the generation. So we need to show freeness.

Choose an order on I, and fix the corresponding lexicographical order on ZI>0 (denoted by
γ � γ′). Further, denote by eγ,β, 1 6 β 6 dim V prim

γ , a homogeneous basis of V prim
γ . We have the

lexicographical order on all of the elements eγ,β (for all γ and β). Further, the elements eγ,βσmγ
(for all γ, β, m) form a basis of V , and again we have a lexicographical order on them, which we
denote by �.

Fix some γ ∈ ZI>0. Consider the set Seqγ of all non-increasing sequences (eγ1,β1σ
m1
γ1 , . . . ,

eγd,βdσ
md
γd

) such that:

(1) γ1 + · · ·+ γd = γ;

(2) an equality (γi, βi, mi) = (γi+1, βi+1, mi+1) implies ε(γi) = 0.

Clearly, we have a natural lexicographical order on Seqγ (which we again denote by �). For a
sequence t ∈ Seqγ , we denote by Mt ∈Hγ the corresponding product.

What we need to show is non-vanishing of each non-trivial linear combination:

T =
n∑
i=1

λiMti 6= 0, t1, . . . , tn ∈ Seqγ , t1 � · · · � tn, λ1 . . . λn 6= 0. (3.2)

Fix some t1, . . . , tn and λ1, . . . , λn as in (3.2). Denote by (γ1, . . . , γk) the underlying sequence
of elements in ZI>0 for the sequence t1 ∈ Seqγ . Then γ1 + · · ·+ γk = γ, and γi 6= 0, 1 6 i6 k. We
have a natural isomorphism

Aγ ∼=Aγ1 ⊗ · · · ⊗Aγk =: Ãγ ,

which induces an inclusion

ι :Hγ ↪→Hγ1 ⊗ · · · ⊗ Hγk =: H̃γ .

Put P̃γ := Pγ1 × · · · × Pγk . Then we have H̃γ = Ãγ
P̃γ

. Further, take the ideal

(Jγ1 ∩Aprim
γ1 )Ãγ + · · ·+ (Jγk ∩A

prim
γk

)Ãγ =: J̃γ ⊂ Ãγ .

We will write x(p)
i,α ∈ Ãγ for variables from the pth factor Aγp ⊂ Ãγ .

Claim. The elements (x(q)
j,α2
− x(p)

i,α1
) ∈ Ãγ , 1 6 p < q 6 k, are not zero divisors in the quotient

ring

Ãγ/J̃γ .
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Proof. For convenience, we may assume that the sequence γ1, . . . , γk is not necessarily non-
increasing, and q = k. Any element g ∈ Ãγ can be written (in a unique way) as a sum

g =
N∑
ν=0

gνσ
ν
γk
, gν ∈Aγ1 ⊗ · · · ⊗Aγk−1

⊗Aprim
γk

.

The following are obviously equivalent:

(i) g 6∈ J̃γ ;

(ii) for some ν ∈ {0, . . . , N}, gν 6∈ J̃γ .

Now suppose that g 6∈ J̃γ . We need to show that

(x(k)
j,α2
− x(p)

i,α1
)g 6∈ J̃γ . (3.3)

We may assume that gN 6∈ J̃γ . Put

x(k)
av :=

1∑
i∈I γ

i
k

∑
i,α

x
(k)
i,α =

1∑
i∈I γ

i
k

σγk .

Then x
(k)
j,α2
− x(k)

av ∈Aprim
γk , and we have

(x(k)
j,α2
− x(p)

i,α1
)g = (x(k)

j,α2
− x(k)

av − x
(p)
i,α1

)g + x(k)
av g =

1∑
i∈I γ

i
k

gNσ
N+1
γk

+
N∑
ν=0

g′νσ
ν
γk

for some g′ν ∈Aγ1 ⊗ · · · ⊗Aγk−1
⊗Aprim

γk . Since (1/
∑

i∈I γ
i
k)gN 6∈ J̃γ by our assumption, this

implies (3.3). The claim is proved. 2

We put

Ãγ
′
:= Ãγ [(x(q)

j,α2
− x(p)

i,α1
)−1
16p<q6k], H̃γ

′
:= (Ãγ

′
)P̃γ .

We denote by the same letter L the localization maps L : Ãγ → Ãγ
′
, L : H̃γ → H̃γ

′
. Also put

J̃γ
′
:= Ãγ

′
L(J̃γ). It follows directly from the claim that the induced maps

L : Ãγ/J̃γ → Ãγ
′
/J̃γ
′
, L : H̃γ/(J̃γ)P̃γ → H̃γ

′
/(J̃γ

′
)P (3.4)

are injective.
Now, let r ∈ {1, . . . , n} be the maximal number such that the underlying sequence of elements

in ZI>0 for tr coincides with (γ1, . . . , γk). Then it is straightforward to check that

Lι(Mtl) ∈ (J̃γ
′
)P̃γ for r + 1 6 l 6 n.

Thus, it suffices to show that

Lι

( r∑
i=1

λiMti

)
6∈ (J̃γ

′
)P̃γ . (3.5)

For all relevant βi, mi we have the following comparison:

Lι(eγ1,β1σ
m1
γ1 ? · · · ? eγk,βkσ

mk
γk

)

≡ Fγ1,...,γk ·
∑
τ

s(τ)eγ1,βτ(1)σ
mτ(1)
γ1 ⊗ · · · ⊗ eγk,βτ(k)σ

mτ(k)
γk mod (J̃γ

′
)P̃γ , (3.6)
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where the sum is taken over all permutations τ ∈ Sk such that γp = γτ(p) for all p ∈ {1, . . . , k},
and s(τ) is the Koszul sign (recall that the parity of eγ,βσkγ equals ε(γ)), and Fγ1,...,γk ∈ H̃γ

′
is

(up to sign) the product of some powers (positive and (−1)st) of the differences

(x(q)
j,α2
− x(p)

i,α1
) ∈ Ãγ , 1 6 p < q 6 k.

Thus, Fγ1,...,γk is invertible, and, according to (3.6) and injectivity of the maps (3.4), we are left
to check that ∑

τ

s(τ)eγ1,βτ(1)σ
mτ(1)
γ1 ⊗ · · · ⊗ eγk,βτ(k)σ

mτ(k)
γk 6∈ J̃γ

P̃γ
.

However, this follows from the condition (2) in the above definition of the set of sequences Seqγ ,
and from the definition of eγi,β. This proves (3.3), hence the desired linear independence (3.2),
and hence free generation. The lemma is proved. 2

The theorem is proved. 2

It is clear that if V prim
γ,k 6= 0 in the notation of the above theorem, then k ≡ χQ(γ, γ) mod 2

and k > χQ(γ, γ). Our next result is an upper bound on k (depending on γ) for which Vγ,k 6= 0.

For a given symmetric quiver Q and γ ∈ ZI>0\{0}, we put

Nγ(Q) :=
1
2

(∑
i,j∈I,
i6=j

aijγ
iγj +

∑
i∈I

max(aii − 1, 0)γi(γi − 1)
)
−
∑
i∈I

γi + 2.

Theorem 3.10. In the notation of Theorem 3.1, if V prim
γ,k 6= 0, then γ 6= 0,

k ≡ χQ(γ, γ) mod 2 and χQ(γ, γ) 6 k < χQ(γ, γ) + 2Nγ(Q).

Proof. According to the proof of Theorem 3.1, we have

dim V prim
γ,k = dim(Hprim

γ /J
Pγ
γ )k−χQ(γ,γ). (3.7)

Recall that Pγ =
∏
i∈I Sγi ,

Aprim
γ := Q[(xj,α2 − xi,α1)i,j∈I,16α16γi,16α26γj ], Hprim

γ := (Aprim
γ )Pγ ,

and Jγ is the smallest Pγ-stable Aprim
γ -submodule of the localization

Aprim
γ [(xi,α2 − xi,α1)−1

i∈I,16α1<α26γi ],

such that for all decompositions γ = γ1 + γ2, γ1, γ2 ∈ ZI>0\{0}, we have that∏
i,j∈I

∏γi1
α1=1

∏γj

α2=γj1+1
(xj,α2 − xi,α1)aij∏

i∈I
∏γi1
α1=1

∏γi

α2=γi1+1
(xi,α2 − xi,α1)

∈ Jγ . (3.8)

Recall that we take the standard even grading on Aprim
γ with deg(xj,α2 − xi,α1) = 2, and the

induced grading on Hprim
γ .

According to (3.7), it suffices to prove inclusions

(Aprim
γ )d ⊂ Jγ for d> 2N(Q). (3.9)
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For any i, j ∈ I, put

a′ij :=

{
aij if i 6= j,

max(1, aii) if i= j.

Take the quiver Q′ := (I, a′ij). Note that Nγ(Q) =Nγ(Q′), and if we replace Q by Q′ then the
new fractional Jγ will be contained in the initial one. Hence, in order to prove inclusions (3.9),
we may and will assume that aii > 1 for i ∈ I, and so Jγ ⊂Aprim

γ . We will deduce (3.9) from the
following more general result.

Lemma 3.11. Let k be an arbitrary field, and consider the graded algebra of polynomials
B = k[z1, . . . , zn], n> 1, with grading deg(zi) = 1. Suppose that l1, . . . , ls ∈B1 are pairwise
linearly independent non-zero linear forms in zi. Take some non-empty set of polynomials
{P1, . . . , Pr} ⊂B of the form

Pi = ldi11 · · · ldiss ,

where dij ∈ Z>0. Put dj := max16i6r dij , 1 6 j 6 s. Then the following are equivalent.

(i) Bd ⊂ (P1, . . . , Pr) for d> d1 + · · ·+ ds − n+ 1.

(ii) The ideal (P1, . . . , Pr)⊂B has finite codimension.

(iii) For any sequence p1, . . . , pr of numbers in {1, . . . , s}, such that di,pi > 0 for 1 6 i6 r, the
linear forms lp1 , . . . , lpr generate the space B1.

Proof. Both implications (i)⇒ (ii) and (ii)⇒ (iii) are evident. So we are left to prove implication
(iii)⇒ (i).

Put D := d1 + · · ·+ ds − n+ 1. If D 6 0, then one of the polynomials Pi is constant, and
there is nothing to prove. So, we assume that D > 0.

We proceed by induction on D + n. If D + n= 2, then n= s= d1 =D = 1, hence
(P1, . . . , Pr)⊃ (z1), and the statement is proved.

Assume that the implication holds for D + n < k0 > 2. We will prove that it holds for
D + n= k0. Consider the following cases.
Case 0. One of Pi is constant. Then, there is nothing to prove.
Case 1. We have Pi = lj for some i, j. Then it suffices to show that the images of Pi′ with di′j = 0
in B/(lj) generate (B/(lj))d for d>D. If n= 1 then this is clear, and if n > 1 then this follows
from the induction hypothesis.
Case 2. All Pi have degree at least 2. Take d>D, and f ∈Bd. Choose some sequence p1, . . . , pr
of numbers in {1, . . . , s}, such that di,pi > 0 for 1 6 i6 r. Then by statement (iii) we can write

f =
r∑
i=1

lpigi, gi ∈Bd−1.

It suffices to show that for each 1 6 i6 r, the polynomial gi belongs to an ideal generated by Pi′
with lpi - Pi′ , and Pi′′/lpi with lpi | Pi′′ . However, this follows from the induction hypothesis.

In each case, we have proved the desired implication. The induction statement is proved. The
lemma is proved. 2

Now, consider the cases. If
∑

i γ
i = 1, then Nγ(Q) = 1, and Aprim

γ = Q, and hence inclusions
(3.9) hold. Further, if

∑
i γ

i > 2, then we apply Lemma 3.11 to B =Aprim
γ , the linear

forms (xj,α2 − xi,α1) (defined up to sign), and polynomials which are in the Pγ-orbit of the
expressions (3.8). They generate precisely the ideal Jγ ⊂Aprim

γ . We have already shown in the
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proof of Theorem 3.1 that the ideal Jγ ⊂Aprim
γ has finite codimension. Therefore, the implication

(ii)⇒ (i) from Lemma 3.11 gives the desired inclusions (3.9). Indeed, we have that

d1 + · · ·+ ds =
1
2

(∑
i,j∈I,
i6=j

aijγ
iγj +

∑
i∈I

(aii − 1)γi(γi − 1)
)
, n=

∑
i∈I

γi − 1,

and hence Nγ(Q) = d1 + · · ·+ ds − n+ 1. The inclusions (3.9) and the theorem are proved. 2

4. Applications to quantum DT invariants

Define the generating function for the COHAH of a symmetric quiverQ by the following formula:

HQ({ti}i∈I , q) :=
∑

γ∈ZI>0,k∈Z

(−1)k dim(Hγ,k)tγqk/2 ∈ Z((q
1
2 ))[[{ti}i∈I ]],

where tγ :=
∏
i∈I t

γi

i . Note that we have an equality

HQ =
∑
γ∈ZI>0

(−q
1
2 )χQ(γ,γ)∏

i∈I(1− q)(1− q2) . . . (1− qγi)
tγ . (4.1)

Recall the notation
(z; q)∞ :=

∏
n∈Z>0

(1− qnz)

(the so-called q-Pochhammer symbol).

Corollary 4.1. Let Q be a symmetric quiver. Then we have a decomposition

HQ({ti}i∈I , q) =
∏

γ∈ZI>0,k∈Z

(qk/2xγ ; q)(−1)k−1cγ,k
∞ ,

where cγ,k are non-negative integer numbers. Moreover, if cγ,k 6= 0, then γ 6= 0,

k ≡ χQ(γ, γ) mod 2 and χQ(γ, γ) 6 k < χQ(γ, γ) + 2Nγ(Q).

In particular, for a fixed γ only finitely many of cγ,k are non-zero.

Proof. The corollary follows immediately from Theorems 3.1 and 3.10 if we put cγ,k = dim V prim
γ,k .

Indeed, the generating function of the free super-commutative subalgebra generated by one
element of bidegree (γ, k) equals

(1− qk/2tγ)(−1)k−1
.

The resulting decomposition follows from free generation of H by V , and from Theorem 3.10. 2

In the notation of Corollary 4.1 and the terminology of [KS11], the polynomials

Ω(γ)(q) :=
∑
k∈Z

cγ,kq
k/2 ∈ Z[q±

1
2 ]

are quantum Donaldson–Thomas invariants of the quiver Q with trivial potential, trivial stability,
and the dimension vector γ. It follows from Corollary 4.1 that for γ 6= 0 we have

Ω(γ)(q) = q
1
2
χQ(γ,γ)Ω̃(γ)(q),

where Ω̃(γ)(q) is a polynomial with non-negative coefficients, Ω̃(γ)(0) = 1, and deg(Ω̃(γ)(q))<
Nγ(Q).
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We would like to mention a connection with the paper of Reineke [Rei11]. In that paper, for
each integer m> 1, the following q-hypergeometric series is considered:

H(q, t) =Hm(q, t) :=
∑
n>0

q(m−1)(n2)

(1− q−1)(1− q−2) · · · (1− q−n)
tn ∈ Z(q)[[t]].

Denote by Qm the m-loop quiver (a quiver with one vertex and m loops). Since χQm(n1, n2) =
(1−m)n1n2, the formula (4.1) implies

Hm(q, t) =HQm((−1)m−1tq(1−m)/2, q−1).

Also, we have Nn(Qm) = (m− 1)
(
n
2

)
− n+ 2. Therefore, Corollary 4.1 implies the following

corollary.

Corollary 4.2.

Hm(q, (−1)m−1t) =
∏

n>1,k∈Z

(qktn; q−1)−(−1)(m−1)ndn,k ,

where dn,k are non-negative integers, and the inequality dn,k > 0 implies

n− 1 6 k 6 (m− 1)
(
n

2

)
.

In particular, for a fixed n only finitely many of dn,k are non-zero.

This corollary is stronger than Conjecture 3.3 in [Rei11]. According to the notation
of [Rei11], the quantized Donaldson–Thomas type invariant DT (m)

n (q) equals
∑

k∈Z dn,kq
k. Thus,

Corollary 4.2 implies that DT (m)
n (q) is a monic polynomial of degree (m− 1)

(
n
2

)
, divisible by

qn−1, with non-negative coefficients.
With the above said, the numbers dn,k are the dimensions of graded components of the finite-

dimensional graded algebras Hprim
n /JSnn . It would be interesting to compare this interpretation

with the explicit formulas for DT (m)
n (q) in [Rei11, Theorem 6.8].
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