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Cohomological Hall algebra of Higgs sheaves
on a curve

Francesco Sala and Olivier Schiffmann

ABSTRACT

We define the cohomological Hall algebra AHApigesx) of the (two-dimensional)
Calabi—Yau category of Higgs sheaves on a smooth projective curve X, as well as
its nilpotent and semistable variants, in the context of an arbitrary oriented Borel—
Moore homology theory. In the case of usual Borel-Moore homology, AHA ;g4 x) 1s a
module over the (universal) cohomology ring H of the stacks of coherent sheaves on X.
We characterize its annihilator as an H-module, and we provide an explicit collection
of generators (the collection of fundamental classes [Coh,. 4] of the zero sections of the
maps Higgs, ; — Coh, 4 for r >0 and d € Z and for r = 0 and d € Z).

Salimmo su, el primo e io secondo,
tanto ch’i’ vidi de le cose belle
che porta ’l ciel, per un pertugio tondo.

Dante Alighieri, la Divina Commedia,
Inferno, Canto XXXIV

1. Introduction

The aim of this paper is to define and begin the study of cohomological Hall algebras in the
context of moduli stacks of Higgs bundles on smooth projective curves over a field k.

Let us recall that a Higgs bundle on a complex Riemann surface X of arbitrary genus is a pair
(F,¢: F - F @ wx) consisting of a vector bundle F and a morphism ¢ called a Higgs field;
here wx is the canonical line bundle of X. Moduli spaces of stable Higgs bundles of fixed rank
and degree over X were introduced by Hitchin in the late '80s [Hit87a, Hit87b]—see, for example,
[Wel08, Appendix] and [CW18], respectively, for a differential-geometric point of view and for an
algebro-geometric one to the Hitchin moduli spaces. These moduli spaces have a rich geometry:
for example, they are smooth quasi-projective varieties and, from a differential point of view, they
are endowed with a complete hyperkédhler metric. In addition, the map which associates with
any stable Higgs bundle (F, ¢) the characteristic polynomial of ¢ defines a complete integrable
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CoHA or HIGGS SHEAVES ON A CURVE

system, called the Hitchin fibration. The preimage with respect to zero of the Hitchin fibration is
the so-called global nilpotent cone, which parameterizes stable Higgs bundles (F, ¢) with nilpotent
Higgs field ¢. Since its introduction, the Hitchin moduli space has played a pre-eminent role in
the theory of moduli spaces, integrable systems, mirror symmetry, number theory and string and
gauge theories.

In the well-documented analogy between (smooth, projective) curves and quivers, the role
of the Hitchin moduli stack is played by the preprojective stack, and the analog of the global
nilpotent cone is the Lusztig nilpotent stack. As for the moduli space of (stable) Higgs bundles,
the closest analog is another family of noncompact hyperkahler manifolds which share simi-
lar geometric properties, the Nakajima quiver varieties—introduced in [Nak94]. They admit as
well a canonical projective morphism to an affine variety, which is the affinization map—such
a morphism plays the role of the Hitchin fibration; the global nilpotent cone is replaced by the
Lagrangian Nakajima quiver variety. See [Sch08, Ginl2] for an introduction to the theory of
quiver varieties and [Boz16] for more details on the case of quivers with edge loops.

As illustrated by the classical results of Nakajima and others, the (co)homology (or K-theory)
of quiver varieties is extremely rich from the point of view of representation theory, and many of
its topological invariants have representation-theoretic meanings. For instance, the computation
of the Poincaré polynomials of the Nakajima quiver varieties associated with an arbitrary quiver
was done by Hausel in [Haul0], where he showed that such a polynomial is related to the Kac A-
polynomial of the quiver. Recall that, as proved by Kac and Stanley [Kac82, Kac83], the number
of geometrically indecomposable F,-representations of a quiver @) of given dimension d is given by
a polynomial Ag 4(q) in ¢, called Kac’s A-polynomial. Another geometric interpretation of Kac’s
A-polynomial is the one in terms of the Poincaré polynomial of the preprojective stack, that
is, the stack of representations of the preprojective algebra Ilg associated with Q.' Much more
recently, this relation between a polynomial of geometric nature, such as the Poincaré polynomials
of Nakajima quiver variety associated with () and of the stack of representations of Ilg, and a
polynomial of representation-theoretic nature, such as Kac’s A-polynomial Ag q(¢), has been
“categorified” in the following way (cf. [SV19a]): there exists an associative algebra structure on
the Borel-Moore homology of the stack of representations of IIg—the so-called cohomological Hall
algebra—whose Hilbert series is given by the Kac A-polynomial of (). Moreover, such an algebra
is conjecturally? isomorphic to the positive part of the Yangian algebra Y(gg) of the Maulik—
Okounkov graded Lie algebra gg (cf. [MO19, SV17] for a definition of gg). What’s more, this
algebra acts on the Borel-Moore homology of Nakajima quiver varieties associated with the same
quiver, and such an action extends to a larger® algebra of symmetries Nakajima’s construction
of representations of U(gg) on the Borel-Moore homology of Nakajima quiver varieties.

Let us return to the curve case, for which the situation is (from that point of view) much less
developed. The Poincaré polynomial of the moduli stack of Higgs bundles is ill-defined (that is,
the Betti numbers are in general infinite), and the Betti numbers of the moduli spaces of stable
Higgs bundles on curve X, for coprime rank and degree, were only recently computed in terms
of the Kac polynomial of X in [Sch16, Mell7]. We refer to [Sch16, Mel17] for a precise definition
of these Kac polynomials A, 4(21,...,224), which depend on the rank r and the genus g of the

'One also has a nilpotent version of such a relation, by considering from the algebraic side nilpotent versions of
Kac’s A-polynomial and from the geometric side the generalizations of Lusztig’s nilpotent variety introduced in
[BSV17, SV19a] (see also [Bozl5, Boz16]).

2The conjecture is true for finite and affine quivers. At the moment, there is only a partial result for general
quivers; see [SV17].

3This holds at least when the quiver is not of finite type.
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curve, and whose evaluation at the Weil numbers (o1, ..., 094) of the curve is equal to the number
of geometrically indecomposable vector bundles of rank r and degree d on the curve X defined
over Fg.

It is natural to wonder if in the curve case also there is a deeper representation-theoretic
result behind such an enumerative relation. The aim of the present paper is to perform the
first step of this program, namely to construct the cohomological Hall algebra attached to the
stacks of Higgs sheaves over a smooth projective curve X of genus g. Note that we consider
here the entire stack Higgs(X) := |_|T7 < Higgs, ; and not only of its stable part. Although the
main potential applications we have in mind are in the context of Borel-Moore homology or K-
theory, we develop the theory of these cohomological Hall algebra for an arbitrary free oriented
Borel-Moore (OBM) homology theory (as is done in [YZ18] in the context of quivers).

The construction and detailed study of the cohomological Hall algebra for the stack of Higgs
torsion sheaves is the subject of the recent work by Minets in [Minl8a]. Our first main result
extends the construction to the higher-rank case.

THEOREM (Theorem 3.3). Let X be an irreducible smooth projective curve over a field k. Let A
be either the Borel-Moore homology or an arbitrary free oriented Borel-Moore homology theory.*
Then there is a canonical graded associative algebra structure on

AHAggs(x) = @A*(Higgsr,d) :
r,d

There are some natural variants of this algebra, in which we replace the stacks Higgs, ; by
the global nilpotent cones A, 4 or the stacks of semistable Higgs bundles Higgsff’dy of a fixed
slope v. We can as well introduce an equivariant parameter coming from the action of T' = G,
by dilations on the Higgs field.

COROLLARY (Corollaries 3.5 and 3.6). There are canonical graded associative algebra structures
on

AHA, =P A(Ar0) and AHApgev(x) = P A.(Higgs?,) forall ve QU {oc}
r,d d/r=v

and on their T-equivariant cousins AHA% and AHAaiggsss,U(X).

There are some strong relations between these variants and the original cohomological Hall
algebra of Higgs(X). For instance, the proper pushforward map AHAA — AHA g x) is an
algebra homomorphism. Likewise, the open restriction map AHA pigger(x) = AHA g v (x) 18
an algebra homomorphism, where

AHAigee () = €D A.(Higgs, ;).
d/r=v
Moreover, the proper pushforward induces an isomorphism of localized algebras
AHAZL ® Ap(pt) Frac(Az(pt)) = AHAaiggs(X) ® A (pt) Frac(Az(pt)) (1.1)

(see Proposition 3.7).

Although the definition of cohomological Hall algebras can be given for an arbitrary free OBM
theory in a very uniform fashion, the properties of these algebras strongly depend on the choice

4Since we are dealing with algebraic stacks with infinitely many irreducible components, we consider rather a sub-
group A® C A of classes satisfying some support condition; see Section 3.1.
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of the OBM theory. Our results concerning the structure of AHAigeq(x) are for the moment
restricted to the cases of usual Borel-Moore homology (or Chow groups). So we assume until
the end of this introduction that A = H,, and we restrict ourselves to A°. The cohomology ring
of the stack Coh(X) of coherent sheaves on X acts on AHApjges(x) by pullback to Higgs(X)
and cap product. By Heinloth’s generalization of the Atiyah—-Bott theorem (see Theorem 2.3),
this ring is (freely”) generated by tautological classes, and we can define a universal ring (in fact,
(co)commutative Hopf algebra) H which acts on AHA g x) (and on all its cousins).

The second main result of the paper concerns torsion freeness. It can be seen as a key technical
step to embed our algebra in a bigger shuffle-type algebra (as done in the rank zero case in
[Min18a, Section 3]).

THEOREM (Theorem 4.3). Let a € (Z2)+. Then HI(A,) is a torsion-free H*(Coh,) ® Q[t]-
module.

From the analogy with the case of quivers, it is natural to expect that, in fact, AHAK is of
generic rank one (not free!), but we do not prove this here.

Our final main result, in a spirit similar to [SV19a, Theorem B(e)|, provides a family of
generators for AHA .

THEOREM (Theorem 5.1 and Corollary 5.3). The H-algebra AHA  is generated by the collection
of fundamental classes {[A( 4)]}r,a of the zero sections of the projections Higgs, , — Coh,. 4.

Of course, using formula (1.1), we may deduce similar results for AHA yjggq(x)-

Let us conclude this introduction with some heuristics and speculations concerning the struc-
ture and representation theory of AHA higgs(x)-

First, we expect that our cohomological Hall algebra acts on the (oriented) Borel-Moore
homology of moduli spaces of stable Higgs bundles (of fixed slope) and of Minets’ generalization
of Nakajima quiver varieties.® Slightly more generally, it is natural to expect that it will also act
on suitable moduli spaces of stable and framed sheaves on smooth (stacky) surfaces containing
the curve X as an embedded divisor of self-intersection 2(g — 1).” If X = P!, examples of such
surfaces are those described in [GKV95, Section 2, Remarks (ii)] and the stacky surfaces defined
in [BPSS16].

Next, by analogy with the case of quivers, one can hope for a strong relation between the
algebra AHA g5 x) and the (usual) Hall algebra of curves of genus g over finite fields. Very
slightly more precisely, one would expect the existence of a graded Lie algebra g, whose Hilbert
series is given by the Kac polynomials A, 4, which would be a “generic” form of the Hall-Lie
algebra of curves of genus g on the one hand (cf. [Sch16, Section 8.3] for the definition of such
a Lie algebra), and whose affinization (or Yangian) would be isomorphic to AHA jiggs(x)-

Finally, by the nonabelian Hodge correspondence [Sim94b], moduli spaces of stable rank r
Higgs bundles on X are diffeomorphic to (twisted) character varieties of X for the group GL(r).
The topology of the latter moduli space has been extensively studied by Hausel, Letellier and
Rodriguez-Villegas (cf. [HLR13] and the conjectures stated therein). In [PS19], the first-named
author and Mauro Porta have constructed cohomological Hall algebras for the moduli stack of

5This holds only in the positive-rank case.

5These moduli spaces parameterize stable points in the cotangent stack of the stack of coframed pairs, that is,
pairs (F,€ — F), where £ and F are coherent sheaves on X and £ is fixed; see [Min18b].

"More general embedded curves would require constructing a cohomological Hall algebra for arbitrarily twisted
Higgs bundles.
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vector bundles with flat connections on X and for the character stack of X for the group GL(r),
respectively. In addition, in [PS19], some relations between the three different cohomological
Hall algebras have been established. We propose the following conjecture, which can be seen as
a representation-theoretic version of the nonabelian Hodge correspondence.®

CONJECTURE 1.1. The algebra AHAHiggsss,O( x) 18 isomorphic to the cohomological Hall algebra
of the genus g untwisted character stack.

This paper is organized as follows. Section 2 provides notation and serves as a reminder
concerning stacks of coherent and Higgs sheaves on smooth projective curves. The cohomological
Hall algebras (or A-homological Hall algebras) are defined in Section 3. From that point on,
we restrict ourselves to the context of Borel-Moore homology. In Section 4, we introduce the
universal cohomology ring of the stacks of coherent sheaves on curves of a fixed genus and prove
the torsion-freeness result. Section 5 is devoted to the generation theorem.

2. Stacks of coherent and Higgs sheaves on a curve

In this section, we introduce the stacks of coherent and Higgs sheaves on smooth projective
curves and recall some of their key properties. Because our construction of the multiplication in
the cohomological Hall algebras uses the local charts defined in terms of Quot schemes, we go
into some depth in describing the latter explicitly.

2.1 The curve

Let X be an irreducible smooth projective curve of genus g over a field k and wx its canonical
line bundle. As usual, we denote by rk(F) and deg(F), respectively, the rank and degree of
a coherent sheaf F on X and by

deg(F)
F) = U
n(F) = G eQuix)
its slope. Denote by Coh(X) the category of coherent sheaves on X. It is an abelian category of
homological dimension one. Denote by K(X) the Grothendieck group of X and by [F] the class
of a coherent sheaf F. Let K(X )" be the semigroup of K(X) consisting of classes of the form [F]
for a coherent sheaf 7 on X. There are natural maps

rk: K(X) = Z>o and deg: K(X) — Z

assigning to [F] the rank and degree of F, respectively. This yields a projection K(X) — K"™(X),
where K"™(X) := Z2 is the numerical Grothendieck group of X. We define the (numerical) class
of a coherent sheaf F as the pair F := (rk(F),deg(F)). We accordingly set

K™ (X) = {(r,d) € Z*|r >0,d€ Zorr=0,d >0} = (2*)".
Finally, recall that the Euler form on K(X), which descends to K™™(X), is explicitly given by
the following formula:
(E,F) == dimHom(&, F) — dim Ext! (£, F)
= (1 —g)rk(E) rk(F) + (rk(&) deg(F) — rk(F) deg(€)) .

8There is an equivalent construction of the cohomological Hall algebra (CoHA) of the untwisted character stack
for GL(r) by means of Kontsevich—-Soibelman critical CoHA (see [DM16, Dav17]). Conjecture 1.1 was also made
by B. Davison (see, for example, [Dav16]).
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2.2 The stack of coherent sheaves

For a € K™™*(X), let Coh, be the stack parameterizing coherent sheaves on X of class .
It is a smooth algebraic stack, locally of finite type over Spec(k) and irreducible of dimension
—(a, a). In addition, Coh,, is equipped with a tautological sheaf €, € Coh(Coha x X) (see
[LMO00, Théoreme 4.6.2.1]; the smoothness follows, for example, from the description of an atlas
of Coh,, given below). Since Coh,, is smooth, the cotangent complex Lcon, of Coh,, is perfect
(hence dualizable) of Tor-amplitude [0, 1] (cf. [LMOO, Proposition 17.10]; the theory of cotangent
complexes for algebraic stacks is developed in [LMO00, Chapter 16] and [O1s07]). The dual complex,
the tangent complex Tcon,, , can be described explicitly as (cf. [PS19, Section 2])

TCOha - Rp* RHom(éOév 604)[1] I (21)

where p: Coh, x X — Coh,, is the projection.

For later purposes, let us give an atlas for Coh,; this will be used in Section 3 for the
definition of the cohomological Hall algebra associated with the moduli stacks of Higgs sheaves.
Let us fix a line bundle £ on X. We will say that a coherent sheaf F is strongly generated by L if
the canonical morphism Hom(L, F) ® £ — F is surjective and Ext' (£, F) = {0}. We denote by
Coh>£(X ) € Coh(X) the full subcategory of coherent sheaves on X which are strongly generated
by £. Note that Coh™*(X) is stable under quotients and extensions and that

dim Hom(L, F) = (L, F)

for all F € Coh™*(X). Let u%: Coh>* < Coh, be the open substack of Coh,, parameterizing
sheaves strongly generated by £ and of class a. We call Cohiﬁ a local chart of Coh,,. The stack
Cohzﬁ can be realized as a global quotient stack as follows. Let Quotg = Quotx/y, (£®k @0‘), a)
be the Quot scheme parameterizing isomorphism classes of quotients ¢: £ ® k(L) — F such
that F = «a (see [HL10, Section 2.2] for an introduction to the theory of Quot schemes). This
is a projective k-scheme, which is singular in general, of finite type and carries a canonical G%-
action defined by g- ¢ = ¢ o (id; ® g~1), where G% := GL(k, (£, ). Its Zariski tangent space at
a point [¢: L&k (L) F| is Hom(ker(¢), F), while the obstruction to the smoothness lies in
Extl(ker(¢) F ) Consider the open subscheme Q% C Quot: whose k-points are

={[¢: L& kB = F] € Quots(k) | ¢u: kL =5 Hom(L, F)} .
PROPOSITION 2.1. (i) The scheme Q% is G%-invariant, and there is a canonical isomorphism of
algebraic stacks
Coh>£ [Q,C/G,C]
(ii) The scheme Q% is smooth and reduced.

Statement (i) is shown, for example, in the proof of [LM00, Théoreme 4.6.2.1], while state-
ment (i) follows from the vanishing of Ext' (ker(¢), ) for any point [¢: £ ® k(L) Fl e Q}
and [New78, Theorem 5.3]. We may think of Q% as the fine moduli space parameterizing pairs
(F,u), where F € Coh™*(X) is of class a and u is a trivialization k‘©* =5 Hom(L, F).

Now we shall provide an explicit description of ( )*TCOhQ and ( )*]L(;Oha, which will be

useful later on. On Coh>£ [Q£ / GE] the tautological sheaf €, fits into a short exact sequence
of tautological Gg—equlvarlant sheaves on Q4 x X

0 RE = OSSPV RL 5 € = (uf) €, = 0
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such that the fibers over {[gb: L® k(L) _, _7:]} « X are
RE(ayxx =ker¢ and 5| (yyux = F = L&k [ker .

Let p5: Q% x X — Q% denote the projection. Since Ext! (RE (el xs €5 lqelyxx) = {0} for
any [¢] € Q%, the complex R(pg)*((ﬁg)v ® €%) is a locally free sheaf on Q5 of rank dim Q%,

which we will simply denote by Hom (ﬁé, (’35) Such a locally free sheaf coincides with the tangent
bundle Tqe of QL.

Likewise, the fiber of R(pé)*((ogéz’a> X LY) @ €5) over {[¢: L ® k(L) ]} x X is

identified, via ¢q, with g& = g[(k, (L, a>), the Lie algebra of G%; hence, R(pg)*(((’)géz’a> X
EV) ® @g) ~ gt ® Oqg- Combining the above, from formula (2.1) we get that

L
() "Tcon, = [05 ® Oqe = Tae]

where the complex on the right-hand side is concentrated in degree [-1, 0]. Thus,

~L
(45) Looh, = [T = (95)" © Oqz] , (2:2)

where i~ (the moment map) is obtained by dualizing the canonical restriction morphism 6%
defined, at the level of points [gb: L kLY - J’:], as 05(u) = (¢ o u)|kerg for u € gt =
End (L’ ® k<£’°‘>).

Next, let us realize Coh,, as an ind-algebraic stack. (We consider ind-algebraic stacks in a
very broad sense, as stated in [EG15, Definition 4.2.1].) As a first thing, let us make explicit the
inductive system of stacks Cohgﬁ . Let Pic(X) be the groupoid formed by all line bundles on X
with their isomorphisms. We define the following preorder < on (the set of objects of) Pic(X)
such that it is endowed with the structure of a directed groupoid: we say that £ < £ for two
line bundles £ and £’ if £ is strongly generated by L. In that situation, any coherent sheaf F
which is strongly generated by L’ is also strongly generated by L. Hence, we have a chain of
open embeddings

Coh>* C Coh>* C Coh,

coming from the inclusions of full subcategories Coh™*'(X) ¢ Coh™%(X). We will describe these
embeddings explicitly in local atlases; namely, we will construct the map jz o/ o: [Qg / Gg] —

[QF/G5].

To define j; p/ o, we shall provide another equivalent description of Cohgy as a global
quotient stack. For this, consider the open subscheme Qg’ﬁ/ C Qg consisting of all points
[¢: £ @ k&) — F| for which F € Coh™*'(X). Then CohZ* =~ [Q5* /GE], and we have
a canonical open embedding [ §’£'/G§] — [Qg/Gé] = Coh’*. Now we need to compare
the two realizations [Qg’ﬁl / Gg] and [Qg / Gg/] by providing a canonical explicit isomorphism
between them. Let px: Qg x X — X be the projection. Consider the Gg-equivariant sheaf

Hom (p}ﬁ, Q‘Eg) over Qg, which by the same reasoning as above is locally free and of rank

(L,a). Let RE“ be the total space of the associated G5-bundle. Then RE“" carries an action of
GE x GE' and

RES/GE ~ QS and [REX/(GE x GY')] ~ CohZ”,
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the first isomorphism being in the category of Gg—schemes. (Here and in the following, we call
G-scheme a scheme endowed with an action of an algebraic group G.) Likewise, let Rg £ be the
total space of the G5-equivariant Gg—bundle Hom (p}ﬁ' , (’35) over Qé’ﬁ , so that

REC/GE ~ Q5F and  [REF/(G4 x G5)] ~ CohZ“,
the first isomorphism being in the category of G5-schemes.
LEMMA 2.2. There is a canonical isomorphism Rg’[’/ Y RSI’E in the category of G5 x Gg—schemes.

Proof. By construction, Rg’ﬁl represents the contravariant functor Aff/k — (Sets) which assigns

to an affine k-variety S the set of pairs ([¢],u), where [¢: £'K (’)? (el | belongs to Q%' (9)
and wu is a trivialization ng,a) ~ Hom(LX Og, F). Similarly, Rg’ﬁ represents the contravariant
functor Aff/k — (Sets) which assigns to an affine k-variety S the set of pairs ([¢/],v), where
[¥: E&O? (L), F]| belongs to Qg’ﬁl(S) and v is a trivialization (’)g? (£ha) Hom(L' X Og, F).
The isomorphism between the two functors is given by the assignment (¢, u) — (4, ¢), where
u: LK ngm — F and ¢: O?M’,a) ~ Homp, (L' K Og, F) are canonically associated with u
and ¢, respectively. ]

To sum up, for any « and any pair of line bundles £ < L', the space Ré’y is a smooth
GE x GE'-scheme such that

REE/GE ~ QY and REF/GE ~ Q5% (2.3)
Note that Rﬁ’[’/ is nothing but the fiber product of stacks
Rgvﬁ/ — Qé:, X Qé:mcl
Coh>*%'

and can be thought of as the fine moduli space parameterizing triples (F,u,v), where F is
a coherent sheaf on X of class a which is strongly generated by £ and u and v are a pair of
trivializations of Hom(L£, F) and Hom(L', F), respectively. The open embedding j. s o is now
given by the composition

CohZ* = [Q5'/GE'] ~ [REX/GE x GE'] ~ [RE*/G4 x GE'] ~ [Q5F'/GE] < CohZ~.
Thus we have a direct system (Cohgl:7 Jr.c o) and, thanks to Serre’s theorem, we get
Coh, ~ lim Coh“ := lim Cohg*.
c Pic(X)
This provides the desired description of Coh, as an ind-algebraic stack.

Let us finish this section by recalling the structure of the (singular) cohomology ring of the
stacks Coh,. Here we assume k£ = C and simply write H*(e) for H*(e,Q). Let us fix a basis
I ={l,m,...,my,w} of H*(X), with 1 € HY(X), m,...,my € HY(X) and w € H*(X). For
1 €N, let

ci(€a) =Y cix(€s) @ 7 € H*(Cohy) @ H*(X) (2.4)
well

be the Kiinneth decomposition of the ith Chern class of the tautological sheaf &,. Here {7*},
stands for the dual basis with respect to the intersection form. For any (super)commutative
algebra A, we write S?(A) for the subalgebra of A®¢ fixed under the natural action of the
symmetric group Gy.
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THEOREM 2.3 (Heinloth, [Heil2]). The rational cohomology ring H*(Coh,) is described as
follows:

(a) If a = (0,d), then H*(Coh,) ~ S¢(H*(X)[z]).
(b) If « = (r,d) with r > 0, then H*(Coh,) ~ Q[c;(€n)]ir Is freely generated (as a su-

percommutative algebra) by the classes ¢; (€,) for ¢ > 2 and m € II and for i = 1 and
mell\{1}.

Moreover, the stack Coh,, is cohomologically pure for any c.

Note that the Hodge theory of algebraic stacks, locally of finite type, has been introduced,
for example, in [Dhi06, Section 2.

By Poincaré duality, the assignment ¢ — ¢ N [Coh,] identifies the group H!(Coh,) with
H_ 4 0)—i(Cohy,), where H,(e) stands for the Borel-Moore homology with rational coefficients.
Hence, Theorem 2.3 also yields a description of the Borel-Moore homology groups H,(Coh,,).

2.3 Higgs sheaves

Recall that a Higgs sheaf on X is a pair (F, §) with F € Coh(X) and § € Hom(F, FQwy ). We say
that (F,0) is of numerical class o = (r, d) if F is. Higgs sheaves form the object of a Calabi—Yau
two-dimensional abelian category Higgs(X), in which the Euler form and Serre duality take the
following form (see, for example, [GKO05]). Define, for F := (F,0r) and G := (G, 0g) € Higgs(X),

(F,G) = dimHom(F,G) — dim Ext' (F, G) + dim Ext*(F,G) .

Then

(F,G) =(F,G) —(F,Gowx) =(F,G) + (G, F) =2(1 — g)tk(F) rk(G) . (2.5)
Moreover, Serre duality holds:

Ext'(F,G) ~ Ext* (G, F)*

for all i € {0, 1,2}. The slope of a Higgs sheaf is the slope of its underlying coherent sheaf; that is,
W) = i) = ).
A Higgs sheaf is semistable if 1(G) < p(F) for any Higgs subsheaf G C F, that is, if u(G) < u(F)
for any subsheaf G of F such that 0x(G) C G ® wx. Semistable Higgs sheaves of fixed slope v €
QU{oo} form an abelian subcategory Higgs®™" (X) of Higgs(X), which is stable under extensions.

For a Higgs sheaf (F,6), we denote by #* the composition

A®id 6® k=D gid,, .. .
0 wx wx
FQuwyx e F® w}e}k .

k. F

A Higgs sheaf (F,0) is called nilpotent if there exists an s > 0 such that ° vanishes; we call s
the nilpotency index of 6. Nilpotent Higgs sheaves form an abelian subcategory Higgs™P(X) of
Higgs(X) which is closed under extensions, subobjects and quotients.

Let (F,0) be a nilpotent Higgs sheaf on X with nilpotency index s. For & > 1, define
Fi = Im(ﬁk ® idw®—k). Then Fj is a subsheaf of F. Finally, set Fy := F. Then there are chains
X

of inclusions and of epimorphisms, respectively,

{O}ZJ:SC]:SflC'--]ﬂC]:o:]: and .F:.Fo—»f1®wx—»---—»]:s®w§s:0.
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Define, for k > 0,
Fi i =ker (Fj, » Frp1 Quwx) and  Fy = Fp/Fry1 -
Then we have chains of inclusions and of epimorphisms, respectively,
{0}=F.CcF._,C--FiCFy, and F} » F/ @wx » > FLoawi™=0.
For k > 1, set

ay = ker (F |, @wP ! = Flr o wih).
Put ¢ = deg(wx). For any k > 1, one has
k

ker (05) =" " aj((h—4)0). (2.6)

h=1 j=h

This computation justifies the following definition. Given « € (Z2)+, a finite sequence a =

(a1,...,as) of elements of (ZQ)Jr is called a Jordan type of class « if it satisfies
s 1—1
a= Z Zai(—kﬁ) ,
i=1 k=0

where for any 8 = (r,d) € (Z2)+ and n € Z, we set 5(n) :== (r,d+ nr). We call s the length ()
of a. Note that unless rk(«) = 0, there are countably many Jordan types of class a. Let J, be
the set of all Jordan types of class «.

We may helpfully represent a Jordan type by its associated colored Young diagram as follows
(here, s = 4):

a4

ag(—0) as

(2.7)

ag(—20)| az(—2L) s

ag(—30) |az(—20)| aa(—2) a1

Given a nilpotent Higgs sheaf (F,0) of class «, we will say that (F, @) is of Jordan type « if
for all k > 1, the sheaf ker (6%) satisfies (2.6). (In the pictorial description of «, this corresponds
to the bottom k rows of the Young tableaux; thus, one can think of the Higgs field # as the
composition of “going down one box” and “tensoring by wx”).

2.4 Stacks of Higgs sheaves

Let us denote by Higgs, the stack parameterizing Higgs sheaves over X of class a. Similarly,
let A, and Higgs® stand for the, respectively, closed and open substacks of Higgs, parame-
terizing, respectively, nilpotent and semistable Higgs sheaves. (For a derived point of view to
the stack of (semistable) Higgs bundles, see, for example, [Hall6, GR18, PS19] and references
therein. For the GIT approach to the construction of moduli spaces of semistable Higgs bundles,
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see [Nit91, Sim94a, Sim94b].) The following is well known; see, for example, [Gin01] and [CW18,
Section 7].

THEOREM 2.4. (a) The stack Higgs, is locally of finite type, of dimension —2(c, ) and is
canonically isomorphic to the underived cotangent stack T*Coh, of Coh:

Higgs, ~ T*Coh,, := Spec SymH"(Tcon, ) -
(b) The stack A, is a Lagrangian substack of Higgs,, .
(c) The stack Higgs? is a global quotient stack, and it is smooth if « = (r,d) with gcd(r,d) = 1.

Let us denote by r,: Higgs, — Coh,, the projection map forgetting the Higgs field.

There exists an action of the multiplicative group 7' = G,,, on Higgs,, which at the level of
families reads as z - (F,0) := (F, 20) for z € T and (F, ) a flat family of Higgs sheaves. Such an
action is simply the action scaling the fibers of 7, : T*Coh, — Coh,,. Indeed, r, is T-equivariant
with respect to the trivial action of T' on Coh,,.

It is known that, for g > 1, the preimage under the projection map r, of the open substack of
vector bundles Bun, C Coh,, is irreducible (cf. [BD91, Section 2.10]) and that the irreducible
components of Higgs,, are in fact given by the Zariski closures of the substacks r;;!(Coh®=9)
for d > 0, where Cohg":d stands for the substack of Coh, parameterizing sheaves whose torsion
part is of degree d. We thank Jochen Heinloth for explanations concerning these facts. We will not
consider these irreducible components and instead focus on the irreducible components of A,
which we now describe explicitly following [Boz17].

There is a partition Ay = | |,¢ 7. Ao, where A, is the locally closed substack of A, parame-
terizing nilpotent Higgs sheaves of Jordan type a.

As shown in the proof of [MS17, Proposition 5.2], we have the following (see [GHS14, Sec-
tion 3.1] for the definition of vector bundle stack morphisms).

PROPOSITION 2.5. For any o and any a = (ayq,...,as) € Ju, the morphism

ma: Ag = [ ] Coh, ,
k=1

(F,0) = (ker (FLy @ Wi = F @ wih)),

is an iterated vector bundle stack morphism.

COROLLARY 2.6 (cf. [Boz17, Proposition 2.3 and Corollary 2.4]). For any a € (Zz)+, the irre-
ducible components of A, are the Zariski closures A, for o € J,.

Define the following partial order < on J,. For a = (a1,...,as), B8 = (B1,...,8t) € Ja, wWe
have 8 < « if and only if for any k£ > 1, the following inequality holds:

k s
SN aih-po <>

t
h=1 j=h h=1 j=h

Bi((h=4) ), (2.8)

where the partial order < on (ZQ)+ is the “standard” order: for , 8 € (Z2)+, we have 8 < a
if and only if « — 8 € (ZQ)+. Note that, in particular, § < a implies ¢(3) < ¢(a). The minimal
element in J, for this order is («).

By formula (2.6), one can reinterpret the inequality (2.8) as an inequality for the classes of
kernels of subsequent powers of Higgs fields associated with o and . This observation together
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with the semicontinuity of the rank and the dimensions of cohomology groups of a coherent sheaf
(cf. [Har77, Example 12.7.2 and Theorem 12.8]), imply the following result.

PROPOSITION 2.7. Let o € (Z2)+. For any o € J,, the following is a closed algebraic substack:

Azy = | | As.
B=a

An important example of an irreducible component of A, is the zero section A(,) = Coh, C
A, obtained for the unique Jordan type of length s = 1. It is a closed substack by Proposition 2.7.

Remark 2.8. By Proposition 2.5 and Theorem 2.3, each strata A, is cohomologically pure (in-
deed, this property is preserved under vector bundle stack morphisms). But then A is itself pure
since it has a locally finite partition into pure strata. We have

Ay =] | As.
fa

Then A<, = Ay UA,. Thanks to the purity of A,, one can show that A<, and A, are also
pure. In addition, there are short exact sequences

0 — Hp(Azy) = Hig(A<o) = Hi(Ay) — 0. (2.9)
Thus, there is an induced filtration of H,(A,) whose associated graded is
gr(H.(As) = @5 Hi(Ao) ~ €D H.(Cohy,) ® - @ H,(Cohy,,). (2.10)
a€Ja a€Ja

Such results hold in the T-equivariant setting as well.

2.5 Local charts of the stack of Higgs sheaves
Let us now proceed with the description of the local charts of the stacks Higgs,,. Let £ be a line
bundle on X. By [LMO00, Proposition 14.2.4], we have a cartesian diagram

VL

Spec Sym’HO(TCohgg) - Higgs,,
7‘5 l:, Ta
ug
Coh>* Coh,,

L

~ is also one. Define

where the map ué is an open embedding and hence v
Higgs_* = Spec SymHD(']I‘Cohgc) )

Then Higgszﬁ is the algebraic stack parameterizing Higgs sheaves on X of class « such that the
underlying coherent sheaf is strongly generated by L. Such a stack can be realized as a global
quotient stack. Indeed, by the explicit description (2.2) of T,y >c, We get

Higgs?” ~ [T¢.Q5/GE]
where TégQg = (,ug)*l(O) and p% is the composition

Spec SymTqz = T*Q% — SpecSym (gg ® OQ&) = (gé)* x Q5 — (gg)*
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Next, let us realize Higgs, as an ind-algebraic stack. By construction (cf. the proof of
Lemma 2.2), there are dual pairs of short exact sequences

0— g5 — T(g.0RE* — Hom(ker(¢), F) — 0
0 — g5 = T{ylRe "~ = Hom(ker(y), F) — 0,
and
0 — Hom(ker(¢), F)* = Tj o REE 25 (g5)" =0,
0 — Hom(ker(¢), F)* = Ty ) R L (g5)" =0

for any ([¢],u) € REL and ([¢],v) € RE*£. Recall that by Lemma 2.2, we have a canonical

isomorphism R5* "~ RE as G x GE'-schemes, which sends ([¢],u) to ([@], ). The moment

map relative to the Hamiltonian G5 x Ggl-action on T* Rg’ﬁl

is given by
ne =@ s Ty yRES — (a8)" @ (a5)"

The above complex is quasi-isomorphic to both of the following:
1k * *
[T7, Q5" =5 (95)"] = [Hom(ker(¢), F) — (g5)7] .
/ c’ 7N % I\ %
[T[Z;}Qﬁ oy (gg) ] ~ [Hom(ker(¢),f) — (gﬁ) ] .

It follows that the projection maps Téngg, Rg’y — Té‘g 5’0 and Tégx%, Rgﬂ — Tég’ Qg
are respectively principal Gg— and Gg-bundles. Hence, the open embedding jr 2/ «: Cohgy —

Cohgc lifts to an open embedding h. r/ : Higgsgcl — Higgsic obtained as a composition
Higgs;“ = [T7, Q5 /G5 ] = [Tge, o RE™ /GE x G ]

~ [T, e RZ“/Gy x Gg | ~ [TE.Qe" /G| — Higgs:”, (2.11)

where the last morphism is obtained by applying base change with respect to jz o/ o and [LMOO,
Proposition 14.2.4]. Thus, we obtain a directed system <Higgs§£ vhe g o), and thus we get

Higgs, ~ lim Higgs.~ = lim Higgs_* .

C Pic(X)

3. Definition of the cohomological Hall algebras

The present section is devoted to the construction of A-homological Hall algebras associated
with the 2-Calabi—Yau category Higgs(X) and their variants for the category of nilpotent Higgs
sheaves and the category of semistable Higgs bundles of fixed slope.

3.1 Borel-Moore homology theories
Although most of our results here concern the case of the cohomological Hall algebra for Borel-
Moore homology or Chow groups, our constructions make sense for an arbitrary oriented Borel—-
Moore homology theory (OBM). Let Sch/k be the category of separated k-schemes of finite type.
Recall that an OBM theory on Sch/k is the data of

(a) for every k-scheme X, a graded abelian group A, (X)

(b) for every projective morphism f: X — Y, a homomorphism f,: A.(X) — A.(Y)
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(c) for every locally complete intersection (1.c.i.) morphism g: X — Y of relative dimension d,
a homomorphism ¢*: A.(Y) — A,q(X)

(d) anelement 1 € Ap(pt) and for every pair (X, Y") of k-schemes, a bilinear pairing x: A.(X)®
A (Y) = A (X x Y) which is associative, commutative and for which 1 is a unit

satisfying a certain number of natural axioms; see [LMO7]. Of particular importance to us will
be the existence of refined Gysin pullback morphisms in the following context: let f: ¥ — X be
an l.c.i. morphism, and let g: Z — X be an arbitrary morphism; then there exists a pullback
morphism

fr="ryAdZ) = AlZ xx Y),

which coincides with the usual pullback morphism f* if Z = X and g = idx.

In the following, we shall restrict ourselves to those OBMs which are free; see, for example,
[LMO7, Chapter 4]. Examples of free OBM theories include K-theory and Chow groups. Although
usual Borel-Moore homology is not per se an OBM theory because of the presence of odd-degree
classes, it satisfies all the important properties and all of our constructions will be valid in that
situation as well. We refer to the papers [Minl8a, Appendix A] and [YZ18, Section 1.1] which
contain all the properties of OBM theories which we will need here.

Let G be a reductive algebraic group. A G-equivariant version of OBMs has been defined
in [HM13], and therefore there exists a theory of OBMs for global quotient stacks. In [Kre99],
Kresch defines a theory of Chow groups for algebraic stacks, locally of finite type (and stratified
by global quotient stacks).

Since we are considering Higgs,, as an ind-algebraic stack, we give here the following defini-
tion. Let Z be an algebraic stack such that 2 ~ li_r>n %;, where the limit is taken with respect

to the directed system (%, yi<i’: % — %) formed by all open substacks %; of 2" of finite type
and open immersions j;<;. We define

AZ) = lim A,(%).

Y-

This graded abelian group tends to be very large and untractable. We also define a smaller

graded abelian group AY(2") C A.(Z") as follows. First, we say that an algebraic stack 2 such

that 2 ~ lim %; is admissible if codim(Z \ #;) — oo as i — co. Let A2(Z") be the subgroup
%

of A.(Z") consisting of classes supported on an admissible closed substack, that is, lying in the
image of the direct image morphism i,: A, (Z) — A(Z) for i: & — 2 an admissible closed
substack. The subgroups AY are preserved under the standard operations (—),, (—)*, (=)' with
respect to morphisms which are of finite relative dimension.

3.2 The cohomological Hall algebra of the stacks of coherent sheaves

Let us first define the cohomological Hall algebra attached to the simpler one-dimensional cate-
gory Coh(X). For this, we need to introduce stacks classifying extensions between coherent

sheaves. For a, 8 € (Zz)+, let C/oh\/aﬁ be the stack parameterizing inclusions G C F, where G
is a flat family of coherent sheaves of class # and F is a flat family of coherent sheaves of class
a + B. Tt is a smooth irreducible algebraic stack, locally of finite type, of dimension —(a, ) —
(B, B) — (a, B), equipped with a pair of morphisms

Pa,s

qa,
Coh,, x Cohg Coh, Coh,. g (3.1)
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defined at the level of flat families by ¢, 8(G C F) = (F/G,G) and pos(G C F) = F. The
map ¢, is a vector bundle stack morphism, while p,, 5 is a proper representable morphism (see,

for example, [GHS14, Section 3.1]). The stack Coh, g is equipped with a short exact sequence
of tautological sheaves

0—>@5—>@a+5—>@a—>0,

where E‘a, @a+5, @5 € Coh (C/O_Il_a/ﬁ x X ) Moreover, the following relations hold between tauto-
logical sheaves:

(20,8) Pro€a ~ €a,  (gap) Pra€s ~ €5 and  (pas) Carp = Cays,

where pr}, and pr}} are the projections from Coh, x Cohg to the two factors, respectively.

DEFINITION 3.1. Let A be either Borel-Moore homology or a free oriented Borel-Moore homology
theory. The A-homological Hall algebra of the category Coh(X) is the abelian group

AHAconx) = €P A.(Cohy,)
ae(z2)*

equipped with the multiplication
A,(Coh,) ® A (Cohg) — Ai(Cohyyg), c¢1®ca— (Pag)s(qap) (1 ®e2).

Since Coh,, Cohg and Coh, g are smooth, it is easy to see that AHAcop(x) is a graded
associative algebra (the case A = H, is considered in an upcoming paper by Vasserot and the
second author). Although this is already a very interesting and still mysterious algebra, the aim
of this paper is to study its two-dimensional counterpart, defined using the moduli stacks of
Higgs sheaves on X.

3.2.1 Local presentation of the diagram (3.1). To unburden the notation, let us set V. =
k£ for any £ and any v € (ZQ)Jr. Let us also fix an isomorphism Vg 153 ¥V, o ® V. 5.

LEMMA 3.2. Let £ be a line bundle on X, and let o, 3 € (ZQ)Jr. Then there exists an N < 0 such
that for any line bundle £ with deg(L) < N, for any scheme S and any (G C F) € Coh, g(5)

with F € Coh.£,(S), we have (F/G,G) € CohZ*(S) x Coh;%(S).

Proof. This comes from the fact that Coh>5ﬁ is a global quotient stack, in particular of finite

type, and Coh, =~ lim Cohi £ for any v € (Zg) . See, for example, [Sch04, Lemma 2.3] for
L
details. O

As a corollary, we see that for any a, 3, £ as above and any L of sufficiently negative degree,
we have

paB(Cohgfﬂ) C qaﬁ(Coh>L x Cohj £,

—_—

Now we provide a presentation of Coh, s as an ind-algebraic stack. Define the subscheme
Qgﬁ consisting of points [qﬁ: LAOVe arp —> ]:] for which ¢(L®V 3) is strongly generated by L,
and set

QoS =QEsNQE C Qhs
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Note that Qc g may not be closed in Q% atB (because being strongly generated is an open condi-

tion), but, by Lemma 3.2, the subscheme Q 5 is closed in Q’C L . Let P£ ap C Gt P be the group
consisting of g € Ga+5 such that g(Vz g) = V. . Define the global quotient stack

Coha’5>£,>£ [~£ L /P ]

It is the algebraic stack parameterizing extensions 0 - G — F — £ — 0 of coherent sheaves
on X with G = 8 and £ = o and with F strongly generated by £ and H and G strongly generated

>L>L
by L. Moreover, we have an open embedding u” B : Coh, g — Coh, g.
Let «, 8, L' be as above, and consider two line bundles £; and Lo of degrees less than
. . >£1,>C/ >L‘,2,>L‘,’
or equal to V. By Lemma 3.2, we have an isomorphism Coh, g ~ Coh,g . An

explicit realization of such an isomorphism can be given by following the same reasoning as in
Section 2.2.

Let ﬁffﬁl’ﬁz)’ﬁ/ be the scheme representing the contravariant functor Aff/k — (Sets) which
assigns to an affine k-variety S the set of pairs ([¢],u), where [¢] € 6515’[:/(5) and u: Vg, 448X

Og ~ Hom(Ly X Og, F) is an isomorphism such that u(Vgz, 3 X8 Og) = Hom(Ly X Og,§G). One

can show that R(Ll’EQ) &

[/27

P£2 -principal bundle over éﬁl’ﬁ and a Pglﬁ—principal bundle

over Q;, Therefore at the level of global quotient stacks, we have

>L1,>L

Coh, g [Q, ﬁl’ /Pl:1 e [ﬁiﬁ,gl’ﬁz)ﬂ/lailﬁ X Pﬁ?ﬂ

—~— >Lo>L

[Q~ EQ’ /PEQ] — Coh, g

12

On the other hand, given two line bundles £1 and Lo such that £; < L2 and given L of sufficiently
negative degree (less than the N of Lemma 3.2 for both the triple «, 3, £1 and the triple a,

L (r:1 Lo) . >L,>Lq >L,>Lo ]
B, L2), we have an open embedding Jap : Coh, g — Coh, g . We get a direct
>L>L
system (Coh,, g , jﬁ’éﬁl’b)), and therefore
. >L,>L ) >L,>L
Coh, g ~ hrn Coh, g = hgn Coh,, 5
& Pic(X)
There are maps
_LL . RLL
Do - Qaﬁ — Qa+5 and qaﬂ Q§5 — QL X Qﬁ , (3.2)

which are, respectively, a proper morphism and an affine fibration of rank (L, BY(L, a) — (ﬁ , >
Moreover, Hcﬁ = GE X G acts on QE X QB and Pﬁﬁ acts on Q B , while G +8 acts on Qa+5
Note that H £ ﬂ C P£ B C G at+p 18 the inclusion of a Levi factor of a parabolic subgroup of G~ o
and that p 5 and q o 5 £ are P g-equivariant (with respect to the canonical maps P~ ap H
and P~ ap GE ol 6>' Thus, we have induced morphisms at the stacky level

/ >L,>L >L,>L
P+ Cohg g — CohZ%, and ¢5% : Cohgg — Coh“ x Cohj*,
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which fit into, respectively, the cartesian diagram

c,c!

>£,>£/ pawg L’

Coh, 4 — Cohgly
Pa,p h

COhayﬁ COhaJr,B

and the commutative diagram

c,c’

’ 4y,
Cohy s " —— Cohz* x Cohj*

| |

Cohy 5 fod Coh,, x Cohy.

3.3 The cohomological Hall algebra of the stack of Higgs sheaves

There are again maps
. . da,p —— Da,p .
Higgs, x Higgss «— Higgs,; —— Higgs,, (3.3)

defined by ¢, 3(G C F) = (F/G,G) and p, (G C F) = F. We use the same notation as in
Section 3.2, hoping no confusion may arise.

The map p, g is still a proper representable morphism, but the map g, g is very far from
being a vector bundle stack morphism or even an l.c.i. morphism; hence, it\}s/ not possible to
define directly a pullback morphism g}, 5: A (Higgs, x Higgsz) — A.(Higgs, g). In order to
circumvent this difficulty, we follow [SV13, Section 4] (see also [YZ18] for the case of arbitrary
Borel-Moore homology theories) and embed the convolution diagram (3.3) into a convolution
diagram of smooth varieties and use refined Gysin pullbacks. One caveat of this approach is
that we only manage to construct this embedding locally and hence work with local atlases. The
case of rank zero Higgs stacks is studied in details in [Min18al: since rank zero Higgs stacks are
global quotient stacks, the author applies directly the machinery of [SV13, YZ18]. We shall follow
closely [Minl8a] in some of the arguments here.

3.3.1 Local charts of the stack H;g_gs/aﬁ Let o, 3 € (Z2)+, and let £ be a line bundle on X.
Let £ be a line bundle of degree less than or equal to N, depending on «, 3, £’ of Lemma 3.2.
The diagram (3.1) reduces locally to

c,c' c,c’
4y, ’ pa7 ,
Cohz“ x Cohz* —“ Gop— 757 22 ConZf), (3.4)

Such a diagram can be realized at the level of atlases in the following way. To unburden the
notation, set
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. L L !l . L:)L:l
Y._anQB, X '_Qa+,3
and

W=GxV, We=GxV°, X=GxY.
P P P

/
9

' >L,>L
Since Coh % x Cohgﬁ ~ [X/G], Cohzfﬁ ~ [X'/G] and Cohag ~ [W°/G], the dia-

gram (3.4) corresponds to the following diagram of G-varieties:
W W
/ K
X X',
where 7: W° — W is the open immersion, and where f and g are defined, respectively, by
f: (h,v) mod P +— (h,aibﬁl (v)) mod P and g: (h,v) mod P+~ h - *ﬁﬁ 5 ().

Since (f o1i,g) is a regular embedding, we can identify W° with a smooth Subvarlety of X x X'.
Put Z° := Tyj,. (X x X'). Denoting by ® and ¥ the projections on factors, we obtain a diagram

/\

T*X'.

Note that ¥ is proper since ﬁf’;, is a closed embedding (see, for example, [SV12, Lemma 2.3)),
while @ is a regular morphism as both Z° and T*X are smooth. Next, set Zg = Z° N (T X x
T} X'). Then, by loc. cit., @~ HT5X) = Z and ¥(Z) C T X'. We arrive at the diagram

Z¢
dg Tg
TEX  ze TEX!

T X',

in which the left square is cartesian. By Section 2.5, we get Higgs>* x Higgs>£ ~ [T¢X/G] and

Higgs™~ ~ [T X'/G]. In addition, by following some of the arguments in the proof of [Min18a,
>L>L

Lemma 2.1], one can show that [Zg/G] is the stack Higgsa K parameterizing inclusions of

a—i—B -

Higgs sheaves G C F with G € Higgsg and F € nggs - Therefore, we obtain a diagram

c,c' c,c!

. . a3 >L,>L0 Pap
Higgs_* x nggsEL " Higgs — H1ggsa+ﬂ ,

a?ﬁ

which is the local version of the diagram (3.3).
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3.3.2 Definition of the multiplication. Now we shall define for any free OBM theory A, (or
for the usual Borel-Moore homology H,) a map

c,C' . .
mys A(nggsgﬁ) ® A(nggsgﬁ) — A(nggsaJrﬁ) (3.5)
We have suppressed the grading index * in A, for extra readability.

We shall continue to use the notation of the previous section. Because ® is regular (in par-
ticular, l.c.i.), there exist a refined Gysin pullback morphism

D' AC(TEX) — AY(Z2)
and a pushforward morphism
Vg A%(Z2) — AS(TEX).
Now, from the isomorphisms (2.3), we get the chain of isomorphisms

AG(TéX/) — AGa+ﬁ( Q£7£,) AGaJrﬁXGaJrB (T* RE Y

Gz Yot GE, Gg’ oc+ﬁ)

NAGQ+B( Gl:, Qa+ﬁ)

In addition, since T3 X = G >< TLY , by [ Minl18a, Proposition A.6], we have

G4 G * *
ASXCE ( GCxcﬁ(Qg x Q§)) = AT(ThHY) ~ AS(TEX).
By composing all these maps, we get
G G * * * P! o
ASRXE (Tee 6 (QF x QF)) = AT(T};Y) = AC(TEX) = A9(Z)
Ze AS(TEXT) =~ AGQH}( GZ, Qa+ﬁ)
whose restriction

ma « A% (T5Q8) © A% (Tge (QF)) — A%+ (T Qfly)

gives (3.5).

3.4 Main theorem

THEOREM 3.3. The collection of morphisms mﬁgl give rise to a canonically defined morphism

ma5: A(Higgs,) ® A(Higgss) — A(Higgs, ) -
Equipped with these morphisms,

AHA{_|Iggs = EB A(Higgs,,)

ae(Z?)t
is an associative algebra.
Proof. The first statement boils down to the following. Let «, 5 be fixed, and let £; for i = 1,2,3
be line bundles on X. Assume that L3 is strongly generated by Lo, itself strongly generated
by L£;. Assume in addition that the conclusion of Lemma 3.2 holds for the pairs (£1, L2) and

(L2, L3). Then, denoting by ress’y: A(Higgsiﬁ) — A(Higgs,?ﬁl) the pullback induced by the
open embedding hg ,/ ., introduced in (2.11) for any v € (Z2)+, we have to show that

L1,L La,L L1,L
1,£3 2,L3 ,6’1 2)’ (3.6)

ﬁl?
mgly™ = m% o (res;

L2 ® res
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L1,L3 La,L3 Ly,L2
my = res Vgt om (3.7)

as morphisms A(Higgsiﬁl) ®A(Higgs§£1) — A(Higgsz_f%). We will prove (3.6) in details and
leave the (easier) equality (3.7) to the reader. We begin by observing that by Lemma 3.2, there
is a factorization

—(55»52)»53
a, ~
51,132 « le,CQ Qi,l,é”ﬁs
jJ £1.L
i

L
Qél X Qﬁl 9

where j denote the canonical open immersion. Here, for any pair of line bundles £, £, by abuse
of notation, we have denoted by ﬁsg the composition of the open embedding Qﬁg — Qg s with

the map qﬁ’g introduced in (3.2).

Keeping the notation used in Section 3.3.1, set G := Gﬁﬁrﬁ, P = Pilﬁ and Xp, = G ]>§

( 51’52 X le’ﬁg). Then there is also a factorization

15X ‘I’G/Z%
jc TéXﬁg e
| .
T*X 7°
e
T*Xp, .

Because Gysin pullbacks commute with the restriction to open subsets, we have ®' = (@ )! o

g* = (@) o (resgl’ﬁ2 ® res§1’£2). In order to conclude, we have to identify (®)" with the Gysin

pullback (I>!2 coming from the cartesian square

D2 6,
T, Xo Zg,
T*X, : z3,

itself built from the diagram

X2 q2 W2° P2 Xé :
where we set

L L Lo, L
GQ = Gaiﬁ’ P2 = Pafﬁ’ Xé = Qa2+,83 s

o._ AL2,L3 — L L
Wy = Go I>:’<2 Qaﬁ o Xo=G F>’<2 (Qa2 X Q,BQ) :
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Consider the commutative diagram

~L2,L3 L2,L3
Qus * Qs

Qf? x Q5?

R(El’EQ)’ES

L1,Lo Ly,L2 5(L1,£2),L3
RS X Rﬁ — Ra,ﬁ —— R,15 (3.8)
Cl,ﬁg £17£3

L1,L L1,L
S X Q5 e QT —————Q

a+p

(El,ﬁg) L3

where R is the scheme representing the contravariant functor Aff/k — (Sets) which

assigns to an affine k-variety S the set of pairs ([¢], u), where [¢] € Qsigg’( )and u: Vg, 445X
Og ~ Hom(Ly X Og, F) is an isomorphism.

The downward pointing vertical arrows in (3.8) are, respectively, a G52 x G'C?—, a P-2 w5~ and

a G aj_ s -principal bundle, where P(f C GL 2 igisa parabolic subgroup with Levi factor G52 x GL2

Similarly, the upward pointing vertical arrows in (3.8) are, respectively, a G5! x G/gl—, a P(f/lB and

a G ! N -principal bundle, where Pof LG isa parabolic subgroup with Levi factor Ggl X Gg L,

a+p8

After we pass to the cotangent spaces, the Gysin pullback (®)' comes from the bottom row
of (3.8), while ®!, comes from the top row of (3.8). We are in the following general situation.
Let HC P C G and H' C P’ C G’ be a pair of Levi factors inclusions of parabolic subgroups
of some reductive groups G and G'. Set G =G x G, P=Px P' and H=H x H . Let Y, V,
X' be a triple of smooth varieties equipped with respective actions of H, P and G along with
P-equivariant maps

Y —— v L2 xr

We further assume that ¢ is smooth and p is a closed embedding. Let (Y, V, X’,q,p) be similar
data for H, P, G, and suppose that we have a commuting diagram

q

J@ J@

<<
P

-
q
—

<

in which the vertical arrows are, respectively, H'-, P’- and G’-principal bundles. Forming the
fiber products

G W:=GxV

X=GxY, W=GxV, X: Y,
P P

Dl X

X
P
yields a commuting diagram

X—W—X

| | !

X—W-—X
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in which all vertical arrows are G’-principal bundles. Next, we put
Z=Ty(X xX"), Z=THXxX'),
Zg=ZN(TEX xTeX'), Zg=7ZnN(T5X x TEX').

Observe that T%Y and 75 are G'-principal bundles over T X and Zg, respectively. In addition,
there is a commutative diagram

* Y cI)a 7
TzX \ Zg \
]
TEX ° e
_ T _
T X J = Ze
k
T*X Z
. 3 =
X Z

in which all diagonal arrows are G’-principal bundles. Note that ®¢ is regular since ® is; hence,
— 1 — —
by [Ful98, Theorem 6.2 (c)], it follows that ® = ®,. Thanks to the identifications AG(T%X )~

A%(TX) and A% (Zg) =~ A%(Zg), we have &' = 3.
To conclude, it is enough to apply the previous argument first for the pair of reductive groups

G = Ggirﬁ, G = Gﬁi_ﬁ and the diagram in (3.8) consisting of the central and bottom vertical
arrows, later for the pair of reductive groups G’ = Ggiﬁ,G = Ggiﬁ and the diagram in (3.8)

consisting of the central and top vertical arrows. We obtain &}, = & = (®')', and this completes
the proof of (3.6).

The proof of the associativity of the multiplication can be made locally and uses the same
arguments as in the proof of [Min18a, Theorem 2.2]. O

DEFINITION 3.4. Let A be either a free OBM theory or H,. We call the algebra AHA{_”ggS(X)
the unrestricted A-homological Hall algebra of the category Higgs(X).

It is easy to see from the construction that the subgroup

AHAHiggs(X) = @ AO (Higgsa)
ae(Z2)*

is a subalgebra, which we call the A-homological Hall algebra of the category Higgs(X).

3.5 Cohomological Hall algebra of nilpotent, semistable and equivariant Higgs
sheaves

The full abelian subcategory Higgs””p(X ) of Higgs(X) is stable under extension, and the same
holds for Higgs® " (X) for each fixed slope v. We may repeat the above constructions verbatim in
these contexts (using refined Gysin pullback maps on each local chart obtained by embedding in
the same l.c.i. morphism). (The stack of semistable Higgs bundles is a global quotient stack (see,
for example, [CW18, Section 7.7.1]); hence, we do not need to restrict ourselves to local charts.)
The compatibility of Gysin pullbacks with direct images by proper morphism and pullback by
open immersions (see [Ful98, Theorem 6.2(a), (b)]) imply the following.
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COROLLARY 3.5. There is a natural associative algebra structure on the group

/ —
AHAnggs""p(X) ' @ A
ac(Z?)t
Furthermore, the proper pushforward map AHAH e (X) AHAnggs( X) is an algebra homo-
morphism. Similarly, there is a natural associative algebra structure on the group
O(A
AHAHiggSmIP — @ A
ae(z2)*

and the proper pushforward map AHAHiggSnnp(X) — AHA iggs(x) Is an algebra homomorphism.

COROLLARY 3.6. For any fixed slope v, there is a natural associative algebra structure on the
group
AHA e (x) = P A°(Higgsy) .

ac(z2)+
p(a)=v

Furthermore, the open restriction map AHA e (x) — AHApigges v(x) 1S an algebra homo-
morphism, where

AHAHiggs”(X) = @ AO(Higgsa) :

a€ (22)+

m(a)=v

One may likewise consider equivariant versions of all the above, with respect to the action
of the multiplicative group T' = G,, on Higgs, by z - (F,0) := (F, z0), and get in this fashion
equivariant A-homological Hall algebras

AHA[L ). AHA[T

T
"AH‘Anggs""p (X))’

Higgs"'P(X) AHAH'ggS(X) ’

T
AHA oo v (x) -
These are, by construction, modules over the ring A%.(pt) ~ A*(pt)[[c1(¢)]], where ¢;(t) is the
first Chern class of the tautological character of T'; see, for example, [Minl8a, Appendix A].

ProprosITION 3.7. The direct image morphism is an isomorphism of localized algebras

AHAalggsn.up(X) ® Ar(pt) Frac(Ar(pt)) = AHAa|ggs( x) DAz (pt) Frac(Ar(pt)) .

Proof. Fix aline bundle £ and o € (Zz)+. Let (T¢, Q%) e TE, Q% be the closed G5-subvariety
such that ) )

A;ﬁ = [(T&Qg)n”p/Gg] ~ Higgsgﬁ X A,
* Higgs,

It is enough to show that the direct image morphism
c " il
ATXGQ ((Tchﬁ)m p) ®AT(pt) FraC(AT<pt)) — ATng (Téé Qg) ®AT(pt) FraC(AT<pt))
is an isomorphism. This follows from the same argument as in [Minl8a, Corollary 6.3]. O

Proposition 3.7 allows one to deduce certain properties of AHA® ) from the geometry of

Higgs(X
A =], Ay, which is sometimes more agreeable than that of Higgs := | |, Higgs,. The results

in the next two sections provide an illustration of this principle.
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4. Torsion freeness

In this section and in the next, we take A = H,, the usual Borel-Moore homology with rational
coefficients (most results also hold for Chow groups with appropriate modifications). In addition,
we will focus on the cohomological Hall algebras AHAaiggs"”p and AHAHiggsnnp( X)» which we

denote simply by AHAX and AHA,.

(X)

4.1 The universal cohomology ring of Coh
For any o € (ZQ)Jr, there is an action of H*(Coh,,) on H,(Higgs,) defined by ¢ u :=r%(c) N,
where 7, : Higgs, — Coh,, is the canonical projection. The ring H*(Coh,) being freely gener-
ated by tautological classes (see Theorem 2.3), it is independent of « (strictly speaking, this is
true only for rk(a) > 0). In this subsection, we consider a universal version H of this ring and en-
dow the algebras AHA A, AHA g5 x) and AHA ;o005 v(x) with H-module algebra structures.
Recall our fixed basis IT = {1, m1, ..., o, @} of H*(X), with 1 € H*(X),7y,...,my € H(X)
and @ € H%(X). Let H := Q[c; )i,z be the graded free supercommutative algebra generated by
elements ¢; » with ¢ > 1 and 7 € II. The degree of ¢; - is defined to be deg(c; ») = 2(i—1)+deg(m).
Note that we include the degree zero element c; ;. For any «, there is a surjective morphism
aq: H — H*(Coh,) defined by aq(cix) = ¢z (&), where the classes ¢; (&, ) are defined in (2.4).
The kernel of the map a, is the ideal generated by the element ¢; ; —deg(c) whenever rk(a) > 0.
Via the map a,, the ring H acts on AHApjges(x), preserving the class o (but shifting the
cohomological degree). This action factors through to an action on AHA higgess v (x), and there
is a compatible action on AHA .

Let a1, as € (Z2)+, and set & = ), a;. Define the morphism
Au, ap: H(Coh,) — H*(Coh,, ) ® H*(Coh,,)
as the pullback by the direct sum morphism
& : Coh,, x Coh,, — Cohy, (F1,F) = F1& Fa.

a1, a2
LEMMA 4.1. There exists a (unique) coassociative coproduct A: H — H ® H such that for any
a1 and a9, we have

(aoq ® aoc2) oA = AOCLOQ O Qay+ay -

Equipped with this coproduct, H is a graded commutative and cocommutative Hopf algebra.

Proof. The map A, q, is nicely compatible with tautological classes as
EB (€q) = pri(€a,) & pra(€ay),
al, 2
where pr;: Coh,, x Coh,, — Coh,, is the projection for ¢ = 1, 2. In particular,
Aay,as (cr(€a)) = Z ci(€ay) QE*(X) cj(eaz) )
itj=l
where we use the convention that c¢y(€) = 1. Taking Kiinneth components yields
Aot ar (Cl,W(QEa)) = Z Ci,w(€ay) ® Cjﬂﬂ(qzoe) )
itj=l

Aay,az(Clm, (€a)) = Z (Cigra(€ar) ® € (€ay) + Ci(€ay) ® €, (€ay))
i+j=1
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Any, o (Cl,l(ea)) = Z (Ci,l(qzal) ® Cjﬂﬂ(eaz) =+ Ci,?ﬂ(@al) ® Cj,l(eaz)
i+j=l

+ Z Cimy(€ay) ® ij’i(éaz)) .

We formally define the comultiplication A on H using the above formulas. The fact that it is an
algebra morphism follows from the compatibility of pullbacks with cup products. O

We will say that an H-module M is an H-module algebra if M is equipped with an associative
algebra structure m: M®M — M such that for any h € H and z,y € M, we have h-m(z®y) =
m(A(h) - (z @ y)).

PROPOSITION 4.2. The algebras AHAyigqx), AHAA and AHA pigges v (x) are H-module alge-
bras.

Proof. Fix some a1 and a2, and set a = a1 + az. Let v € H*(Coh,) and u; € H*(Higgs,,)
!

for i = 1,2. Keep the notation of Section 3.2. By definition, u; - u2 = (Pa;, as)+P (w1 ® ug). Set
v == ®'(u; ® uy). By the projection formula, we have

Y+ (Par,a2)«(v) = (pozl,aQ)*((pahaz)*rz(’Y) Nv).
Note that

(Par,a2)"7a(7) = PG (15, ®75,)(Aar,a2(7)) 5
while by multiplicativity of the Gysin pullback,

04, @7h,)(Dar,az (7)) N @ (w1 @ uz) = B ((rh, ©75,)(Aay,a:(7)) N (w1 @ uz)) .
This yields the desired equality. We are done. O

Proposition 4.2 has an obvious equivariant avatar. Note that in that case, H is replaced by
H® QIt].

4.2 Torsion freeness

In the context of quivers, see [SV19a, Section 4.4] (for rank zero Higgs sheaves, see [Minl8a,
Section 6]), the following technical result is crucial in describing the cohomological Hall algebras
as shuffle algebras. Although we do not give such a realization here, we nevertheless state the
following theorem.

THEOREM 4.3. Let o € (Z2)+. Then HY" (Ay) is a torsion-free H*(Cohyg) ® Q[t]-module.

Proof. Our approach will bear some similarity with those followed in the proofs of [SV19a,
Proposition 4.6] and [Min18a, Theorem 6.4]. To simplify the notation, we shall drop 0 from H. 0T

Let H" C H*(Coh,) be the graded augmentation ideal of H*(Coh,,), and set I = H*®QJt] C
H*(Coh,) ® Q[t]. For any H*(Coh,) ® Q[t|-module M, we denote by M, ; the localization
of M with respect to the ideal I. We will prove the following two statements:

(a) The natural map H! (Ay) — Hf(Aa)ch is injective; that is, HI (A,) is I-torsion free.
(b) The direct image morphism H? (Cohg)iocs — HI (Aa)ioc.s is an isomorphism.

The theorem will follow since H! (Coh,,) is evidently torsion free (in fact, free) as a H*(Coh,)®
Q[t]-module (note that T" acts trivially on Coh,,).
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We begin with statement (a). Recall that we are only considering admissible classes in
HT(A,), that is, classes supported on finitely many irreducible components. Moreover (see (2.9)
and (2.10)), there is a H*(Coh,) ® Q[t]-invariant filtration of HI'(A,) by HI(A<,), whose
associated graded is

gr(Hf(Aa)) = @ HE(Ag)a HE(AQ) = ® Hrp(Cohy,).

a€Jq

In particular, each HI'(A,) is a free graded Q[t]-module and hence also I-torsion free. Therefore,
HT(A,) is also I-torsion free.

We will check statement (b) locally, by showing that for any line bundle £, the direct image
morphism

HI (CohZ*), _, — HI'(AZF) (4.1)

loc,I loc,I

with respect to the closed embedding Cohgﬁ o~ A(>Of) < A% is an isomorphism. The isomorphism

is preserved by taking the limit with respect to £; indeed, we may again consider the H*(Coh,)®

Q[t]-invariant filtration as in case (a) above and argue on each A<, (which is an admissible

stack). So let us fix a line bundle £. The open substack Cohgﬁ is isomorphic to the quotient
H L

[Q5/GE], while AZE = [(TéSQg)""p/Gﬂ. Hence, H,(Coh2%) ~ H{*(QE) and H.,(AZ%) ~

GL
Ho~

ring Hég(pt) =: Rgg. There is a similar action of Rge on H, (Higgsgﬁ) and on H, (Azﬁ).

((T&Qg)n“p). In particular, H, (Cohgﬁ) carries an action of the equivariant cohomology

We shall need the following result.

LEMMA 4.4. For any o and L, there is a surjective algebra morphism sg o: H*(Coha) — Reg
such that for any v € H*(Coh,) and any c € H,(Higgs,) (respectively, H,(A,)), we have

(vN C)‘Higgsiﬁ = 8L (v)nN C‘Higgsgﬁ
(respectively, (YN ¢)[py>e = sg,a(y) Nelpz2)).

Proof. Since the H*(Coh,)-action is given via pullback with respect to the morphism r4:
Higgs, — Coh,, it suffices to prove the statement of the lemma for Coh, in place of Higgs,,
or Ag,.

Let p5: Q5x X — Q% and px: Q5 x X — X denote the two projections. The action of Rge on

Hf & (Qg) is given by cap product by the Chern classes of the tautological G5-equivariant vector
bundle V := ]R(pé)* (p}ﬁ@ (’35), whose fiber over a point [gb: LKL f] is Hom(£, F). On
the other hand, the action of H*(Coh,,) is given by cap product with the Kiinneth components
of the Chern classes of the tautological sheaf &,. Applying the Grothendieck—Riemann—Roch
formula [Ful98, Theorem 15.2] to the morphism p4 and p% £V ® €% yields an expression for ch(V)
in terms of ch ((’35), as wanted. Note that (pg)*p}ﬁ is a trivial G5-equivariant bundle on Q%. [

Put Ige = Rég ® QIt], where Rgg is the graded augmentation ideal of Rge. By the rela-
tive form of the localization theorem (see, for example, [Minl8a, Proposition A.13 and Theo-
rem A.14]), the localized pushforward map

G4 G& T G4 il
H.« ><T(Qg)loc,lcg = H.* XT((Tég Qg) )Ioc,Icg — H aXT((Tég Qg)"' p)loc,IGg

is an isomorphism. By Lemma 4.4, we have s o(I) = Igz. This implies (4.1) and concludes the
proof Theorem 4.3. O
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5. Generation theorem

In this section, we again take A = H,. For any « € (Z2)+, there is a distinguished irreducible
component A(,) of Ay, namely the zero section of the projection r,: Higgs, — Coh,. Thus,
A (o) = Coh,. In particular, by Poincaré duality,

Q[Ci,w(ea)]iﬂr if I'k(a) >0,

H*(A(a)) = {Sd(H*(X)[Z]) if = (0,d).

The following is an analog of [SV19a, Theorem B(e)]. It is interesting that the proof, though
similar, is simpler in the curve case than in the quiver case as the structure of A, is simpler than
that of the Lusztig nilpotent stack.

THEOREM 5.1. For A = H,, the algebra AHA  is generated by the collection of subspaces
H*(A(a)) for a € (ZQ)+.

Proof. Let us denote by B the subalgebra of AHA generated by the collection of subspaces
H.(A(y)) for a € (Z2)+. By the definition of A%, every class in ¢ € H?(A,) is supported on
a finite number of irreducible components; that is, there exists a finite subset of Jordan types
1. C J, such that

c€lm <H(a|_|1 Ag) = HE(AQ)).

Recall the partial order < on J, (see (2.8) and Proposition 2.7) as well as the induced filtra-
tion (2.9) on H?(A,). We will prove by induction on o with respect to < that

Im(H.(A<o) — H)(As)) C B. (5.1)

So let us fix a € J, and assume that (5.1) holds for all g with 5 < a. If & = («), then (5.1) holds
by definition. Otherwise, let us write a = (a1,...,as) and put y; = > iz (1 — j) deg(wx));
this is the total class of the ith row of the colored Young diagram associated with «; see (2.7).
Consider the (iterated) convolution diagram for Higgs stacks

. 9y Py .
I1; Higgs., Higgs, ., — Higgs,, .

Using (2.5) and Theorem 2.4(a), we compute
dim(ql) = dim (Higgs%m’%) — Z dim(Higgs%,) = -2 Z<%’ Vi) -
i i#]
We will use the following three observations:
(a) pyoay (IT; Apy) € Aza
(b) The map py: p;l(Ag) — A, is an isomorphism.
(c) There exists an open subset % of [[; A(,,) over which g, is smooth with connected fibers
of dimension — 3, (7;,7;) and for which qv_l(?/) X% p;l(Ag) is open in p;l(Ag).
- Higgs, ... B

Statement (a) is easy, while statement (b) comes from the unicity of the iterated kernel filtration
ker(0) C ker(6?) C --- C F for any F € A,. Statement (c) is proved as [Boz16, Proposition 1.6
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and Theorem 1.4]; see also [SV19a, Lemma 3.19]. Note that

dim(A Z dim(A,,)) Z<%’, Vi) -
i#]
From statements (a), (b) and (c), using the local construction of the multiplication map and the
base change property of refined Gysin pullbacks [Ful98, Theorem 6.2(b)], we deduce that

(A * (Al * % [App] ) A, = [Ad]

while supp( [A ()] * [Ay,_ )] * -+ * [A¢,)]) © A<q. More generally, from the compatibility of
refined Gysin morphisms with respect to cap product with Chern classes [Ful98, Proposition 6.3],
we deduce that for any polynomials Py, ..., Ps in the (Kiinneth components of the) Chern classes
of the tautological sheaves &,,,..., &, on A(,) =~ Cohy,,..., A Coh,, respectively, we
have

vs) =

(Ps(eim(€y) N[AGHD) * -+ (Palein(Ey) N [AGy)]) A
= (Pl(ci,ﬂ‘(el)) T Ps(ci,ﬂ(és)) N [Ag] ’

where €1,..., &, are the tautological sheaves over A, x X defined as &; = ker (Gi)/ker (91'*1),
where 6 is the Higgs field on the universal sheaf €,. We claim that H*(A,) is generated by the

Chern classes ¢; »(€;) for j = 1,...,s. Indeed, by Proposition 2.5, the space H*(A,) is generated
by the Chern classes ¢; »(€q;) for j = 1,..., s, where [€,;] = [€;11 ®wx] — [&] in Ko(Ay). Since
the Kiinneth components ¢; (€11 ® wx) obviously generate the same algebra as the Kiinneth
components ¢; »(€;41), the claim follows. From all this, we deduce that

H.(Ag) € gr(H.(A) * - x Ho(Agy) € @D Hu(Ag).
B=a
Using the induction hypothesis (5.1), we get
m(H.(A<q) = HY(A,)) C B,
as wanted. Theorem 5.1 is proved. ]
COROLLARY 5.2. For A = H,, the algebra AHAaiggs(X) ® Q(t) is generated over Q(t) by the
collection of subspaces H*(A(a)) for a € (ZZ)Jr

COROLLARY 5.3. For A = H,, the algebra AHA  is generated as an H-module algebra by the
collection of elements [A ()] for a € (ZQ)+

Proof. 1t suffices to observe that, by Poincaré duality for the stack Coh,, we have
H - [Ao)] = Hi(A()) - O
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