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COHOMOLOGIES OF DEFORMATIONS OF SOLVMANIFOLDS AND

CLOSEDNESS OF SOME PROPERTIES

DANIELE ANGELLA AND HISASHI KASUYA

Abstract. We provide further techniques to study the Dolbeault and Bott-Chern cohomologies of
deformations of solvmanifolds by means of finite-dimensional complexes. By these techniques, we can
compute the Dolbeault and Bott-Chern cohomologies of some complex solvmanifolds, and we also get
explicit examples, showing in particular that either the ∂∂-Lemma or the property that the Hodge and
Frölicher spectral sequence degenerates at the first level are not closed under deformations.

Introduction

Among other techniques, the theory of small deformations of holomorphic structures, initiated and
developed by K. Kodaira and D. C. Spencer, L. Nirenberg, and M. Kuranishi, provides a large source of
examples of compact complex manifolds.

As a natural problem, the behaviour of special metrics or cohomological properties under deformations
deserves special interests in order to better understand the geometry of complex manifolds. In such a
context, the stability results for Kähler structures plays a guiding role: in fact, K. Kodaira and D. C.
Spencer proved in [26, Theorem 15] that any small deformations of a compact Kähler manifold still admits
a Kähler metric. On the other hand, the result holds no more true when replacing the Kähler condition
with weaker metric conditions, such as, for example, the existence of balanced metrics in the sense of
M. L. Michelsohn, [2, Proposition 4.1], or the existence of pluri-closed metrics, [17, Theorem 2.2], (nor
also in the non-elliptic context of D-complex geometry in the sense of F. R. Harvey and H. B. Lawson,
[5, Theorem 4.2], nor in the non-integrable case of almost-Kähler geometry). As regards cohomological
properties, the stability of the ∂∂-Lemma under deformations has been proved in several ways, see [42,
Proposition 9.21], [44, Theorem 5.12], [41, §B], [6, Corollary 2.7]. (We recall that a compact complex
manifold is said to satisfy the ∂∂-Lemma if every ∂-closed, ∂-closed, d-exact form is also ∂∂-exact, see,
e.g., [14].) K. Kodaira and D. C. Spencer’s result, for example, can be phrased by saying that, for
any family of compact complex manifolds parametrized over the manifold B, the set of parameters of
B for which the corresponding complex manifold admits a Kähler metric is open in the topology of B.
In [4, Theorem 2.20], in studying the cohomologies of the completely-solvable Nakamura manifold, the
authors provided an example of a curve {Jt}t∈B of complex structures and of a sequence {tk}k∈N

⊂ B

converging to t∞ in the topology of B such that (X, Jtk) satisfies the ∂∂-Lemma for any k ∈ N but

(X, Jt∞) does not; in other words, the set of parameters for which the ∂∂-Lemma holds is not closed
in the (strong) topology of the base space. Actually, as L. Ugarte pointed out to us, in studying the
behaviour under limits of compact complex manifolds, it is common to consider Zariski topology instead
of strong topology: in fact, e.g., Mǒıšezon property, [28], is supposed to be closed with respect to the
Zariski topology, see [34] for motivations and results, while it is not closed in the strong topology. With
such a notion of (Zariski) closedness, we provide here an example to prove the following result. Note
that the non-closedness of E1-degeneration of Frölicher spectral sequences was already proven by M. G.
Eastwood and M. A. Singer in [16, Theorem 5.4] by using twistor spaces.

Theorem (see Corollary 6.1). The property of E1-degeneration of Frölicher spectral sequences and
the property of satisfying the ∂∂̄-Lemma are not closed under holomorphic deformations.

In order to provide such an example, we continue in investigating the class of nilmanifolds and solv-
manifolds from the point of view of cohomologies computations. More precisely, we would enlarge the
class of solvmanifolds for which the de Rham, Dolbeault, and Bott-Chern cohomologies can be computed
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by means of just a finite-dimensional sub-complex of the double-complex of differential forms, by carrying
over the results in [31, 20, 29, 19, 10, 21, 24, 11, 38, 12, 9, 35, 37, 22, 3, 4]. (We recall that, given a

double-complex
(

A•,•, ∂, ∂
)

, the Dolbeault cohomology is H•,•

∂
(A•,•) := ker ∂

im∂
and the Bott-Chern coho-

mology is H•,•
BC(A

•,•) := ker ∂∩ker ∂
im ∂∂

; one can also consider the Aeppli cohomology, H•,•
A (A•,•) := ker ∂∂

im ∂+im ∂
,

which is, in a sense, the dual of the Bott-Chern cohomology; finally, in considering a complex manifold,
the Dolbeault and Bott-Chern cohomology are defined by means of the double-complex

(

∧•,•X, ∂, ∂
)

of
complex-valued differential forms; see [1, 8], see also [15, 40].) More precisely, we provide the following
stability results for cohomology computations of deformations of solvmanifolds, in the vein of the results
proven in [9, Theorem 1] and [3, Theorem 3.9] for nilmanifolds; (we refer to Theorem 1.1 and Theorem
1.2 for the precise statement).

Theorem (see Theorem 1.1 and Theorem 1.2). Given a solvmanifold X = Γ\G endowed with a
left-invariant complex structure J , for which there exists a finite-dimensional sub-complex C•,• ⊂ ∧•,•X
computing the Dolbeault cohomology, we provide conditions in order that suitable deformations of C•,•,
still allow to compute Dolbeault and Bott-Chern cohomologies of some small deformations of J .

The proof of this theorem is inspired by the proof of K. Kodaira and D. C. Spencer’s theorem on the
upper-semi-continuity of the dimensions of the Dolbeault cohomology groups, [26]. Considering downers
of cohomologies, differing from upper-semi-continuity, by this theorem we can observe “nose-diving”
phenomena, as in the following examples, which are generalizations of the three-dimensional examples
found by K. Kodaira and I. Nakamura, [30].

Example (see Section 5). Let N be a complex nilpotent Lie group. Suppose that the Lie algebra of
N has a (Z+

√
−1Z)-basis. Then, for certain semidirect product G = C ⋉φ (N ×N), we have a lattice

Γ of G by the results of H. Sawai and T. Yamada, [39], and there exists a deformation {Jt}t of the

holomorphically parallelizable solvmanifold Γ\G such that dimH1,0

∂̄t
(Γ\G ) = 0, where H•,•

∂̄t
(Γ\G ) is the

Dolbeault cohomology of a deformed complex solvmanifold.

In particular, it follows that the above examples provide a new class of “Dolbeault-cohomology-
computable” complex solvmanifolds, since they are not holomorphic fibre bundles over complex tori
as in [22, 24, 11].

Acknowledgments. The first author is greatly indebted to Adriano Tomassini for his constant support
and encouragement. He would like to thank also Gunnar Þór Magnússon for useful discussions.

The main part of the work was accomplished during the second author’s stay at Dipartimento di
Matematica of Università di Pisa, in the winter of 2013.

The authors thank Luis Ugarte for valuable discussions which motivated them to study closedness
under holomorphic deformations more deeply.

1. Deformations and cohomology

Let (M,J) be a compact complex manifold and
(

∧•,•
J M, ∂, ∂̄

)

be the double-complex of complex-
valued differential forms on M associated with the complex structure J . We consider deformations
{Jt}t∈B over a ball B ⊂ Cm such that J0 = J . We also consider the double-complex

(

∧•,•
Jt
M, ∂t, ∂̄t

)

associated with the deformed complex structure Jt.
We are interested in manifolds whose cohomologies can be computed by means of just a finite-

dimensional sub-double-complex of
(

∧•,•
J M, ∂, ∂̄

)

. In particular, in this section, we are concerned in
studying the behaviour of such a property under small deformations of the complex structure.

Inspired by [26], we prove the following result.

Theorem 1.1. Let (M,J) be a compact complex manifold, and consider deformations {Jt}t∈B such that

J0 = J . We suppose that we have a family
{

C•,•
t = 〈φ•,•i (t)〉i

}

t∈B
of sub-vector spaces of (∧•,•

Jt
M,∂t, ∂̄t)

parametrized by t ∈ B so that:

(1) for each t ∈ B, it holds that (C•,•
t , ∂̄t) is a sub-complex of (∧•,•

Jt
M, ∂̄t);

(2) φ•,•i (t) is smooth on M ×B, for any i;
(3) the inclusion C•,•

0 ⊂ ∧•,•
J M induces the cohomology isomorphism

H•,•

∂̄0
(C•,•

0 ) ∼= H•,•

∂̄
(M) ;

(4) there exits a smooth family {gt}t∈B of Jt-Hermitian metrics such that ∗̄gt(C•,•
t ) ⊆ Cn−•,n−•

t , where
we denote by ∗̄gt the anti-C-linear Hodge-∗-operator of gt, and by 2n the real dimension of M .

2



Then, for sufficiently small t, the inclusion C•,•
t ⊂ ∧•,•

Jt
(M) induces the cohomology isomorphism

H•,•

∂̄t
(C•,•

t ) ∼= H•,•

∂̄t
(M) .

Proof. Consider the operators ∂̄∗t = −∗̄gt ∂̄t∗̄gt and ∆∂̄t
= ∂̄t∂̄

∗
t + ∂̄∗t ∂̄t. Then by the conditions (1)

and (4), the operator ∆∂̄t
can be defined on C•,•

t . By a result by K. Kodaira and D. C. Spencer, [26,

Theorem 11], see also [25, Theorem 7.1], for each t ∈ B, we have a basis {e1(t), . . . , ei(t), . . .} of ∧•,•
Jt
M

and continuous functions a1(t) ≤ · · · ≤ ai(t) ≤ · · · on B such that ∆∂̄t
ei(t) = ai(t)ei(t) for any i.

Since ∆∂̄t
is defined on C•,•

t , we can take a subset {ei1(t), . . . , eiℓ(t)} of {ei(t)}i that is a basis of C•,•
t .

Take {ej(t), . . . , ej+k(t)} = {ei(t) | ai(0) = 0}. Then {ej(0), . . . , ej+k(0)} is a basis of ker∆∂̄0
. By the

assumption (3), we have ker∆∂̄0
⊆ C•,•

0 . Hence we have {ej(t), . . . , ej+k(t)} ⊆ C•,•
t for any t ∈ B. Since

each ai is continuous, we have, for sufficiently small t ∈ B, that aj−1(t) < 0 and 0 < aj+k+1(t). Hence
we have ker∆∂̄t

⊆ {ej(t), . . . , ej+k(t)} ⊆ C•,•
t . Hence the theorem follows. �

Analogously, as regards the Bott-Chern cohomology, by considering the operators ∂̄∗t = −∗̄gt ∂̄t∗̄gt
and ∂∗t = −∗̄gt∂t∗̄gt , and ∆̃BCt

= ∂t∂̄t∂̄
∗
t ∂

∗
t + ∂̄∗t ∂

∗
t ∂t∂̄t + ∂̄∗t ∂t∂

∗
t ∂̄t + ∂∗t ∂̄t∂̄

∗
t ∂t + ∂̄∗t ∂t + ∂∗t ∂t, see [26,

Proposition 5] and [40, §2.b], a similar argument yields the following result.

Theorem 1.2. Let (M,J) be a compact complex manifold, and consider deformations {Jt}t∈B such that

J0 = J . We suppose that we have a family
{

C•,•
t = 〈φ•,•i (t)〉i

}

t∈B
of sub-vector spaces of (∧•,•

Jt
M,∂t, ∂̄t)

parametrized by t ∈ B so that:

(1) for each t ∈ B, it holds that (C•,•
t , ∂t, ∂̄t) is a sub-double-complex of (∧•,•

Jt
M,∂t, ∂̄t);

(2) φ•,•i (t) is smooth on M ×B, for any i;
(3) the inclusion C•,•

0 ⊂ ∧•,•
J M induces the Bott-Chern cohomology isomorphism

H•,•
BC(C

•,•
0 ) ∼= H•,•

BC(M) ;

(4) there exits a smooth family {gt}t∈B of Jt-Hermitian metrics such that ∗̄gt(C•,•
t ) ⊆ Cn−•,n−•

t , where
we denote by ∗̄gt the anti-C-linear Hodge-∗-operator of gt, and by 2n the real dimension of M .

Then, for sufficiently small t, the inclusion C•,•
t ⊂ ∧•,•

Jt
M induces the Bott-Chern cohomology isomor-

phism

H•,•
BC(C

•,•
t ) ∼= H•,•

BC(M) .

2. Applications: nilmanifolds

Consider nilmanifolds, that is, compact quotients of connected simply-connected nilpotent Lie groups
by discrete co-compact subgroups, and take left-invariant complex structures. By considering the sub-
double-complex C•,• = ∧•,•(g ⊗R C)∗ of left-invariant differential forms, where g is the Lie algebra
associated to the nilmanifold, one recovers the stability results in [9, 3] by Theorem 1.1 and Theorem
1.2.

Corollary 2.1 ([9, Theorem 1], [3, Theorem 3.9]). Let X = Γ\G be a nilmanifold, and denote the
Lie algebra associated to G by g and its complexification by gC := g ⊗R C. The set of G-left-invariant
complex structures on X such that the inclusion ∧•,•

g
∗
C
⊂ ∧•,•X induces the isomorphism H•,•

∂̄
(∧•,•

g
∗) ∼=

H•,•

∂̄
(X), respectively H•,•

BC(∧•,•
g
∗) ∼= H•,•

BC(X), is open in the set of G-left-invariant complex structures
on X.

We recall that, in view of [38, Theorem 1], [12, Main Theorem], [9, Theorem 2, Remark 4], [35,
Theorem 1.10], and [37, Corollary 3.10], [3, Theorem 3.8], the above set contains several classes of
left-invariant complex structures, among which holomorphically parallelizable, Abelian, nilpotent, and
rational.

3. Applications: solvmanifolds

In order to investigate explicit examples, we recall some results concerning the computations of Dol-
beault cohomology for solvmanifolds of two special classes, namely, solvmanifolds of splitting-type, [22],
and holomorphically parallelizable solvmanifolds, [43].

We start by considering solvmanifolds of the following type, see [22].

Assumption 3.1. Consider a solvmanifold X = Γ\G endowed with a G-left-invariant complex structure
J . Assume that G is the semi-direct product Cn ⋉φ N so that:

3



(1) N is a connected simply-connected 2m-dimensional nilpotent Lie group endowed with an N -left-
invariant complex structure JN ;

(2) for any t ∈ Cn, it holds that φ(t) ∈ GL(N) is a holomorphic automorphism of N with respect to
JN ;

(3) φ induces a semi-simple action on the Lie algebra n associated to N ;
(4) G has a lattice Γ; (then Γ can be written as Γ = ΓCn ⋉φ ΓN such that ΓCn and ΓN are lattices

of Cn and, respectively, N , and, for any t ∈ Γ′, it holds φ(t) (ΓN ) ⊆ ΓN ;)
(5) the inclusion ∧•,• (n⊗R C)∗ →֒ ∧•,• (ΓN\N) induces the isomorphism

H•,•

∂̄

(

∧•,• (n⊗R C)
∗) ∼=→ H•,•

∂̄
(ΓN\N ) .

Consider the standard basis {X1, . . . , Xn} of Cn. Consider the decomposition n ⊗R C = n
1,0 ⊕ n

0,1

induced by JN . By the condition (2), this decomposition is a direct sum of Cn-modules. By the condition
(3), we have a basis {Y1, . . . , Ym} of n1,0 and characters α1, . . . , αm ∈ Hom(Cn;C∗) such that the induced
action φ on n

1,0 is represented by

C
n ∋ t 7→ φ(t) = diag (α1(t), . . . , αm(t)) ∈ GL(n1,0) .

For any j ∈ {1, . . . ,m}, since Yj is an N -left-invariant (1, 0)-vector field on N , the (1, 0)-vector field
αjYj on Cn ⋉φ N is (Cn ⋉φ N)-left-invariant. Consider the Lie algebra g of G and the decomposition
gC := g⊗RC = g

1,0 ⊕ g
0,1 induced by J . Hence we have a basis {X1, . . . , Xn, α1Y1, . . . , αmYm} of g1,0,

and let
{

x1, . . . , xn, α
−1
1 y1, . . . , α

−1
m ym

}

be its dual basis of ∧1,0
g
∗
C
. Then we have

∧p,q
g
∗
C = ∧p

〈

x1, . . . , xn, α
−1
1 y1, . . . , α

−1
m ym

〉

⊗ ∧q
〈

x̄1, . . . , x̄n, ᾱ
−1
1 ȳ1, . . . , ᾱ

−1
m ȳm

〉

.

The following lemma holds.

Lemma 3.2 ([22, Lemma 2.2]). Let X = Γ\G be a solvmanifold endowed with a G-left-invariant complex
structure J as in Assumption 3.1. With the above notations, for any j ∈ {1, . . . ,m}, there exist unique
unitary characters βj ∈ Hom(Cn;C∗) and γj ∈ Hom(Cn;C∗) on Cn such that αjβ

−1
j and ᾱjγ

−1
j are

holomorphic.

Hence, define the differential bi-graded sub-algebra B•,•
Γ ⊂ ∧•,• Γ\G , for (p, q) ∈ Z2, as

Bp,q
Γ := C

〈

xI ∧
(

α−1
J βJ

)

yJ ∧ x̄K ∧
(

ᾱ−1
L γL

)

ȳL
∣

∣ |I|+ |J | = p and |K|+ |L| = q(1)

such that (βJγL)⌊Γ = 1〉
(where we shorten, e.g., αI := αi1 · · · · · αik and xI := xi1 ∧ · · · ∧ xik for a multi-index I = (i1, . . . , ik) of
length |I| = k).

We recall the following result by the second author.

Theorem 3.3. ([22, Corollary 4.2]) Let X = Γ\G be a solvmanifold endowed with a G-left-invariant
complex structure J as in Assumption 3.1. Consider the differential bi-graded sub-algebra B•,•

Γ ⊂
∧•,• Γ\G defined in (1). Then the inclusion B•,•

Γ ⊂ ∧•,• Γ\G induces the cohomology isomorphism

H•,•

∂̄

(

B•,•
Γ

) ∼=→ H•,•

∂̄
(Γ\G ) .

As regards the Bott-Chern cohomology, define B̄•,•
Γ :=

{

ω̄ ∈ ∧•,• Γ\G | ω ∈ B•,•
Γ

}

and

(2) C•,•
Γ := B•,•

Γ + B̄•,•
Γ .

The authors proved the following result.

Theorem 3.4 ([4, Theorem 2.16]). Let Γ\G be a solvmanifold endowed with a G-left-invariant complex
structure J as in Assumption 3.1. Consider C•,•

Γ as in (2). Then the inclusion C•,•
Γ ⊂ ∧•,• Γ\G induces

the isomorphisms

H•,•

∂̄

(

C•,•
Γ

) ∼=→ H•,•

∂̄
(Γ\G ) and H•,•

BC(C
•,•
Γ )

∼=→ H•,•
BC (Γ\G ) .

Another class of “cohomologically-computable” solvmanifolds is given by holomorphically parallelizable
solvmanifolds, namely, compact quotients of connected simply-connected complex solvable Lie groups by
co-compact discrete subgroups, [43], see also [30].

Let G be a connected simply-connected complex solvable Lie group admitting a lattice Γ, and denote
by 2n the real dimension of G. Denote the Lie algebra naturally associated to G by g.

4



Denote by g+ (respectively, g−) the Lie algebra of the G-left-invariant holomorphic (respectively, anti-
holomorphic) vector fields on G. As a (real) Lie algebra, we have an isomorphism g+

∼= g− by means of
the complex conjugation.

Let N be the nilradical of G. We can take a connected simply-connected complex nilpotent subgroup
C ⊆ G such that G = C ·N , see, e.g., [13, Proposition 3.3]. Since C is nilpotent, the map

C ∋ c 7→ (Adc)s ∈ Aut(g+)

is a homomorphism, where (Adc)s is the semi-simple part of the Jordan decomposition of Adc. We have
a basis {X1, . . . , Xn} of g+ such that, for c ∈ C,

(Adc)s = diag (α1(c), . . . , αn(c)) ,

for some characters α1, . . . , αn of C. By G = C ·N , we have G/N = C/C ∩N and regard α1, . . . , αn as
characters of G. Let {x1, . . . , xn} be the basis of g∗+ which is dual to {X1, . . . , Xn}.

Let B•
Γ be the sub-complex of

(

∧0,• Γ\G , ∂
)

defined as

(3) B•
Γ :=

〈

ᾱI

αI

x̄I

∣

∣

∣

∣

I ⊆ {1, . . . , n} such that

(

ᾱI

αI

)⌊

Γ

= 1

〉

(where we shorten, e.g., αI := αi1 · · · · · αik and xI := xi1 ∧ · · · ∧ xik for a multi-index I = (i1, . . . , ik) of
length |I| = k).

The second author proved the following result.

Theorem 3.5 ([24, Corollary 6.2 and its proof]). Let G be a connected simply-connected complex solvable
Lie group admitting a lattice Γ. Consider the finite-dimensional sub-complex B•

Γ ⊂
(

∧0,• Γ\G , ∂
)

defined

in (3). Then the inclusion B•
Γ →֒ ∧0,• Γ\G induces the cohomology isomorphism

H•
(

B•
Γ, ∂

) ∼=→ H0,•

∂̄
(Γ\G ) .

As regards Bott-Chern cohomology, define B̄•
Γ :=

〈

αI

ᾱI
xI

∣

∣

∣
I ⊆ {1, . . . , n} such that

(

αI

ᾱI

)⌊

Γ
= 1

〉

and

(4) C•1,•2

Γ := ∧•1g
∗
+ ⊗B•2

Γ + B̄•1

Γ ⊗ ∧•2g
∗
− .

The authors proved the following result.

Theorem 3.6 ([4, Theorem 2.24]). Let G be a connected simply-connected complex solvable Lie group
admitting a lattice Γ. Consider the finite-dimensional sub-double-complex C•,•

Γ ⊂ ∧•,• Γ\G defined in
(4). Then the inclusion C•,•

Γ →֒ ∧•,• Γ\G induces the cohomology isomorphism

H•,•
BC

(

C•,•
Γ

) ∼=→ H•,•
BC(Γ\G ) .

Therefore, by Theorem 1.1 and Theorem 1.2, we get the following result, for which we provide explicit
applications in the following.

Corollary 3.7. Let X be either a solvmanifold of splitting-type or a holomorphically parallelizable solv-
manifold. Then the Dolbeault cohomology and the Bott-Chern cohomology both of X and of some suit-
able small deformations of X are computable by means of a finite-dimensional sub-double-complex of
(

∧•,•X, ∂, ∂
)

.

We note that small deformations of a holomorphically parallelizable solvmanifolds does not necessar-
ily remain holomorphically parallelizable. This was firstly proved by I. Nakamura, providing explicit
examples on the Iwasawa manifold, [30, page 86, page 96]. In [36], S. Rollenske studied conditions for
which a small deformation of a holomorphically parallelizable nilmanifold is still holomorphically par-
allelizable, [36, Theorem 5.1], proving that non-tori holomorphically parallelizable nilmanifolds admit
non-holomorphically parallelizable small deformations, [36, Corollary 5.2]. We prove that the same holds
true for holomorphically parallelizable solvmanifolds.

Theorem 3.8. Let X = Γ\G be a holomorphically parallelizable solvmanifold which is not a torus.
Then there exists a non-holomorphically parallelizable small deformation of Γ\G .

5



Proof. By [36, Corollary 5.2], we can assume that Γ\G is not a nilmanifold. Take a connected simply-
connected complex nilpotent subgroup C ⊂ G such that G = C ·N , where N is the nilradical of G. We
can take a 1-dimensional complex Lie subgroup A ∼= C with A ⊂ C and a 1-codimensional complex Lie
subgroup G′ with N ⊂ G′ such that we have decomposition G = A ⋉ G′. Take a basis {x1, . . . , xn}
of g

∗
+ which diagonalizes the semi-simple part of the C-action (where g+ denotes the Lie algebra of

G-left-invariant holomorphic vector fields on G). With respect to the above decomposition, we can take
x1 = d z for a coordinate z of the 1-dimensional complex Lie subgroup A, and x2 = ea2 z x′2 for a non-
trivial character ea2 z of A and a holomorphic form x′j on G′, by trigonalizing of the A-action. Then the

Dolbeault cohomology of Γ\G is computed by means of

C•,•
0 := ∧•

g
∗
+ ⊗B•

Γ

where

B•
Γ :=

〈

ᾱI

αI

x̄I

∣

∣

∣

∣

I ⊆ {1, . . . , n} such that

(

ᾱI

αI

)⌊

Γ

= 1

〉

,

(and where we shorten, e.g., αI := αi1 · · · · ·αik and xI := xi1 ∧ · · · ∧xik for a multi-index I = (i1, . . . , ik)
of length |I| = k).

We consider the family {Jt}t of deformations given by

t
∂

∂z
⊗ d z̄ ∈ H0,1

(

X ;T 1,0X
)

.

Then, for any t, we consider the double-complex

D•,•
t := ∧•

g
∗
+(t)⊗B•

Γ(t)

so that
∧•

g
∗
+(t) = ∧•〈d z − t d z̄, x2, . . . , xn〉

and

B•
Γ(t) = ∧〈d z̄ − t̄ d z〉 ⊗

〈

ᾱI

αI

x̄′I

∣

∣

∣

∣

I ⊆ {2, . . . , n} such that

(

ᾱI

αI

)

⌊Γ= 1

〉

,

and the Jt-Hermitian metrics

gt := (d z − t d z̄)⊙ (d z̄ − t̄ d z) +

n
∑

j=2

xj ⊙ x̄j .

We can apply Theorem 1.1.
Now we have

∂̄t (e
a2 z x′2) =

a2 t (d z̄ − t̄ d z)

1− |t|2 ea2 z x′2 .

Hence we have, for t 6= 0,
H1,0

∂̄t
(Γ\G ) = ker ∂̄t

⌊

∧1g
∗

+
(t)

6= ∧1
g
∗
+(t) .

By this, for t 6= 0, we have dimCH
1,0

∂̄t
(Γ\G ) < dimCG and hence (Γ\G , Jt) are not holomorphically

parallelizable. �

4. Example: deformations of the Nakamura manifold

Consider the Lie group G = C⋉φ C2 where

φ(z) =

(

ez 0
0 e−z

)

.

Then there exists a lattice Γ = (aZ+2πZ)⋉Γ′′ where Γ′′ is a lattice in C
2. The solvmanifold X := Γ\G

is called (holomorphically parallelizable) Nakamura manifold, [30].

In order to compute the Dolbeault, respectively Bott-Chern cohomologies of the Nakamura manifold,
consider the sub-double-complexes B•,•

Γ and C•,•
Γ given in Table 1 and Table 2, see [22, 4]. (For the

sake of simplicity, we shorten, e.g., d z23̄ := d z2 ∧ d z̄3, where z1 is the holomorphic coordinate on C and
{z2, z3} is a set of holomorphic coordinates on C2.)

Then, by [24, Corollary 6.2] and by [4, Theorem 2.24], the inclusions B•,•
Γ ⊂ ∧•,•(X) and C•,•

Γ ⊂
∧•,•(X) induce isomorphisms

H•,•

∂̄
(B•,•

Γ ) ∼= H•,•

∂̄
(X) and H•,•

BC(C
•,•
Γ ) ∼= H•,•

BC(X) .

We consider deformations {Jt}t∈B over a ball B ⊂ C given by
6



B•,•
Γ

(0,0) C 〈1〉
(1,0) C 〈d z1, e−z1 d z2, e

z1 d z3〉
(0,1) C 〈d z1̄, e−z1 d z2̄, e

z1 d z3̄〉
(2,0) C 〈e−z1 d z12, e

z1 d z13, d z23〉
(1,1) C

〈

d z11̄, e
−z1 d z12̄, e

z1 d z13̄, e
−z1 d z21̄, e

−2z1 d z22̄, d z23̄, e
z1 d z31̄, d z32̄, e

2z1 d z33̄
〉

(0,2) C 〈e−z1 d z1̄2̄, e
z1 d z1̄3̄, d z2̄3̄〉

(3,0) C 〈d z123〉
(2,1) C

〈

e−z1 d z121̄, e
−2z1 d z122̄, d z123̄, e

z1 d z131̄, d z132̄, e
2z1 d z133̄, d z231̄, e

−z1 d z232̄, e
z1 d z233̄

〉

(1,2) C
〈

d z31̄2̄, d z21̄3̄, d z12̄3̄, e
−z1 d z11̄2̄, e

z1 d z11̄3̄, e
−2z1 d z21̄2̄, e

−z1 d z22̄3̄, e
2z1 d z31̄3̄, e

z1 d z32̄3̄
〉

(0,3) C 〈d z1̄2̄3̄〉
(3,1) C 〈d z1231̄, e−z1 d z1232̄, e

z1 d z1233̄〉
(2,2) C

〈

e−2z1 d z121̄2̄, d z121̄3̄, e
−z1 d z122̄3̄, d z131̄2̄, e

2z1 d z131̄3̄, e
z1 d z132̄3̄, e

−z1 d z231̄2̄, e
z1 d z231̄3̄, d z232̄3̄

〉

(1,3) C 〈d z11̄2̄3̄, e−z1 d z21̄2̄3̄, e
z1 d z31̄2̄3̄〉

(3,2) C 〈e−z1 d z1231̄2̄, e
z1 d z1231̄3̄, d z1232̄3̄〉

(2,3) C 〈e−z1 d z121̄2̄3̄, e
z1 d z131̄2̄3̄, d z231̄2̄3̄〉

(3,3) C 〈d z1231̄2̄3̄〉
Table 1. The double-complex B•,•

Γ for computing the Dolbeault cohomology of the
holomorphically parallelizable Nakamura manifold Γ\G .

(1) t ∂
∂z1

⊗ d z̄1 ∈ H0,1
(

X ;T 1,0X
)

, or

(2) t ∂
∂z1

⊗ ez1 d z̄3 ∈ H0,1
(

X ;T 1,0X
)

.

As for deformations in case (1), we can compute the Dolbeault and Bott-Chern cohomologies by
applying Theorem 1.1 and Theorem 1.2 to the complexes B•,•

Γ (t) and C•,•
Γ (t) in Table 5 and Table 6,

respectively, and by considering the Jt-Hermitian metrics gt := φ1,01 (t) ⊙ φ0,11 (t) + φ1,02 (t) ⊙ ϕ0,1
2 (t) +

φ1,03 (t)⊙ ϕ0,1
3 (t); the generators of the complexes are defined starting from the forms in Table 3, and we

summarize the results of the computation of the Dolbeault and Bott-Chern cohomologies in Table 7 and
Table 8, respectively.

As for deformations in case (2), we can compute the Dolbeault cohomology by applying Theorem 1.1

to the complex B•,•
Γ (t) in Table 5, and by considering the Jt-Hermitian metrics gt := φ1,01 (t)⊙ φ0,11 (t) +

φ1,02 (t) ⊙ ϕ0,1
2 (t) + φ1,03 (t) ⊙ ϕ0,1

3 (t); the generators of the complex are defined starting from the forms
in Table 4, and we summarize the results of the computation of the Dolbeault cohomology in Table 9.
(As regards the Bott-Chern cohomology for deformations in case (2), the vector space C•,•

Γ (t) does not

provide a sub-double-complex for t 6= 0, and, by modifying it in order to be closed for both ∂t and ∂t,
and ∗̄gt , as required in Theorem 1.2, it seems that the finite-dimensionality is no more guaranteed.)

(As a matter of notations, we shorten, e.g., φ1,01 (t) ∧ φ0,112 (t) := φ1,01 (t) ∧ φ0,11 (t) ∧ φ0,12 (t).)

Straightforwardly, (e.g., from Table 10 and by [6, Theorem B],) we get the following result. (See [23]
for other examples of non-Kähler solvmanifolds satisfying the ∂∂-Lemma.)

Proposition 4.1. Consider the holomorphically parallelizable Nakamura manifold (X, J0), and its small
deformations {Jt}t∈B as in (1) or (2). Then

(i) the deformations (X, Jt) as in case (1) satisfy the ∂∂̄-Lemma.
(ii) the deformations (X, Jt) as in case (2) satisfy the E1-degeneration of the Hodge and Frölicher

spectral sequences, but do not satisfy the ∂∂̄-Lemma.

5. Example: Sawai and Yamada generalized manifolds

In this section, we study the cohomology of the generalized examples introduced and studied by H.
Sawai and T. Yamada in [39] in order to generalize Ch. Benson and C. S. Gordon manifold [7].
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C•,•
Γ

(0,0) C 〈1〉
(1,0) C 〈d z1, e−z1 d z2, e

z1 d z3, e
−z̄1 d z2, e

z̄1 d z3〉
(0,1) C 〈d z1̄, e−z1 d z2̄, e

z1 d z3̄, e
−z̄1 d z2̄, e

z̄1 d z3̄〉
(2,0) C 〈e−z1 d z12, e

z1 d z13, d z23, e
−z̄1 d z12, e

z̄1 d z13〉
(1,1) C

〈

d z11̄, e
−z1 d z12̄, e

z1 d z13̄, e
−z1 d z21̄, e

−2z1 d z22̄, d z23̄, e
z1 d z31̄, d z32̄, e

2z1 d z33̄,

e−z̄1 d z21̄, e
−z̄1 d z12̄, e

z̄1 d z13̄, e
z̄1 d z31̄, e

−2z̄1 d z22̄, e
2z̄1 d z33̄

〉

(0,2) C 〈e−z1 d z1̄2̄, e
z1 d z1̄3̄, d z2̄3̄, e

−z̄1 d z1̄2̄, e
z̄1 d z1̄3̄〉

(3,0) C 〈d z123〉
(2,1) C

〈

e−z1 d z121̄, e
−2z1 d z122̄, d z123̄, e

z1 d z131̄, d z132̄, e
2z1 d z133̄, d z231̄, e

−z1 d z232̄, e
z1 d z233̄,

e−z̄1 d z121̄, e
z̄1 d z131̄, e

−2z̄1 d z122̄, e
−z̄1 d z232̄, e

2z̄1 d z133̄, e
z̄1 d z233̄

〉

(1,2) C
〈

e−z̄1 d z11̄2̄, e
−2z̄1 d z21̄2̄, d z31̄2̄, e

z̄1 d z11̄3̄, d z21̄3̄, e
2z̄1 d z31̄3̄, d z12̄3̄, e

−z̄1 d z22̄3̄, e
z̄1 d z32̄3̄,

e−z1 d z11̄2̄, e
z1 d z11̄3̄, e

−2z1 d z21̄2̄, e
−z1 d z22̄3̄, e

2z1 d z31̄3̄, e
z1 d z32̄3̄

〉

(0,3) C 〈d z1̄2̄3̄〉
(3,1) C 〈d z1231̄, e−z1 d z1232̄, e

z1 d z1233̄, e
−z̄1 d z1232̄, e

z̄1 d z1233̄〉
(2,2) C

〈

e−2z1 d z121̄2̄, d z121̄3̄, e
−z1 d z122̄3̄, d z131̄2̄, e

2z1 d z131̄3̄, e
z1 d z132̄3̄, e

−z1 d z231̄2̄, e
z1 d z231̄3̄,

d z232̄3̄, e
−2z̄1 d z121̄2̄, e

−z̄1 d z231̄2̄, e
−z̄1 d z122̄3̄, e

z̄1 d z132̄3̄, e
2z̄1 d z131̄3̄, e

z̄1 d z231̄3̄
〉

(1,3) C 〈d z11̄2̄3̄, e−z̄1 d z21̄2̄3̄, e
z̄1 d z31̄2̄3̄, e

−z1 d z21̄2̄3̄, e
z1 d z31̄2̄3̄〉

(3,2) C 〈e−z1 d z1231̄2̄, e
z1 d z1231̄3̄, d z1232̄3̄, e

−z̄1 d z1231̄2̄, e
z̄1 d z1231̄3̄〉

(2,3) C 〈e−z1 d z121̄2̄3̄, e
z1 d z131̄2̄3̄, d z231̄2̄3̄, e

−z̄1 d z121̄2̄3̄, e
z̄1 d z131̄2̄3̄〉

(3,3) C 〈d z1231̄2̄3̄〉
Table 2. The double-complex C•,•

Γ for computing the Bott-Chern cohomology of the
holomorphically parallelizable Nakamura manifold Γ\G .

case (1)
ψ dψ

φ1,01 (t) := d z1 − t d z̄1 dφ1,01 (t) = 0

φ1,02 (t) := e−z1 d z2 dφ1,02 (t) = − 1
1−|t|2 φ

1,0
1 (t) ∧ φ1,02 (t) + t

1−|t|2 φ
1,0
2 (t) ∧ φ0,11 (t)

φ1,03 (t) := ez1 d z3 dφ1,03 (t) = 1
1−|t|2 φ

1,0
1 (t) ∧ φ1,03 (t)− t

1−|t|2 φ
1,0
3 (t) ∧ φ0,11 (t)

ϕ1,0
2 (t) := e−z̄1 d z2 dϕ1,0

2 (t) = − t̄
1−|t|2 φ

1,0
1 (t) ∧ ϕ1,0

2 (t) + 1
1−|t|2 ϕ

1,0
2 (t) ∧ φ0,11 (t)

ϕ1,0
3 (t) := ez̄1 d z3 dϕ1,0

3 (t) = t̄
1−|t|2 φ

1,0
1 (t) ∧ ϕ1,0

3 (t)− 1
1−|t|2ϕ

1,0
3 (t) ∧ φ0,11 (t)

φ0,11 (t) := d z̄1 − t̄ d z1 dφ0,11 (t) = 0

φ0,12 (t) := e−z1 d z̄2 dφ0,12 (t) = − 1
1−|t|2φ

1,0
1 (t) ∧ φ0,12 (t)− t

1−|t|2 φ
0,1
1 (t) ∧ φ0,12 (t)

φ0,13 (t) := ez1 d z̄3 dφ0,13 (t) = 1
1−|t|2 φ

1,0
1 (t) ∧ φ0,13 (t) + t

1−|t|2 φ
0,1
1 (t) ∧ φ0,13 (t)

ϕ0,1
2 (t) := e−z̄1 d z̄2 dϕ0,1

2 (t) = − t̄
1−|t|2 φ

1,0
1 (t) ∧ ϕ0,1

2 (t)− 1
1−|t|2 φ

0,1
1 (t) ∧ ϕ0,1

2 (t)

ϕ0,1
3 (t) := ez̄1 d z̄3 dϕ0,1

3 (t) = t̄
1−|t|2 φ

1,0
1 (t) ∧ ϕ0,1

3 (t) + 1
1−|t|2 φ

0,1
1 (t) ∧ ϕ0,1

3 (t)

Table 3. Definitions for setting the generators of the complexes B•,•
Γ (t), see Table 5,

and C•,•
Γ (t), see Table 6, for the deformations in case (1), which are given by t ∂

∂z1
⊗d z̄1,

of the holomorphically parallelizable Nakamura manifold Γ\G .
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case (2)
ψ dψ

φ1,01 (t) := d z1 − t ez1 d z̄3 dφ1,01 (t) = −t φ1,01 (t) ∧ φ0,13 (t)

φ1,02 (t) := e−z1 d z2 dφ1,02 (t) = −φ1,01 (t) ∧ φ1,02 (t) + t φ1,02 (t) ∧ φ0,13 (t)

φ1,03 (t) := ez1 d z3 dφ1,03 (t) = φ1,01 (t) ∧ φ1,03 (t)− t φ1,03 (t) ∧ φ0,13 (t)

ϕ1,0
2 (t) := e−z̄1 d z2 dϕ1,0

2 (t) = t̄ ϕ1,0
2 (t) ∧ ϕ1,0

3 (t) + ϕ1,0
2 (t) ∧ φ0,11 (t)

ϕ1,0
3 (t) := ez̄1 d z3 dϕ1,0

3 (t) = −ϕ1,0
3 (t) ∧ φ0,11 (t)

φ0,11 (t) := d z̄1 − t̄ ez̄1 d z3 dφ0,11 (t) = t̄ ϕ1,0
3 (t) ∧ φ0,11 (t)

φ0,12 (t) := e−z1 d z̄2 dφ0,12 (t) = −φ1,01 (t) ∧ φ0,12 (t) + t φ0,12 (t) ∧ φ0,13 (t)

φ0,13 (t) := ez1 d z̄3 dφ0,13 (t) = φ1,01 (t) ∧ φ0,13 (t)

ϕ0,1
2 (t) := e−z̄1 d z̄2 dϕ0,1

2 (t) = −t̄ ϕ1,0
3 (t) ∧ ϕ0,1

2 (t)− φ0,11 (t) ∧ ϕ0,1
2 (t)

ϕ0,1
3 (t) := ez̄1 d z̄3 dϕ0,1

3 (t) = t̄ ϕ1,0
3 (t) ∧ ϕ0,1

3 (t) + φ0,11 (t) ∧ ϕ0,1
3 (t)

Table 4. Definitions for setting the generators of the complex B•,•
Γ (t), see Table 5, for

the deformations in case (2), which are given by t ∂
∂z1

⊗ ez1 d z̄3, of the holomorphically

parallelizable Nakamura manifold Γ\G .

Following [39], let n be a complex nilpotent Lie algebra. We assume that n = C 〈Y1, . . . , Yℓ, Yℓ+1, . . . , Ym〉
so that [n, n] = C〈Yℓ+1, . . . , Ym〉 and [Yi, Yj ] = Ck

ij Yk for some Ck
ij ∈ Z, varying i, j, k ∈ {1, . . . ,m}. De-

fine

ñ := C〈Y1,1, . . . , Y1,ℓ, Y1,ℓ+1, Y1,m〉 ⊕ C〈Y2,1, . . . , Y2,ℓ, Y2,ℓ+1, Y2,m〉
where C〈Y1,1, . . . , Y1,ℓ, Y1,ℓ+1, . . . , Y1,m〉 ∼= C〈Y2,1, . . . , Y2,ℓ, Y2,ℓ+1, . . . , Y2,m〉 ∼= n. Consider the semi-
direct product g := C〈X〉⋉ ñ given by

[X,Y1,j ] := kj Y1,j , [X,Y2,j ] := −kj Y2,j
where {kj}j ⊂ N \ {0} is such that the Jacobi identity holds.

Let G = C ⋉ Ñ be the connected simply-connected complex Lie group corresponding to g. Then we
have

G =

{(

z,

(

w1,1

w2,1

)

, . . . ,

(

w1,m

w2,m

))

: z, w1,j, w2,j ∈ C

}

with the product
(

z,

(

w1,1

w2,1

)

, . . . ,

(

w1,m

w2,m

))

·
(

z′,

(

w′
1,1

w′
2,1

)

, . . . ,

(

w′
1,m

w′
2,m

))

=

(

z + z′,

(

f1,1(z, w1,1, . . . , w1,m, w
′
1,1, . . . , w

′
1,m)

f2,1(z, w2,1, . . . , w2,m, w
′
2,1, . . . , w

′
2,m)

)

, . . . ,

(

f1,m(z, w1,1, . . . , w1,m, w
′
1,1, . . . , w

′
1,m)

f2,m(z, w2,1, . . . , w2,m, w
′
2,1, . . . , w

′
2,m)

))

,

for certain functions f1,1, . . . , f1,m, f2,1, . . . , f2,m, see [39, Section 2].
Take a unimodular matrix B ∈ SL(2,Z) with distinct positive eigenvalues λ and λ−1, and set a :=

logλ. Consider

Γ :=

{(

a s+ 2π
√
−1 t,

(

w1,1 + λw2,1

w1,1 + λ−1 w2,1

)

, . . . ,

(

w1,m + λw2,m

w1,m + λ−1 w2,m

))

: s, t ∈ Z, w1,j , w2,j ∈ Z+
√
−1Z

}

.

Then, as H. Sawai and T. Yamada proved in [39, Theorem 2.1], Γ is a lattice in G. Hence we have

Γ = (aZ+ 2π
√
−1Z)⋉ Γ′′ such that Γ′′ is a lattice in Ñ .

Let {y1,1, . . . , y1,ℓ, y1,ℓ+1, . . . , y1,m, y2,1, . . . , y2,ℓ, y2,ℓ+1, . . . , y2,m} be the dual basis of the space
(

ñ
1,0

)∗

of the left-invariant (1, 0)-forms on Ñ . Then, by the assumption, we have d y1,j = d y2,j = 0 for 1 ≤ j ≤ ℓ.

The space
(

g
1,0

)∗
of the left-invariant (1, 0)-forms on G is given by
(

g
1,0

)∗
= C

〈

d z, e−k1z y1,1, . . . , e
−kmz y1,m, e

k1z y2,1, . . . , e
kmz y2,m

〉

.
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B•,•
Γ (t)

(0,0) C 〈1〉

(1,0) C

〈

φ1,01 (t), φ1,02 (t), φ1,03 (t)
〉

(0,1) C

〈

φ0,11 (t), φ0,12 (t), φ0,13 (t)
〉

(2,0) C

〈

φ1,012 (t), φ
1,0
13 (t), φ

1,0
23 (t)

〉

(1,1) C

〈

φ1,01 (t) ∧ φ0,11 (t), φ1,01 (t) ∧ φ0,12 (t), φ1,01 (t) ∧ φ0,13 (t), φ1,02 (t) ∧ φ0,11 (t), φ1,02 (t) ∧ φ0,12 (t),

φ1,02 (t) ∧ φ0,13 (t), φ1,03 (t) ∧ φ0,11 (t), φ1,03 (t) ∧ φ0,12 (t), φ1,03 (t) ∧ φ0,13 (t)
〉

(0,2) C

〈

φ0,112 (t), φ
0,1
13 (t), φ

0,1
23 (t)

〉

(3,0) C

〈

φ1,0123(t)
〉

(2,1) C

〈

φ1,012 (t) ∧ φ0,11 (t), φ1,012 (t) ∧ φ0,12 (t), φ1,012 (t) ∧ φ0,13 (t), φ1,013 (t) ∧ φ0,11 (t), φ1,013 (t) ∧ φ0,12 (t),

φ1,013 (t) ∧ φ0,13 (t), φ1,023 (t) ∧ φ0,11 (t), φ1,023 (t) ∧ φ0,12 (t), φ1,023 (t) ∧ φ0,13 (t)
〉

(1,2) C

〈

φ1,03 (t) ∧ φ0,112 (t), φ
1,0
2 (t) ∧ φ0,113 (t), φ

1,0
1 (t) ∧ φ0,123 (t), φ

1,0
1 (t) ∧ φ0,112 (t), φ

1,0
1 (t) ∧ φ0,113 (t),

φ1,02 (t) ∧ φ0,112 (t), φ
1,0
2 (t) ∧ φ0,123 (t), φ

1,0
3 (t) ∧ φ0,113 (t), φ

1,0
3 (t) ∧ φ0,123 (t)

〉

(0,3) C

〈

φ0,1123(t)
〉

(3,1) C

〈

φ1,0123(t) ∧ φ0,11 (t), φ1,0123(t) ∧ φ0,12 (t), φ1,0123(t) ∧ φ0,13 (t)
〉

(2,2) C

〈

φ1,012 (t) ∧ φ0,112 (t), φ
1,0
12 (t) ∧ φ0,113 (t), φ

1,0
12 (t) ∧ φ0,123 (t), φ

1,0
13 (t) ∧ φ0,112 (t), φ

1,0
13 (t) ∧ φ0,113 (t),

φ1,013 (t) ∧ φ0,123 (t), φ
1,0
23 (t) ∧ φ0,112 (t), φ

1,0
23 (t) ∧ φ0,113 (t), φ

1,0
23 (t) ∧ φ0,123 (t)

〉

(1,3) C

〈

φ1,01 (t) ∧ φ0,1123(t), φ
1,0
2 (t) ∧ φ0,1123(t), φ

1,0
3 (t) ∧ φ0,1123(t)

〉

(3,2) C

〈

φ1,0123(t) ∧ φ0,112 (t), φ
1,0
123(t) ∧ φ0,113 (t), φ

1,0
123(t) ∧ φ0,123 (t)

〉

(2,3) C

〈

φ1,012 (t) ∧ φ0,1123(t), φ
1,0
13 (t) ∧ φ0,1123(t), φ

1,0
23 (t) ∧ φ0,1123(t)

〉

(3,3) C

〈

φ1,0123(t) ∧ φ0,1123(t)
〉

Table 5. The double-complex B•,•
Γ (t) for computing the Dolbeault cohomology of the

small deformations in case (1) and in case (2) of the holomorphically parallelizable
Nakamura manifold Γ\G .

Consider

B•,•
Γ := ∧•,•

C
〈

d z, e−k1z y1,1, . . . , e
−kmz y1,m, e

k1z y2,1, . . . , e
kmz y2,m

〉

⊗C
〈

d z̄, e−k1z ȳ1,1, . . . , e
−kmz ȳ1,m, e

k1z ȳ2,1, . . . , e
kmz ȳ2,m

〉

.

Then we have
H•,•

∂̄
(B•,•

Γ ) ∼= H•,•

∂̄
(Γ\G ).

We consider deformations {Jt}t∈B over a ball B ⊂ C given by:

t
∂

∂z
⊗ ek1z ȳ2,1 ∈ H0,1(Γ\G ;T 1,0 Γ\G ) .

To compute the Dolbeault cohomology of (Γ\G , Jt), consider the forms defined in Table 11.
More precisely, by applying Theorem 1.1 to the double-complex

B•,•
Γ (t) = ∧•,•

C

〈

φ1,00 (t), φ1,01,1(t), . . . , φ
1,0
1,m(t), φ1,02,1(t), . . . , φ

1,0
2,m(t)

〉

(5)

⊗C

〈

φ0,10 (t), φ0,11,1(t), . . . , φ
0,1
1,m(t), φ0,12,1(t), . . . , φ

0,1
2,m(t)

〉
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C•,•
Γ (t)

(0,0) C 〈1〉

(1,0) C

〈

φ1,01 (t), φ1,02 (t), φ1,03 (t), ϕ1,0
2 (t), ϕ1,0

3 (t)
〉

(0,1) C

〈

φ0,11 (t), φ0,12 (t), φ0,13 (t), ϕ0,1
2 (t), ϕ0,1

3 (t)
〉

(2,0) C

〈

φ1,012 (t), φ
1,0
13 (t), φ

1,0
23 (t), φ

1,0
1 (t) ∧ ϕ1,0

2 (t), φ1,01 (t) ∧ ϕ1,0
3 (t)

〉

(1,1) C

〈

φ1,01 (t) ∧ φ0,11 (t), φ1,01 (t) ∧ φ0,12 (t), φ1,01 (t) ∧ φ0,13 (t), φ1,02 (t) ∧ φ0,11 (t), φ1,02 (t) ∧ φ0,12 (t),

φ1,02 (t) ∧ φ0,13 (t), φ1,03 (t) ∧ φ0,11 (t), φ1,03 (t) ∧ φ0,12 (t), φ1,03 (t) ∧ φ0,13 (t), φ1,01 (t) ∧ ϕ0,1
2 (t),

φ1,01 (t) ∧ ϕ0,1
3 (t), ϕ1,0

2 (t) ∧ φ0,11 (t), ϕ1,0
2 (t) ∧ ϕ0,1

2 (t), ϕ1,0
3 (t) ∧ φ0,11 (t), ϕ1,0

3 (t) ∧ ϕ0,1
3 (t)

〉

(0,2) C

〈

φ0,112 (t), φ
0,1
13 (t), φ

0,1
23 (t), φ

0,1
1 (t) ∧ ϕ0,1

2 (t), φ0,11 (t) ∧ ϕ0,1
3 (t)

〉

(3,0) C

〈

φ1,0123(t)
〉

(2,1) C

〈

φ1,012 (t) ∧ φ0,11 (t), φ1,012 (t) ∧ φ0,12 (t), φ1,012 (t) ∧ φ0,13 (t), φ1,013 (t) ∧ φ0,11 (t), φ1,013 (t) ∧ φ0,12 (t), φ1,013 (t) ∧ φ0,13 (t),

φ1,023 (t) ∧ φ0,11 (t), φ1,023 (t) ∧ φ0,12 (t), φ1,023 (t) ∧ φ0,13 (t), φ1,01 (t) ∧ ϕ1,0
2 (t) ∧ φ0,11 (t), φ1,01 (t) ∧ ϕ1,0

2 (t) ∧ ϕ0,1
2 (t),

φ1,01 (t) ∧ ϕ1,0
3 (t) ∧ φ0,11 (t), φ1,01 (t) ∧ ϕ1,0

3 (t) ∧ ϕ0,1
3 (t), φ1,023 (t) ∧ ϕ0,1

2 (t), φ1,023 (t) ∧ ϕ0,1
3 (t)

〉

(1,2) C

〈

φ1,01 (t) ∧ φ0,11 (t) ∧ ϕ0,1
2 (t), ϕ1,0

2 (t) ∧ φ0,11 (t) ∧ ϕ0,1
2 (t), φ1,03 (t) ∧ φ0,112 (t), φ

1,0
1 (t) ∧ φ0,11 (t) ∧ ϕ0,1

3 (t),

φ1,02 (t) ∧ φ0,113 (t), ϕ
1,0
3 (t) ∧ φ0,11 (t) ∧ ϕ0,1

3 (t), φ1,01 (t) ∧ φ0,123 (t), ϕ
1,0
2 (t) ∧ ϕ0,1

23 (t), ϕ
1,0
3 (t) ∧ ϕ0,1

23 (t),

φ1,01 (t) ∧ φ0,112 (t), φ
1,0
2 (t) ∧ φ0,112 (t), φ

1,0
1 (t) ∧ φ0,113 (t), φ

1,0
3 (t) ∧ φ0,113 (t), φ

1,0
2 (t) ∧ φ0,123 (t), φ

1,0
3 (t) ∧ φ0,123 (t)

〉

(0,3) C

〈

φ0,1123(t)
〉

(3,1) C

〈

φ1,0123(t) ∧ φ0,11 (t), φ1,0123(t) ∧ φ0,12 (t), φ1,0123(t) ∧ φ0,13 (t), φ1,0123(t) ∧ ϕ0,1
2 (t), φ1,0123(t) ∧ ϕ0,1

3 (t)
〉

(2,2) C

〈

φ1,012 (t) ∧ φ0,112 (t), φ
1,0
12 (t) ∧ φ0,113 (t), φ

1,0
12 (t) ∧ φ0,123 (t), φ

1,0
13 (t) ∧ φ0,112 (t), φ

1,0
13 (t) ∧ φ0,113 (t),

φ1,013 (t) ∧ φ0,123 (t), φ
1,0
23 (t) ∧ φ0,112 (t), φ

1,0
23 (t) ∧ φ0,113 (t), φ

1,0
23 (t) ∧ φ0,123 (t), φ

1,0
1 (t) ∧ ϕ1,0

2 (t) ∧ φ0,11 (t) ∧ ϕ0,1
2 (t),

φ1,01 (t) ∧ ϕ1,0
2 (t) ∧ φ0,123 (t), φ

1,0
1 (t) ∧ ϕ1,0

3 (t) ∧ φ0,11 (t) ∧ ϕ0,1
3 (t), φ1,01 (t) ∧ ϕ1,0

3 (t) ∧ φ0,123 (t),

φ1,023 (t) ∧ φ0,11 (t) ∧ ϕ0,1
2 (t), φ1,023 (t) ∧ φ0,11 (t) ∧ ϕ0,1

3 (t)
〉

(1,3) C

〈

φ1,01 (t) ∧ φ0,1123(t), φ
1,0
2 (t) ∧ φ0,1123(t), φ

1,0
3 (t) ∧ φ0,1123(t), ϕ

1,0
2 (t) ∧ φ0,1123(t), ϕ

1,0
3 (t) ∧ φ0,1123(t)

〉

(3,2) C

〈

φ1,0123(t) ∧ φ0,112 (t), φ
1,0
123(t) ∧ φ0,113 (t), φ

1,0
123(t) ∧ φ0,123 (t), φ

1,0
123(t) ∧ φ0,11 (t) ∧ ϕ0,1

2 (t), φ1,0123(t) ∧ φ0,11 (t) ∧ ϕ0,1
3 (t)

〉

(2,3) C

〈

φ1,012 (t) ∧ φ0,1123(t), φ
1,0
13 (t) ∧ φ0,1123(t), φ

1,0
23 (t) ∧ φ0,1123(t), φ

1,0
1 (t) ∧ ϕ1,0

2 (t) ∧ φ0,1123(t), φ
1,0
1 (t) ∧ ϕ1,0

3 (t) ∧ φ0,1123(t)
〉

(3,3) C

〈

φ1,0123(t) ∧ φ0,1123(t)
〉

Table 6. The double-complex C•,•
Γ (t) for computing the Bott-Chern cohomology of the

small deformations in case (1) of the holomorphically parallelizable Nakamura manifold
Γ\G .

and to the Jt-Hermitian metric

gt := φ1,00 (t)⊙ φ0,10 (t) +

m
∑

j=1

φ1,01,j(t)⊙ ϕ0,1
1,j(t) +

m
∑

j=1

φ1,02,j(t)⊙ ϕ0,1
2,j (t) ,

since (B•,•
Γ (t), ∂̄t) is a sub-complex of (∧•,•(Γ\G ), ∂̄t) and ∗̄t(B•,•

Γ (t)) ⊆ B•,•
Γ (t), then we have

H•,•

∂̄t
(B•,•

Γ (t)) ∼= H•,•

∂̄t
(Γ\G ) .

By simple computations we have the following result.

Proposition 5.1. Consider the Sawai and Yamada generalized manifold X = Γ\G of complex dimension
2m+ 1, and its small deformations {Jt}t∈B⊂C

induced by t ∂
∂z

⊗ ek1z ȳ2,1 ∈ H0,1(X ;T 1,0X). Then

dimH1,0

∂̄t
(X) = 0 and dimH2m+1,0

∂̄t
(X) = 0 .

Remark 5.2. In [22, 24, 11], structures of holomorphic fibre bundles over complex tori with nilmanifold-
fibres play a very important role for computing the Dolbeault cohomology of certain solvmanifolds. But,
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case (1) H•,•

∂̄t
(X)

(0,0) C 〈1〉

(1,0) C

〈

φ1,01 (t)
〉

(0,1) C

〈

φ0,11 (t)
〉

(2,0) C

〈

φ1,023 (t)
〉

(1,1) C

〈

φ1,01 (t) ∧ φ0,11 (t), φ1,02 (t) ∧ φ0,13 (t), φ1,03 (t) ∧ φ0,12 (t)
〉

(0,2) C

〈

φ0,123 (t)
〉

(3,0) C

〈

φ1,0123(t)
〉

(2,1) C

〈

φ1,012 (t) ∧ φ0,13 (t), φ1,013 (t) ∧ φ0,12 (t), φ1,023 (t) ∧ φ0,11 (t)
〉

(1,2) C

〈

φ1,03 (t) ∧ φ0,112 (t), φ
1,0
2 (t) ∧ φ0,113 (t), φ

1,0
1 (t) ∧ φ0,123 (t)

〉

(0,3) C

〈

φ0,1123(t)
〉

(3,1) C

〈

φ1,0123(t) ∧ φ0,11

〉

(2,2) C

〈

φ1,012 (t) ∧ φ0,113 (t), φ
1,0
13 (t) ∧ φ0,112 (t), φ

1,0
23 (t) ∧ φ0,123 (t)

〉

(1,3) C

〈

φ1,01 (t) ∧ φ0,1123(t)
〉

(3,2) C

〈

φ1,0123(t) ∧ φ0,123 (t)
〉

(2,3) C

〈

φ1,023 (t) ∧ φ0,1123(t)
〉

(3,3) C

〈

φ1,0123(t) ∧ φ0,1123(t)
〉

Table 7. The harmonic representatives of the Dolbeault cohomology of the small defor-
mations in case (1), which are given by t ∂

∂z1
⊗d z̄1, of the holomorphically parallelizable

Nakamura manifold, with respect to the Hermitian metric gt := φ1,01 (t) ⊙ φ0,11 (t) +

φ1,02 (t)⊙ ϕ0,1
2 (t) + φ1,03 (t)⊙ ϕ0,1

3 (t).

by Proposition 5.1, such deformed complex solvmanifolds are not holomorphic fibre bundles over complex
tori. Hence they provide new examples of “Dolbeault-cohomology-computable” complex solvmanifolds.

6. Closedness and openness under holomorphic deformation

We recall that a property P concerning complex manifolds is called open under holomorphic deforma-
tions if, whenever it holds for a compact complex manifold X , it holds also for any small deformations of
X . It is called (Zariski-)closed (simply, closed) if, for any family {Xt}t∈∆ of compact complex manifolds
such that P holds for any t ∈ ∆ \ {0} in the punctured-disk, then P holds also for X0.

It is known that the ∂∂̄-Lemma is open under holomorphic deformations, see, e.g., [42, Proposition
9.21], or [44, Theorem 5.12], or [41, §B], or [6, Corollary 2.7]. In [4, Theorem 2.20], the authors proved
that the ∂∂̄-Lemma is not strongly-closed under holomorphic deformations, namely, there exists a family
{Xt}t∈B of compact complex manifolds and a sequence {tk}k∈N

⊂ B converging to 0 ∈ B such that Xtk

satisfies the ∂∂̄-Lemma and X0 does not; more precisely, in [4, Example 2.17], X0 is the completely-
solvable Nakamura manifold.

We prove now that the ∂∂̄-Lemma is also non-(Zariski-)closed. Indeed, consider the holomorphically
parallelizable Nakamura manifold Γ\G and its small deformations as in Section 4. While Γ\G does
not satisfy the E1-degeneration of Frölicher spectral sequences, deformations as in case (1) and (2) do.
While Γ\G does not satisfy the ∂∂̄-Lemma, deformations as in case (1) do. Hence we get the following
result.

Corollary 6.1. The properties of E1-degeneration of Hodge and Frölicher spectral sequences and the
∂∂̄-Lemma are not closed under holomorphic deformations.
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case (1) H•,•
BCJt

(X)

(0,0) C 〈1〉

(1,0) C

〈

φ1,01 (t)
〉

(0,1) C

〈

φ0,11 (t)
〉

(2,0) C

〈

φ1,023 (t)
〉

(1,1) C

〈

φ1,01 (t) ∧ φ0,11 (t), φ1,02 (t) ∧ φ0,13 (t), φ1,03 (t) ∧ φ0,12 (t)
〉

(0,2) C

〈

φ0,123 (t)
〉

(3,0) C

〈

φ1,0123(t)
〉

(2,1) C

〈

φ1,012 (t) ∧ φ0,13 (t), φ1,013 (t) ∧ φ0,12 (t), φ1,023 (t) ∧ φ0,11 (t)
〉

(1,2) C

〈

φ1,03 (t) ∧ φ0,112 (t), φ
1,0
2 (t) ∧ φ0,113 (t), φ

1,0
1 (t) ∧ φ0,123 (t)

〉

(0,3) C

〈

φ0,1123(t)
〉

(3,1) C

〈

φ1,0123(t) ∧ φ0,11 (t)
〉

(2,2) C

〈

φ1,012 (t) ∧ φ0,113 (t), φ
1,0
13 (t) ∧ φ0,112 (t), φ

1,0
23 (t) ∧ φ0,123 (t)

〉

(1,3) C

〈

φ1,01 (t) ∧ φ0,1123(t)
〉

(3,2) C

〈

φ1,0123(t) ∧ φ0,123 (t)
〉

(2,3) C

〈

φ1,023 (t) ∧ φ0,1123(t)
〉

(3,3) C

〈

φ1,0123(t) ∧ φ0,1123(t)
〉

Table 8. The harmonic representatives of the Bott-Chern cohomology of the small
deformations in case (1), which are given by t ∂

∂z1
⊗ d z̄1, of the holomorphically par-

allelizable Nakamura manifold, with respect to the Hermitian metric gt := φ1,01 (t) ⊙
φ0,11 (t) + φ1,02 (t)⊙ ϕ0,1

2 (t) + φ1,03 (t)⊙ ϕ0,1
3 (t).

The non-closedness of the property of E1-degeneration of Hodge and Frölicher spectral sequences was
firstly proven by M. G. Eastwood and M. A. Singer in [16, Theorem 5.4], by considering twistor spaces.

Remark 6.2. Assuming that the property of being Mǒıšhezon is closed under holomorphic deformations,
see [32], we get that the small deformations (Γ\G , Jt) as in case (1) of the holomorphically parallelizable
Nakamura manifold Γ\G provide examples of compact complex manifolds that are not Mǒıšhezon but
satisfy the ∂∂̄-Lemma.

Remark 6.3. It has been conjectured that Fujiki class C, [18], is closed under holomorphic deformations,
[33, Standard Conjecture 1.17], (compare also [34, Question 1.5]). If this conjecture is true, then the small
deformations (Γ\G , Jt) as in case (1) of the holomorphically parallelizable Nakamura manifold Γ\G
provide examples of compact complex manifolds that are not in Fujiki class C but satisfy the ∂∂̄-Lemma.
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dimCH
•,•
♯ Nakamura case (1) case (2)

dR ∂̄ BC dR ∂̄ BC dR ∂̄

(0,0) 1 1 1 1 1 1 1 1

(1,0)
2

3 1
2

1 1
2

0

(0,1) 3 1 1 1 2

(2,0)
5

3 3
5

1 1
5

2

(1,1) 9 7 3 3 2

(0,2) 3 3 1 1 1

(3,0)

8

1 1

8

1 1

8

0

(2,1) 9 9 3 3 4

(1,2) 9 9 3 3 4

(0,3) 1 1 1 1 0

(3,1)
5

3 3
5

1 1
5

1

(2,2) 9 11 3 3 2

(1,3) 3 3 1 1 2

(3,2)
2

3 5
2

1 1
2

2

(2,3) 3 5 1 1 0

(3,3) 1 1 1 1 1 1 1 1

Table 10. Summary of the dimensions of the cohomologies of the holomorphically
parallelizable Nakamura manifold X , [4, Example 2.25], and of its small deformations
in case (1) and (2), given, respectively, by t ∂

∂z1
⊗ d z̄1 and by t ∂

∂z1
⊗ ez1 d z̄3.

ψ dψ

φ1,00 (t) := d z − t ek1z ȳ2,1 dφ1,00 (t) = −t k1φ1,00 (t) ∧ φ0,12,1(t)

φ1,01,j(t) := e−kjz y1,j dφ1,01,j(t) = −kjφ1,00 (t) ∧ φ1,01,j (t) + t kjφ
1,0
1,j (t) ∧ φ

0,1
2,1(t) + e−kjz d y1,j

φ1,02,j(t) := ekjz y2,j dφ1,02,j(t) = kjφ
1,0
0 (t) ∧ φ1,02,j(t)− t kjφ

1,0
2,j (t) ∧ φ

0,1
2,1(t) + ekjz d y2,j

ϕ1,0
1,j(t) := e−kj z̄y1,j dϕ1,0

1,j(t) = −kjφ0,10 (t) ∧ ϕ1,0
1,j (t) + t̄ kjϕ

1,0
1,j(t) ∧ ϕ

1,0
2,1(t) + e−kj z̄ d y1,j

ϕ1,0
2,j(t) := ekj z̄y2,j dϕ1,0

2,j(t) = kjφ
0,1
0 (t) ∧ ϕ1,0

2,j(t)− t̄ kjϕ
1,0
2,j(t) ∧ ϕ

1,0
2,1(t) + ekj z̄ d y2,j

φ0,10 (t) := d z̄ − t̄ ek1z̄ y2,1 dφ0,10 (t) = −t k1φ0,10 (t) ∧ ϕ1,0
2,1(t)

φ0,11,j(t) := e−kjz ȳ1,j dφ0,11,j(t) = −kjφ1,00 (t) ∧ φ0,11,j (t) + t kjφ
0,1
1,j (t) ∧ φ

0,1
2,1(t) + e−kjz d ȳ1,j

φ0,12,j(t) := ekjz ȳ2,j dφ0,12,j(t) = kjφ
1,0
0 (t) ∧ φ0,12,j(t)− t kjφ

0,1
2,j (t) ∧ φ

0,1
2,1(t) + ekjz d ȳ2,j

ϕ0,1
1,j(t) := e−kj z̄ ȳ1,j dϕ0,1

1,j(t) = −kjφ0,10 (t) ∧ ϕ0,1
1,j (t) + t̄ kjϕ

0,1
1,j(t) ∧ ϕ

1,0
2,1(t) + e−kj z̄ d ȳ1,j

ϕ0,1
2,j(t) := ekj z̄ ȳ2,j dϕ0,1

2,j(t) = kjφ
0,1
0 (t) ∧ ϕ0,1

2,j(t)− t̄ kjϕ
0,1
2,j(t) ∧ φ

1,0
2,1(t) + ekj z̄ d ȳ2,j

Table 11. Definitions for setting the generators of the complex B•,•
Γ (t), see (5), for the

deformations induced by t ∂
∂z

⊗ ek1z ȳ2,1, of the Sawai and Yamada generalized manifold
Γ\G .
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