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Cohomology and the Resolution of the Nilpotent Variety 

Wim H. Hesselink 
Department of Mathematics, University of Groningen, Postbox 800, Groningen, The Netherlands 

1. Let G be a split reductive linear algebraic group over a field k of characteristic 
zero. Consider the variety N of the nilpotent elements of the Lie algebra g of G. 
It is a normal variety cf. [14] Theorem 16. It is isomorphic to the variety of the 
unipotent elements of G, cf. [17]. The theorem of Brieskorn-Steinberg-Tits states 
that the rational singularities are dense in the singular locus of N, see [1] and 
[18] (3.10). Here we shall prove that N has only rational singularities, cf. [t2] p. 50, 
i.e. we prove 

Theorem A. There exists a proper birational morphism z: Y ~ N  such that Y is 
smooth over k, that z,((gy)= (9 s and RPz,((gr)=0 for p>= 1. 

This theorem admits a generalization which will be stated and proved in 
Section 5. In the complex analytic situation the same assertions follow by Theorem 
5 of [3] exp. II. For rational singularities in that case see [2]. In [t 1] we investigated 
the local structure of N for the classical groups. 

2. By [17] (2.2) we may assume that G is semi-simple and simply connected. 
Let G be split with respect to a maximal torus T and a Borel group B. 

If E is a finite dimensional vector space over k and Q:B~Gl(E) is a morphism 
of algebraic groups then E=(E,  Q) is called a B-module. The contracted product 
G × BE is defined as the quotient of G × E under the right action of B given by 
(g, e)b-- (gb, o( b-  a )e) for all g ~ G, e ~ E, b~ B. The morphism ~p:G x B E- ,  G /B given 
by ~(g, e)B= gB, is a vector bundle over G/B. The sheaf of sections oftp is a locally 
free Ca/R-module. It is denoted by Af(E). See [7] p. 55, 56. 

Let u be the Lie algebra of the unipotent part U of B. As u is a B-module 
we can define Y = G  x Bu. The adjoint action Ad:G x f l~g induces a surjective 
morphism z: Y ~ N .  Since ~p: Y ~ G / B  is a vector bundle, Yis an irreducible smooth 
variety. The morphism r is easily identified with the G-equivariant proper morphism 
z considered in [17] (the proof of 2.1), which is birational, cf. [17] (2.4). Since N 
is normal, it follows that CN=z.((gr). By [10] (1.4.11) it suffices now to prove 
that HP(y Or)=0 for all p ~  1. This is a special case of the corollary in Section 5. 
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Remark. The action of B on u is not completely reducible, so we cannot apply the 
theorem in [13]. 

3. Let X(T)  be the character group of T. Let R be the root system of G with respect 
to Tand  let Wbe the Weyl group. Conform [5] and [6] a root e is called positive 
if its eigenspace ~ is not contained in u. The set of positive roots is denoted by R +. 
For  each root a we have an associated co-root e* in the dual Z-module X(T)*. 
A weight x s X ( T )  is called regular (resp. dominant) if we have (a*, Z ) + 0  (resp. 
( e * , Z ) > 0 )  for all ecR+.  The set of dominant weights is denoted by X(T)+. 
If Visa  subset of R we write LV l = ~ v a -  The number of elements of Vis denoted 
by ~(V). The weight Q is defined by 2Q=IR+f. It is well known that ~+X(T)+ 
is the set of regular dominant weights. The length of we W is denoted by n(w), 
cf. [6]. 

If E is a B-module we write HV(E) = HV(G/B, 5P(E)). As ~ is an exact functor, 
the functors H v form an exact delta-functor from the category of B-modules to 
the category of G-modules. For X~ X(T) let E(X) be the one-dimensional B-module 
corresponding to the induced morphism B ~  T~GI(1). We shall use the following 
version of Bott's theorem, cf. [6]. 

I f  HV(E(z)):~ O, then Z +Q is regular and p = n(w), where w is the unique element 
of W such that w(Z + ~) is dominant (and regular). 

4. Def'mition. I f /~cX(T),  let p(p) be the maximal value of n ( w ) - # ( V ) ,  where 
w o W  and V is a subset of R+ such that w(#+Q-[VI)  is dominant and regular. 

Lemma. Let #~X(T).  
(a) p(p) is the maximal value of ~ - (Vc~-wR+)-#(Vc~wR+) ,  where w ~ W  

and V is a subset of R + such that w(p) -  IV[ is dominant. 
(b) We have O<p(lO< #(R+). 
(c) I f  ~ = 0 then p(l~) = O. 

Proof Consider subsets P of R satisfying Pc~ - P = 0 and P u  - P = R. The rela- 
tions V = R + c~ P, P = Vw - (R + \ V) define a one-to-one correspondence between 
these subsets of R and the subsets VofR  +. The natural action of Won the collection 
of the subsets P induces an action of W on the power set of R+, which is given by 

w . V =  R+c~(wVu -w(R+ \V)).  

If V corresponds to P then Q - 1VI = - ½ tPI. This implies 

w(~-tvl)=Q-Iw, Vi. 
It follows that w(/~+Q-IVI) is dominant and regular if and only if w(~)-tw*Vt is 
dominant. As n(w) = ~ (R + c~ - wR +) we have 

n(w) - ~ ( V) = 4~ ( (w. V)c~ - wR + ) - ~ ((w* V)c~ wR +). 

Now (a) follows immediately. (b) is a consequence of (a). If V is a non-empty 
subset of R+ then -IVI is not dominant. So (c) follows from (a). Compare [4] 
and [15] (2.13). 

Remark. It seems that / teQ + X(T)+ implies p(#)= 0. If R is a root system of type 
At and ~ is the highest root, then we have acX(T)+  and p ( 7 ) > l - 4 .  
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5. The notations are as before. G is semi-simple and simply connected. Let p be a 
linear subspace of g which is B-invariant and contains tc Consider Z = G x % 
and the canonical morphism ~p: Z ~ G / B .  

Theorem B. Let I~ ~ X ( T) and p > P(~O. Then HP( Z, ~p*LP(E(#))) = 0. 

As (gz=lp*((gG/~)=~0*5¢(E(0)) we obtain by 4. Lemma (c) immediately the 
following 

Corollary. HP(Z, (gz) = 0 for all p > 1. 

Proof of Theorem B. If E is a B-module, let S(E*)= ~,~Sq(E*) be the graded sym- 
metrical algebra on the dual E* of E. It may be considered as the ring of polynomial 
functions on E. The summands Sq(E*) are B-modules. Using [9] (9.4) one verifies 
that ~p.((gz) = S((~(p))*) = ~q 5¢(Sq(p*)) and hence 

~,~* ~(E(~)) = ~ , (Oz)® G/B~(E(~)) = Y~q ~(S~(p*)® kE(~)). 

Now it follows from [10] (1.3.3) and [8] Chapter II (3.10) that 

HP(Z, ~p*~(E(#))) = ~qHP(Sq(p*)® E(#)) . 

Consider the S(fl*)-module M=S(fl*)QkE(# ). Let J be the kernel of the ca- 
nonical surjection g*~p*. Let x be a basis of J. As x is an M-regular sequence 
we have the long exact sequence 

...K2 ~ K ,-~ Ko ~ S(p*)® E(Ia)--*O 

where K.=K(x ;  M) is the exterior complex, cf. [16] IV A2. Instrinsically the 
complex K. may be defined by 

K , = M ® a A n J ,  d~:K,+I--*K n , 

dn(m®(ao A,.. A an))=- ~ = o  ( -  1)iaim®(ao A ...gti... A a,,) . 

It is canonically graded by K . =  ~ K. q where 

Kq, = S~_ ,(g*)® E(#)®A"J.  

Thus we have the long exact sequences of B-modules 

. . . - ,  K~ ~ K~ ~ K~ ~Sq(p*)® E(~)~O . 

As H' is an exact delta-functor it suffices now to prove that HP+~(K~)=0 for 
q, n>0.  

As Sq_.(9*) is a G-module we have the following cartesian square. 

O x ~s~_ .(9*) ,s~_.(9*) 

L 
G/B , G/G = pt.  

Considering Sq_,(g*) as a locally free sheaf on G/G we have therefore ~(S~ _,(g*))= 
f*(Sq_.(g*)) where f:G/B--,G/G is the canonical morphism. By [10] (0 m 12.2.3) 
this implies 

H '  + "(K, q) = S~ _ ,(9 * ) ® HV + "(E(#) ® A"J). 
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So it suffices to prove that HP+"(E(#)®A"J)=O for n > 0 .  
The B-module E(I~)®A"J has a filtration of B-modules Fi, O<_i<r, such that 

F o = 0 and Fi/Fi_ 1 "~ E(X.) for some enumeration (Xi) of the weights ofF,  = E(~t)®A"J. 
By convention the weights of u are the negative roots. Now dual modules have 
opposite weights and p contains u, so all positive roots are weights of p*. Therefore 
the non-zero weights of J are negative roots with multiplicity one. Thus for 
every i there is a subset V i of R+ such that Xi=#- lVi[  and #(V/)<n.  If weW is 
such that w(x~ + Q) is dominant and regular, then we have 

n(w)<p(#)+ # ( V ~ ) < p + n .  

By Bott's theorem as quoted in Section 3 this implies HP+"(E(xi))=0 for all i. 
It follows that HP+"(E(#)®A"J)= O. 
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