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COHOMOLOGY

OF A GENERAL INSTANTON BUNDLE

BY ROBIN HARTSHORNE (1) AND ANDRE HIRSCHOW1TZ

0. Introduction

In this paper we work over an algebraically closed field k of arbitrary characteristic. Let
y be a coherent sheaf on a projective space P"". We say ^ has natural cohomology if for
each weZ, at most one of the cohomology groups H^P^ ^{n}\ for ;=0, 1, . . . , m, is
nonzero. For example, any line bundle on P"' has natural cohomology.

The purpose of this paper is to prove the following theorem.

THEOREM 0.1. — (a) For c^ == 0 and any c^ > 0, there exists a stable rank 2 vector bundle ^

on P3
 with Chern classes c^ and c^, having natural cohomology.

(b) For Ci = — 1 and any even c^ ̂  6, there exists a stable rank 2 vector bundle on P3
 with

Chern classes c^ and c^ having natural cohomology.

This result proves a conjecture made by one of us ([14], 5.2), and we refer to that paper for
background and discussion of related questions. The corresponding result for rank 2 stable
bundles on P2 was proved by Brun ([4], § 5) and Le Potter ([21], 6.1) (see also
Lange [20], 1.4). One consequence of the theorem is that the conjectured bound
([14], 5.2), ([12], Problem 9), now proved in characteristic 0 [15], for the least integer t such
that H° (6° (t)) is nonzero for a rank 2 vector bundle € on P3 with Chern classes c^ = 0, ̂  > 0,
is the best possible. Another consequence of the theorem is the existence of nonsingular
curves in P3, not contained in surfaces of low degree, for which the conjectural bound on the

genus ([14], 3.4) is sharp (see [14], p. 99).

To explain the title of the paper, note that if <T is a stable rank 2 vector bundle on P3 with
Ci=0, C2>0, and having natural cohomology, then the Euler characteristic 7 (^(-2))
vanishes by the Riemann-Roch theorem. Hence H1 (^ (- 2)) is zero for all i. In particular,
^((^(-l)} is zero, which characterizes (mathematical) instanton bundles
([11], 8.2.3). Let M (c^, c^} denote the moduli space of stable rank 2 vector bundles on P3
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366 R. HARTSHORNE AND A. HIRSCHOWITZ

with Chern classes c^ and c^. At present one knows only one irreducible component of

M(0,C2) containing instanton bundles, namely the one containing the bundles
corresponding to skew lines (1.6.1). For c^ ̂  4 it is known that there is no other ([11], [6],
[3]). The bundles we construct (2.3.1) lie in this irreducible component of M (0, c^}. In
this sense, then, we say "a general instanton bundle has natural cohomology".

In the case k=C we can deduce the existence of real instanton bundles with natural

cohomology. A real instanton bundle is a holomorphic vector bundle on P3 corresponding
to an instanton, i. e. a self-dual solution of the Yang-Mills equation on S4. These bundles
can be characterized, in the rank 2 case, as stable rank 2 holomorphic vector bundles on P3

with Ci=0, <:2>0, and having an extra real structure, described exactly in [12],
1.1. Because real instanton bundles are known to exist in the irreducible component
of M(0, c^} mentioned above, and because the real manifold of moduli of real instanton
bundles must intersect any non-empty Zariski-open subset of its complexification, which

contains that irreducible component of M(0, c^), we obtain the following corollary.

COROLLARY 0.2. — For any c^ >0, there exist rank 2 real instanton bundles on P3
 having

natural cohomology.

In the case c^ = — 1 of the theorem, the restriction that c^ be even is imposed by the

Riemann-Roch theorem ([II], 2.2), and stability implies c^>Q. For ^=2,4, there are
stable rank 2 vector bundles with c^ = -1 on P3, but they are exceptions to our theorem (at
least in characteristic zero): there are none with natural cohomology. For c^ = 2, one has
A°(^(l))=/?1 (<^(1))= 1, which contradicts natural cohomology ([17], 2.2), and [22]. For
the case c^ = 4, see (1.6.3) below.

Note that the bundles we construct all have a-invariant 0 ([11], § 2). Indeed, a bundle
with Ci=0, oc==l has ^(^(-l))^^, so cannot have natural cohomology.

The main idea of the proof will be to start from a rather common non locally free coherent
sheaf 6\ on P3, which is close enough to vector bundles in M(ci, c^). More precisely, we

will show that 6\ has some deformations which are locally free. We will show that 6\ has
some (non locally free!) deformations with semi-natural cohomology (defined
in § 1). Finally we show that ^o has an irreducible local deformation space.

Combining these results, we conclude that 6\ has deformations which are both locally free
and have natural cohomology, as required.

The major part of the proof is finding the deformations with semi-natural
cohomology. This is reduced to a problem about lines and conies in general position in a
certain geometric vector bundle over P3, whose solution uses methods similar to those in our
earlier papers ([16], [18]).

The paper is organized as follows. Paragraph 1 contains preliminary
material. Paragraph 2 gives the proof of the main theorem, modulo results proved in later
sections. In paragraph 3 we prove the existence of a universal family of extensions of two
given coherent sheaves. In paragraph 4 we review the Quot scheme and its infinitesimal

study. In paragraph 5 we formulate the general position problems which are then solved in
paragraphs 6-9.
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COHOMOLOGY OF A GENERAL INSTANTON BUNDLE 367

1. Sheaves with natural cohomology. Examples

In this section we make a few elementary observations about sheaves with natural

cohomology and give some examples.

LEMMA 1.1. - Let ^ be a torsion-free coherent sheaf on ^
m

 with natural

cohomology. Then ^ is locally free.

Proof. - Since ̂  is torsion-free, Horn (^ (- n\ co) is nonzero for n ̂  0. Then by duality,
H^P^ ^(-n)) is nonzero for n^>Q. Because ^ has natural cohomology, this implies

H^P^ ^(-n))=0 for all i<m and all n^>0. Again using duality, this implies

Ext^J^-^), co)=0 for all7>0 and ̂ 0. But for ̂ 0,

Ext7^-^), o))==H°(<fx^(^', co)(^)),

so in fact the sheaves ^xt
3
^, co) are zero for7>0, which implies ^ is locally free.

PROPOSITION 1.2. — Lei ^ be a locally free sheaf {vector bundle) of rank 2 on P3
 with c^ = 0,

having natural cohomology." Then either: (1) ̂  = -1 and 6° ̂  (9 (-1 )©^ (1 \or (2) ̂  = 0 and

€^(9@(9, or (3) C2>0 W ̂  is stable.

Proof. - By the Riemann-Roch theorem ([11], 8.1), x (^ (- 2)) = 0. Therefore, since ^
has natural cohomology, HW-2))=Ofor ;=0, 1, 2, 3. It follows that H°(^(/z))=0for

n^-2.

Suppose H° (<T (-1)) ̂  0. Then H° (<^)) ̂  0 for all n ̂  -1, so using duality and natural
cohomology, we see that Hi

(^(n))=Q for ?=1, 2 and for all neZ. This implies by a
theorem ofHorrocks [19], ([9], III, 6.3) that ̂  is a direct sum of line bundles. Since c^ =0
and H°(^(-l))^0 but H°(^(-2))=0, ^^(-1)©^(1), and ^= -1. This is the first

possibility.

Now suppose H° (<f (-1)) = 0 but H° (<^) ̂  0. By Riemann-Roch, / (^) = 2 - 2 c^ On
the other hand, since <T has natural cohomology, x (<^) == /?° (^) > 0. Hence €3 ̂  0. Now let
^eH°(^) be a nonzero section. Then the zero set of s is a curve of degree c^ in P3

([II], § 1). So €2^0. Combining inequalities, €2=0, the zero set of s is empty, so

6^(9 Q)(9. This is the second possibility.

In the remaining case, H°(^)=0, so 6° is stable, which implies <:2>0 ([II], 8.4).

PROPOSITION 1.3.- Let 6" be a rank 2vector bundle on P3
 with c^ = -1 having natural

cohomology. Then either:(l) c^= -2 and ^^(1)©^(-2), or (2) c^=0 and

<^^©^(-1), or (3) C2>0 and <T ^ stable.

proof. — The proof is almost identical to the proof of (1.2), so is omitted.

PROPOSITION 1.4. - Let Sbe a rank2vector bundle on?
3
 with Ci=0 or -leaving natural

cohomology. Then H0^))^1^))^/^ n^ -2 and H2^))^3^))^/^
n^-1. Hence the dimensions h

1
 (6° {n}) ofthe cohomology groups are uniquely determined by

the Chern classes, for all i, n.

proof. - This is clear for the direct sums of line bundles which occur in (1.2) and
(1.3). So we need only consider the case 6° stable. Then H° (^ (n)) = 0 for n ̂  0, and by
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368 R. HARTSHORNE AND A. HIRSCHOWITZ

duality H3^))^ for n^-3. Next we claim H^^^O. If Ci=0, we have
already seen this in the proof of (1.2). If c^= -1, then /(<?(-2))=(l/2)c2>0. So
because of natural cohomology, V.

l
(^'(—2))=0. Now let H be a general plane

in P3. Then ̂  ^ semistable ([II], 3.3), [2]. The exact sequence:

0 -> ^ (-1) -> ^ -^ ^H -^ °.

gives a cohomology sequence:

H0^^)) -^ H1 (<^-1)) -^ H1
 (^(n)).

Now H°(^H(^))=O for n<0 by semistability, so by descending induction on n we find
}^(6°(n})=Q for all ̂ -2.

The vanishing of H2 and H3 for ̂  — 1 follows by duality.

To prove the last statement, the Riemann-Roch theorem gives the Euler characteristic
%(^(n)) in terms ofc^ and c^. Then, because of natural cohomology and the vanishing
statements just proved, we have for n^ -1, if 7(^(^))^0, then h°(^(n))=^(^(n)) and
h

1
 (^ (n)) = 0, and if / (f (n)) ̂  0, then h° (^ (n)) = 0 and h

1 (<f (n)) = - / (<T (n)). Similarly h
2

and h
3 are determined for n ̂  — 2.

DEFINITION. — A torsion-free coherent sheath on P3 has semi-natural cohomology ifci=0
and for all n^, —2, or if c^ = — 1 and for all 72^ — 1, at most one of the groups I-T^^z)),
;'==0, 1, 2, 3, is nonzero.

LEMMA 1.5. — If^ is locallyfree ofrank 2 on?
3
, with Ci==0 or —1, then 6' has semi-natural

cohomology if and only if ^ has natural cohomology.

Proof. — This follows from Serre duality and the isomorphism ^ ^ ^ ( — c ^ ) .

PROPOSITION 1 . 6 . — Let T be a scheme of finite type over k, and let ^ be a torsion-free

coherent sheaf on P^flat over T. Then the set of teT for which the fibre ̂  on P3^ is

torsion-free and has semi-natural cohomology is an open subset ofT.

Proof. — The openess of the condition ^\ torsion-free can be found in a paper of
Maruyama ([23], 2.1). Next, using quasi-compacity of T and Serre's vanishing theorem,
there is an n^ such that for all n^no and all teT, H^P3^, ^(^))=0 for ;>0. So the
condition of semi-natural cohomology is verified for all teT in the range n^nQ. There
remain only finitely many values of i and n to consider, so the openness of semi-naturality
follows from the semi-continuity theorem applied to H^P3, ^\(n)) for each i, n.

Example 1.6.1. — One way of constructing stable rank 2 bundles € on P3 with Chern
classes c^ =0, c^ >0 is as follows ([II], 3.1.1,4.3.1). Let Y be a disjoint union of r=c^-^-l

lines in P3. Then there are extensions:

O-^-^l)-^^)-^,

where ^ is a stable vector bundle with c^ =0, c^ given.

If €2=1 these are the nullcorrelation bundles. It is easy to see that
/^(-l))^2^^))^, and otherwise all H1 and H2 groups are zero. Thus € has
natural cohomology.
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If ^=2, these are the bundles studied in [II], paragraph 9. They have

/^ l (^)=/^ l (^( - l ) )=/7 2 (^( -3))=/^ 2 (^( -4))=2 and otherwise all H1 and H2 groups are
zero ([II], 9.4). So they also have natural cohomology.

If €2^3, then ^(l))=8-3c2<0. Since H°(^(l))^0 by construction, these bundles
do not have natural cohomology.

To construct a bundle with c^ ==0, c^ = 3 having natural cohomology, one could use the
construction of [11], 4.3.3 with a nonsingular elliptic curve Y of degree 7. The bundle ^ is
obtained by an extension:

0->^^^(2)->^Y(4)->0.

To show that ^ has natural cohomology it is sufficient to show H°((^(I))=O and
H1 (^ (n)) = 0 for n ̂  2. This is equivalent to showing that Y is not contained in any cubic
surface, and that for ̂ 4, the natural map:

H0^^))^0^^)),

is surjective. The existence of an elliptic curve Y of degree 7 with those properties depends
on a general position argument for elliptic curves which has recently been proved by Ballico
andEllia[l].

For higher values ofc^, the existence of bundles with natural cohomology can be similarly
translated into questions of existence of curves of high degree and genus with suitable general
position properties. To approach these questions of curves directly seems hopeless, and
that is why we use an entirely different proof of our theorem in this paper.

Example 1.6.2. — One way of constructing stable rank 2 bundles on P3 with c^ = — 1 and
^ > 0 is as follows ([11], 3.1.2, 4.3.2). Let Y be a disjoint union of r = 1 /2 (^ + 2) conies
in P3. Then one can obtain ^ by an extension:

0-^->^(2)->j^(3)^0.

If c^ = 2, this construction gives all stable bundles with Chern classes c^ = — 1, c^ = 2, but
none of them have natural cohomology [17], as already mentioned in the introduction.

If €2^4, then ^(^(2))=14-(7/2)c2^0. Since H°(^(2))^0 by construction, these
bundles do not have natural cohomology.

Even though the bundles obtained by this construction do not have natural cohomology,
we will see as a consequence of our proof (2.3.1) that for c^6 they do have deformations
which have natural cohomology.

Example 1.6.3. — There is no rank 2 vector bundle on P3 with Chern classes c^ = — 1,
c^ = 4 having natural cohomology, assuming char k = 0 (we do not know if one exists in
characteristic p > 0). Indeed, suppose ^ were such a bundle. Then by (1.4), for n ̂  — 1,
h

2
 (6° (n)) =h

3
{^{n))=0. The Riemann-Roch theorem gives:

X(^)) - (^+l) (^+2)(2^+3)-2(2^+3) .
6
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370 R. HARTSHORNE AND A. HIRSCHOWITZ

In particular, ^(^(2))=0, so because of the hypothesis of natural cohomology,

/^(^(l))^1^^))^. Now we can apply Castelnuovo's theorem ([25], p. 99) to
conclude that € (3) is generated by global sections. In characteristic 0 it follows ([11], 1.4)
that the zero set of a general section of^ (3) is a nonsingular curve Y. The curve Y is related
to 6° by the exact sequence:

0 -,(p -^(3) -^y(5) -> 0.

Since h
1 (^ (- 2)) = 0 by (1.4) again, we find h

1 (J^y) = 0, so h° (^y) = 1, which implies that Y is
connected, so Y is in fact an irreducible nonsingular curve.

The curve Y has degree 10 and genus 6, and (OY ̂ y (1 )• Thus Y is a projection into P3 of a
canonical curve of genus 6 in P5. A result ofGruson and Peskine ([8], p. 58) shows that any
projection into P3 of a canonical curve of genus 6 is contained in a quartic surface. Thus

^°(^Y(4))^0, which implies /?°(^(2))^0, contradicting the hypothesis of natural
cohomology. Therefore € cannot exist.

See the paper ofEin [5] for a more detailed study of stable rank 2 bundles on P3 with Chern
classes c^ = — 1 and c^ = 4.

2. Framework of the proof

In this section we present the proof of the main theorem, modulo various statements which
will be proved in later sections. The basic idea is to study deformations of a certain torsion-
free sheaf (^Q.

For each c^, c^ we define a sheaf 6\ as follows. If c^ = 0 and c^ > 0, let Yo be a disjoint

union o!r=c^ +1 lines in P3, and let 6\ =(9 (-1)®^ (1). I^i = -1 and c^ >0 is even, let
Yo be a disjoint union of r=l /2(c2+2) conies in P3, and let ^o=^(-2)©^Y (1)-

Since the Chern classes of a direct sum are the same as for a nontrivial extension, we see
from the examples (1.6.1) and (1.6.2) that in each case 6\ is a torsion-free coherent sheaf on
P3 with the given Chern classes c^, c^ and with €3 = 0. Note also, since Y() in each case is a
Cohen-Macaulay scheme, that the homological dimension (namely the shortest length of a
resolution by locally free sheaves) of €^ is 1.

PROPOSITION 2.1. — There is an irreducible nonsingular scheme T and a torsion-free

coherent sheaf ̂  on P^, flat over T,such that for all sufficiently general teT the fibre ̂ \ is a

locally free sheaf on P3 ̂ , and such that for one point to e T, the fibre ^ ^ is isomorphic to ^o-

Proof. - See paragraph 3. The idea is to construct a universal extension ofj^y (1) by
(9 ( — 1) or (9 (- 2) so that the general fibre is one of the bundles 6° of examples (1.6.1), (1.6.2),
and the special fibre is the trivial extension, namely 6\.

PROPOSITION 2 . 2 . — For each c^ = 0, c^ > 0 and for each c^ = — 1, c^ even ^ 6, there is an

irreducible nonsingular scheme T and a torsion-free coherent sheaf ^ on P3, flat over T, such

that for all sufficiently general points teT, the fibre ^\ is torsion-free with semi-natural

cohomology, and for one point to^T, the fibre ^\ is isomorphic to So.
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COHOMOLOGY OF A GENERAL INSTANTON BUNDLE 371

Proof. — See paragraphs 5-9. This is the heart of the matter.

Next we construct a certain big enough family of deformations of^o using the Quot scheme
ofGrothendieck. Havingfixed c^, c^, choose N sufficiently large so that ^o (N) is generated
by global sections and ^(^(N))^ for ;>0. Let m=/?°(^o(N)). Then we can write

^o(N) as a quotient ^w -> ^oC^ -^°- Let p be the Hilbert polynomial of
(^Q (N). Consider the functor which to each scheme S over k assigns the set of quotients:

^ -> ̂  -^ 0,

where ^ is coherent on P|, flat over S, with fibres having Hilbert polynomial P, modulo
isomorphisms ^' ̂ y compatible with the maps from %. This is the Quot functor of
Grothendieck.

PROPOSITION 2 . 3 . — The functor described above is represented by a scheme Q, projective

over k. Furthermore, Q is nonsingular at the point qo^Q corresponding to ^o(N).

Proof. — See paragraph 4. We use the differential study of Q described in ([7], exp 221).

Proof of Theorem 0.1. — Fixc^c^ witheitherci=0,C2>0,orci= —1, eleven ^6. Let
^o be the torsion-free sheaf on P3 defined at the beginning of this section.

Let Q be the Quot scheme of(2.3) above. Let ̂  denote the universal quotient sheaf on

P3,. Thus ^ comes with a natural map:

^ -^ ̂  _, o,

^ is flat over Q, and the fibre of^ at the point qo is <^o (N). Since Q is nonsingular at q^ the

point qo
 ls contained in a unique irreducible component of Q, which we call Qo.

Now consider the flat family ̂  on P^ given by (2.1). Its fibre at the point to is <^o- Since
6\ (N) is generated by global sections, and H1

 (6\ (N)) = 0 for; > 0, it follows that the same is
true for the fibres ̂ \ for / in some neighborhood of to. In fact, in such a neighborhood,
R1/^ (^ (N)) = 0 and f^ (^ (N)) is locally free of rank m and commutes with base change, by
the semicontinuity theorems. The chosen mapping ^w-^ <^o(N)->0 gives a basis of

H° (^o (N)) which we can lift to a set of free generators of/^ (^ (N)) in some neighborhood To

of to, thus obtaining an isomorphism (9^ -> f^ (^ (N)). This in turn gives a surjective map:

(9^ -^(N)-^O,
TO

which restricts to the given map ^m
 -> 6\ (N) -> 0 at the point to.

We are now in a position to apply the universal property of the Quot scheme. It implies
that there is a unique morphism (p : To -» Q such that the map ̂ m

 -> ^ (N) -> 0 is obtained by

applying (p* to the universal quotient ^m -> ̂  -> 0. In particular, (p (to) = qo' Since To is
irreducible, (p(To)^Qo. Because of (2.1), the fibres ^\ are locally free for all sufficiently
general t e T, in particular, for points nn a non-empty Zariski open subset of T. It follows
that ̂  is locally free for q in an open subset of (p (To). In particular, since the property ̂
locally free is an open condition on q e Q, it follows that there is a non-empty open subset U^

of the irreducible component Qo, such that ̂ \ is locally free for all qe\J^.
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372 R. HARTSHORNE AND A. HIRSCHOWITZ

Next we consider the flat family ^ on P^ of (2.2). The same argument shows that there is
a neighborhood To of IQ in T and a morphism cp : To -> Q as before. We conclude, using
(1.6), that there is a non-empty open subset U^Qo such that ^ has semi-natural
cohomology for all qe\J^.

Now let U = Ui n U^. This is a non-empty open subset of the irreducible component Qo
of Q. For q e U, the fibre ̂  is both locally free and has semi-natural cohomology. Hence
by (1.5) it has natural cohomology. Let ^ = ̂ q (— N). Then 6" is a rank 2 vector bundle
with the given Chern classes, having natural cohomology. This proves the theorem,
modulo (2.1), (2.2), and (2.3).

Remark 2.3.1. — The proof actually shows something slightly more precise. For each c^,

c^ in the given range, the construction of(1.6.1)or(1.6.2) provides an irreducible family of
bundles with the given Chern classes. This family is contained in a unique irreducible
component M() of the moduli space M(ci, c^) of stable bundles with Chern classes c^,
c^. This component Mo is reduced, and of the expected dimension 8 c^—3 if Ci==0 or
8 c^ — 5 if Ci = — 1 ([11], 4.3.1, 4.3.2). What our proof shows is that there is a non-empty
open subset of the irreducible component Mo whose points correspond to vector bundles
with natural cohomology.

We do not know if the bundles with natural cohomology form an irreducible subset of the
moduli space. We also do not know if the moduli space is nonsingular at every point

corresponding to a bundle with natural cohomology.

3. Universal extensions

In this section we prove the existence of a universal family of extensions of two coherent
sheaves on a projective scheme X. This should be well known, but we could not find a
proof, so include one here.

PROPOSITION 3 . 1 . — Let X be a projective scheme over k, let ̂ , ̂  be coherent sheaves on X,
let V be the k-vector space Ext^(^, ^), and let T=SpecA:[V*]. Thus a closed point teT

corresponds to an element ^eV. Then there is an extension:

0 -,p^ ^ -> ̂  -^ ̂  -, 0,

on X xT such that for each closed point ^eT, the induced extension:

0 -> ^ -> 6\ -> ̂  -^ 0,

on X is the extension given by ^eExt1 (^, ^).

LEMMA 3 . 2 . — Let X be a projective scheme over a noetherian ring A, let ^', ̂  be coherent

sheaves on X, and let A -> B be a flat ring extension. Denote by Xg, ^g, ^g the base

extensions to B. Then for all i,

Ext^ (^, ^B) = Extx (^, ̂ ) 0 B.
A
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COHOMOLOGY OF A GENERAL INSTANTON BUNDLE 373

Proof. - Take a locally free resolution of ^: ̂  . -> ̂  -^ 0. Then Extx(^, ̂ ) can be
computed as the hypercohomology of the complex of sheaves ̂ fom (^., ̂ ). As in the case
of a single sheaf ([10], III, 9.3) the same proof using a Cech process shows that cohomology
commutes with flat base extension. Hence:

Now:

H^XB, ^om(^., J^^H^X, Jfom(^f., ^))®B.
A

^fom(JSf., ^')B=^m(JSf.B, y^)

and since A -̂  B is flat, JSf. g is a locally free resolution of ^g, so this hypercohomology also
computes Ext on Xg, which gives the result.

Proof of (3.1). - By the lemma,

BxtLT(^^T^)=V®^[V*].
k

The identity map V -> V gives an element T| e V®V*, hence an element T| e V0A: [V*]. The
corresponding extension o f ^ f ^ b y / ^ ^ o n X x T has the required properties.

Remark 3.2.1. - It is easy to see in fact that T represents the functor which to each scheme
S over k associates the set of extensions:

0 -^ y -^ -,p^ ̂  -, 0

on X x S, modulo equivalence of extensions.

Proof of (2.1). - By (3.1) there is a universal extension of J^, (1) by (9 (-1) or 0 (- 2) on

Pl1, where T is Ext1 (J^o (1)» ^ (-1)) or Ext1 (J^o (1 ),^ (- 2)). For to e T corresponding to
0, we get the direct sum, which is <^o. For t e T sufficiently general, we get the vector bundles
(1.6.1) or (1.6.2), which are locally free.

4. The Quot scheme

In this section we review the Quot scheme and its differential study, in order to prove (2.3).

Let X be a projective scheme over k, and let ̂  be a coherent sheaf on X. Fix a polynomial
P e Q [z]. Then the functor:

Quot^/x/^,

which to each scheme S over k assigns the set of quotients:

p^-^^-^Q

on X x S, such that ^ is flat over S and the fibres have Hilbert polynomial P, is represented
by a scheme:

Q=Quot^,
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projective over k ([7], exp. 221, Theorem 3.2). In particular, this proves the existence of the
scheme Q of (2.3), taking X = P3 and ^ = ̂ .

To study the infinitesimal properties of Q, we use the differential study of Quot ([7],
exp. 221, § 5). Let q e Q be a closed point corresponding to a quotient ̂ of^on X, and let
^f be the kernel:

O-^-^-^-^O.

Assume that there are no local obstructions to deforming ^'. This means given any
surjective map A' -> A -> 0 ofArtin rings over k, and given any extension of ^ to a quotient

of ̂  on XA, then at least locally on X, this can be extended to a quotient of ̂  on ̂

Then the Zariski tangent space to Q at q is given by H° (X, Jfom (^f, ^)). Furthermore,
the obstructions to global deformations lie in H1 (X, Jfom (e^f, ^)). In particular, if this
H1 is zero, then Q is nonsingular at q. All this is explained in the cited reference of
Grothendieck.

To apply this to our situation we consider the special case ̂ =^.

PROPOSITION 4.1. — LeiX be a projective scheme over k, P a polynomial, and let Q be the

Quot scheme of quotients of (9^ with Hilbert polynomial P on X. Let qe Q correspond to a

quotient (9^ -> ^ -> 0 on X. Assume:

(1) hd^^l;

(2) H^X.j^O;

(3) Ext^.^^O.

Then Q is nonsingular at q.

Proof. — (See also [24], 6.6,6.7). Since ̂  has homological dimension 1, the kernel Jf of
6^ -> y will be locally free. Thus locally ^ is a cokernel of a map a: ̂  -^ (P^ of free
sheaves, given by a matrix of maximal rank. One can always lift a matrix over a larger Artin
ring simply by lifting its entries. So there are no local obstructions to lifting 3F'. Thus the
previous discussion applies, and to show Q nonsingular at q it is sufficient to show H1

(X.^mG^.^^O.

Apply the functor Horn (., ^) to the exact sequence:

o-^.-^^-^-.o.

This gives:

Ext1 (^m, y) -> Ext1 (^f, ̂ ) -> Ext2
 {SF, ̂ \

The first term is m copies of H1 (^), which is zero by hypothesis. The last term is also zero
by hypothesis. Therefore Ext1 (Jf, ^)=0. But ^ is locally free, so this is equal to H1

(^®^)=H1 (^fom(^f, ^)). Hence Q is nonsingular at q.

PROPOSITION 4 . 2 . — Let Ybe a locally complete intersection curve in P
3
, let a e Z, and let

^-==^ (-a)@^. Assume:

(1) H^^O;
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(2) ^(^(0-4))=^

(3) H^^O.

Then Ext2 (^, ^)=0.

Proof. — Since ̂  is a direct sum of two sheaves, the Ext group is a direct sum of four
pieces. We treat them individually.

(a) Ext2
 ((9 {-a\(9 (-a))=H

2 (^)=0 since we are working on P3.

(b) Ext2
 (f9 (-a), j^y)=H2 (J^y (^))^H1 (^y (^)) which is zero by hypothesis.

(c) Ext2 (J^Y, ^ (-<^)) is dual to H1 (J^y (^-4)) by Serre duality. It is also zero by
hypothesis.

(d) To compute Ext2 (^y, ^y)? we use ^e spectral sequence of local and global
Ext. First note Jfom (J^y, J^y) =^- Next we claim 6° xt

1 (J^y, J^y) — J^y, the normal sheaf
ofY in P3. Indeed, apply J^om (J^y, ) to the exact sequence 0 -» J^y -> (9 -> (9^ -> 0. This
gives:

0 -^ ̂ m(^y, ̂ y) ̂  ̂ fom(J^y, ^P) -^ ^fom(J^y, ^y)

-^ ̂ x^ (J^y, ^y) -^ ̂ ^ (^Y. ̂ ) ̂  ̂ ^ (^Y. ^y)-

Now J^om (^y, ̂ y) ̂  ̂ Y by definition of the normal bundle. So it is sufficient to show that
a and P are isomorphisms. This is an easy local calculation using a resolution:

(y,- x) (x, y )

0-^——>(9@0—^Y-^O

Ofj^y

Since hd^y = 1, ^xt
1 (^y ? ^v)= 0 f01"; ̂  2. So the spectral sequence of local and global

Ext is very simple. In particular, it gives an isomorphism:

Ext^Y^^H1^1^^))^1^).

This is also zero by hypothesis, which proves the proposition.

Proof of (2.3). — The existence of Q follows directly from Grothendieck's theorem, as
noted above. To show that Q is nonsingular at the point q^ corresponding to ^o (N), we
apply the two previous results. We have seen that hd6\ = 1. Furthermore H1

 (6\ (N)) = 0
by choice ofN. So we can apply (4.1), and it remains to verify Ext2

 (6\ (N), 6\

(N))==0. The twist by N is irrelevant, so we can apply (4.2) with ^=6\ (-1)=^

(—fl)©^Y? where ^=2 or 3, and Y is a union of lines or conies in P3. In these cases the
assumptions of (4.2) are immediately verified so we conclude Ext2 (^o(N), ^Q(N))=O as
required.

5. General position statements

In this section we begin the proof of (2.2). First we construct the family ^ of
(2.2). Then we formulate the general position statements (5.1) and (5.2) which are needed

to prove that the general fibre ^\ has semi-natural cohomology. We show that
(5.2) ==> (5.1) => (2.2). The proof of (5.2) will be carried out in sections 6-9.
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Recall from paragraph 2 that we defined the sheaf <^o to be:

^o=^(-^+l)©^(l),

depending on c^ and c^ as follows. Ifc^ = 0, c^ > 0, take Yg to be a disjoint union ofr=c '2+l
lines in P3, and take ^=2. If c^ = — 1, c^>Q, c^ even, take Y() to be a disjoint union of
r= l /2 (c2+2) conies in P3, and take ^=3. Note that <^o can be written as a kernel:

OCo(l)

0^<ro-^(-^+l)©^(l)——^Yo(l)-^

where the map o^ (1) is zero on the first factor, and the natural restriction map on the second

factor. We write ao (1) = (0, 1).

To construct the family ^ we first allow Y to range over all disjoint unions of r lines or
conies, as the case may be. We allow a to be any map of the form (P, 1) where P: (9

(—a)-^^^ is
 an arbitrary map. Then we consider all sheaves ^ which are kernels of the

maps a (I):

a (1)
O-^-^(-^+I)©^(I)——^Y(I)-^O.

We construct a family having all these sheaves as its fibres as follows. Let H be the open

subset of the Hilbert scheme corresponding to disjoint unions ofr lines or conies. Then H is
an irreducible nonsingular quasiprojective variety, and there is a universal closed subscheme

^HP^. Next, note that the map P factors through the natural projection
0(—a)->(

(
)^(—a), so to give P is equivalent to giving the map (P^(—a)->(PY, which

corresponds to a section of^y^)' So we consider the locally free sheaf n^^(a) on H,
where n : P^ -> H is the projection, and let T be the geometric vector bundle T = V
((Tr^(^)f) ([10], II, Ex. 5.18). Make the base change T-^H and let ^^P^, with
projection n' : P.3 -> T, be the extended situation. By construction (see also §6) T comes
equipped with a natural section ofn^ (6\ (a)) which lifts to a natural section of (9^ (a) which
in turn defines a natural map P : (Ppz (—a) -> (9 ay . Now we define the family ^ on P^ by:

0^^^^(-^+1)©^(1)^^(1)^0,

where a==(P, 1).

This is the family we will use to prove (2.2). ^is clearly torsion-free. It is flat over T

because ̂ ls- Furthermore, this exact sequence commutes with passage to fibres for t e T,
so the fibres ̂ \ are exactly the sheaves € described above, and the points t e T correspond to
all possible choices of Y and a. It remains to show that for t sufficiently general, ̂ \ has

semi-natural cohomology.

PROPOSITION 5 . 1 . — Let Y ̂  P3
 be a disjoint union ofr ̂  1 lines (resp. r ̂  4 conies} and let

a = 2 (resp. a = 3). 7/'Y is sufficiently general, and if P : (P (— a) -> ^y ls
 sufficiently general,

then for all neZ, taking a=(P, 1), the induced map:

H°(a(^)) : H^P^^-^^^H^Y,^))

is of maximal rank (i. e., either injective or surjective or both).
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Proof of {1.2). - Admitting this result, we can complete the proof of (2.2). Take ̂  on P^S
to be the family just constructed. At the point toCT corresponding to Y=Y(), P=0, the
fibre of y is just ^o • For sufficiently general t E T, by (5.1), for any n e Z, at most one of
H°(<^(^)) and H^e^^i)) is nonzero. Furthermore, taking into account the known
cohomology of the sheaves (9{n) on lines, conies, and on P3, we see easily that for n'^—1

(resp. n ̂  — 1), the groups H2 (^ (n)) and H3 (^ (n)) are zero. Hence ̂ \ has semi-natural
cohomology.

Remark 5.1.1. — Note that the statement of (5.1) is false for 2 or 3 conies, although it is
trivially true for one conic. Indeed, if r=2, n=2, then both vector spaces have
dimension 10, but H°(a(2)) is not injective because the pair of conies is contained in a
quadric surface, namely the union of the planes of the two conies. Similarly, for r = n = 3,
both spaces have dimension 21, but H°(a(3)) is not injective, because Y is contained in a
union of 3 planes.

Proofof'(5.1). — First we note, as in the proof of (1.6), that H°(oc(^)) is automatically
surjective for n t> 0 (depending on r), and both sides are 0 for n < 0, so there are only finitely
many values ofn to consider. Hence the conclusion of the proposition is an open condition
on the parameter space T, and it is sufficient to verify it for each r, n
individually. Furthermore, if we can find a single choice of Y, P for which H° (a(^)) has
maximal rank, then it is also true for all sufficiently general choices of Y, P.

Given n, suppose one can choose r so that:

h°(0(n-a)@(9(n))=h°(^(n))

and suppose one can find Y, P so that H° (a (n)) is bijective. Then if one removes some lines
(resp. conics)from Y, H° (a (n)) will still be surjective, and if one adds some lines (resp. conies)
to Y, H°((x(72)) will still be injective. In other words, the result for that given pair (n, r)

implies the result for the same n and any r whatsoever.

Unfortunately for given n one cannot always find such an r. Therefore we will make
adjustments by adding some isolated points to Y. Suppose we add q points. In the case of
lines, with a =2, the desired equality of h° 's above says:

/^+1\ /^+3\ , ,

3 + 3 h^1^-

So we take:

r^+2/2+31
r=\ -

3 J

and:

, , / ^ + 2 ^ + 3 \
^(^l^——3———-r} .

For each n ̂  0 consider the statement:
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(HJ Taking r and q as above, if\ is a disjoint union ofr lines andq collinear points in P3
 in

sufficiently general position, and if P : ^ ( — 2 ) ->(9^ is sufficiently general, then taking

a=(P, 1), the induced map:

H°(a^)) : H0^^^)®^^))^0^^)),

is bijective.

In the case of conies, with a=3, the desired equality of h° 's says:

^w":3)-^.^.
So take:

[n2+fl+6~{
r=

6 J

and:

, /«2+n+6 \
^(2«+1)[——^——-^.

For eactrTz^O consider the statement:

(H^) Taking r andq as above, if\ is a disjoint union ofr conies andq points lying on a conic in

P3
 in sufficiently general position, and if^ '. (9 ( — 3 ) ->(P^ is sufficiently general, then taking

oc==(P, 1), the induced map:

H°(oc(^)) : H
O
(^(n-3)e^(n)}-^H

O
(^(n)),

is bijective.

PROPOSITION 5.2. — The statement H^ is true for all n'^0. The statement H^ is true for

n=0, 1, and all n ̂  4.

Proof. - See (8.1) and (9.1).

Proofof'(5.1), continued. — Using (5.2), we can complete the proof of (5.1). First we
consider the case of lines. For n<0 there is nothing to prove. For each n^O there is a
union Y of r lines and q points for which the corresponding map H° (a (n)) is bijective. To
prove (5.1) for that n and any r'^r, simply remove the q points and r — r ' lines. Then
H°(a(^)) will be surjective. To prove it for r">r, first add a line passing through the q

collinear points, then add r " — r — 1 disjoint lines. Then the corresponding H° (a (n)) will be
injective. This proves the statement for lines for all r^l and all neZ.

Now consider the case of conies. Again for n < 0 there is nothing to prove. For ^=0,1
or for n'^4, the same argument shows the statement of (5.1) is true for all r ̂  1. It remains

to verify the cases n=2, 3 and r^4. If n=2, the map in question is:

^(^(2))^^ (^(2)).

4
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This is clearly injective for r^3 (and surjective for r=l) . I f /z=3, the map is:

H°(a(3)) : HO(^p3)©HO(^p3(3))->HO(^(3)).

If r^4, then this map is clearly injective on the H° (^(3)) part. Furthermore, h°

(^3 (3)) = 20, and h° (^y (3)) = 7 r, so for r ̂  3, /z° (^y (3)) > h° ((9^ (3)). Since we can choose
the map P to send the generator of H° (^ps) =k to any element of H° (^y (3)) we like, for r ̂  4
we can make H° (a (3)) injective. This completes the proof of (5.1) modulo (5.2). (It is not
hard to check also that H°(a(3)) is surjective for r=l , 2).

Remark 5.2.1. — In fact, this argument shows that the statement of (5.1) in the case of
conies is true for all r ̂  1, n e Z with the exception of only the two cases r = n = 2 and r == n = 3
mentioned in (5.1.1), and in those two cases, the map H° (oc(^)) fails to be injective by a 1-
dimensional subspace. The consequence of this for vector bundles is that in the two
excluded cases of theorem (0.1), namely c^ = — 1, c^ = 2 (resp. c^ = 4) there are stable vector
bundles having natural cohomology with the exception of/z°(E(l))=/z1 (E(l))== 1 (resp. h°

(E(2))=/?1 (E(2))= 1), and the exception for h
2 and h

3 implied by duality.

6. Reformulations and inductive procedure of proof

In this section we explain a reformulation of the statements (HJ, (H^) of (5.2) in terms of

certain geometric vector bundles over P3. We also describe the inductive procedure
involving analogous statements in lower dimensions which we will use to prove these results.

DEFINITION. — Let X be a quasiprojective variety over k with a given line bundle (9^ (1). A
line in X is a closed subscheme L ^= X such that L ̂  P1 and (9^ (1 )OO^L ̂ ^pi (1 )• A conic in X
is a closed subscheme C ̂  X such that C ̂  P1 and (9^ (1 )®(9c ̂ p1 (2)- A set of points ofX is
collinear if there exists a line containing all of them.

IfX=P", this is of course the usual notion of line and conic. We include the definition so
that we can speak without ambiguity of lines and conies in the geometric vector bundles
defined below.

Let (X, ^x(l)) be a projective variety (which in our applications will be P1, P2, a
nonsingular quadric surface Q, or P3) and let a ̂  0 be an integer (which in our case will be 2,

3, 4, or 6). Let Z be the geometric vector bundle Z=V(^x(-^)). Recall ([10], II, Ex.
5.18) that this is defined as follows. Let y be the symmetric algebra on (9^ (— a), namely
y= © (9^{—nu). Then y is a sheaf of (9^-'d\gebr'ds, and we define

n^O

V^x^^O^pec^. The natural map O^—a)-^^ of 0^-modv^es induces a map
(9^{—d)®y^y of e^-modules, and hence a natural map (p : (9^(—a) ->(9^ on

^V^-^))- Here i f ; ? :Z->Xis the projection, we denote by^z(l) the sheaf ̂ *^x(l)
on Z.

Now let/: Y -^ X be a morphism, and let (9^ (1) =/* (9^ (1). If we give a lifting g : Y -> Z
of / (i.e., a morphism g such that f = p ° g ) , then g* ((p)=\|/ is a
map v|/ : <PY (- a) -^ (9^. Conversely, given /: Y -> X and given any
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map \|/ : (9^(-a}—^(9^ then \|/ induces a morphism of ^Y-^^bras/*^/') -^y^ hence a
morphism of schemes ̂  : Y-^Z=Spec ^, lifting/, such that \|/=^*((p). Thus we see that
(Z, (p) represents the functor on X-schemes:

Yh-^{\| / :^(-^)^^}.

To apply this to our situation, think of (H^) for example. Let Y be a disjoint union of lines

in P3, and let Z = V ((9^ (- 2)). Then to give a map P : (9^ (- 2) -^ ̂  is equivalent to giving
its restriction to Y, (9^ (- 2) -^ ^y, which in turn is equivalent to giving a lifting g : Y -^ Z of
the inclusion / : Y c> p3. The image Y' =g(Y) will be a disjoint union of lines in Z, in the

sense defined above. Conversely, any sufficiently general disjoint union of lines in Z arises

in this way. Thus in the statement of (HJ, the choice of Y ^ P3 and P : ̂ y(-2) -> ̂ Y is

equivalent to the choice ofY' ̂  Z. Note however that it is possible to have disjoint lines in Z
whose projections to P3 are not disjoint. In fact, we will make essential use of such sets of
lines in Z, which do not correspond to any sheaves in the family ^. A similar discussion
applies to (!!„). In this case, and henceforth, we consider only those conies in Z whose

projections to X are also conies, excluding those whose projection to X is a line.

To explain the analogue ofH°(a(^)) in this new interpretation, we return to the general

situation. Let (X, ^x(1)) be a projective variety, let a^O, and let Z=V(^x(-^)). Let
Y'^Z be a closed subscheme. Then the induced map cp : ̂ y' (~a

)
-> ^Y' an(! ^e

projection p : Y' -> X allow us to define for any neZ an induced map:

p(n) : H^^^-^eH0^^))^^^^)),

by composing /?* : H°(^)) -> H°(^^)) with H°((q)©id) (n)). If Y' is obtained by
lifting a closed subscheme Y^X by means of a map P : (9^ (—a) ->(9^, then p(n) can be
identified with H°(a(^)) via the isomorphism g : Y -> Y'. Thus we have proved:

PROPOSITION 6.1. - In the statement (HJ (resp. (H^)) of'(5.2) u;<? o&^ a^z equivalent

statement if we replace (Y, P) by a disjoint union of lines and collinear points in Z = V (^ps (— 2))
(r^/?. conies and points lying on a conic in Z=V(^ps(-3))), and replace H°(d(n)) by p (n).

Our strategy for proving the modified statements (HJ and (H;,), which we still denote (HJ
and (H;,) for simplicity, is to use induction on n and on the dimension ofP3. This will
involve analogous statements on lower-dimensional varieties X=P1 , P2, or a nonsingular
quadric surface Q.

A typical statement will be like this. For a given choice ofX a projective variety and a ̂  0,
let Z = V ((9^ (—a)). Then we will consider closed subschemes Y of Z consisting of a certain
number of lines, conies, points, etc. We also consider an integer n which is so chosen in
relation to the schemes Y being considered that:

ho((P^n-a))^ho{^{n))=ho{(P^n)).

The statement will then say that in general the induced map p(n) is bijective. We use this
phrase subject to the following:
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CONVENTION. — The phrase in general p (n) is bijective will mean that the set of
subschemes Y of Z under consideration form an irreducible subset of the Hilbert scheme of
closed subschemes of Z proper over X, and that p (n) is bijective for all choices of Y in a non-
empty Zariski open subset of this family.

Suppose given X, a, n, as above and a certain irreducible subset T of closed subschemes
ofZ, and we wish to prove for YeT in general p(n) is bijective. First we consider the

closure T of T in the Hilbert scheme of closed subschemes of Z, proper over X. Since the

property p (n) bijective is open, it will be sufficient to find one Y e T, or a small family T^ ̂  T
of such Y's, for which p (n) is bijective. To make an induction, let X' ^= X be a hypersurface
of degree d. [In practice, d will be 1 or 2, or if X is the nonsingular quadric surface Q,

sometimes ^ is the bidegree (0, l)or(l, 0).] Denote by Z'the base extension Z x^X^whichis
also equal to V (^ (- a)). Let Y' be the scheme-theoretic intersection YnZ', and let Y" be
the residual intersection res^/Y defined by the sheaf of ideals:

^,=/-i.ker(^Yz^^Y,z<),

where/is the equation of Z' in Z. Then there is an exact sequence:

0-^Y"(-^)-^Y-^Y'^ 0

([16], §2, Def. and Ex. 2.1.1). Let p ' ( n ) and p " ( n - d ) be the corresponding maps p
associated to Y' and Y".

LEMMA 6 . 2 . — With the hypo theses above, let Y ^= Z be one such closed sub scheme. Assume

that X is P2
 or P3, and that p' (n) and p" (n—d) are bijective. Then p(n) is bijective.

Proof. — This is an easy application of the 5-lemma. The exact sequence for Y, Y', Y"
above, coupled with the exact sequence:

O^M^x-^x'^O

and the fact that H1 (^(m))==0 for all me Z give us an exact commutative diagram:

O^HO(6^^-^-^))®HO(^^-^))^HO(6^(^-^)eHO(^(^))^HO(^(^-^))eHO^^

p" (n-d)

0——————^H°{(P^(n-d) ) ——————^ H°(^)) —————————^ H°(C^(n)).

Since p " ( n — d ) and p' (n) are bijective by hypothesis, and the top line is exact on the right,
p(n) is also bijective.

If X is a nonsingular quadric surface Q, we must modify this statement to take into account

the bidegree of a divisor. IfY^Z==V(^x(- a)), andif(^i, n^) is a bidegree, then we have an
associated map:

p(^ ,^) : H^^Q^.-^^-^eH0^^,^))^^^^,^)),
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where (9^(n^ n^)=(9^(n^ n^)®(9^. I fX'^X is a divisor ofbidegree {d^ d^), we consider
Y' = YnZ and Y" = res;. Y as above.

LEMMA 6.3. — Le tX be the quadric surface Q, let y^Z as above, and assume that p ' ( n ^ , n^)

and ^ ' ( n ^ — d ^ n^—d^} are bijective. Assume furthermore that n^—d^—a^—1 and

n^—d^—a^ —1. Then p(^i, n^} is bijective.

Proof. — The same as the proof of (6.2) except for one point: to know that the upper row of
the diagram is exact at the right, we need H 1 ^?^—^—^, n^—d^—a))=Q and
H1 (^Q (n^ - d^, n^ - d^)) = 0. This follows from our hypothesis and the fact that H1 (^PQ (m^,
m^))=Q i f m ^ — l and m^ — 1 (use Serre duality and [10], III, Ex. 5.6 a).

Remark 6.3.1. — To make use of these lemmas, we need to know something about Y'
and Y". In practice, we will not know about specific choices of Y', Y", but we will know
something if Y' and Y" are sufficiently general. So we will always invoke these lemmas in
the following situation. Suppose given X, a, n as above, and an irreducible family T of
closed subschemes ofZ, for which we wish to prove in general if YeT, then p(n) is

bijective. We will define an irreducible subfamily Ti ̂  T of the closure of T in the Hilbert
scheme. We will fix a divisor X' ̂  X as above. For each Y e T^ we consider Y' = YnZ' and
Y" = res^ Y. The schemes Y', Y" thus obtained will form irreducible families T', T". We
will then refer to earlier results to show that in general for Y'eT, p'(^) is bijective, and in
general for Y" e T", p" (n — d) is bijective. It will then follow by the lemmas that in general
for YeT, p(n) is bijective. Each time we use this technique, we must verify that the
irreducible families T', T" obtained are the same (or at least have open subsets the same) as
the families considered in the earlier results alluded to. It will be understood that this is so

each time this technique is used.

7. Lower-dimensional results

In this section we prove the general position results over varieties X of dimensions 1 and 2

which will be used in the proof of (5.2). Notations and terminology are those of

paragraph 6.

PROPOSITION 7.1. - LetX=P\leta^O,letZ=y(^(-a)),andletn^a-l. LetY^Z

be the union of one line and q=n—a+1 points. Then in general:

p(n) : ^(^(^-^©^(^(^-H0^^))

is bijective.

Proof. — According to the conventions of paragraph 6, we must verify that the set of
schemes Y we are considering is irreducible, which is obvious, and that for an open set of
choices of Y, p(n) is bijective. In this case p(n) will be bijective provided the points have
distinct projections to X and do not lie on the line L of Y. Indeed, by counting dimensions,

it is enough to show p(n) is injective. So suppose (/, g) is in the kernel of p(^), with

feH°^(n-a)) and geH°((P^n)).
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As we saw in paragraph 6, the line L g Z is a lifting ofX to Z, and so corresponds to a map

P :^x(-^)-^x- since P(/- ^)=° ^^g L' we conclude that P/+g=0 on X, i.e.,

g=-P/inH°(^)).
Now let P^ be the points of Y, and Q, their projections to X. Each P, is determined by a

map P, : (9^ (- a} -> (9^. Since P^ L, P, is not equal to P restricted to (9^. Since p (/, g) is 0
at P,, we have ^(Q,)=-P,/(Q,). But ^=-P/, and p(Q^)^Pp so this implies
/(Q^)=0. Since/is a polynomial of degree n — a which is zero at the n-a-{-1 points Qp it
must be identically 0. So g = - P/is also 0, which proves that p (n) is injective, and hence

bijective.

LEMMA?. 2. - L^X=P2 ,WZ=V(^x(-2)), Letn^Q be an integer. Let^^Zbea

disjoint union ofn lines and one point. Then in general:

p (n) : H° (^ (n - 2)) C H° (^ W) ̂  H° (^ (n))

is bijective.

Proof. — By induction on n, the case n==Q being trivial. If n^1, fix a line LgX and
consider the subfamily consisting of those Y having one line lying over L. This is an
irreducible subfamily. For this family we take L to be the divisor X' in the notation of
paragraph 6, and apply (6.2) and (6.3.1). Then L ̂  P1, T = V (f9^ (- 2)), and Y' = Y n T

consists of one line and the n — 1 points of intersection of the other lines with Z'. The family
of such Y' is general for (7.1), so we conclude that in general p' (n) is bijective. On the other
hand, the residual intersection Y" consists ofn—1 lines and one point. So by the induction
hypothesis p" (n -1) is bijective. It follows from (6.3.1) that p (n) is bijective.

PROPOSITION 7.3. - LetX=P
2
, let Z=V(^x(-2)), and let n^Q be an integer. Let^^Z

be a disjoint union ofr lines, q points, and q ' collinear points, such that:

(1) r(n+l)-{-q-{-q
f
=n

2
-{-n+l,

(2) q'^n+l.

Then in general p(^) is bijective.

proof. - We may arrange the q + q ' points into n — r sets of^z+1 collinear points each, with
one point left over. If L' is a line containing a set Y' of n-\-V collinear points, then
h° {(9^ (n)) = h° ((9^- (n)). So the result follows by applying (7.2) to the r original lines plus the
n — r lines containing the sets of collinear points, plus the one extra point.

LEMMA 7.4. - LetX=P
2
,LetZ-=\((9x(-^andletk>Q.

(a) Let Y^Z be a union of k—1 conies, 3^+2 points on a conic, and one further

point. Then in general p(2k) is bijective.

(b) Let Y^Z be a union ofk-1 conies and k+2 points on a conic. Then in general

p(2A:—l) is bijective.

proof. - (a) By induction on k, the case k = 1 being straightforward (it says in general 6
points ofP2 do not lie on a conic). If k ̂  2, fix a conic C g P2, which we take to be the divisor
X' of paragraph 6. Then C^P1 and Z'^V(fi?pi(-6)). We consider the irreducible
subfamily of those Y for which one of the conies lies over C, and 3 of the 3 k + 2 points on a
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conic lie over C, and apply (6.2) and (6.3.1). Then Y' = Y n T consists of one conic plus
the 4 (k — 2) points of intersection of the other conies, plus 3 more points. So (7.1) applies to
show that p ' ( 4 k ) over P1 is bijective. On the other hand, the residual intersection Y"
consists ofk - 2 conies and 3 k — 1 points on a conic and one further point. So the induction
hypothesis implies pff

(2k—2) is bijective. We conclude that p(2k) is bijective.

(b) The proof is entirely analogous. The case k = 1 is trivial. For k ̂  2 we fix a conic C
as above, and consider the subfamily of those Y for which one conic lies over C, and one of the
k + 2 points lies over C. Then Y' is one conic plus 4 k - 7 points. By (7.1), p' (4 k - 2) is
bijective. The residual intersection is A:—2 conies plus k+1 points, so the induction
hypothesis implies pff

(2k—3) is bijective. As above we conclude p(2k—l) is bijective.

PROPOSITION 7.5. - LetX=P
2
,letZ=\(^(-3)),andletn>0. Let^^Z be a disjoint

union ofr conies, q points, and q ' points lying on a conic, such that:

(1)r(2n+l)+q+q
f
=n

2
^2,

(2) ^2/z+l.

Assume furthermore q>0 or n odd. Then in general:

p (n) : H° (^ (n - 3)) © H° (^ (n)) -> H° (^ (n))

is bijective.

Proof. — If n is even and q>Q, we can arrange the q-\-q' points into (n/2)—r— 1 sets of
2/z+l points on a conic each, plus (3 n/2) + 2 points on a conic and one extra point. IfC' is
a conic containing a set Y' of 2 n +1 points, then h° ((9^' (n)) = h° (0^ (n)). So we can apply
(7.4 a) with k=n/2 to the original r conies plus the (n/2)—r—l conies containing sets of
2/z+l points to obtain the result.

If/us odd, we can arrange the q + q
1 points into ((n 4-1 )/2) - r — 1 sets of 2 n +1 points on a

conic, plus a set of{(n +1 )/2) + 2 points on a conic. Then (7.4 b) applies with k = ((n +1 )/2)
to give the result.

PROPOSITION 7.6. — Let X be a nonsingular quadric surface Q, and let

Z=V(^x(—2)). Let Y^Z be a disjoint union ofr^ lines in the first family, r^ lines in the

second family, and q points. (Wefix the convention that ifL is a line in the first family, its ideal

sheaf J^L is (9^ (-1, 0).) Let n^,n^\be integers. Assume:

(1)r i ( /Z2+l)+r2( /2i+l)+^=2/7i / !2+2;

(2) r^^n^—1 and r^^n^—1.

Then in general:

p(n,, n^} '. H°(^(n,-2, n^-2))QH°(^(n,, n^)^H°(^(n,, ̂ )),

is bijective.

Proof. — By induction on n^ + n^. ]{n^+n^==2, then n^ •== n^ =1, r^ = r^ == 0, so Y consists
of 4 points, and the result simply says in general 4 points of Q are not contained in a
hyperplane section.
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For the general case n^ + n^ ̂  3, we first arrange the q points into n^-r^-1 sets of n^ +1
points lying on lines of the first family, plus n^—r^—1 sets of n^ +1 points lying on lines
of the second family, with 4 points left over. For a line L^ of the first family,

^Q (^n ^2) ® ̂ Li ̂ p^ (^2). an(! similarly for the second family. Thus we can replace these
sets ofcollinear points by the lines containing them, and so reduce to the special case of the
proposition for which r^ ==^ — 1, r^=n^— 1 and q=4.

Since n^ + n^ ̂  3, we may assume n^ ̂  2, and so r^ ̂  1. Fix a line L^ in the first family, and

consider the irreducible subfamily of those Y for which one line lies over L^. We take L^ to
be the divisor X' of paragraph 6, and apply (6.3). Then L^P1, and

Z' ̂  V (^pi (— 2)). The intersection Y' = Y n Z' consists of one line and the n^ — 1 points of
intersection of the lines of the second family with Z'. Since 0^ (n^, n^} 00 (9^ ̂ pi (n^), we
can apply (7.1) to conclude that p' (n^, ^2) ls bijective. The residual intersection Y" consists
of n^ -2 lines of the first family, n^ — 1 lines of the second family, and 4 points. So the

induction hypothesis implies p" (^ -1, ̂ ) is bijective. Finally note that in the notation of
(6.3), d^=l,a=2, so n^^2imp\iesn^—d^—a^ —1, so the hypotheses of (6.3) are verified,
and we conclude in general p(^i, n^) is bijective.

DEFINITION. — Let X be P3 or a quadric surface Q. A set of points in Z = V {(9^ ( — a)) will
be called coplanar if its projection to X lies in a plane (of P3) or a plane section (of Q).

LEMMA 7.7. — Let X be a nonsingular quadric surface Q, let Z=V(^x(—3) ) , and let

n^2. Let Y^Z be a disjoint union ofn—2 conies, [(^+7)/4] sets of 4 coplanar points and

n + 7 — 4 [{n + 7) /4] fur ther pom ts. Then in general p (n) ^ Z^c ̂ 'i^.

Proof. - By induction on n. If ^ = 2, Y consists of 2 sets of 4 coplanar points and one
further point. In this case the results say that in general their projections to Q do not lie on
any other quadric surface, which can be seen easily.

If ̂  3, we fix a conic C in Q, which we take to the divisor X' of paragraph 6, and consider
the irreducible subfamily of those Y having one conic lying over C, and one point (chosen
from among the n + 7 - 4 [(n + 7)/4] further points if there are any) lying over C. Then we
apply (6.2) and (6.3.1). In this case C^P1, Z'^V(^pi(-6)), and the intersection
Y'=Y n Z' consists of one conic plus In—5 points. So (7.1) applies to show in general
p' (2 72) is bijective. On the other hand the residual intersection satisfies the conditions of the

induction hypothesis, so p " ( ^ — l ) is bijective. We conclude p(n) is bijective.

PROPOSITION 7 . 8 . — Let X be a nonsingular quadric surface Q, let Z = V {(9^ ( — 3)), and let

n'^2. Let Y^Z be a disjoint union of r conies, q points, and q ' =4k points in k sets of4

coplanar points each. Assume:

(1) ̂ ^^^^^^^T^;

(2) r^n-2 [which follows from (1) ifn^l].

Then in general:

p(n) : HO(^Q(^z-3))©HO^Q(^))-.Jfo(^(^)),

is bijective.
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Proof. - By induction onn - 2 - r, the case ^ - 2 - r = 0 being (7.7), after we arrange the q

free points into as many sets of 4 coplanar points as possible.

If»-2-r>0,we claim it is possible to move exactly 2^+lof the^+^ ' points so as to lie
on a conic. The problem is that a set of 4 coplanar points can be moved so that 1,2, or 4 of
them lie on a given conic. So the only difficulty is in case 2 n +1 = 3 (mod 4). Note that
2 n

2
 — 2 n + 5 - (n — 2) (2 n +1) = n + 7. So, at the moment we need to move 3 points onto the

conic, there are at least n +10 ̂  12 points available. So we can use 2 from one set of 4, and
one from another set of 4.

Now adjoin to Y the conic containing the 2n+l points. This increases r by
1. Furthermore, the points not on this conic, other than those still in sets of 4 coplanar
points, are subject to no additional restrictions. So the induction hypothesis applies to give
the result.

8. Proof of (HJ

In this section we will prove that the statement (HJ of (5.2) is true for all n ̂  0. We will
prove it in the reformulation of (6.1), which for convenience we state again.

PROPOSITION 8.1. - Let X=P3
 and let Z==V(^(--2)). For any ^0, let r and q be

defined as in (HJ of paragraph 5. Let Y^Z be a disjoint union of r lines and q collinear
points. Then in general:

p(n) : ^o(^(n-2))@HO(^(n))-^HO(^(n)),

is bijective.

Proof. - We denote this statement still by (HJ. Note that (Ho) is trivial. In that case
r == 1, q == 0, and p (0) is the obvious isomorphism H° (0^) -> H° (^y). The rest of the proof
will be by induction on n. We will show that (H^_J==>(HJ for n=l, 2 (mod 3), and
(H^_2)=>(H^) for »=0 (mod 3), n^3.

Case n=l (mod 3). - We will show (H^_J=>(HJ. Write n=3k+l, k^O. Then
r=3/r2+4/^-^2 and q = 0. Fix a plane H ̂  P3, and consider the subfamily T i of schemes Y
for which Ik+l lines lie over H. Then H^P2 and Z'^V(^p2(-2)). The intersection
Y' = Y n Z' consists of r ' = 2 k +1 lines and q ' = 3 k

2 + 2 k +1 points where the remaining lines
intersect Z\ With n' = n, Y' satisfies the hypotheses of (7.3), so in general p' (n) is bijective.

The residual intersection Y" consists of3/^2+2^-^-l lines and no points, so according to
the induction hypothesis (H^ _ ^), in general p" (n -1) is bijective. We conclude (6.3.1) that
in general p(n) is bijective, i. e. (HJ holds.

Case n=2 (mod 3). - We will show (H^_i)=>(H^). Write ^=3k+2, A^O. Then
r=3k

2
-}-6k-^3 and q = 2 k + 2. Fix a plane H ̂  P3, and move 2 k +1 lines and the collinear

points over H. Then Y' = Y n Z' consists of r ' = 2k +1 lines, q ' = 3 k
2 + 4k + 2 points, and

q=2k-{-2 collinear points. Thus Y' satisfies the hypotheses of (7.3) (with notation q and q '

interchanged), so in general p ' ( n ) is bijective.
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The residual intersection Y" consists of 3 k
2 + 4 k + 2 lines and no points, so (H^ _ i) implies

that in general p" (n -1) is bijective. It follows (6.3.1) that in general p (n) is bijective.

Case n=0(mod3). - In this case we prove (H,,_2)=>(HJ for n^3. Write n = 3 k with
/r ̂  1. Then ̂ S/^+l^+l and <y = 0. Fix a nonsingular quadric surface Q ̂  P3 and take
Q to be the divisor X' of paragraph 6. Then T = V (^ (- 2)). Put 4 ̂  lines over Q, with 2 k

in each family. Then Y' has r^=2k lines in the first family and r^ = 2k lines in the second
family, and 2(3k

2
—2k-^-l) points of intersection of the remaining lines with Z'. This

satisfies the hypotheses of (7.6) with n^ =n^=n, so we conclude in general p' (n) is bijective.

The residual intersection Y" consists of 3k
3
 —2k-\-\ lines and no points so by (H^.^) we

conclude p
ff
(n—2) in general is bijective. It follows (6.3.1) that p(n) is bijective.

9. Proof of (H;.)

In this section we will prove that (H;,) is true for ̂ =0,1 and all n ̂  4, in the reformulation of
(6.1).

PROPOSITION 9.1. - LcfX=P
3
 andletZ=V((

f
)^(-3)). For n =0,1 or ̂ 4, let rand q be

defined as in (H;,) of paragraph 5. Let Y ̂  Z be a disjoint union ofr conies and q points lying on

a conic. Then in general:

p(n) : HO(^(n-3))@^^xW)^^(^(n)),

is bijective.

Proof. — We denote this statement still by (H^). If ^==0,then r= l , ^=0, and

H0^)-^0^) is bijective, so (Ho) is trivial. If ^=1, then r=q=l, and the map

H°(^x(l))^H°(^Y(l)) is bijective provided the point does not lie in the plane of the
conic. So (H'i) is true.

The rest of the proof is by induction on n. We will prove (H^) and (H^)
individually. Also we will prove that (H^_i )==>(H^) for ^=0, 1 (mod 3), n^l and
(H;,_2)=>(H;,)for^=2 (mod 3), n^5.

Casen=Q(mod3),n^3. - We will prove (H^_i)=>(H,) . Write n=3k, k^l. Then
r=l /2A:(3^+l)+l and ^=0. Fix a plane H^P3 and move k conies over H. Then
Y^YnZ' consists of r ' = k conies and q

1
 =k(3k—\)-\-2 points of intersection of the

remaining conies with Z'. Thus Y' satisfies the hypotheses of (7.5), so in general p ' ( n ) is
bijective. The residual intersection Y" consists of 1 /2k (3 k — 1) +1 conies and no points, so
(H;,_ i) implies p" (n — 1) in general is bijective. We conclude (6.3.1) that p (n) is bijective.

Casen==l(mod3),n^l. - We will prove (H^_i )=>(H^) . Wri te^=3^+ 1,^0 Then
r = l/2(3k

2 +3/T+2), and q=2k-^-l. Fix a plane H^P3, and move iconics and the 2 k +1
points lying on a conic over H. Then Y^YnZ' consists of r ' = k conies and

^H = 3 k
2
 -\-k + 2 points and q'= 2 /r +1 points on a conic. Thus Y' satisfies the hypotheses of

(7.5) so we conclude that p ' ( n ) in general is bijective.
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The residual intersection Y" consists of 1/2(3A:2+A:+2) conies and no points, so (H^_i)
implies in general p" (n — 1) is bijective. We conclude (6.3.1) in general p (n) is bijective.

Case n=2 {mod 3), n^5. - We will prove (H;,_2)=>(H;.). Write M=3^+2 ,
k ̂ 1. Then r =1 /2 (3 A:2 + 5 k + 4) and q == 0. Fix a nonsingular quadric surface Q £ P3,
and take this to be the divisor X' of paragraph 6. Then Z /=V(^Q(-3)). Move 2k+l
conies over Q. Then Y' consists ofr /=2k4-l conies and q ' = 2 (3 k1

 +k + 2) points, in sets of
4 coplanar points (see definition in § 7). So Y' satisfies the hypotheses of (7.8) for w^ 5, and
we conclude in general p ' ( n ) is bijective.

The residual intersection consists of 1/2(3A:2+A:+2) conies, so by (H^), in general
p"(w—2) is bijective. We conclude (6.3.1) that in general p(n) is bijective.

Case n=4. — We will prove (H^) directly. In this case Y consists of 4 conies and 3
points. We need to consider some degenerations ofY. So let T be the family of all disjoint

unions of 4 conies and 3 points in Z, and let T be the closure of T in the Hilbert scheme of

closed subschemes of Z, proper over X. In particular, we will consider schemes Y e T where
three of the conies degenerate into a pair of distinct lines meeting at a point. We call these

degenerate conies. Fix a plane H^P3, and let T^T be the subfamily of schemes Y
consisting of one conic, three degenerate conies, and 3 points, such that one line of each
degenerate conic lies over H, and one of the three points lies over H. Take the divisor X' of
paragraph 6 to be H. Then Y' consists of 3 lines and 3 points, and the residual intersection
Y" consists of 1 conic, 3 lines, and 2 points. So using (6.2) and (6.3.1) it suffices to solve the
following two problems:

(a) X=P3 , n=3, Z=V(^x(-3)), and Y^Z is a union of 1 conic, 3 lines, and 2
points. Then in general p(3) is bijective.

(b) X = P2, n = 4, Z = V ((^x (- 3))» and Y ̂  Z is a union of 3 lines and 3 points. Then in
general p(4) is bijective.

Neither of these fits exactly any of our earlier results, but we can handle them by exactly the
same techniques.

To prove (a), fix a plane H, and move 2 lines over H. Then restricting to H, we get the
problem:

(c) X=P2 , n=3, Z==V(^x(—3)) , and Y is 2 lines and 3 points. Then in general p(3) is
bijective.

Assuming (c) for the moment, the residual intersection Y" is 1 conic, 1 line, and 2 points,
and we must show p"(2) in general in bijective. But p " ( 2 ) is the map

H° (^?x (2)) -> H° (6?Y (2)), so we need only show in general Y" is not contained in a quadric
surface, which is clear. This proves (a), modulo (c).

To prove (c), fix a line L in P2, and move one line of Y over L. Then restricting to L we
have 1 line and 1 point over L, n= 3, a =3, so by (7.1) in general p'(3) is bijective. The
residual intersection Y" is 1 line and 3 points, and we must show p" (2) is bijective. For this
it is sufficient to show in general Y" is not contained in a conic, which is obvious. This
proves (c).

46 SERIE - TOME 15 - 1982 - N° 2



COHOMOLOGY OF A GENERAL INSTANTON BUNDLE 389

To prove (b\ fix a line L ̂  P2, and move one line of Y over L. Then restricting to L we
have Y' is 1 line and 2 points, n= 4, a =3, so by (7.1') in general p'(4) is bijective. The
residual intersection Y" is 2 lines and 3 points. We must show p" (3) in general is bijective,
which is just assertion (c).

This completes the proof of (H^).

Case n ==5. - We will show (H^)=>(H^). In this case Y consists of 6 conies and no

points. Again we consider the closure T of the family of Y's. We will consider the family

TI ̂  T of specializations ofY where two of the conies lie over a fixed plane H ̂  P3 and meet in
3 points. Of course the projections of those two conies to H meet in 4 points, but the lifting
of a conic C to Z is given by a section of H° (^c (3)) ̂  H° (^pi (6)), so we can determine the
lifting arbitrarily at 7 points. In particular, we can make the lifted conies in Z meet at
exactly 3 points. At each of these three intersection points, the scheme Y will have an
embedded point ([16], 2.1.1), which in general will not be contained in Z'==Z x^H.

Now we apply the technique of paragraph 6. The residual scheme Y" will consist of the
four remaining conies and the three points where Y had embedded components. Thus
p'^Y) will be bijective in general by (H^).

Restricting to the plane H we must show for a scheme consisting of two conies meeting in 3
points (without embedded points) and 8 points, in general p (5) is bijective. We fix a conic C
in H, and move one of the conies and 4 points over C. We get one further point of
intersection with the other conic. Since C ̂  P1 and Zc ̂  V (^pi (- 6)), and n' = 2 n = 10, we
see from (7.1) that p' (5) is bijective over C. The residual intersection Y" is one conic and 4
points. We must show p"(3) is bijective in general, which follows from (7.5).

This completes the proof of (H^), hence also of (5.2) and (0.1).
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Added in proof. — In a recent paper (Universal families of extensions, preprint, Eriangen
1982) H. Lange proves results which generalize those of our Section 3.
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