
COHOMOLOGY OF FACE RINGS, AND TORUS ACTIONS

TARAS PANOV

Abstract. In this survey article we present several new developments
of ‘toric topology’ concerning the cohomology of face rings (also known
as Stanley–Reisner algebras). We prove that the integral cohomology
algebra of the moment-angle complex ZK (equivalently, of the comple-
ment U(K) of the coordinate subspace arrangement) determined by a
simplicial complex K is isomorphic to the Tor-algebra of the face ring
of K. Then we analyse Massey products and formality of this algebra
by using a generalisation of Hochster’s theorem. We also review several
related combinatorial results and problems.

1. Introduction

This article centres on the cohomological aspects of ‘toric topology’, a new
and actively developing field on the borders of equivariant topology, combi-
natorial geometry and commutative algebra. The algebro-geometric coun-
terpart of toric topology, known as ‘toric geometry’ or algebraic geometry of
toric varieties, is now a well established field in algebraic geometry, which
is characterised by its strong links with combinatorial and convex geometry
(see the classical survey paper [10] or more modern exposition [13]). Since
the appearance of Davis and Januszkiewicz’s work [11], where the concept
of a (quasi)toric manifold was introduced as a topological generalisation of
smooth compact toric variety, there has grown an understanding that most
phenomena of smooth toric geometry may be modelled in the purely topo-
logical situation of smooth manifolds with a nicely behaved torus action.

One of the main results of [11] is that the equivariant cohomology of a toric
manifold can be identified with the face ring of the quotient simple polytope,
or, for more general classes of torus actions, with the face ring of a certain
simplicial complex K. The ordinary cohomology of a quasitoric manifold
can also be effectively identified as the quotient of the face ring by a regular
sequence of degree-two elements, which provides a generalisation to the well-
known Danilov–Jurkiewicz theorem of toric geometry. The notion of the
face ring of a simplicial complex sits in the heart of Stanley’s ‘Combinatorial
commutative algebra’ [24], linking geometrical and combinatorial problems
concerning simplicial complexes with commutative and homological algebra.
Our concept of toric topology aims at extending these links and developing
new applications by applying the full strength of the apparatus of equivariant
topology of torus actions.

The author was supported by an LMS grant for young Russian mathematicians at the
University of Manchester, and also by the Russian Foundation for Basic Research, grant
no. 04-01-00702.
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The article surveys certain new developments of toric topology related to
the cohomology of face rings. Introductory remarks can be found at the
beginning of each section and most subsections. A more detailed description
of the history of the subject, together with an extensive bibliography, can be
found in [8] and its extended Russian version [9].

The current article represents the work of the algebraic topology and com-
binatorics group at the Department of Geometry and Topology, Moscow
State University, and the author thanks all its members for the collabora-
tion and insight gained from numerous discussions, particularly mentioning
Victor Buchstaber, Ilia Baskakov, and Arseny Gadzhikurbanov. The author
is also grateful to Nigel Ray for several valuable comments and suggestions
that greatly improved this text and his hospitality during the visit to Manch-
ester sponsored by an LMS grant.

2. Simplicial complexes and face rings

The notion of the face ring k[K] of a simplicial complex K is central to the
algebraic study of triangulations. In this section we review its main proper-
ties, emphasising functoriality with respect to simplicial maps. Then we in-
troduce the bigraded Tor-algebra Tork[v1,...,vm](k[K],k) through a finite free
resolution of k[K] as a module over the polynomial ring. The corresponding
bigraded Betti numbers are important combinatorial invariants of K.

2.1. Definition and main properties. Let K = Kn−1 be an arbitrary
(n−1)-dimensional simplicial complex on an m-element vertex set V , which
we usually identify with the set of ordinals [m] = {1, . . . ,m}. Those subsets
σ ⊆ V belonging to K are referred to as simplices; we also use the notation
σ ∈ K. We count the empty set ∅ as a simplex of K. When it is necessary
to distinguish between combinatorial and geometrical objects, we denote by
|K| a geometrical realisation of K, which is a triangulated topological space.

Choose a ground commutative ring k with unit (we are mostly interested in
the cases k = Z,Q or finite field). Let k[v1, . . . , vm] be the graded polynomial
algebra over k with deg vi = 2. For an arbitrary subset ω = {i1, . . . , ik} ⊆
[m], denote by vω the square-free monomial vi1 . . . vik .

The face ring (or Stanley–Reisner algebra) of K is the quotient ring

k[K] = k[v1, . . . , vm]/IK ,

where IK is the homogeneous ideal generated by all monomials vσ such that
σ is not a simplex of K. The ideal IK is called the Stanley–Reisner ideal
of K.

Example 2.1. Let K be a 2-dimensional simplicial complex shown on Fig-
ure 1. Then

k[K] = k[v1, . . . , v5]/(v1v5, v3v4, v1v2v3, v2v4v5).

Despite its simple construction, the face ring appears to be a very pow-
erful tool allowing us to translate the combinatorial properties of different
particular classes of simplicial complexes into the language of commutative
algebra. The resulting field of ‘Combinatorial commutative algebra’, whose
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Figure 1

foundations were laid by Stanley in his monograph [24], has attracted a lot
of interest from both combinatorialists and commutative algebraists.

Let K1 and K2 be two simplicial complexes on the vertex sets [m1] and
[m2] respectively. A set map φ : [m1] → [m2] is called a simplicial map
between K1 and K2 if φ(σ) ∈ K2 for any σ ∈ K1; we often identify such φ
with its restriction to K1 (regarded as a collection of subsets of [m1]), and
use the notation φ : K1 → K2.

Proposition 2.2. Let φ : K1 → K2 be a simplicial map. Define a map
φ∗ : k[w1, . . . , wm2 ] → k[v1, . . . , vm1 ] by

φ∗(wj) :=
∑

i∈φ−1(j)

vi.

Then φ∗ induces a homomorphism k[K2] → k[K1], which we will also denote
by φ∗.

Proof. We have to check that φ∗(IK2) ⊆ IK1 . Suppose τ = {j1, . . . , js} ⊆
[m2] is not a simplex of K2. Then

(2.1) φ∗(wj1 · · ·wjs) =
∑

i1∈φ−1(j1),...,is∈φ−1(js)

vi1 · · · vis .

We claim that σ = {i1, . . . , is} is not a simplex of K1 for any monomial
vi1 · · · vis in the right hand side of the above identity. Indeed, if σ ∈ K1,
then φ(σ) = τ ∈ K2 by the definition of simplicial map, which leads to a
contradiction. Hence, the right hand side of (2.1) is in IK1 . �

2.2. Cohen–Macaulay rings and complexes. Cohen–Macaulay rings
and modules play an important role in homological commutative algebra
and algebraic geometry. A standard reference for the subject is [6], where
the reader may find proofs of the basic facts about Cohen–Macaulay rings
and regular sequences mentioned in this subsection. In the case of simplicial
complexes, the Cohen–Macaulay property of the corresponding face rings
leads to important combinatorial and topological consequences.

Let A = ⊕i≥0A
i be a finitely-generated commutative graded algebra

over k. We assume that A is connected (A0 = k) and has only even-degree
graded components, so that we do not need to distinguish between graded
and non-graded commutativity. We denote by A+ the positive-degree part
of A and by H(A+) the set of homogeneous elements in A+.
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A sequence t1, . . . , tn of algebraically independent homogeneous elements
of A is called an hsop (homogeneous system of parameters) if A is a finitely-
generated k[t1, . . . , tn]-module (equivalently, A/(t1, . . . , tn) has finite dimen-
sion as a k-vector space).

Lemma 2.3 (Nöther normalisation lemma). Any finitely-generated graded
algebra A over a field k admits an hsop. If k has characteristic zero and A
is generated by degree-two elements, then a degree-two hsop can be chosen.

A degree-two hsop is called an lsop (linear system of parameters).
A sequence t = t1, . . . , tk of elements of H(A+) is called a regular sequence

if ti+1 is not a zero divisor in A/(t1, . . . , ti) for 0 ≤ i < k. A regular sequence
consists of algebraically independent elements, so it generates a polynomial
subring in A. It can be shown that t is a regular sequence if and only if A
is a free k[t1, . . . , tk]-module.

An algebra A is called Cohen–Macaulay if it admits a regular hsop t . It
follows that A is Cohen–Macaulay if and only if it is a free and finitely gener-
ated module over its polynomial subring. If k is a field of zero characteristic
and A is generated by degree-two elements, then one can choose t to be an
lsop. A simplicial complex K is called Cohen–Macaulay (over k) if its face
ring k[K] is Cohen–Macaulay.

Example 2.4. Let K = ∂∆2 be the boundary of a 2-simplex. Then

k[K] = k[v1, v2, v3]/(v1v2v3).

The elements v1, v2 ∈ k[K] are algebraically independent, but do not form an
hsop, since k[K]/(v1, v2) ∼= k[v3] is not finite-dimensional as a k-space. On
the other hand, the elements t1 = v1−v3, t2 = v2−v3 of k[K] form an hsop,
since k[K]/(t1, t2) ∼= k[t]/t3. It is easy to see that k[K] is a free k[t1, t2]-
module with one 0-dimensional generator 1, one 1-dimensional generator v1,
and one 2-dimensional generator v21. Thus, k[K] is Cohen–Macaulay and
(t1, t2) is a regular sequence.

For an arbitrary simplex σ ∈ K define its link and star as the subcom-
plexes

linkK σ = {τ ∈ K : σ ∪ τ ∈ K, σ ∩ τ = ∅};
starK σ = {τ ∈ K : σ ∪ τ ∈ K}.

If v ∈ K is a vertex, then starK v is the subcomplex consisting of all simplices
of K containing v, and all their subsimplices. Note also that starK v is the
cone over linkK v.

The following fundamental theorem characterises Cohen–Macaulay com-
plexes combinatorially.

Theorem 2.5 (Reisner). A simplicial complex K is Cohen–Macaulay over k
if and only if for any simplex σ ∈ K (including σ = ∅) and i < dim(linkK σ),
it holds that H̃i(linkK σ;k) = 0.

Using standard techniques of PL topology the previous theorem may be
reformulated in purely topological terms.
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Proposition 2.6 (Munkres). Kn−1 is Cohen–Macaulay over k if and only
if for an arbitrary point x ∈ |K|, it holds that

H̃i(|K|;k) = Hi(|K|, |K|\x;k) = 0 for i < n− 1.

Thus any triangulation of a sphere is a Cohen–Macaulay complex.

2.3. Resolutions and Tor-algebras. Let M be a finitely-generated graded
k[v1, . . . , vm]-module. A free resolution of M is an exact sequence

(2.2) . . .
d−−−−→ R−i d−−−−→ . . .

d−−−−→ R−1 d−−−−→ R0 −−−−→ M → 0,

where the R−i are finitely-generated graded free k[v1, . . . , vm]-modules and
the maps d are degree-preserving. By the Hilbert syzygy theorem, there is a
free resolution of M with R−i = 0 for i > m. A resolution (2.2) determines a
bigraded differential k-module [R, d], where R =

⊕
R−i,j , R−i,j := (R−i)j

and d : R−i,j → R−i+1,j . The bigraded cohomology module H[R, d] has
H−i,k[R, d] = 0 for i > 0 and H0,k[R, d] = Mk. Let [M, 0] be the bigraded
module with M−i,k = 0 for i > 0, M0,k = Mk, and zero differential. Then
the resolution (2.2) determines a bigraded map [R, d] → [M, 0] inducing an
isomorphism in cohomology.

Let N be another module; then applying the functor ⊗k[v1,...,vm]N to a
resolution [R, d] we get a homomorphism of differential modules

[R⊗k[v1,...,vm] N, d] → [M ⊗k[v1,...,vm] N, 0],

which in general does not induce an isomorphism in cohomology. The (−i)th
cohomology module of the cochain complex

. . . −−−−→ R−i ⊗k[v1,...,vm] N −−−−→ . . . −−−−→ R0 ⊗k[v1,...,vm] N −−−−→ 0

is denoted by Tor−i
k[v1,...,vm](M,N). Thus,

Tor−i
k[v1,...,vm](M,N) :=

Ker
[
d : R−i ⊗k[v1,...,vm] N → R−i+1 ⊗k[v1,...,vm] N

]
d(R−i−1 ⊗k[v1,...,vm] N)

.

Since all the R−i and N are graded modules, we actually have a bigraded
k-module

Tork[v1,...,vm](M,N) =
⊕
i,j

Tor−i,j
k[v1,...,vm](M,N).

The following properties of Tor−i
k[v1,...,vm](M,N) are well known.

Proposition 2.7. (a) the module Tor−i
k[v1,...,vm](M,N) does not depend on a

choice of resolution in (2.2);
(b) Tor−i

k[v1,...,vm]( · , N) and Tor−i
k[v1,...,vm](M, · ) are covariant functors;

(c) Tor0k[v1,...,vm](M,N) ∼= M ⊗k[v1,...,vm] N ;
(d) Tor−i

k[v1,...,vm](M,N) ∼= Tor−i
k[v1,...,vm](N,M).

Now put M = k[K] and N = k. Since deg vi = 2, we have

Tork[v1,...,vm]

(
k[K],k

)
=

m⊕
i,j=0

Tor−i,2j
k[v1,...,vm]

(
k[K],k

)
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Define the bigraded Betti numbers of k[K] by

(2.3) β−i,2j
(
k[K]

)
:= dimkTor

−i,2j
k[v1,...,vm]

(
k[K],k

)
, 0 ≤ i, j ≤ m.

We also set

β−i(k[K]) = dimkTor
−i
k[v1,...,vm](k[K],k) =

∑
j

β−i,2j(k[K]).

Example 2.8. Let K be the boundary of a square. Then

k[K] ∼= k[v1, . . . , v4]/(v1v3, v2v4).

Let us construct a resolution of k[K] and calculate the corresponding bi-
graded Betti numbers. The module R0 has one generator 1 (of degree 0),
and the map R0 → k[K] is the quotient projection. Its kernel is the ideal IK ,
generated by two monomials v1v3 and v2v4. Take R−1 to be a free module on
two 4-dimensional generators, denoted v13 and v24, and define d : R−1 → R0

by sending v13 to v1v3 and v24 to v2v4. Its kernel is generated by one element
v2v4v13 − v1v3v24. Hence, R−2 has one generator of degree 8, say a, and the
map d : R−2 → R−1 is injective and sends a to v2v4v13 − v1v3v24. Thus, we
have a resolution

0 −−−−→ R−2 −−−−→ R−1 −−−−→ R0 −−−−→ M −−−−→ 0

where rankR0 = β0,0(k[K]) = 1, rankR−1 = β−1,4 = 2 and rankR−2 =
β−2,8 = 1.

The Betti numbers β−i,2j(k[K]) are important combinatorial invariants of
the simplicial complex K. The following result expresses them in terms of
homology groups of subcomplexes of K.

Given a subset ω ⊆ [m], we may restrict K to ω and consider the full
subcomplex Kω = {σ ∈ K : σ ⊆ ω}.

Theorem 2.9 (Hochster). We have

β−i,2j
(
k[K]

)
=

∑
ω⊆[m] : |ω|=j

dimk H̃
j−i−1(Kω;k),

where H̃∗(·) denotes the reduced cohomology groups and we assume that
H̃−1(∅) = k.

Hochster’s original proof of this theorem uses rather complicated com-
binatorial and commutative algebra techniques. Later in subsection 5.1 we
give a topological interpretation of the numbers β−i,2j(k[K]) as the bigraded
Betti numbers of a topological space, and prove a generalisation of Hochster’s
theorem.

Example 2.10 (Koszul resolution). Let M = k with the k[v1, . . . , vm]-
module structure defined via the map k[v1, . . . , vm] → k sending each vi
to 0. Let Λ[u1, . . . , um] denote the exterior k-algebra on m generators. The
tensor product R = Λ[u1, . . . , um]⊗ k[v1, . . . , vm] (here and below we use ⊗
for ⊗k) may be turned to a differential bigraded algebra by setting

bideg ui = (−1, 2), bideg vi = (0, 2),

dui = vi, dvi = 0,(2.4)
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and requiring d to be a derivation of algebras. An explicit construction of
a cochain homotopy shows that H−i[R, d] = 0 for i > 0 and H0[R, d] = k.
Since Λ[u1, . . . , um] ⊗ k[v1, . . . , vm] is a free k[v1, . . . , vm]-module, it deter-
mines a free resolution of k. It is known as the Koszul resolution and its
expanded form (2.2) is as follows:

0 → Λm[u1, . . . , um]⊗ k[v1, . . . , vm] −→ · · ·
−→ Λ1[u1, . . . , um]⊗ k[v1, . . . , vm] −→ k[v1, . . . , vm] −→ k → 0

where Λi[u1, . . . , um] is the subspace of Λ[u1, . . . , um] spanned by monomials
of length i.

Now let us consider the differential bigraded algebra [Λ[u1, . . . , um] ⊗
k[K], d] with d defined as in (2.4).

Lemma 2.11. There is an isomorphism of bigraded modules:

Tork[v1,...,vm](k[K],k) ∼= H
[
Λ[u1, . . . , um]⊗ k[K], d

]
which endows Tork[v1,...,vm](k[K],k) with a bigraded algebra structure in a
canonical way.

Proof. Using the Koszul resolution in the definition of Tor, we calculate

Tork[v1,...,vm](k[K],k) ∼= Tork[v1,...,vm](k,k[K])

= H
[
Λ[u1, . . . , um]⊗ k[v1, . . . , vm]⊗k[v1,...,vm] k[K]

]
∼= H

[
Λ[u1, . . . , um]⊗ k[K]

]
.

The cohomology in the right hand side is a bigraded algebra, providing an
algebra structure for Tork[v1,...,vm](k[K],k). �

The bigraded algebra Tork[v1,...,vm](k[K],k) is called the Tor-algebra of
the simplicial complex K.

Lemma 2.12. A simplicial map φ : K1 → K2 between two simplicial com-
plexes on the vertex sets [m1] and [m2] respectively induces a homomorphism

(2.5) φ∗
t : Tork[w1,...,wm2 ]

(k[K2],k) → Tork[v1,...,vm1 ]
(k[K1],k)

of the corresponding Tor-algebras.

Proof. This follows directly from Propositions 2.2 and 2.7 (b). �

3. Toric spaces

Moment-angle complexes provide a functor K 7→ ZK from the category of
simplicial complexes and simplicial maps to the category of spaces with torus
action and equivariant maps. This functor allows us to use the techniques of
equivariant topology in the study of combinatorics of simplicial complexes
and commutative algebra of their face rings; in a way, it breathes a geometri-
cal life into Stanley’s ‘combinatorial commutative algebra’. In particular, the
calculation of the cohomology of ZK opens a way to a topological treatment
of homological invariants of face rings.

The space ZK was introduced for arbitrary finite simplicial complex K by
Davis and Januszkiewicz [11] as a technical tool in their study of (quasi)toric
manifolds, a topological generalisation of smooth algebraic toric varieties.
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Later this space turned out to be of great independent interest. For the
subsequent study of ZK , its place within ‘toric topology’, and connections
with combinatorial problems we refer to [8] and its extended Russian ver-
sion [9]. Here we review the most important aspects of this study related to
the cohomology of face rings.

3.1. Moment-angle complexes. The m-torus Tm is a product of m cir-
cles; we usually regard it as embedded in Cm in the standard way:

Tm =
{
(z1, . . . , zm) ∈ Cm : |zi| = 1, i = 1, . . . ,m

}
.

It is contained in the unit polydisk

(D2)m = {(z1, . . . , zm) ∈ Cm : |zi| ≤ 1, i = 1, . . . ,m}.
For an arbitrary subset ω ⊆ V , define

Bω := {(z1, . . . , zm) ∈ (D2)m : |zi| = 1 for i /∈ ω}.
The subspace Bω is homeomorphic to (D2)|ω| × Tm−|ω|.

Given a simplicial complex K on [m] = {1, . . . ,m}, we define the moment-
angle complex ZK by

(3.1) ZK :=
∪
σ∈K

Bσ ⊆ (D2)m.

The torus Tm acts on (D2)m coordinatewise and each subspace Bω is
invariant under this action. Therefore, the space ZK inherits a torus action.
The quotient (D2)m/Tm can be identified with the unit m-cube:

Im :=
{
(y1, . . . , ym) ∈ Rm : 0 ≤ yi ≤ 1, i = 1, . . . ,m

}
.

The quotient Bω/T
m is then the following |ω|-dimensional face of Im:

Cω :=
{
(y1, . . . , ym) ∈ Im : yi = 1 if i /∈ ω

}
.

Thus the whole quotient ZK/Tm is identified with a certain cubical subcom-
plex in Im, which we denote by cc(K).

Lemma 3.1. The cubical complex cc(K) is PL-homeomorphic to coneK.

Proof. Let K ′ denote the barycentric subdivision of K (the vertices of K ′

correspond to non-empty simplices σ of K). We define a PL embedding
ic : coneK ′ ↪→ Im by mapping each vertex σ to the vertex (ε1, . . . , εm) ∈ Im

where εi = 0 if i ∈ σ and εi = 1 otherwise, the cone vertex to (1, . . . , 1) ∈ Im,
and then extending linearly on the simplices of coneK ′. The barycentric
subdivision of a face σ ∈ K is a subcomplex in K ′, which we denote K ′|σ.
Under the map ic the subcomplex coneK ′|σ maps onto the face Cσ ⊂ Im.
Thus the whole complex coneK ′ maps homeomorphically onto cc(K), which
concludes the proof. �

It follows that the moment-angle complex ZK can be defined by the pull-
back diagram

ZK −−−−→ (D2)my yρ

coneK ′ ic−−−−→ Im

where ρ is the projection onto the orbit space.
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K = ∂∆2

Figure 2. Embedding ic : coneK ′ ↪→ Im.

Example 3.2. The embedding ic for two simple cases when K is a three
point complex and the boundary of a triangle is shown on Figure 2. If
K = ∆m−1 is the whole simplex on m vertices, then cc(K) is the whole cube
Im, and the above constructed PL-homeomorphism between cone(∆m−1)′

and Im defines the standard triangulation of Im.

The next lemma shows that the space ZK is particularly nice for certain
geometrically important classes of triangulations.

Lemma 3.3. Suppose that K is a triangulation of an (n − 1)-dimensional
sphere. Then ZK is a closed (m+ n)-dimensional manifold.

In general, if K is a triangulated manifold then ZK \ ρ−1(1, . . . , 1) is
a noncompact manifold, where (1, . . . , 1) ∈ Im is the cone vertex and
ρ−1(1, . . . , 1) ∼= Tm.

Proof. We only prove the first statement here; the proof of the second is
similar and can be found in [9]. Each vertex vi of K corresponds to a
vertex of the barycentric subdivision K ′, which we continue to denote vi.
Let starK′ vi be the star of vi in K ′, that is, the subcomplex consisting of all
simplices of K ′ containing vi, and all their subsimplices. The space coneK ′

has a canonical face structure whose facets (codimension-one faces) are

(3.2) Fi := starK′ vi, i = 1, . . . ,m,

and whose i-faces are non-empty intersections of i-tuples of facets. In par-
ticular, the vertices (0-faces) in this face structure are the barycentres of
(n− 1)-dimensional simplices of K.

For every such barycentre b we denote by Ub the subset of coneK ′ obtained
by removing all faces not containing b. Since K is a triangulation of a
sphere, coneK ′ is an n-ball, hence each Ub is homeomorphic to an open
subset in In via a homeomorphism preserving the dimension of faces. Since
each point of coneK ′ is contained in some Ub, this displays coneK ′ as a
manifold with corners. Having identified coneK ′ with cc(K) and further
cc(K) with ZK/Tm, we see that every point in ZK lies in a neighbourhood
homeomorphic to an open subset in (D2)n × Tm−n and thus in Rm+n. �

A particularly important class of examples of sphere triangulations arise
from boundary triangulations of convex polytopes. Suppose P is a simple
n-dimensional convex polytope, i.e. one where every vertex is contained
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in exactly n facets. Then the dual (or polar) polytope is simplicial, and we
denote its boundary complex by KP . KP is then a triangulation of an (n−1)-
sphere. The faces of coneK ′

P introduced in the previous proof coincide with
those of P .

Example 3.4. Let K = ∂∆m−1. Then ZK = ∂((D2)m) ∼= S2m−1. In
particular, for m = 2 from (3.1) we get the familiar decomposition

S3 = D2 × S1 ∪ S1 ×D2 ⊂ D2 ×D2

of a 3-sphere into a union of two solid tori.

Using faces (3.2) we can identify the isotropy subgroups of the Tm-action
on ZK . Namely, the isotropy subgroup of a point x in the orbit space coneK ′

is the coordinate subtorus

T (x) = {(z1, . . . , zm) ∈ Tm : zi = 1 if x /∈ Fi}.
In particular, the action is free over the interior (that is, near the cone point)
of coneK ′.

It follows that the moment-angle complex can be identified with the quo-
tient

ZK =
(
Tm × | coneK ′|

)
/∼,

where (t1, x) ∼ (t2, y) if and only if x = y and t1t
−1
2 ∈ T (x). In the case

when K is the dual triangulation of a simple polytope Pn we may write
(Tm × Pn)/∼ instead. The latter Tm-manifold is the one introduced by
Davis and Januszkiewicz [11], which thereby coincides with our moment-
angle complex.

3.2. Homotopy fibre construction. The classifying space for the circle S1

can be identified with the infinite-dimensional projective space CP∞. The
classifying space BTm of the m-torus is a product of m copies of CP∞. The
cohomology of BTm is the polynomial ring Z[v1, . . . , vm], deg vi = 2 (the
cohomology is taken with integer coefficients, unless another coefficient ring
is explicitly specified). The total space ETm of the universal principal Tm-
bundle over BTm can be identified with the product of m infinite-dimensional
spheres.

In [11] Davis and Januszkiewicz considered the homotopy quotient of ZK

by the Tm-action (also known as the Borel construction). We refer to it as
the Davis–Januszkiewicz space:

DJ (K) := ETm ×Tm ZK = ETm ×ZK/∼,

where (e, z) ∼ (et−1, tz). There is a a fibration p : DJ (K) → BTm with
fibre ZK . The cohomology of the Borel construction of a Tm-space X is
called the equivariant cohomology and denoted by H∗

Tm(X).
A theorem of [11] states that the cohomology ring of DJ (K) (or the equi-

variant cohomology of ZK) is isomorphic to Z[K]. This result can be clarified
by an alternative construction of DJ (K) [8], which we review below.

The space BTm has the canonical cell decomposition in which each factor
CP∞ has one cell in every even dimension. Given a subset ω ⊆ [m], define
the subproduct

BTω := {(x1, . . . , xm) ∈ BTm : xi = ∗ if i /∈ ω}
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where ∗ is the basepoint (zero-cell) of CP∞. Now for a simplicial complex
K on [m] define the following cellular subcomplex:

(3.3) BTK :=
∪
σ∈K

BT σ ⊆ BTm.

Proposition 3.5. The cohomology of BTK is isomorphic to the Stanley–
Reisner ring Z[K]. Moreover, the inclusion of cellular complexes i : BTK ↪→
BTm induces the quotient epimorphism

i∗ : Z[v1, . . . , vm] → Z[K] = Z[v1, . . . , vm]/IK
in the cohomology.

Proof. Let B2k
i denote the 2k-dimensional cell in the ith factor of BTm, and

C∗(BTm) the cellular cochain module. A monomial vk1i1 . . . v
kp
ip

represents the

cellular cochain (B2k1
i1

. . . B
2kp
ip

)∗ in C∗(BTm). Under the cochain homomor-

phism induced by the inclusion BTK ⊂ BTm the cochain (B2k1
i1

. . . B
2kp
ip

)∗

maps identically if {i1, . . . , ip} ∈ K and to zero otherwise, whence the state-
ment follows. �
Theorem 3.6. There is a deformation retraction DJ (K) → BTK such that
the diagram

DJ (K)
p−−−−→ BTmy ∥∥∥

BTK i−−−−→ BTm

is commutative.

Proof. We have ZK =
∪

σ∈K Bσ, and each Bσ is Tm-invariant. Hence, there
is the corresponding decomposition of the Borel construction:

DJ (K) = ETm ×Tm ZK =
∪
σ∈K

ETm ×Tm Bσ.

Suppose |σ| = s. Then Bσ
∼= (D2)s × Tm−s, so we have

ETm ×Tm Bσ
∼= (ET s ×T s (D2)s)× ETm−s.

The space ET s ×T s (D2)s is the total space of a (D2)s-bundle over BT s,
and ETm−s is contractible. It follows that there is a deformation retrac-
tion ETm ×Tm Bσ → BT σ. These homotopy equivalences corresponding to
different simplices fit together to yield the required homotopy equivalence
between p : DJ (K) → BTm and i : BTK ↪→ BTm. �
Corollary 3.7. The space ZK is the homotopy fibre of the cellular inclusion
i : BTK ↪→ BTm. Hence [11] there are ring isomorphisms

H∗(DJ (K)) = H∗
Tm(ZK) ∼= Z[K].

In view of the last two statements we shall also use the notation DJ (K) for
BTK , and refer to the whole class of spaces homotopy equivalent to DJ (K)
as the Davis–Januszkiewicz homotopy type.

An important question arises: to what extent does the isomorphism of
the cohomology ring of a space X with the face ring Z[K] determine the
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homotopy type of X? In other words, for given K, does there exist a ‘fake’
Davis–Januszkiewicz space, whose cohomology is isomorphic to Z[K], but
which is not homotopy equivalent to DJ (K)? This question is addressed
in [21]. It is shown there [21, Prop. 5.11] that if Q[K] is a complete inter-
section ring and X is a nilpotent cell complex of finite type whose rational
cohomology is isomorphic to Q[K], then X is rationally homotopy equivalent
to DJ (K). Using the formality of DJ (K), this can be rephrased by saying
that the complete intersection face rings are intrinsically formal in the sense
of Sullivan.

Note that the class of simplicial complexes K for which the face ring Q[K]
is a complete intersection has a transparent geometrical interpretation: such
K is a join of simplices and boundaries of simplices.

3.3. Coordinate subspace arrangements. Yet another interpretation of
the moment-angle complex ZK comes from its identification up to homo-
topy with the complement of the complex coordinate subspace arrangement
corresponding to K. This leads to an application of toric topology in the
theory of arrangements, and allows us to describe and effectively calculate
the cohomology rings of coordinate subspace arrangement complements and
in certain cases identify their homotopy types.

A coordinate subspace in Cm can be written as

(3.4) Lω = {(z1, . . . , zm) ∈ Cm : zi1 = · · · = zik = 0}
for some subset ω = {i1, . . . , ik} ⊆ [m]. Given a simplicial complex K, we
may define the corresponding coordinate subspace arrangement {Lω : ω /∈ K}
and its complement

U(K) = Cm \
∪
ω/∈K

Lω.

Note that if K ′ ⊂ K is a subcomplex, then U(K ′) ⊂ U(K). It is easy to
see [8, Prop. 8.6] that the assignment K 7→ U(K) defines a one-to-one order
preserving correspondence between the set of simplicial complexes on [m]
and the set of coordinate subspace arrangement complements in Cm.

The subset U(K) ⊂ Cm is invariant with respect to the coordinatewise
Tm-action. It follows from (3.1) that ZK ⊂ U(K).

Proposition 3.8. There is a Tm-equivariant deformation retraction

U(K)
≃−→ ZK .

Proof. In analogy with (3.3), we may write

(3.5) U(K) =
∪
σ∈K

Uσ,

where
Uσ := {(z1, . . . , zm) ∈ Cm : zi ̸= 0 for i /∈ σ}.

Then there are obvious homotopy equivalences (deformation retractions)

Cσ × (C \ 0)[m]\σ ∼= Uσ
≃−→ Bσ

∼= (D2)σ × (S1)[m]\σ.

These patch together to get the required map U(K) → ZK . �
Example 3.9. 1. Let K = ∂∆m−1. Then U(K) = Cm \ 0 (recall that

ZK
∼= S2m−1 in this case).
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2. Let K = {v1, . . . , vm} (m points). Then

U(K) = Cm \
∪

1≤i<j≤m

{zi = zj = 0},

the complement to the set of all codimension 2 coordinate planes.
3. More generally, if K is the i-skeleton of ∆m−1, then U(K) is the

complement to the set of all coordinate planes of codimension (i+2).

The reader may have noticed a similar pattern in several constructions of
toric spaces appeared above; compare (3.1), (3.3) and (3.5). The following
general framework was suggested to the author by Neil Strickland in a private
communication.

Construction 3.10 (K-power). Let X be a space and W ⊂ X a subspace.
For a simplicial complex K on [m] and σ ∈ K, we set

(X,W )σ :=
{
(x1, . . . , xm) ∈ Xm : xj ∈ W for j /∈ σ

}
and

(X,W )K :=
∪
σ∈K

(X,W )σ =
∪
σ∈K

(∏
i∈σ

X ×
∏
i/∈σ

W
)
.

We refer to the space (X,W )K ⊆ Xm as the K-power of (X,W ). If X
is a pointed space and W = pt is the basepoint, then we shall use the
abbreviated notation XK := (X, pt)K . Examples considered above include
ZK = (D2, S1)K , cc(K) = (I1, S0)K , DJ (K) = (CP∞)K and U(K) =
(C,C∗)K .

Homotopy theorists would recognise the K-power as an example of the
colimit of a diagram of topological spaces over the face category of K (objects
are simplices and morphisms are inclusions). The diagram assigns the space
(X,W )σ to a simplex σ; its colimit is (X,W )K . These observations are
further developed and used to construct models of loop spaces of toric spaces
as well as for homotopy and homology calculations in [23] and [22].

3.4. Toric varieties, quasitoric manifolds, and torus manifolds. Sev-
eral important classes of manifolds with torus action emerge as the quotients
of moment-angle complexes by appropriate freely acting subtori.

First we give the following characterisation of lsops in the face ring. Let
Kn−1 be a simplicial complex and t1, . . . , tn a sequence of degree-two ele-
ments in k[K]. We may write

(3.6) ti = λi1v1 + · · ·+ λimvm, i = 1, . . . , n.

For an arbitrary simplex σ ∈ K, we have Kσ = ∆|σ|−1 and k[Kσ] is the
polynomial ring k[vi : i ∈ σ] on |σ| generators. The inclusion Kσ ⊂ K
induces the restriction homomorphism rσ from k[K] to the polynomial ring,
mapping vi identically if i ∈ σ and to zero otherwise.

Lemma 3.11. A degree-two sequence t1, . . . , tn is an lsop in k[Kn−1] if and
only if for every σ ∈ K the elements rσ(t1), . . . , rσ(tn) generate the positive
ideal k[vi : i ∈ σ]+.
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Proof. Suppose (3.6) is an lsop. For simplicity we denote its image under any
restriction homomorphism by the same letters. Then the restriction induces
an epimorphism of the quotient rings:

k[K]/(t1, . . . , tn) → k[vi : i ∈ σ]/(t1, . . . , tn).

Since (3.6) is an lsop, k[K]/(t1, . . . , tn) is a finitely generated k-module.
Hence, so is k[vi : i ∈ σ]/(t1, . . . , tn). But the latter can be finitely generated
only if t1, . . . , tn generates k[vi : i ∈ σ]+.

The “if” part may be proved by considering the sum of restrictions:

k[K] →
⊕
σ∈K

k[vi : i ∈ σ],

which turns out to be a monomorphism. See [6, Th. 5.1.16] for details. �

Obviously, it is enough to consider only restrictions to the maximal sim-
plices in the previous lemma.

Suppose now that K is Cohen–Macaulay (e.g. K is a sphere triangula-
tion). Then every lsop is a regular sequence (however, for k = Z or a field
of finite characteristic an lsop may fail to exist).

Now we restrict to the case k = Z and organise the coefficients in (3.6) into
an n×m-matrix Λ = (λij). For an arbitrary maximal simplex σ ∈ K denote
by Λσ the square submatrix formed by the elements λij with j ∈ σ. The
matrix Λ defines a linear map Zm → Zn and a homomorphism Tm → Tn.
We denote both by λ and denote the kernel of the latter map by TΛ.

Theorem 3.12. The following conditions are equivalent:
(a) the sequence (3.6) is an lsop in Z[Kn−1];
(b) detΛσ = ±1 for every maximal simplex σ ∈ K;
(c) TΛ

∼= Tm−n and TΛ acts freely on ZK .

Proof. The equivalence of (a) and (b) is a reformulation of Lemma 3.11. Let
us prove the equivalence of (b) and (c). Every isotropy subgroup of the
Tm-action on ZK has the form

T σ =
{
(z1, . . . , zm) ∈ Tm : zi = 1 if i /∈ σ

}
for some simplex σ ∈ K. Now, (b) is equivalent to the condition TΛ ∩ T σ =
{e} for arbitrary maximal σ, whence the statement follows. �

We denote the quotient ZK/TΛ by M2n
K (Λ), and abbreviate it to M2n

K or
to M2n when the context allows. If K is a triangulated sphere, then ZK is
a manifold, hence, so is M2n

K . The n-torus Tn = Tm/TΛ acts on M2n
K . This

construction produces two important classes of Tn-manifolds as particular
examples.

Let K = KP be a polytopal triangulation, dual to the boundary complex
of a simple polytope P . Then the map λ determined by the matrix Λ may
be regarded as an assignment of an integer vector to every facet of P . The
map λ coming from a matrix satisfying the condition of Theorem 3.12(b)
was called a characteristic map by Davis and Januszkiewicz [11]. We refer
to the corresponding quotient M2n

P (Λ) = ZKP
/TΛ as a quasitoric manifold

(a toric manifold in the terminology of Davis–Januszkiewicz).
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Let us assume further that P is realised in Rn with integer coordinates of
vertices, so we can write

(3.7) Pn =
{
x ∈ Rn : ⟨l i, x ⟩ ≥ −ai, i = 1, . . . ,m

}
,

where l i are inward pointing normals to the facets of Pn (we may further
assume these vectors to be primitive), and ai ∈ Q. Let Λ be the matrix
formed by the column vectors l i, i = 1, . . . ,m. Then ZKP

/TΛ can be identi-
fied with the projective toric variety [10, 13] determined by the polytope P .
The condition of Theorem 3.12(b) is equivalent to the requirement that the
toric variety is non-singular. Thereby a non-singular projective toric variety
is a quasitoric manifold (but there are many quasitoric manifolds which are
not toric varieties).

We also note that smooth projective toric varieties provide examples of
symplectic 2n-dimensional manifolds with Hamiltonian Tn-action. These
symplectic manifolds can be obtained via the process of symplectic reduction
from the standard Hamiltonian Tm-action on Cm. A choice of an (m − n)-
dimensional toric subgroup provides a moment map µ : Cm → Rm−n, and
the corresponding moment-angle complex ZKP

can be identified with the
level surface µ−1(a) of the moment map for any of its regular values a. The
details of this construction can be found in [8, p. 130].

Finally, we mention that if K is an arbitrary (not necessarily polytopal)
triangulation of sphere, then the manifold M2n

K (Λ) is a torus manifold in the
sense of Hattori–Masuda [19]. The corresponding multi-fan has K as the
underlying simplicial complex. This particular class of torus manifolds has
many interesting properties.

4. Cohomology of moment-angle complexes

The main result of this section (Theorem 4.7) identifies the integral co-
homology algebra of the moment-angle complex ZK with the Tor-algebra
of the face ring of the simplicial complex K. Over the rationals this result
was proved in [7] by studying the Eilenberg–Moore spectral sequence of the
fibration ZK → DJ (K) → BTm; a more detailed account of applications of
the Eilenberg–Moore spectral sequence to toric topology can be found in [8].
The new proof, which works with integer coefficients as well, relies upon a
construction of a special cellular decomposition of ZK and subsequent anal-
ysis of the corresponding cellular cochains.

One of the key ingredients here is a specific cellular approximation of
the diagonal map ∆: ZK → ZK × ZK . Cellular cochains do not admit a
functorial associative multiplication because a proper cellular diagonal ap-
proximation does not exist in general. The construction of moment-angle
complexes is given by a functor from the category of simplicial complexes
to the category of spaces with a torus action. We show that in this special
case the cellular approximation of the diagonal is functorial with respect
to those maps of moment-angle complexes which are induced by simplicial
maps. The corresponding cellular cochain algebra is isomorphic to a quotient
of the Koszul complex for k[K] by an acyclic ideal, and its cohomology is
isomorphic to the Tor-algebra. The proofs have been sketched in [5]; here
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we follow the more detailed exposition of [9]. Another proof of Theorem 4.7
follows from a recent independent work of M. Franz [12, Th. 1.2].

4.1. Cell decomposition. The polydisc (D2)m has a cell decomposition in
which each D2 is subdivided into cells 1, T and D of dimensions 0, 1 and 2
respectively, see Figure 3. Each cell of this complex is a product of cells of 3'

&

$

%
s1T

D

Figure 3

different types and we encode it by a word T ∈ {D,T, 1}m in a three-letter
alphabet. Assign to each pair of subsets σ, ω ⊆ [m], σ ∩ ω = ∅, the word
T (σ, ω) which has the letter D on the positions indexed by σ and letter T
on the positions with indices from ω.

Lemma 4.1. ZK is a cellular subcomplex of (D2)m. A cell T (σ, ω) ⊂ (D2)m

belongs to ZK if and only if σ ∈ K.

Proof. We have ZK = ∪σ∈KBσ and each Bσ is the closure of the cell
T (σ, [m] \ σ). �

Therefore, we can consider the cellular cochain complex C∗(ZK), which
has an additive basis consisting of the cochains T (σ, ω)∗. It has a natural
bigrading defined by

bideg T (σ, ω)∗ = (−|ω|, 2|σ|+ 2|ω|),

so bidegD = (0, 2), bideg T = (−1, 2) and bideg 1 = (0, 0). Moreover, since
the cellular differential does not change the second grading, C∗(ZK) splits
into the sum of its components having fixed second degree:

C∗(ZK) =

m⊕
j=1

C∗,2j(ZK).

The cohomology of ZK thereby acquires an additional grading, and we may
define the bigraded Betti numbers b−i,2j(ZK) by

b−i,2j(ZK) := rankH−i,2j(ZK), i, j = 1, . . . ,m.

For the ordinary Betti numbers we have bk(ZK) =
∑

2j−i=k b
−i,2j(ZK).

Lemma 4.2. Let φ : K1 → K2 be a simplicial map between simplicial com-
plexes on the sets [m1] and [m2] respectively. Then there is an equivariant cel-
lular map φZ : ZK1 → ZK2 covering the induced map | coneK ′

1| → | coneK ′
2|.
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Proof. Define a map of polydisks

φD : (D2)m1 → (D2)m2 , (z1, . . . , zm1) 7→ (w1, . . . , wm2),

where
wj :=

∏
i∈φ−1(j)

zi, j = 1, . . . ,m2

(we set wj = 1 if φ−1(j) = ∅). Assume τ ∈ K1. In the notation of (3.1),
we have φD(Bτ ) ⊆ Bφ(τ). Since φ is a simplicial map, φ(τ) ∈ K2 and
Bφ(τ) ⊂ ZK2 , so the restriction of φD to ZK1 is the required map. �

Corollary 4.3. The correspondence K 7→ ZK gives rise to a functor from
the category of simplicial complexes and simplicial maps to the category of
spaces with torus actions and equivariant maps. It induces a natural transfor-
mation between the simplicial cochain functor of K and the cellular cochain
functor of ZK .

We also note that the maps respect the bigrading, so the bigraded Betti
numbers are also functorial.

4.2. Koszul algebras. Our algebraic model for the cellular cochains of ZK

is obtained by taking the quotient of the Koszul algebra [Λ[u1, . . . , um] ⊗
k[K], d] from Lemma 2.11 by a certain acyclic ideal. Namely, we introduce
a factor algebra

R∗(K) := Λ[u1, . . . , um]⊗ Z[K]
/
(v2i = uivi = 0, i = 1, . . . ,m),

where the differential and bigrading are as in (2.4). Let

ϱ : Λ[u1, . . . , um]⊗ Z[K] → R∗(K)

be the quotient projection. The algebra R∗(K) has a finite additive basis
consisting of the monomials of the form uωvσ where ω ⊆ [m], σ ∈ K and
ω∩σ = ∅ (remember that we are using the notation uω = ui1 . . . uik for ω =
{i1, . . . , ik}). Therefore, we have an additive inclusion (a monomorphism of
bigraded differential modules)

ι : R∗(K) → Λ[u1, . . . , um]⊗ Z[K]

which satisfies ϱ · ι = id.
The following statement shows that the finite-dimensional quotient R∗(K)

has the same cohomology as the Koszul algebra.

Lemma 4.4. The quotient map ϱ : Λ[u1, . . . , um] ⊗ Z[K] → R∗(K) induces
an isomorphism in cohomology.

Proof. The argument is similar to that used in the proof of the acyclicity of
the Koszul resolution. We construct a cochain homotopy between the maps
id and ι · ϱ from Λ[u1, . . . , um]⊗ Z[K] to itself, that is, a map s satisfying

(4.1) ds+ sd = id− ι · ϱ.

First assume that K = ∆m−1. We denote the corresponding bigraded
algebra Λ[u1, . . . , um]⊗ Z[K] by

(4.2) E = Em := Λ[u1, . . . , um]⊗ Z[v1, . . . , vm],
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while R∗(K) is isomorphic to

(4.3)
(
Λ[u]⊗ Z[v]

/
(v2 = uv = 0)

)⊗m
= R∗(∆0)⊗m.

For m = 1, the map s1 : E
0,∗ = k[v] → E−1,∗ given by

s1(a0 + a1v + . . .+ ajv
j) = (a2v + a3v

2 + . . .+ ajv
j−1)u

is a cochain homotopy. Indeed, we can write an element of E as either x
or xu with x = a0 + a1v + . . . + ajv

j ∈ E0,2j . In the former case, ds1x =
x− a0 − a1v = x− ιϱx and s1dx = 0. In the latter case, xu ∈ E−1,2j , then
ds1(xu) = 0 and s1d(xu) = xu − a0u = xu − ιϱ(xu). In both cases (4.1)
holds. Now we may assume by induction that for m = k − 1 there is a
cochain homotopy operator sk−1 : Ek−1 → Ek−1. Since Ek = Ek−1 ⊗ E1,
ϱk = ϱk−1 ⊗ ϱ1 and ιk = ιk−1 ⊗ ι1, a direct check shows that the map

sk = sk−1 ⊗ id + ιk−1ϱk−1 ⊗ s1

is a cochain homotopy between id and ιkϱk, which finishes the proof for
K = ∆m−1.

In the case of arbitrary K the algebras Λ[u1, . . . , um] ⊗ Z[K] are R∗(K)
are obtained from (4.2) and (4.3) respectively by factoring out the Stanley–
Reisner ideal IK . This factorisation does not affect the properties of the
constructed map s, which finishes the proof. �

Now comparing the additive structure of R∗(K) with that of the cellular
cochains C∗(K), we see that the two coincide:

Lemma 4.5. The map

g : R∗(K) → C∗(ZK),

uωvσ 7→ T (σ, ω)∗

is an isomorphism of bigraded differential modules. In particular, we have
an additive isomorphism

H[R∗(K)] ∼= H∗(ZK).

Having identified the algebra R∗ with the cellular cochains of ZK , we can
also interpret the cohomology isomorphism from Lemma 4.4 topologically.
To do this we shall identify the Koszul algebra Λ[u1, . . . , um] ⊗ Z[K] with
the cellular cochains of a space homotopy equivalent to ZK .

Let S∞ be an infinite-dimensional sphere obtained as a direct limit (union)
of standardly embedded odd-dimensional spheres. The space S∞ is con-
tractible and has a cell decomposition with one cell in every dimension. The
boundary of an even-dimensional cell is the closure of the appropriate odd-
dimensional cell, while the boundary of an odd cell is zero. The 2-skeleton of
this cell decomposition is a 2-disc decomposed as shown on Figure 3, while
the 1-skeleton is the circle S1 ⊂ S∞. The cellular cochain complex of S∞

can be identified with the algebra

Λ[u]⊗ Z[v], deg u = 1, deg v = 2, du = v, dv = 0.

From the obvious functorial properties of Construction 3.10 we obtain a
deformation retraction

ZK = (D2, S1)K ↪→ (S∞, S1)K −→ (D2, S1)K
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onto a cellular subcomplex.
The cellular cochains of the K-power (S∞, S1)K can be identified with the

Koszul algebra Λ[u1, . . . , um]⊗Z[K]. Since ZK ⊂ (S∞, S1)K is a deformation
retract, the cellular cochain map

Λ[u1, . . . , um]⊗ Z[K] = C∗((S∞, S1)K
)
→ C∗(ZK) = R∗(K),

induces an isomorphism in cohomology. In fact, the algebraic homotopy map
s constructed in the proof of Lemma 4.4 is the map induced on the cochains
by the topological homotopy.

4.3. Cellular cochain algebras. Here we introduce a multiplication for
cellular cochains of ZK and establish a ring isomorphism in Lemma 4.5.
This task runs into a complication because cellular cochains in general do
not carry a functorial associative multiplication; the classical definition of
the cohomology multiplication involves a diagonal map, which is not cellu-
lar. However, in our case there is a way to construct a canonical cellular
approximation of the diagonal map ∆: ZK → ZK ×ZK in such a way that
the resulting multiplication in cellular cochains coincides with that in R∗(K).

The standard definition of the multiplication in cohomology of a cell com-
plex X via cellular cochains is as follows. Consider a composite map of
cellular cochain complexes:

(4.4) C∗(X)⊗ C∗(X)
×−−−−→ C∗(X ×X)

∆̃∗
−−−−→ C∗(X).

Here the map × assigns to a cellular cochain c1⊗ c2 ∈ Cq1(X)⊗Cq2(X) the
cochain c1 × c2 ∈ Cq1+q2(X ×X) whose value on a cell e1 × e2 ∈ X ×X is
(−1)q1q2c1(e1)c2(e2). The map ∆̃∗ is induced by a cellular approximation ∆̃
of the diagonal map ∆: X → X ×X. In cohomology, the map (4.4) induces
a multiplication H∗(X) ⊗ H∗(X) → H∗(X) which does not depend on a
choice of cellular approximation and is functorial. However, the map (4.4)
is not itself functorial because of the arbitrariness in the choice of a cellular
approximation.

In the special case X = ZK we may apply the following construction.
Consider a map ∆̃ : D2 → D2 ×D2, defined in polar coordinates z = ρeiφ ∈
D2, 0 ≤ ρ ≤ 1, 0 ≤ φ < 2π as follows:

ρeiφ 7→
{

(1 + ρ(e2iφ − 1), 1) for 0 ≤ φ ≤ π,
(1, 1 + ρ(e2iφ − 1)) for π ≤ φ < 2π.

This is a cellular map taking ∂D2 to ∂D2 × ∂D2 and homotopic to the
diagonal ∆: D2 → D2 × D2 in the class of such maps. Taking an m-fold
product, we obtain a cellular approximation

∆̃ : (D2)m → (D2)m × (D2)m

which restricts to a cellular approximation for the diagonal map of ZK for
arbitrary K, as described by the following commutative diagram:

ZK −−−−→ (D2)m

∆̃

y y∆̃

ZK ×ZK −−−−→ (D2)m × (D2)m

.
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Note that this diagonal approximation is functorial with respect to those
maps ZK1 → ZK2 of moment-angle complexes that are induced by simplicial
maps K1 → K2 (see Lemma 4.2).

Lemma 4.6. The cellular cochain algebra C∗(ZK) defined by the diago-
nal approximation ∆̃ : ZK → ZK × ZK and (4.4) is isomorphic to R∗(K).
Therefore, we get an isomorphism of the cohomology algebras:

H[R∗(K)] ∼= H∗(ZK ;Z).

Proof. We first consider the case K = ∆0, that is, ZK = D2. The cellular
cochain complex of D2 is additively generated by the cochains 1 ∈ C0(D2),
T ∗ ∈ C1(D2) and D∗ ∈ C2(D2) dual to the corresponding cells, see Fig-
ure 3. The multiplication defined in C∗(D2) by (4.4) is trivial, so we get a
multiplicative isomorphism

R∗(∆0) = Λ[u]⊗ Z[v]/(v2 = uv = 0) → C∗(D2).

Now, for K = ∆m−1 we obtain a multiplicative isomorphism

f : R∗(∆m−1) = Λ[u1, . . . , um]⊗Z[v1, . . . , vm]/(v2i = uivi = 0) → C∗((D2)m)

by taking the tensor product. Since ZK ⊆ (D2)m is a cell subcomplex for
arbitrary K we obtain a multiplicative map q : C∗((D2)m) → C∗(ZK). Now
consider the commutative diagram

R∗(∆m−1)
f−−−−→ C∗((D2)m)

p

y yq

R∗(K)
g−−−−→ C∗(ZK).

Here the maps p, f and q are multiplicative, while g is an additive isomor-
phism by Lemma 4.5. Take α, β ∈ R∗(K). Since p is onto, we have α = p(α′)
and β = p(β′). Then

g(αβ) = gp(α′β′) = qf(α′β′) = gp(α′)gp(β′) = g(α)g(β),

and g is also a multiplicative isomorphism, which finishes the proof. �
Combining the results of Lemmas 2.11, 2.12, 4.4 and 4.6, we come to the

main result of this section.

Theorem 4.7. There is an isomorphism, functorial in K, of bigraded alge-
bras

H∗,∗(ZK ;Z) ∼= TorZ[v1,...,vm]

(
Z[K],Z

) ∼= H
[
Λ[u1, . . . , um]⊗ Z[K], d

]
,

where the bigrading and the differential in the last algebra are defined by (2.4).

As an illustration, we give two examples of particular cohomology calcula-
tions, which have a transparent geometrical interpretation. More examples
of calculations may be found in [8].

Example 4.8. 1. Let K = ∂∆m−1. Then

Z[K] = Z[v1, . . . , vm]/(v1 · · · vm).

The fundamental class of ZK
∼= S2m−1 is represented by the bideg (−1, 2m)

cocycle u1v2v3 · · · vm ∈ Λ[u1, . . . , um]⊗ Z[K].
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2. Let K = {v1, . . . , vm} (m points). Then ZK is homotopy equivalent to
the complement in Cm to the set of all codimension-two coordinate planes,
see Example 3.9. Then

Z[K] = Z[v1, . . . , vm]/(vivj , i ̸= j).

The subspace of cocycles in R∗(K) is generated by

vi1ui2ui3 · · ·uik , k ≥ 2 and ip ̸= iq for p ̸= q,

and has dimension m
(
m−1
k−1

)
. The subspace of coboundaries is generated by

the elements of the form
d(ui1 · · ·uik)

and is
(
m
k

)
-dimensional. Therefore

dimH0(ZK) = 1,

dimH1(ZK) = H2(U(K)) = 0,

dimHk+1(ZK) = m
(
m−1
k−1

)
−

(
m
k

)
= (k − 1)

(
m
k

)
, 2 ≤ k ≤ m,

and multiplication in the cohomology of ZK is trivial. Note that in general
multiplication in the cohomology of ZK is far from being trivial; for example
if K is a sphere triangulation then ZK is a manifold by Lemma 3.3.

The above cohomology calculation suggests that the complement of the
subspace arrangement from the previous example is homotopy equivalent to
a wedge of spheres. This is indeed the case, as the following theorem shows.

Theorem 4.9 (Grbić–Theriault [16]). The complement of the set of all
codimension-two coordinate subspaces in Cm has the homotopy type of the
wedge of spheres

m∨
k=2

(k − 1)

(
m

k

)
Sk+1.

The proof is based on an analysis of the homotopy fibre of the inclusion
DJ (K) ↪→ BTm, which is homotopy equivalent to ZK (or U(K)) by Corol-
lary 3.7. We shall return to coordinate subspace arrangements once again in
the next section.

5. Applications to combinatorial commutative algebra

5.1. A multiplicative version of Hochster’s theorem. As a first ap-
plication we give a proof of a generalisation of Hochster’s theorem (Theo-
rem 2.9) obtained by Baskakov in [3].

The bigraded structure in the cellular cochains of ZK can be further re-
fined as

C∗(ZK) =
⊕
ω⊆[m]

C∗, 2ω(ZK)

where C∗, 2ω(ZK) is the subcomplex generated by the cochains T (σ, ω \ σ)∗
with σ ⊆ ω and σ ∈ K. Thus, C∗(ZK) now becomes a Z ⊕ Zm-graded
module, and the bigraded cohomology groups decompose accordingly as

(5.1) H−i, 2j(ZK) =
⊕

ω⊆[m] : |ω|=j

H−i, 2ω(ZK)
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where H−i, 2ω(ZK) := H−i[C∗, 2ω(ZK)].
Given two simplicial complexes K1 and K2 with vertex sets V1 and V2

respectively, their join is the following complex on V1 ⊔ V2:

K1 ∗K2 := {σ ⊆ V1 ⊔ V2 : σ = σ1 ∪ σ2, σ1 ∈ K1, σ2 ∈ K2}.

Now we introduce a multiplication in the sum⊕
p≥−1,

ω⊆[m]

H̃p(Kω)

where Kω is the full subcomplex and H̃−1(∅) = Z, as follows. Take two
elements α ∈ H̃p(Kω1) and β ∈ H̃q(Kω2). Assume that ω1 ∩ ω2 = ∅. Then
we have an inclusion of subcomplexes

i : Kω1∪ω2 = Kω1 ⊔Kω2 ↪→ Kω1 ∗Kω2

and an isomorphism of reduced simplicial cochains

f : C̃p(Kω1)⊗ C̃q(Kω2)
∼=−→ C̃p+q+1(Kω1 ∗Kω2).

Now set

α · β :=

{
0, ω1 ∩ ω2 ̸= ∅,

i∗f(a⊗ b) ∈ H̃p+q+1(Kω1⊔ω2), ω1 ∩ ω2 = ∅.

Theorem 5.1 (Baskakov [3, Th. 1]). There are isomorphisms

H̃p(Kω)
∼=−→ Hp+1−|ω|,2ω(ZK)

which are functorial with respect to simplicial maps and induce a ring iso-
morphism

γ :
⊕
p≥−1,

ω⊆[m]

H̃p(Kω)
∼=−→ H∗(ZK).

Proof. Define a map of cochain complexes

C̃∗(Kω) → C∗+1−|ω|,2ω(ZK), σ∗ 7→ T (σ, ω \ σ)∗.

It is a functorial isomorphism by observation, whence the isomorphism of
the cohomology groups follows.

The statement about the ring isomorphism follows from the isomorphism
H∗(ZK) ∼= H[R∗(K)] established in Lemma 4.5 and analysing the ring struc-
ture in R∗(K). �

Corollary 5.2. There is an isomorphism

H−i,2j(ZK) ∼=
⊕

ω⊆[m] : |ω|=j

H̃j−i−1(Kω).

As a further corollary we obtain Hochster’s theorem (Theorem 2.9):

Tor−i,∗
Z[v1,...,vm](Z[K],Z) ∼=

⊕
ω⊆[m]

H̃ |ω|−i−1(Kω).
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5.2. Alexander duality and coordinate subspace arrangements re-
visited. The multiplicative version of Hochster’s can also be applied to co-
homology calculations of subspace arrangement complements.

A coordinate subspace can be defined either by setting some coordinates
to zero as in (3.4), or as the linear span of a subset of the standard basis
in Cm. This gives an alternative way to parametrise coordinate subspace
arrangements by simplicial complexes. Namely, we can write

{Lω : ω /∈ K} = {span⟨ei1 , . . . , eik⟩ : {i1, . . . , ik} ∈ K̂}

where K̂ is the simplicial complex given by

K̂ := {ω ⊆ [m] : [m] \ ω /∈ K}.

It is called the dual complex of K. The cohomology of full subcomplexes
in K is related to the homology of links in K̂ by means of the following
combinatorial version of the Alexander duality theorem.

Theorem 5.3 (Alexander duality). Let K ̸= ∆m−1 be a simplicial complex
on the set [m] and σ /∈ K, that is, σ̂ = [m] \ σ ∈ K̂. Then there are
isomorphisms

H̃j(Kσ) ∼= H̃ |σ|−3−j(link
K̂
σ̂).

In particular, for σ = [m] we get

H̃j(K) ∼= H̃m−3−j(K̂), −1 ≤ j ≤ m− 2.

A proof can be found in [9, §2.2]. Using the duality between the full
subcomplexes of K and links of K̂ we can reformulate the cohomology cal-
culation of U(K) as follows.

Proposition 5.4. We have

H̃i(U(K)) ∼=
⊕
σ∈K̂

H̃2m−2|σ|−i−2(link
K̂
σ).

Proof. From Proposition 3.8 and Corollary 5.2 we obtain

Hp(U(K)) =
⊕
τ⊆[m]

H̃p−|τ |−1(Kτ ).

Nonempty simplices τ ∈ K do not contribute to the above sum, since the
corresponding subcomplexes Kτ are contractible. Since H̃−1(∅) = k the
empty subset of [m] only contributes k to H0(U(K)). Hence we may rewrite
the above formula as

H̃p(U(K)) =
⊕
τ /∈K

H̃p−|τ |−1(Kτ ).

Using Theorem 5.3, we calculate

H̃p−|τ |−1(Kτ ) = H̃ |τ |−3−p+|τ |+1(link
K̂
τ̂) = H̃2m−2|τ̂ |−p−2(link

K̂
τ̂),

where τ̂ = [m] \ τ is a simplex in K̂, as required. �
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Proposition 5.4 is a particular case of the well-known Goresky–Macpherson
formula [15, Part III], which calculates the dimensions of the (co)homology
groups of an arbitrary subspace arrangement in terms of its intersection
poset (which coincides with the poset of faces of K̂ in the case of coordi-
nate arrangements). We see that the study of moment-angle complexes not
only allows us to retrieve the multiplicative structure of the cohomology of
complex coordinate subspace arrangement complements, but also connects
two seemingly unrelated results, the Goresky–Macpherson formula from the
theory of arrangements and Hochester’s formula from combinatorial commu-
tative algebra.

5.3. Massey products in the cohomology of ZK . Here we address the
question of existence of nontrivial Massey products in the Koszul complex

[Λ[u1, . . . , um]⊗ Z[K], d]

of the face ring. Massey products constitute a series of higher-order opera-
tions (or brackets) in the cohomology of a differential graded algebra, with
the second-order operation coinciding with the cohomology multiplication,
while the higher-order brackets are only defined for certain tuples of coho-
mology classes. A geometrical approach to constructing nontrivial triple
Massey products in the Koszul complex of the face ring has been developed
by Baskakov in [4] as an extension of the cohomology calculation in Theo-
rem 5.1. It is well-known that non-trivial higher Massey products obstruct
the formality of a differential graded algebra, which in our case leads to a
family on nonformal moment-angle manifolds ZK .

Massey products in the cohomology of the Koszul complex of a local ring R
were studied by Golod [14] in connection with the calculation of the Poincaré
series of TorR(k,k). The main result of Golod is a calculation of the Poincaré
series for the class of rings with vanishing Massey products in the Koszul
complex (including the cohomology multiplication). Such rings were called
Golod in [17], where the reader can find a detailed exposition of Golod’s
theorem together with several further applications. The Golod property
of face rings was studied in [20], where several combinatorial criteria for
Golodness were given.

The difference between our situation and that of Golod is that we are
mainly interested in the cohomology of the Koszul complex for the face ring
of a sphere triangulation K. The corresponding face ring k[K] does not
qualify for Golodness, as the corresponding moment-angle complex ZK is a
manifold, and therefore, the cohomology of the Koszul complex of k[K] must
possess many non-trivial products. Our approach aims at identifying a class
of simplicial complexes with non-trivial cohomology product but vanishing
higher-order Massey operations in the cohomology of the Koszul complex.

Let Ki be a triangulation of a sphere Sni−1 with |Vi| = mi vertices, i =
1, 2, 3. Set m := m1 +m2 +m3, n := n1 + n2 + n3, and

K := K1 ∗K2 ∗K3, ZK = ZK1 ×ZK2 ×ZK3 .

Note that K is a triangulation of Sn−1 and ZK is an (m+ n)-manifold.
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Given σ ∈ K, the stellar subdivision of K at σ is obtained by replacing
the star of σ by the cone over its boundary:

ζσ(K) = (K \ starK σ) ∪ (cone ∂ starK σ).

Now choose maximal simplices σ1 ∈ K1, σ′
2, σ

′′
2 ∈ K2 such that σ′

2 ∩ σ′′
2 =

∅, and σ3 ∈ K3. Set
K̃ := ζσ1∪σ′

2
(ζσ′′

2∪σ3
(K)).

Then K̃ is a triangulation of Sn−1 with m+ 2 vertices. Take generators

βi ∈ H̃ni−1(K̃Vi)
∼= H̃ni−1(Sni−1), i = 1, 2, 3,

where K̃Vi is the restriction of K̃ to the vertex set of Ki, and set

αi := γ(βi) ∈ Hni−mi,2mi(Z
K̃
) ⊆ Hmi+ni(Z

K̃
),

where γ is the isomorphism from Theorem 5.1. Then

β1β2 ∈ H̃n1+n2−1(K̃V1⊔V2)
∼= H̃n1+n2−1(Sn1+n2−1 \ pt) = 0,

and therefore, α1α2 = γ(β1β2) = 0, and similarly α2α3 = 0. In these
circumstances the triple Massey product ⟨α1, α2, α3⟩ ⊂ Hm+n−1(Z

K̃
) is de-

fined. Recall that ⟨α1, α2, α3⟩ is the set of cohomology classes represented
by the cocycles (−1)deg a1+1a1f + ea3 where ai is a cocycle representing αi,
i = 1, 2, 3, while e and f are cochains satisfying de = a1a2, df = a2a3. A
Massey product is called trivial if it contains zero.

Theorem 5.5. The triple Massey product

⟨α1, α2, α3⟩ ⊂ Hm+n−1(Z
K̃
)

in the cohomology of (m+ n+ 2)-manifold Z
K̃

is non-trivial.

Proof. Consider the subcomplex of K̃ consisting of those two new vertices
added to K in the process of stellar subdivision. By Lemma 4.2, the in-
clusion of this subcomplex induces an embedding of a 3-dimensional sphere
S3 ⊂ Z

K̃
. Since the two new vertices are not joined by an edge in Z

K̃
, the

embedded 3-sphere defines a non-trivial class in H3(Z
K̃
). By construction

the dual cohomology class is contained in the Massey product ⟨α1, α2, α3⟩.
On the other hand, this Massey product is defined up to elements from the
subspace

α1 ·Hm2+m3+n2+n3−1(Z
K̃
) + α3 ·Hm1+m2+n1+n2−1(Z

K̃
).

The multigraded components of the group Hm2+m3+n2+n3−1(Z
K̃
) different

from that determined by the full subcomplex K̃V2⊔V3 do not affect the non-
triviality of the Massey product, while the multigraded component corre-
sponding to K̃V2⊔V3 is zero since this subcomplex is contractible. The group
Hm1+m2+n1+n2−1(Z

K̃
) is treated similarly. It follows that the Massey prod-

uct contains a unique nonzero element in its multigraded component and so
is nontrivial. �

As is well known, the nontriviality of Massey products obstructs formality
of manifolds, see e.g. [2].
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Corollary 5.6. For every sphere triangulation K̃ obtained from another
triangulation by applying two stellar subdivisions as described above, the 2-
connected moment-angle manifold Z

K̃
is nonformal.

In the proof of Theorem 5.5 the nontriviality of the Massey product is es-
tablished geometrically. A parallel argument may be carried out algebraically
in terms of the algebra R∗(K), as illustrated in the following example.

Example 5.7. Consider the simple polytope P 3 shown on Figure 4. This
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polytope is obtained by cutting two non-adjacent edges off a cube and has
8 facets. The dual triangulation KP is obtained from an octahedron by
applying stellar subdivisions at two non-adjacent edges. The face ring is

Z[KP ] = Z[v1, . . . , v6, w1, w2]/IKP
,

where vi, i = 1, . . . , 6, are the generators coming from the facets of the
cube and w1, w2 are the generators corresponding to the two new facets, see
Figure 4, and

IP = (v1v2, v3v4, v5v6, w1w2, v1v3, v4v5, w1v3, w1v6, w2v2, w2v4).

The corresponding algebra R∗(KP ) has additional generators u1, . . . , u6, t1, t2
of total degree 1 satisfying dui = vi and dti = wi. Consider the cocycles

a = v1u2, b = v3u4, c = v5u6

and the corresponding cohomology classes α, β, γ ∈ H−1,4[R∗(K)]. The
equations

ab = de, bc = df

have a solution e = 0, f = v5u3u4u6, so the triple Massey product ⟨α, β, γ⟩ ∈
H−4,12[R∗(K)] is defined. This Massey product is nontrivial by Theorem 5.5.
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The cocycle
af + ec = v1v5u2u3u4u6

represents a nontrivial cohomology class [v1v5u2u3u4u6] ∈ ⟨α, β, γ⟩ and so
the algebra R∗(KP ) and the manifold ZKP

are not formal.

In view of Theorem 5.5, the question arises of describing the class of sim-
plicial complexes K for which the algebra R∗(K) (equivalently, the Koszul
algebra [Λ[u1, . . . , um] ⊗ Z[K], d] or the space ZK) is formal (in particular,
does not contain nontrivial Massey products). For example, a direct calcu-
lation shows that this is the case if K is the boundary of a polygon.

5.4. Toral rank conjecture. Here we relate our cohomological calculations
with moment-angle complexes to an interesting conjecture in the theory of
transformation groups. This ‘toral rank conjecture’ has strong links with
rational homotopy theory, as described in [1]. Therefore this last subsection,
although not containing new results, aims at encouraging rational homotopy
theorists to turn their attention to combinatorial commutative algebra of
simplicial complexes.

A torus action on a space X is called almost free if all isotropy subgroups
are finite. The toral rank of X, denoted trk(X), is the largest k for which
there exists an almost free T k-action on X.

The toral rank conjecture of Halperin [18] suggests that

dimH∗(X;Q) ≥ 2trk(X)

for any finite dimensional space X. Equality is achieved, for example, if
X = T k.

Moment angle complexes provide a wide class of almost free torus actions:

Theorem 5.8 (Davis–Januszkiewicz [11, 7.1]). Let K be an (n− 1)-dimen-
sional simplicial complex with m vertices. Then trkZK ≥ m− n.

Proof. Choose an lsop in t1, . . . , tn in Q[K] according to Lemma 2.3 and
write

ti = λi1v1 + . . .+ λimvm, i = 1, . . . , n.

Then the matrix Λ = (λij) defines a linear map λ : Qm → Qn. Changing λ
to kλ for a sufficiently large k if necessary, we may assume that λ is induced
by a map Zm → Zn, which we also denote by λ. It follows from Lemma 3.11
that for every simplex σ ∈ K the restriction λ|Zσ : Zσ → Zn of the map λ to
the coordinate subspace Zσ ⊆ Zm is injective.

Denote by TΛ the subgroup in Tm corresponding to the kernel of the map
λ : Zm → Zn. Then TΛ is a product of an (m− n)-dimensional torus N and
a finite group. The intersection of the torus N with the coordinate subgroup
T σ ⊆ Tm is a finite subgroup. Since the isotropy subgroups of the Tm-action
on ZK are of the form T σ (see the proof of Theorem 3.12), the torus N acts
on ZK almost freely. �

Note that by construction the space ZK is 2-connected.
In view of Theorem 5.1, we get the following reformulation of the toral

rank conjecture for ZK :

dim
⊕
ω⊆[m]

H̃∗(Kω;Q) ≥ 2m−n
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for any simplicial complex Kn−1 on m vertices.

Example 5.9. Let K the boundary of an m-gon. Then the calculation of [8,
Exam. 7.22] shows that

dimH∗(ZK) = (m− 4)2m−2 + 4 ≥ 2m−2.
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