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GROUP  BUNDLE  COEFFICIENTS

M.  V.  MIELKE

Abstract. The purpose of this paper is to construct a resolution

of a group bundle y, a classifying spectrum for a cohomology

functor //*( ; y) (coefficients in y) defined on a category of fibre

spaces, and to clarify and note some implications of the close

relationship between these two constructions.

1. Introduction. A group bundle, as used in this paper, consists of

two Hausdorff ^-spaces E(y) (the total space) and B (the base space), a

continuous projection E(y)-+B, and a fibre preserving map from the

fibre product (in the category of ^-spaces) y X y to y that induces on each

fibre of y an abelian group structure. Further, the 0-section and the

inversion map are required to be continuous (see [2], [3], [4]). This notion

of group bundle differs from the usual notion in that forming fibre products

in the sense of ^-spaces allows for an increase in the number of group

bundle structures on y. If, for example, y is locally compact the two

notions coincide. Define HV(B; y) = Hv(B; y) where y is the sheaf of

germs of sections of y and call y acyclic if y is acyclic (see [1]).

2. Definitions and remarks. An exact sequence of group bundles

0—>-y0—+v0 —>-!1 vl—* ■ ■ ■ (over a fixed base B) is a resolution of y0 if the

associated sequence of sheaves 0—►y0-*-i'0—>• • • • is exact. The resolution is

acyclic if each vn is acyclic. By [1, p. 34], Hn(B; y0)~//"(C(y0)) where

C(y0) is the cochain complex of sheaf sections: 0-»T(i'0)->-r(i'1)-»- • • •

associated to an acyclic resolution of y0. Define yn to be the image of /'„.

Since C(y0) is isomorphic to the complex of bundle sections

C(y0):0-r(v0)-^>rW-.-

and

Ker(T(/B+1)) = Y(Yn),

there is a natural isomorphism H"(B; y0)~Y(yn)/lm r(/n). This result

can be interpreted as

2.1. Hn(B;y0) is naturally isomorphic to the group of equivalence
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classes of sections of yn, where two sections are identified if and only if

their difference lifts (by /„) to a section of vn_x (/0=0).

Further, the sequence 0^>-yn—>-vn—>-vn+x—>- • • • is clearly an acyclic

resolution, hence

2.2. Hp(B; yn)~Hp(C(yn))~Hp+»(B; y0) to («=0,/?>0).

3. An acyclic resolution. A group bundle is said to be an (L)NDR

group bundle if (locally) the 0-section is a vertical deformation retract of

an open neighborhood; see [3], [4, 6.2]. In [3] the following is proved.

Lemma. Ify0 is an (L)NDR group bundle, then there is an exact sequence

of group bundles (depending functorially on y0).

3.1. 0—>-y0 —►' v0 -** yx—»-0 for which

3.2. yx is an (L)NDR group bundle.

3.3. j:E(v0)^-E(yx) has local sections, i.e. there is an open cover {Ux}

of E(yx) and maps sa such that j s a = id on Ua.

3.4. v0 is shrinkable to the 0-section.

3.5. j has the covering homotopy property for vertical homotopies

Ht:X->-E(yx) ify0 is NDR (LNDR if X is paracompact).

Property 3.2 implies a long exact sequence 0—>y0—*-v0 —>-¿1 j>x—>- • • • can

be constructed inductively by applying the lemma to yx and splicing the

resulting sequence 3.1 to the sequence 3.1 associated to y0, etc. Since

"~" is left exact (by construction [3] y0 has topology induced by i) and

j is onto by 3.3 (lift germs of sections of yx by an appropriate s„) the

sequence so obtained is a resolution, hereafter called the canonical

resolution.

If B is paracompact 3.4 implies v0 is soft (thus acyclic, [1, p. 49], i.e.,

every section s over a closed set A extends to B. Indeed, there is an open

set U=>K and a' e r>0|t/) such that ö'\K=s. Define a e I>0) by

0(b) = 0 if r(b) < i,

= ff2rm_x(o'(b))    ifr(è) = |,

where //, is a vertical homotopy shrinking v0 (3.4) (H0=0, Hx = id),

t-.B^-I is such that t-1(1)=> Dx, t\(B— £/)=0 where Ux is open and U=>

0X^UX^K. Clearly o\Ux — o'\Ux, thus 5 extends s. This proves

3.6. Theorem. Any LNDR group bundle over a (paracompact) k-space

has a (acyclic) resolution.

Assume B is paracompact for the rest of this section. The construction

of this resolution implies that

0 -* Yn-i -*■ "B-i -1* Yn -»• 0

satisfies 3.4, and 3.5 if y0 is LNDR. This gives a "homotopic" description
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of the "algebraic" equivalence relation on sections of yn (2.1); namely,

for s0, s1 G Y(yn) there is s e r(j>„_i) such that ins=s1—s0 if and only if

s0 and it are vertically homotopic. Indeed, if /'„í=í1—s0 define the homo-

topy by H't(b) = in(Ht(s(b)))+s0(b) where Ht is a shrinking of vn_x (//0=0,

//! = id). Conversely, given an H't (H¿=s0, //í=s1) then H'l = H't—s0 is

a vertical homotopy between 0 and s1—s0 such that H'¿ is covered by the

0-section of vn_1. By 3.5, HÎ is covered by a section j and ins=s1—s0, thus

3.7. If y„ is LNDR there is a natural isomorphism between H"(B; y0)

and the group of equivalence classes of vertically homotopic sections of

Yn-

4. A classifying spectrum. For B a espace let PB be the category of

paracompact &-fibre spaces ([2], [3]) over B (Ç e PB means F(f) is a

paracompact &-space). For y0 a group bundle on B define //"(£; y0)

(/?th cohomology of | with coefficients in y0) as //"(£(!); I(y0)) where the

group bundle £(y0) is the pullback (in category of fc-spaces) of y0 via the

projection P(£) of f. It is not hard to see that conditions 3.1-3.5 are

invariant under pullback (the pullback by P(f) of 3.1 is an exact sequence

on £(f) satisfying 3.2-3.5). Consequently the pullback of the canonical

resolution of y0 is an acyclic resolution of |(y0). Since pullback induces

an isomorphism between Y(g(vn)) and Hom(f, vn) (the set of fibre

preserving maps £-*-v„), 2.1 implies

4.1. If y0 is an LNDR then //*(£; y0) is the cohomology of the complex

{Hom(£, vn), Hom(/„+1)}.

Result 3.7 (with (F(f); f(y„)) replacing (5; y0)) plus the fact that pull

back induces an isomorphism between the group of equivalence classes

of vertically homotopic sections of £(y„) and the group of equivalence

classes of vertically homotopic fibre maps £—►/■„, denoted by [f, yn],

gives

4.2. Theorem. For y0 an LNDR the image sequence {yl7 y2, • • •} of

the canonical resolution of y0 is a classifying spectrum for the functor

H*( ; y0) defined on PB, i.e., #"(£; y0)~[|, yn], n>0.

The following is proved in [3].

4.3. If y0 is NDR then [|, yj and the group of isomorphism classes of

numerable principal y0 bundles on f are naturally isomorphic. Normality

of E(i) is not needed, but if F(|) is paracompact, numerable can be omit-

ted and NDR replaced by LNDR. A similar interpretation holds for

[f, yJ.
Combining 4.2, 2.2 and 4.3 gives

4.4. Theorem. If y0 is LNDR then H"(£; yn) is naturally isomorphic

to the group of isomorphism classes of principal yP+n-i bundles on £ for

|gPb(«>0,/»0).
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Besides providing a geometric interpretation of H*( ; yQ) this implies

(p=l) that yn is the classifying group bundle (see [3]) of yn_x (actually

E(vn)±+E(yn)^B

is a universal bundle for yn_x).
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