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Introduction. Let G be a group, K an invariant subgroup of G. The pur-
pose of this paper is to investigate the relations between the cohomology
groups of G, K, and G/K. As in the case of fibre spaces, it turns out that
such relations can be expressed by a spectral sequence whose term E2 is
HiG/K, HiK)) and whose term Em is the graduated group associated with
i7(G). This problem was first studied by R. C. Lyndon in his thesis [12].
Lyndon's procedure was to replace the full cochain complex of G by an equiva-
lent bigraduated subcomplex (of "normal" cochains, in his sense). His main
result (generalized from the case of a direct product to the case of an arbitrary
group extension, according to his indications) is that the bigraduated group
associated with if(G) is isomorphic with a factor group of a subgroup of
HiG/K, HiK)). His methods can also be applied to special situations, like
those considered in our Chapter III, and can give essentially the same
results.

We give here two different approaches to the problem.
In Chapter I we carry out the method sketched by one of us in [13].

This method is based on the Cartan-Leray spectral sequence, [3; l], and can
be generalized to other algebraic situations, as will be shown in a forthcoming
paper of Cartan-Eilenberg [2]. Since the details of the Cartan-Leray tech-
nique have not been published (other than in seminar notes of limited circu-
lation), we develop them in Chapter I. The auxiliary theorems we need for
this purpose are useful also in other connections.

In Chapter II, which is independent of Chapter I, we obtain a spectral
sequence quite directly by filtering the group of cochains for G. This filtra-
tion leads to the same group E2 = HiG/K, HiK)) (although we do not know
whether or not the succeeding terms are isomorphic to those of the first spec-
tral sequence) and lends itself more readily to applications, because one can
identify the maps which arise from it. This is not always the case with the
first filtration, and it is for this reason that we have developed the direct
method in spite of the somewhat lengthy computations which are needed for
its proofs.

Chapter III gives some applications of the spectral sequence of Chapter
II. Most of the results could be obtained in the same manner with the spec-
tral sequence of Chapter I. A notable exception is the connection with the
theory of simple algebras which we discuss in §5.

Finally, let us remark that the methods and results of this paper can be
transferred to Lie Algebras. We intend to take up this subject in a later paper.
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Chapter I. General Methods^)

1. Notation and definitions. Let II be an arbitrary group, A an abelian
group on which II operates from the left. A is called a II-module, and the
transform of an element a £.¡4 by an element o-£II is denoted a a. By defini-
tion, a-0=0, a-ia+b)=a-a+o--b, \-a=a, and a■ (r■ a) = (or)• a. We shall
denote by An the subgroup of A which consists of all a £.4 for which aa=a,
for all tr£IL A set (a,-), ¿£7, of elements a,£.4 is called a Il-basis if the
group A is a free abelian group, with the elements <r-a,, <r£II, ¿£7, being all
distinct and constituting a basis. A is called II-free if it possesses a Il-basis.

If A and B are two Il-modules, the group C = Hom iA, B) of all homo-
morphisms of A into B is given the structure of a II-module by setting
(<r/)(a) =ff-fi<r~1-a). The elements of Ca are then the IT-homomorphisms of
A into B. We shall write Cn = Homn iA, B).

Complexes. A chain (cochain) complex is a graduated abelian group C
= Z»=o Cn, with an endomorphism d such that d2 = 0, d(Co)=(0), and, for
«>0, diCn)CCn-\ (d(C„)CGn+i, for all «2ï0, respectively). This gives rise
to homology (cohomology) groups of C in the usual way.

An augmentation of the chain complex C is a homomorphism e of Co into
the additive group Z of the integers such that e o ¿ = 0. An augmented com-
plex (C, e) is said to be acyclic if its homology groups H,(C) are (0) for i>0,
and if e induces an isomorphism of HoiC) onto Z.

If C is a chain complex and .4 an abelian group, the group C*
= Z^-o Horn iCn, A) will be regarded as a cochain complex with regard to
the endomorphism d* which is defined by setting id*f)ix)=fidx). We shall
usually denote this complex by Horn (C, A), although this conflicts—strictly
speaking—with the notation introduced previously.

H-complexes. A chain complex C with the structure of a II-module such
that <r(C„) =G„, jo d=d o <r, and e o a=t, for all <r£II, is called a II-com-
plex. If each C„ is II-free, the II-complex C is said to be II-free. A cochain
Il-complex is defined analogously.

The homology groups H¡iC) of a II-complex C are JJ-modules in the
natural fashion. If A is a II-module, the cochain complex Horn (C, A) is also
a II-module, and Horn11 (C, A) is a subcomplex of Horn (C, A).

2. Cohomology groups of a group II in a II-module.

Proposition 1. Let C be a U-free and acyclic Tl-complex, A a Ti-module.
Then the cohomology groups ífn(Homn (C, ^4)) depend only on II and A, not
on  C.  They are called the nth cohomology groups of II in A, and denoted
H"iU,A)i2).

0) The contents of §§1, 2, 4, 5, 6 are mostly extracted from expositions made by H. Cartan
and S. Eilenberg in a seminar conducted in Paris during the academic year 1950-1951, We in*
elude them here for the convenience of the reader.

(2) This proposition is valid also for other cohomology theories, cf. [2],
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112 G. HOCHSCHILD AND J-P. SERRE [January

Actually, one proves more than this.
(a) If C is II-free, and C is acyclic, there exists a Il-homomorphism

<p:C—*C, such that <t>iC„)CCn', t' o <p=e, and <p o d=d' o <f>. Furthermore, if
yp is any other such homomorphism, there exists a Il-homomorphism
k-.C-^-C such that J(C»)CC»+i, and <p-y(/ = d' o k + k o d.

From this, one deduces at once the following:
(b) If <p and \f/ are two II-homomorphisms satisfying the conditions laid

down in (a), then the corresponding homomorphisms <j>* and \j/* oí
Horn11 (C, A) into Horn11 (C, A) induce the same homomorphism of
7í"(Homn (C, A)) into 7í"(Homn (C, A)), for each »£0.

(c) If C and C are both II-free and acyclic, the homomorphism <f> of (a)
induces an isomorphism of ifn(Homn (C, .4)) onto iJ"(Homn (C, A)), and
this isomorphism does not depend on the particular choice of <p. It is called
the canonical isomorphism.

Finally, one proves:
(d) For any H, there exists a II-free acyclic IJ-complex.
All these results are well known (see [4; 10]) and we shall confine our-

selves to recalling the proof of (d) :
Construction of a Tl-free acyclic TL-complex. Let £ be a set on which II

operates without fixed points, i.e., such that, if (r£JJ and e££, a-e=e only if
<r = l. One may, for instance, take E=H, with the left translations as oper-
ators. One defines a complex CiE) = Zn-o CiE)n as follows. C(E)„ is taken
to be the free abelian group with the elements (eo, - ■ ■ , e„) £E»+l constitut-
ing a basis. The boundary operator d is defined by the formula ¿(e0, • • • , e„)
= Z"-o (— l)'(eo, ■",<(,"•, en), where the symbol ' denotes that the

argument below it is to be omitted. The augmentation is defined by e(e0) = 1.
Il operates on C(E) according to: <r-(e0, • • • , en) =(a-eo, ■ ■ • ,o--en), and one
verifies immediately that one so obtains a II-complex.

We have then d(C(E)0) =(0), while d(C(E)i) coincides with the kernel of
e, whence it is clear that e induces an isomorphism of Ho(C(E)) onto Z. If
«>0, and c£C(£)„, let c' denote the element of C(£)„+i which is obtained
from c by replacing each (n+1)-tuple (e0, ■ ■ ■ , en) occurring in c with
(e, eo, ■ ■ ■ , en), where e is a fixed element of E. Then it is immediate that,
if ¿c = 0, we have dc'=c, and we have shown that C(E) is acyclic. From the
fact that n operates without fixed points on E, it follows that each C(E)n is
II-free. Thus, C(E) is a II-free acyclic II-complex.

If A is a II-module, the elements of Horn11 (C(E)n, A) are the functions
defined on En+1 with values in A which satisfy the conditions/(o- • e0 ■ ■ ■, er • en)
= <r/(e0, • • • , e„), <r£II. In particular, if £=II, with the left translations as
operators, one arrives at the usual definition of the groups if"(II, A) by the
so-called homogeneous cochains /, where /(<r<ro, • • • , o-a„) = a /(<ro, • • • , <r„),
the coboundary operator d* being given by the formula (d*f)(<r0, • ■ ■ , o-n+i)
= Z?=o1(-l)l/K ••■-,*,•• -,<rB+1).      ...
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Finally, let us recall that if one associates with such a cochain the "non-
homogeneous" cochain/(<7i, • • • , <r„) =/(l, U\, ffi<r2, ■ ■ ■ , o~i ■ ■ ■ an), one ob-
tains the usual coboundary operator ô/(cri, ■ • • , crn+i) =<Ti-fi<j2, • ■ ■ , <Jn+i)
+ Z?=i (-l)íf(o-i, • " • ■ **m, ■ ■ • , o-n+i) + i-l)n+1fi<ri, • • • , an).

Proposition 2. Let E and E' be two sets on which II operates without fixed
points, and let p be a mapping of E into E' which commutes with the Il-operators.
Then, for each n^O, p induces on ///"(Horn11 (C(£')> -4)) tne canonical iso-
morphism onto 7í"(Homn (C(£), .4)).

In fact, it is evident that p induces a homomorphism <p of C(£) into C(£')
which satisfies the conditions of (a) above; and the result follows at once from
(c).

Let us apply this to the case where £=£'=11, with the left translations
as operators, and let us put pie) =ea, where a is a fixed element of II. Then p
evidently commutes with the left translations and hence induces the canon-
ical isomorphism of -f7n(II, A) onto itself, which is the identity map. Hence
we have:

Corollary. Let II be a group, A a II-module, <r£II. For each homogeneous
cochain f let us define the homogeneous cochain M„f by (Af„/)((ro, • • • , <r„)
=/(o-o(r, • • ■ , o-na). Then the map M, commutes with the coboundary and in-
duces the identity map on H"(Jl, A).

Translated into the nonhomogeneous cohomology theory, this means
that, if / is a nonhomogeneous w-cocycle, the cocycle whose value for
ai, ■ • • , er„ is cr-/(o-_1<ri(T, • • • , a~1o-n<r) is cohomologous to/(3).

3. Applications. Let G be a group, K a subgroup of G. Let K operate on
G by multiplication on the left. We can apply the results of §2 with £=G
and TL=K, introducing the cochain complex B=HomK iCiG), A), where A
is an arbitrary if-module. A homogeneous element of degree n of B is a func-
tion / defined on Gn+1, with values in A, and such that /((TYo, • • • , (ry„)
= 0--/(7o, • • • , 7n), for o-GK and 7¿£G.

Let CiK, A) be the complex of the homogeneous cochains for K in A.
The injection p: K^G gives rise to the dual homomorphism p* of B into
CiK, A) which is simply the map obtained by restricting the arguments to
K. Applying Proposition 2 to p, we obtain:

Proposition 3. Let G be a group, K a subgroup of G, A a K-module,
B=rlomK (G(G), A). Then the homomorphism of B into CiK, A) which maps
every cochain /£-B into its restriction to K induces an isomorphism of H»iB)
onto H»iK, A), for all re = 0.

It is easy to define the inverse isomorphism of the above directly. In fact,
by Proposition 2, it suffices to take the homomorphism which is induced by

(3) This result is well known, cf. [12, §10] and Theorem 1.3 of [ll] (for dimension 2).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



114 G. HOCHSCHILD AND J-P. SERRE [January

any map \p of G into K for which \pio-y) = 0^(7), for all <r£iC and 7£G.

Corollary(4). Let B0 be the group of the maps f of G into the K-module A
such that /(try) = a-fiy), for all aÇ^K, 7£G. Let G operate on B0 according to
the definition (71 •/) (7) =/(77i) ■ Let <j> be the K-homomorphism of B0 into A
defined by <pif) =/(l). Then the restriction of the arguments from G to K, com-
bined with the homomorphism <p, induces an isomorphism of H»iG, Bo) onto
H»iK, A), for alln^O.

Let B denote the group of Proposition 3. If / is a homogeneous element of
degree n of B, let us define a(/)£C"(G, B0) by setting a(f)(y0, • • ■ , 7»)(7)
—f(yio, ■ ■ ■ , 77„). Clearly, a commutes with the coboundary oper-
ator. Furthermore, a is an isomorphism onto: for hÇ^C»(G, B0),
a~1(h)(jo, • ■ • , 7n)=A(7o, • ■ • , 7n)(l). Hence orx induces an isomorphism
of H»(G, B0) onto H"iB). If this is combined with the isomorphism of Propo-
sition 3, one obtains an isomorphism of H"iG, B0) onto H»iK, A), and one sees
immediately from the definitions of a~l and <f> that this is the isomorphism
described in the corollary.

Remark. If the £\operators on A can be extended so that A becomes a
G-module, B0 may be identified with the group F of all maps of the set G/K
of the left cosets Ky into A, made into a G-module by setting, for g££,
7£G, and xQG/K, (y-g)(x)=y-g(xy). In fact, if/£50, we define/££ by
setting f(Ky) = y~lf(y), and the map /—>/ is a G-isomorphism of B0 onto F.

4. A preliminary result. Let II be a group, U= Z"=o U¡ a cochain II-com-
plex. Put Lp'q = Cp(H, Uq), the group of nonhomogeneous ^-cochains of
II in Uv Let C(n, U) = Zp.9-^p'3- Thus, C(II, U) is a bigraduated group, on
which we define two coboundary operators, as follows: da: Lp'q^>Lp+x-q is the
usual nonhomogeneous coboundary operator on ^-cochains, as given in §2,
just preceding Proposition 2. The other coboundary operator du'. Lp'q
—>¿>.a+i is defined by setting (dvf)(ai, • • ■ , <rp) =d(f(o-u • ■ ■ , ap)), where d
denotes the coboundary operator in U, and <r,-£II.

We have L°-q= Uq, so that U is a subgroup of C(II, U). From the two
operators da and du, we define a third coboundary operator d = dn+( — \)pdu'.
£p.i_>.¿p+i,«-|_¿p,«+i. With this new operator d, G(II, U) constitutes a co-
chain complex, and since dn=0 on Un, the restriction to Un of the co-
boundary operator d coincides with du.

Proposition 4. Suppose that H»(IL, U¡) =(0), for all j = 0 and all n>0.
Then the injection of Un into C(U, U) defines an isomorphism of H»(Un)
ontoH»(C(Il, U)),foralln^O.

Put ¿^Z^iZ^o Lpq, B'-it*/^^0» £Ä<  Uf.   It will suffice to
(4) This result is due to A. Weil (Sur la théorie du corps de classes, Jour. Math. Soc. Jap.

vol. 3 (1951) pp. 1-35, footnote 4). For a direct proof see G. Hochschild and T. Nakayama
(Cohomology in class field theory, Ann. of Math. vol. 55 (1952) Lemma 1.1).
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prove that the canonical homomorphism Bi/Bi+1—>Ai/Ai+l induces an
isomorphism of HniByBi+1) onto HniA{/Ai+l), for each w=0. In fact, if
this is proved an application of the "five lemma" (6) to the exact sequences
for the triples iA\ Ai+P, Ai+p+l) and iB\ Bi+P, Bi+p+l) shows, by induction
on p, that the canonical homomorphism H"iBi/Bi+p)—*H»iAi/Ai+p) is an
isomorphism onto for each p>0. Proposition 4 then follows by taking i = 0
and p = n + 2.

Now A{/Ai+1 is isomorphic with Z"-o £pi = C(II, Ui), with the ordinary
coboundary operator for nonhomogeneous ^-cochains. The homomorphism
Bi/Bi+1-*Ai/Ai+1 corresponds simply to the injection of Uf into C°(II, Ui)
= Ui, and therefore the statement that it induces an isomorphism of the
cohomology groups is equivalent to our assumption that.iin(II, t/,) = (0),
for n>0.

5. The spectral sequence of Cartan-Leray. Let C(II, U) be the bigraduated
complex defined in §4. We shall define a filtration on this complex and then
determine the groups £i and £2 of the corresponding spectral sequence(6).

Definition of the filtration. Let L\= Zp^> £p,a, and £,= Z"-o E\. Evi-
dently, C(II, U)=LoDLiD ■ ■ ■ ,diLi)CLi, and CP(II, i/8)PiI„ = (0), if
i>p. Thus the groups L, define a filtration of C(II, U).

Calculation of £i. By definition, Ei'" = Hp+qiLp/Lp+i). In our case,
Lp/Lp+i, with the coboundary operator induced by d, is isomorphic with
Z"-o £p,7 = Cp(n, U), with the coboundary operator ( — \)pda. Hence we

have:

Lemma 1. The term E\* of the spectral sequence is canonically isomorphic
with CpiU,HqiU)).

Calculation of E2. Let us recall that the differential operator ¿i on £i
= Zp.9 -^i'* niaps Evil into £J+1,i, by the coboundary map of the exact
sequence for the triple (Lp, Lp+i, Lp+2) which sends Hp+qiLp/Lp+i) into
Hp+q+1iLp+i/Lp+2). The term £§•* is the ip, q)-cohomology group in the
bigraduated complex £i (with respect to the operator di). We claim that,
under the isomorphism of Lemma 1, di is transformed into the coboundary
operator for the cochains of II in the IL-module HqiU).

In order to see this, let/£Cp(II, HqiU)), and let us compute dif. For
this, we must first choose an element x£Lp which is a cocycle mod LP+i and
whose cohomology class is/. If <ri, • • • , ap are elements of II, let x(<Ti, • • • ,aP)
be a cocycle in Ut whose cohomology class is/(cri, • • • , <rp). We have then

(6) We recall the "five lemma": suppose we have two exact sequences of five terms each
and five homomorphisms of the groups of the first sequence into the corresponding groups of
the second, such that the commutativity relations hold in the resulting diagram. Then, if the
four extreme homomorphisms are isomorphisms onto, so is the middle one.

(6) For the notation and the definitions relating to spectral sequences we refer the reader
to [14, Chapter I, no. 5] (see also below, Chapter III, §§1, 3). However, we shall omit the signs *,
since no confusion with homology can arise here.
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dx = dnx+i — l)pduX=dnxÇE.Lp+1-q. If this is written out according to the co-
boundary formula for da, it is evident that ¿x(<7i, • • • , <rp+i) is a cocycle in
Uq, for all er¿£II. Hence dx defines an element y££ï+1,î, and by the defini-
tion of di we have dif = y. Clearly, y is the coboundary of/, regarded as a co-
chain for II in HqiU). Hence we have:

Lemma 2. The term E™ of the spectral sequence derived from the filtration
iLi) is canonically isomorphic with Hp(Jl, HqiU)).

The term £M. As in every spectral sequence, the group £«, is isomorphic
with the graduated group associated with iï(C(II, U)), filtered by the sub-
groups arising from the L¿. (We recall that if A is any additive group, filtered
by a nonincreasing sequence of subgroups A¡, the associated graduated group
is defined as the graduated group whose component of degree i is Ai/Ai+i. If
A is also graduated, compatibly with the filtration, the associated group is
bigraduated in the natural fashion.) If we combine the above result with
Proposition 4, we obtain the following result of Cartan-Leray [3], [l]:

Proposition 5. Let Ubea cochain IL-complex, such that the groups H'ÇLI, U¡)
vanish for all j = 0 and all i>0, where Uj denotes the subgroup of U consisting
of the homogeneous elements of degree j. Then, in the spectral sequence (£r)
which is derived from the filtration (£<), the term Ev'q is isomorphic with
HpiH, HqiU)), and £«, is isomorphic with the graduated group associated with
H(Un), filtered by the subgroups arising from the L{.

6. The vanishing of certain cohomology groups. Let A be a II-module.
By a mean on A we shall understand an additive function / which associates
with each map/: II—>A an element 1(f)ÇzA, such that:

(a) Iff(o-) = <z£.4, for each o-£II, then 1(f) =a.
(b) For all cr£n, I(<r-f) =a-I(f), where (<r/)(r) =<r-/(<r-1r).

Proposition 6. // A is a H-module which admits a mean, then H»iH, A)
= (0), for all n>0.

In fact, let/ be a homogeneous «-cocycle for II in A. For fixed o~i, • • • , <r„
in PI, the map <r—>/(<r, <n, • • •, o-„) has a mean value (£,/)(<ri, • • • , o-„)£^4.
It is immediate that (/„/) (ccri, • • • , ffffn) = a ■(/„/) (<ri • • • , <r„)- Thus, /„/
is a homogeneous (« — l)-cochain for PI in A, and it is easy to verify that á(i»/)
=/•       ■

Corollary(7) . Let L be a H-free II-module, B an arbitrary II-module,
A =Hom (L, B). Then H»iU, A)=i0), for all n>0.

Decomposing L into a direct sum, one sees that it suffices to prove the
corollary in the case where L has a Il-basis consisting of a single element.

(7) Cf. R. C. Lyndon, Cohomology theory of groups with a single defining relation, Ann. of
Math. vol. 52 (1950) p. 653, Theorem 2.2.
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In this case, A is isomorphic with the II-module of all maps <p: II—>B, where
(<7-<£)(r) =o--4>ío-~1t), for a, r£II. A map /: II—>.4 may then be regarded as a
map/': IIXII—>^4, and one obtains a mean on A by setting 7(/)((r) =f'(a, a).

(Actually, this corollary could easily be proved directly; it can also be
obtained as a consequence of the corollary to Proposition 3.)

Remarks. 1. Proposition 6 covers a number of the known cases(8) in
which the cohomology groups vanish ; for instance, the case where II is finite
of order m and every element of A is uniquely divisible by m, or the case
where n is compact and where one deals with continuous cochains for II in a
vector group R» (cf. K. Iwasawa, On some types of topological groups, Ann. of
Math. vol. 50 (1949) pp. 507-558).

2. The corollary to Proposition 6 shows that whenever the complex U,
dealt with in §5, is of the form Horn (C, A), where C is a II-free chain com-
plex, one can apply Proposition 5 to U. For instance, one could take for C
the singular complex of a space on which II operates without fixed points; cf.
[4; 6].

7. The spectral sequence for group extensions. Let G be a group, K an
invariant subgroup of G, A a G-module. Let M denote the complex
Horn iCiG), A), where the notation is that of §§2, 3. The elements of degree
n of M are the functions/: G"+1—».4, the coboundary operator, d, being de-
fined by idf)iya, ■ ■ ■ , yn) = Zto (-l)*/(7o> • • • , 7<< • • ■ . 7»)-

Consider the subcomplex MK of M. Since K is invariant in G, G/K oper-
ates canonically on MK. Furthermore, MK, regarded as a G/K-modu\e,
admits a mean, in the sense of §6. In fact, let/ be a function on G/K with
values in the homogeneous component of degree n oí MK. We set, for
7o, ■ • ■ , 7»£G, I(f)(yo, ■ ■ ■ ,yn) =/(7o)(7o, • ■ • , yn), where yü denotes the
canonical image of 70 in G/K. Then I if) is a homogeneous element of degree n
in MK, and one sees immediately that / is a mean. Hence we can apply Proposi-
tion 5 with n = G/K, and U = MK. We have then Un = M° = HornG(CiG), A), so
that HniUn) =HniG, A). On the other hand, Proposition 3 shows that H"iU)
= H»iMK) is canonically isomorphic with H"iK, A). Hence Proposition 5
yields the following:

Proposition 7. Let G be a group, K an invariant subgroup of G, A a
G-module. Then there exists a spectral sequence (£r) in which the term Ef is
isomorphic with HpiG/K, HqiK, A)), and £„ is isomorphic with the graduated
group associated with HiG, A), appropriately filtered.

We can describe the G/X-operators on HiK, A) quite explicitly: If
/ is a g-cochain for K in A, and 7£G, let iy-f)i<ro, • • • , <r„) =
7/(7~lffo7, • • • , 7_V„7). Then the map f—ry-f induces an automorphism
My of HqiK, A). By the corollary to Proposition 2, My depends only on the

(8) For instance, if there are defined onia topology and an operation "\" (in the sense of
[l], 2d note, no. 4), A has the mean: 1(f) = X<f£n o- o X o <r_1/(o-).
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canonical image y of y in G/K, and one verifies that it is the automorphism
which corresponds to y in the above.

In order to keep our exposition within reasonable bounds we have con-
fined ourselves to cohomology throughout. Actually, the results of this
chapter can be transcribed into homology without difficulty. One must
merely replace the operation "Horn" by the operation "<g>" of taking the
tensor product of a right module by a left module, and the passage A—>An
by the passage A—*An, where An denotes the factor group of A by the sub-
group generated by the elements of the form a — aa, with a£^4 and aÇ\I,
cf. [2].

For the reasons we have explained in the introduction, we pursue the
study of the spectral sequence of Proposition 7 no further. The reader may
convince himself that one can obtain the results of Chapter III (except for
the interpretation of the transgression) from Proposition 7.

Chapter II. The direct method

1. Filtrations. Let G be a group, M a G-module. Write A» = C"iG, M),
the group of "normalized" «-cochains for G in M, i.e., of the functions
/: Gn—+M, such that/(7i, • • • , yn) =0 whenever one of the y{ is equal to 1.
By definition, A° = C°iG, M)=M. Let A = Z»"-o A». Thus, 4 isa gradu-
ated group. We denote by d the nonhomogeneous coboundary operator :

idf)iyu ■ ■ ■ , 7„+i) = yvfiy2, • • • , 7n+i)
n

+ Z (-1)7(71- • • • . 7¿7í+i, • • • , 7n+i)
«=i

+   (-l)"+1/(7l,   •••   ,7n).

It is easily seen that, if/ is normalized, so is df, so that diAn)CZA»+l. As is
well known, normalization does not influence cohomology, and we have H"iA)
= H»iG, M).

Let K be a subgroup of G. We define a filtration iA,) of A as follows:
Aj=A, for j^O. For j>0, we set A¡= Z»=o Ajf^A», where A¡r\A» = iO),
if j>n, and where, for j^n, AjC\An is the group of all elements f(E.A» for
which /(7i, • • • , 7n) =0 whenever n—j+l of the arguments belong to the
subgroup K. Evidently, diAf) CZAj, so that the groups A3- constitute a filtra-
tion.

Paired modules. Let M, N, and P be three G-modules. A pairing of M
and N to P is a map MXN-^P; im, n)-+m\Jn, such that (wi — m2)VJn
= miOn — m2\Jn, m\J'(wi — n2) = «U'«i — «U*n2, and y ■ im VJn) = (7 ■ m)
yJiy-n). The cup product of cochains is a pairing of C(G, M) and CiG, N)
to CiG, P) such that CP(G, M)UO(G, N)CCp+qiG, P) whose explicit defini-
tion is :

ifV g)(yu • • • . 7p+s) = /(71, • • • > 7p) U 71 • • • yP-giyP+i, ■ ■ • , 7P+5)-
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One has then d(fUg) = idf){Ug+i — l)p/W(</g), whence it is clear that the
cup product also induces a pairing of HpiG, M) and HqiG, N) to Hp+qiG, P).
The above filtration is compatible with pairing by cup products, in the sense
that if Aj, Bj, Cj denote the groups of the nitrations for M, N, P, respectively,
we have Ar\JBs(Z.Cr+„ and we then have induced pairings of the groups of
the spectral sequences, such that £f(^[)U£f'<'(5)C£If/'1+<'(C).

In the case where K is invariant in G, we can introduce a second filtra-
tion iA*) of A which has the defect of not being compatible with cup prod-
ucts but which will be very helpful in the computation of the spectral se-
quence. We again define A* =A, j¿0. For j>0, we set A* = Z^=o A* C\A»,
where, for j^n, A¡T\A» is defined as the group of all /£^4n for which
/(7i, • ■ • , 7n) depends only on 71, • • • , 7„_,- and the cosets 7„_y+ii£, • • • ,
ynK, while Aff\A» = i0), for j>n. Evidently, we have again d(Af)CAf.
Furthermore, it is clear that A* QAj, for all j.

Proposition 1. If Er, E* denote the groups of the spectral sequences derived
from the filiations (A¡), (Af), respectively, then the injections A*-^A¡ induce
isomorphisms of E* onto Er, for each r ^ 1.

This will follow trivially as soon as we have proved it for the case r = l.
Hence it will suffice to prove that the injections Af—+Aj induce isomorphisms
of H(Af/A*+1) onto HiA¡/Aj+i), for all j. If we apply the "five lemma" to the
exact sequences for the pairs iA¡, Aj+i) and iAf, Af+i), we see that this will
follow if we prove that the induced maps H»iA*)-^>H»iA¡) are isomorphisms
onto, for all n and/ From the exact sequence for the pair iA¡, A*), it is clear
that this will be the case provided that the following lemma holds:

Lemma 1. HniA¡/A*) = (0), for all n and j.

We have to show the following. If fÇ_Aj(~\An and df(z\A*, then there is
an element gE.A¡ such that/—dgÇ£Af. This holds trivially for j^O and for
j>n, so that we may suppose that 0<jt¡n. Now consider the case j = n.
Then /(71, • • • , 7„)=0 whenever one of the 7¿ belongs to K, and
^/(7i> " ' " » 7»+i) depends only on 71 and the cosets y¡K for i>\. From these
facts and the coboundary formula, applied to dfiyi, ■ • • , 7¿, <r, 7¿+i, • • • , yn)
= 0, it follows at once that, for o-££", /(71, • • • , 7,0-, 7,+i, • • • , yn)
=/(7i. • • • . 7¿> 0-7í+ii ■ • • 1 7n), if l^i<n, and /(71, • • • , 7„<r)
=/(7i. • • • , 7n), whence fGA*. Hence we may now suppose that 0 </'<«,
and it will clearly suffice to prove the following. Let 0^i<j<n, /£
Ajf~\A*r\A», and dfÇ_A*. Then there is an element g£^4y such that f—dg
d\AjH\A*+i. We shall proceed to construct such an element g by successively
defining g¡, g¡+i, • ■ ■ , gn=g so as to satisfy increasingly stringent conditions.

If the n—j+i arguments <Tj_„ • • • , <r„_; are in K, we have, since /£
Aj(~\A», fiyi, ■ • • , 7y_,-_i, ar}_{, ■ ■ ■ , crn_;, 7„_,-+i, • • • ,y„) =0. Let g¿ = 0, and
suppose then that we have already found an element gp^Ají^Afí^A»^1,
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j^p<n, such that if-dgp)iyu ■ ■ ■ , 7P_,_i, <rp_.-, • • ■ , <rn-i, 7n-<+l, • • • , 7n)
= 0, for all yT in G and all aa in K. Write fP—f—dgp, choose representatives

x* in G for the cosets x=x*K, taking £* = 1, and define, for (r£X, and 7r£G,

Kiyi, ' ■ • . 7p-»-i, **o-, 7p->+i, ■ • • , 7»)

= /p(7i. • ■ • . 7p-i-i- x*, a, 7p-i+i, • • • , 7»)-

Then Âj,£^4 f\A*r\An-1. Now consider the value

dhpiyi, ■ ■ ■ , yp-i-i, x*<rp_,-, <Tp+i-,-, • • • , <r„_;, 7„-¿+i, ■ ■ ■ , 7«)-

If it is written out according to the coboundary formula, and if the values
of hp are written as values of fp, we find that the first nonzero term
is ( — îy-'hpiyi, ■ ■ ■ , yP-i-i, x^p-iO-p+i-i, ■ ■ ■ , <rn-i, 7»-,-+i, • • • , 7n)
= (-l)p-'/p(7i, • • • , 7P_i_i, x*, o-p-i0-p+i-i, ■ ■ ■ , dn-i, 7„_i+i, • • • , 7„). On
the other hand, if we write out the coboundary

OJp\Yl,       '   *  » yP—i—li   X   , ffp^i, Cp-rl—i, , (Tn-i, 7n-i+l» , yn),

we find that the first two nonzero terms are:

(    1J     /p\7i,    * * i yP—i—i, x íTp_,', o~pjfi—i, , o~n—i, yn—i+i, , ynj

I     (       1J /pwl»   '       '   , 7p— i— 1,   X   ,  ffp—iO~p-rl—i, ,  Gn—i,  Tn-t+Ii ,  7n/>

Now note that df„=dfQ.Afr\An+1. Hence, since i<j, the above value of dfp
is zero. Furthermore, it is clear from the definition of hp and the coboundary
formula that the terms of dhp which we have not yet considered above are the
same as the remaining terms of dfp, except that they carry opposite signs.
Hence we have

artp\yi, , yp—i—i, x o~p—i, o-p^-i—,-, , <rn_,-, 7n—*+i> * " * , 7n)

= (-1)^/3.(71, • • • , 7p-.-i, x*<rp-i, ■ ■ ■ , an-i, 7n-i+i, • • • » 7n).

Put gP+i=gP+(-l)p_i   hp.  Then  gp+i^:A¡C\A*r\A»-\ and

if—dgp+i)   (71,   •   •   •  , Kp-i, (Tp+l-i,   •   •   • , (Tn-i, 7n-i+l,   '   '   '  , 7») =0.

If p+Kn, we repeat this construction for £ + 1 instead of p, and so con-
tinue until we obtain gnC^Aji^Aff^A"-1 such that

(/ — dgn)iyi, ■ ■ ■ , y„-i-i, o-n-i, 7n-i+i, • • • , 7n) = 0.

Now consider (f-dgn)(yi, ■ ■ ■ ,yn-i-i, xVn_¡, 7n-¿+i, • ■ • , 7n). Since
d(f—dgn) =df(zlAf, we have

d(f - dgn)iyi, ■ ■ ■ , yn-i-i, x*, <rn_,-, yn-i+u • • • , yn) = 0,

and if this is written out in full according to the coboundary formula we find,
using that/—ág„£^4f and the above, that
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(/ — dgn)(yi, • • • , 7„_,-i, x*<r„_,-, 7„_,-+i, • • • , 7„)

= if — dgn)iyi, • • • , 7--.--1, **, 7n-,-+i, • • • ,yn).

Thus/—dgn£.AsT\A*+i, and Proposition 1 is proved.
2. The group E*. Let fGAfi\Ai+i, and denote by ¡f = rjif) the element

of C'iG/K, C^K, M)) which is obtained by restricting the first * arguments
to the invariant subgroup K. Thus, if x—>x* is a choice of representatives in
G for the elements of G/K, with K* = 1, we have

ifixi, ■ • ■ , Xj)i<ri, ■ ■ ■ , ai) = fiai, ■ ■ • , ait Xi, ■ • ■ , x¡),

and it is clear that ,/ is actually independent of the particular choice of the
representatives x*. Evidently, r,- induces a homomorphism of Af/Af+i onto
C'iG/K, C'iK, M)). Furthermore, it is seen immediately from the co-
boundary formula and the definition of A* that, for any /£j4*, we have
jidf)ixi, • ■ ■ , x,)=dijfixi, ■ ■ ■ , Xj)), i.e., in a more suggestive notation,
r¡ o ¿=¿x o r¡, where ¿x is the coboundary operator for cochains of K in
M. Hence it is clear that r¡ induces a homomorphism of E*1,t=Hi+'iA*/A*Jrl)
into C'iG/K, H%K, M)). Actually, we shall prove the following:

Theorem 1. The homomorphism of £*w into C'iG/K, HliK, M)) which
is induced by the restriction homomorphism r¡: A*—^C'iG/K, C'iK, M)) is an
isomorphism onto.

We show first that this homomorphism is an isomorphism. Let /£
A*r\Ai+i+l, and suppose that dfÇ^A*+i and ¡fixi, ■ • • , x¡) =¿(«(xi, • ■ -,x,)),
where uEC'iG/K, CliK, M)). We have to show that there exists A£
A*r\Ai+i such that/—dhÇ:A*+x. Here we have replaced i by i+i for greater
convenience in the formulas below. The case i=0 (which is thereby omitted)
is trivial, since then/=y/.

Define, for (Ti, • • ■ , cr¿ in K and 71, • ■ • ,y¡ in G, g(<ri, • • • , o",-, 71, • • ■ ,yf)
— uixi, • • • , Xj)iffi, ■ ■ ■ , o-,), where xr=yrK. If i = 0 (which is now the case
î = l of the theorem), we obtain, since dfix*, a, 71, • • • , 7y) =0, for aÇz.K,

fix*a, 71, • • • , Ti) = x*-fia, 71, • • • , yf) + f(x*, yu ■ ■ ■ , y¡)
= x*a-giyu ■ ■ ■ ,yj) - x*-giyi, ■ ■ ■ , yf)

+ fix*, 71, • • • , 7j)-

The last expression differs from dgix*a, 71, • • • , y¡) only by terms whose
values are independent of o-££". Hence the value if—dg)ix*a, 71, • • • , 7/)
is independent of a, whence it is clear that/—¿g£yl*+1, so that we may take
h=g if i = 0.

If i>0, we define a sequence of extensions gi, • • • , g< of g =go as follows:
the function gk will be defined on the set of (t+j)-tuples in which the first k
elements and the last j elements are arbitrary elements Pi, • ■ ■ , p* and
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7i, • • • , 7y of G, while the remaining elements o> belong to K. For the con-
struction which follows we shall use the abbreviation ysT for the (s — r + l)-
tuple iyr, 7r+i, • • • , 7»), etc. We define the gk's recursively by the for-
mulas: giix* <ri, o\, y{)=x*-gi<r\, 7Í)-/(«*, a\, y{); gkipi'1, x*ak, a{+1, y{)
=g*-i(pî"2. Pk-ix*, o\, 7Î) + (-1)*/(pÎ-1. x*, a\, 7Í), for k>l. For »£1, we
have then gkipi'1, a\, y{) =gk~iÍPi~1, o\, y{), i.e., each gk is indeed an extension
of gn. Hence we have also ¿g*(pî_1, oi+1, y{) =dgk-iip\~x, o*+1, y{). From the
first of these relations and from our definition, it follows that, for 1 =7=^,
gkidr1, x*, oj+i, 7Í) =giipli~\ x*, a\+i, y{) =0.

Now  it  follows  from  these  facts  and  the  coboundary  formula  that

dgkipi    , x*, ak, yi) = (-1) gkipi    , x*ak, ak+i, 7i)

+ (—1)      gkipi    , Pk-iX*, ak, yi)

= fipi   , x*, ak, yi), for k > 1.
Also, dgiix*, o\, 7Í)=^*-gi(o-Í, 7Í)-gi(^*tri, o\, y{) =j\x*, a\, y{). Thus for
all £5:1, if— ¿g*)(pi_1, x*, o\, t{)=0. We shall show next that the same
relation holds with x*a in the place of x*.

We have (/— ¿go)(c, a\, 7Í)=0, from the definition of go=g- As-
sume that we have already shown that (J— ¿g*_i)(pî-1, <r, o\, 7Í)=0.
Since d(f—dgk)(p\~1, x*, <r, <r\, 7Í)=0, we can write the expression
if—dgii)ip'i~1, x*a, a\, 7i) as a sum of values of +if—dgk) for arguments in
which the Mh place is occupied either by x* or by a. The terms in which x*
is in the ktb place are 0 by what we have just seen. The terms with a in the
ktb place coincide with the terms obtained by replacing gk with gt_i, and are
0 by our inductive assumption. Hence we have if~dgk)ip\, o\, y{) =0, for all
& = 1. In particular, for k=i, we have (f—dgi)(p\, a, y{) =0. Hence, proceed-
ing as just above, if we write (f—dgi)(p\, x*a, y{) as a sum of values of
+ (f—dgi), with x* and a separated in the argument, we find that the non-
zero terms have x* in the (¿+l)th place, and are independent of cr£if,
because f—dgi£zA*. Hence (/— dgi)ip[, x*o, y{) is independent of cr, whence
f—dgi£.A*+i. Thus we may take h =g,-, and conclude that the homomorphism
of Theorem 1 is an isomorphism.

In order to prove that it is onto, we must show that for any
u^C'XG/K, Z\K, M)), where Z\K, M) is the group of the i-cocycles for
K in M, there is an element hGA*C\Ai+i such that dhGAf+i and ¡h = u.

Define gEC'iG, Z%K, M)) by setting g(<r,, • • • , r«, 71- ■ • ■ . 7i)
= m(xi, • • • , Xj)i<ri, • • • , o-,). If i = 0 we may evidently take h=g. Hence
we may suppose that ¿>0. Now we apply exactly the same construction of
extensions gi, • • • , g¿ of g as in the first part of this proof, where now we take
/ = 0. We thus obtain an extension g< of g such that g,£/l*0^4i+i and dg{
G.A*+i. Clearly, the cochain h=gi satisfies our requirements, and Theorem 1
is proved.
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3. A general identity. We wish to prove a certain identity involving
partial coboundary operators which will serve in our subsequent discussion of
the differential operator ¿i of the spectral sequence, and of cup products(').

Let f&A***~\ i>0, j>0. Denote (*'+/)-tuples of elements of G by
(ai, • • • , ai, ßi, • • ■ ,ßj). Define the two partial coboundary operators
S,- and dj by the formulas :

Sifiai, ■ ■ ■ , a{, ßi, ■ ■ ■ , ßj)
= ai-/(a2, ■ ■ • , au ßi, • • • , ßj)

<-i
+ Z (—l)*/(«i> • • • . a*a*+i, • • • , oti, ßi, • ■ ■ , ßi)

k-l

+ (-l)i/(«i, • •• , at-u ßi, • • • ,ßj),

and

à if (ai, • • ■ , oti, ßi, • ■ ■ , ßj)
= ßffiß^aißi, ■ ■ ■ , ßTotißi, ßt, - ■ ■ , ßj)

i-i
+ Z(-i)V(«i. ■ ■ ■ ,oa,ßi,- ■ •,ßkßk+i, • • •,ßi)

k=l

+ (-1)'/(«,, • • • ,m,ßu ■ ■ ■ ,ßi-i).
Let S = (ji, ■ • • , Si) be an ordered subset of the set (1, 2, • ■ • , i+j),

and denote by S* = is*, ■ • ■ , s*) its ordered complement. Set &o = l, bk
=ßi • • • ßk, for 1 ̂ k^j. For 1 ¿p^i, write p*=s* — p (which is the number
of indices sg<s*) and set j>(S) = Zt-i P*> We define, for any g£^4i+;",
gs(«i, • • • , ai, ßi, ■ ■ ■ , ßi)=giyi, ■ ■ ■ , yi+i), where ySg=ßg and ys*p
= bpt1aPbp*. Finally, we set g,-= Zs i~i)'(S)gs, where S ranges over all the
ordered subsets of j elements from (1, • • • , i+j)i10). In these terms, we
shall establish the following identity:

Proposition 2. £or/£^4i+i_1, we have

idf)i = oiifi) + i-iydj(fi-i).
We consider the terms which occur on the left-hand side of the proposed

identity by writing it out in full according to the definition of idf),- and the
coboundary formula. Each coboundary (¿/)s(ai, • • • , at, ßt, * • • , ßf) gives

(9) This paragraph, being concerned only with a single group G, is independent of the
preceding ones. The "shuffling" mechanism which we employ here is closely related to that used
by Eilenberg-MacLane in a paper forthcoming in the Ann. of Math. Cf. also Proc. Nat. Acad.
Sei. U.S.A. vol. 36 (1950) pp. 657-663.

(10) For instance, with i = 1 andj — 2, we have: feiai, ft, ft) =g(alt ft, ft) —g(ft, ft^aift, ft)
+g(ft, ft, (ftft)-1ai(ftft)), and it will be convenient for the reader to follow the proof of
Proposition 2 with this example.
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rise to two types of terms; the "pure" terms in whose arguments each entry
has one of the forms bP*lapbP', or bp^apap+ibp>, or ßg, or ßqßq+i; and the "im-
pure" terms in whose arguments exactly one entry fails to be of this form but
is either bp^apbp'ßp'+i or ßp'bpSapbp: Now it is not difficult to see that each
impure terms occurs exactly twice, and with opposite signs. In fact, an im-
pure term in which the exceptional entry is of the first form occurs a second
time, with the exceptional entry of the second form, for the set T which is
obtained from 5 by switching sP>+i with s*, and since viT) =y(5) + l, these
two terms cancel out. Hence we may conclude that all the impure terms
cancel out.

On the other hand, it is clear that the pure terms of the left-hand side
of the proposed identity are in one to one correspondence with the terms of
the right-hand side. There remains only to verify that they carry the same
signs on the two sides. This is easily seen to be the case for the first and the
last terms of the coboundaries.

There remains to consider the middle terms. These can be divided into
two types, as follows:

(A) : The argument contains i elements bpïapbp* and one ßgßq+i.
(B): The argument contains i—\ elements bp^apbp^ and one bp»apap+ibPt.
A term of type (A) occurs on the left with the sign ( — l)"*«-*-»«, and occurs

on the right with the sign ( — 1)»W)+í+í| where T is the set for which the
arguments appear in the same order in the relevant term of d¡ifT) as in the
relevant term of idf)s- It is easily seen thatviS)—viT) is the contribution to
viS) which is due to the precedence of ßg before a's, because this occurs twice
in computing p(S) (a second time as the contribution due to the precedence
of ßg+i before the same a's) but only once in computing viT). Hence i>(5)
—viT) is equal to the number of s* which are greater than sg, i.e., viS) —viT)
= i—isg — q). Hence the signs for the terms of type (A) are the same on the
right as on the left.

Similarly, a term of type (B) occurs on the left with the sign ( —l)"(s'+»p
and occurs on the right with the sign ( — i)"la)+p, where U is the set for which
the arguments appear in the same order in the relevant term of Siifu) as in
the relevant term of (¿/)s. Here we find by an argument quite similar to the
above that v(S) —v(T) —p* =s* — p, whence we see again that the terms of
type (B) carry the same signs on the right as on the left. This completes the
proof of Proposition 2.

In particular, consider the case j = l. Our identity then becomes (df)i
= Oi(fi) + (-iydi(f). If d/ = 0, this reduces to 3, (f)=(-l)i-1Ô,-(/i), or (ß-f)-f
= d(Jß), where fß(ah • • • , a,-_2) =(-l)i-1/i(«i. ' ' ' . <*<-«. ß)- This shows
again that G operates trivially on HiG, M).

4. The operator di of the spectral sequence. Let the map/—»/y be defined
as in the last paragraph. Suppose/£^?_in.4i+I^ and ¿/£^4*. Let ft, • • -,jSy
be elements of G, and write xq =ßgK, where K is the given invariant subgroup

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1953] COHOMOLOGY OF GROUP EXTENSIONS 125

of G. Let r¡ be the restriction homomorphism of A* onto C'iG/K, CiK, M)),
as in §2. It is seen directly from the definitions that if g£-4*n-4i+i, the re-
striction of the first i arguments in gy to K yields the natural image in
C'iG, C*iK, M)) of r¡ig). Hence, if, in the identity of Proposition 2 for the
above/, we restrict a\, ■ ■ ■ , a, to K, we obtain:

riidf)ixi, ... ,Xj) = diKßi, • ■ • , ß,)) + (-l)'á(f y_i(/))Oi, • • • , Xi),
where h(ßlt ■ ■ ■ , ß^EC^iK, M) is given by

Hßu • • • > ßi)i<*i, ■ ■ • , ou-i) = fiioii, ■ ■ ■ , cti-u ßi, ■ ■ • , ßj).

This shows immediately that, if e is the element of E*1'1'* which corresponds
to /, and <f> is the isomorphism (Theorem 1) of E* onto C(G/K, H(K, M))
which is induced by the maps r¡, then <p(di(e)) — ( — l)s'd(</>(e)). Hence we have
the following result:

Theorem 2. Let <p be the isomorphism of E* onto C(G/K, H(K, M))
which is induced by the restriction homomorphisms r¡ of A* onto
C'(G/K, C(K, M)). Then, for every e££f'\ <*>(di(e)) =(-l)*d(0(c)). Hence tp
induces an isomorphism of E*3,i onto H'iG/K, H{iK, M)).

5. The group £i, and cup products. By Proposition 1 of §1, we know that
the injections A*-^A¡ induce an isomorphism, ^, of E* onto £1( which evi-
dently commutes with the operator ¿i. Hence we have also isomorphisms
Ei~CiG/K, HiK, AT)) and £2«HiG/K, HiK, M)). In order to be in a
position to deal adequately with cup products, we shall investigate the iso-
morphism of £i onto CiG/K, HiK, M)) in greater detail.

An element e££i'* is represented by an element fCzA¡r\Ai+' such that
d/£.4y+i. In the notation of §3, we have then also (á/)y£^4y+i, and /y_i£.4y.
Hence, if we apply the identity of Proposition 2 to /, and restrict the first
i+l arguments to K, we find that S,+i(/y)(<ri, • • ■ , cr¿+i, 7i, • • • , 7y) =0. This
means that if// GCj(G, 0(K, M)) is defined by // iyu ■ ■ ■ , 7y)f>i, • • •, <r<)
=fii°'i, " • ' i ffi, 7i» ' • ' > 7j)i we have, actually,// ÇiC'iG, Z{iK, M)), where
Z'iK, M) denotes the group of i-cocycles for K in M.

On the other hand, by Proposition 1, there is an element f*Ç_A*(~\Ai+',
such that/—/*£^4y+i+á(^4y) and df*£.A*+v The element ^_1(e) is then the
natural image of /* in E*J'*. Furthermore, if w£.4y+i, then uj =0, and if
vEAj, Proposition 2 shows that (do)/ EC^G, d(Ci-1(i?, M))). Hence/ and/*
determine the same element of C'iG, H'iK, M)). This means that// is a
representative cochain for <p^/~1ie). We may state this as follows:

Proposition 3. Let \j/ denote the canonical isomorphism of E* onto E\.
Then the homomorphisms /—>// of A¡ into C'iG, CiK, M)) induce the iso-
morphism (pi/-1 of Ei onto CiG/K, HiK, M)).

Now let us consider a pairing of two G-modules M and N to a third G-
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module P. Let A, B, C denote the cochain groups for G in M, N, P, respec-
tively, and let £lt Fi, G% denote the corresponding terms of the spectral se-
quences.

Let fEAfnAi+i, dfEAf+i; gEB^B^'', dgEB¿+1. Then füg £
Cy+y r\Ci+i'+i+'', and d(/VJg)£Cy+y+i. It is seen at once from the definitions
of §3 that if^Jg)'i+y consists only of a single ( — l)MS(f^Jg)s ; explicitly:

i—iy''if\J g)i+i'iau • • • , ai+i-, 71, • • • , 7y+y0
= fiai, ■ ■ ■ , ait yi, • • ■ , 7y) W p-g(7_1o-i+i7, * • • . 7-10-<+¿'7, 7y+i, • • • . 7y+y).

where 7=71 • • • 7y, and p=ffi • • • er.-yi • • • 7y. Hence we have

ifV g)'j+J-iyi, ■ • ■ , yj+r) = (-l)i'J//(7i, • • • , 7/)^ 7'(gy'(7y+i, • • • . Vj+i')),

or: (/Wg);+r = (-l)''%iWg;, This proves:

Theorem 3. Let p=dyip~1 denote the canonical isomorphism of £1 (resp.
Fi, Gi) onto CiG/K, HiK, M)) iresp. etc.). Let uEE{\ o££{',<', so that
u\JvEG{+''-i+i'. Then p(wWo) =(-l)i''p(u)[Up(v).

We remark, finally, that the definitions of the cup product and di give
the rule di(wWo) =di(w)Wo+( — l)i+'u\Jdi(v), and that this provides a
check on the sign in the above. Furthermore, these results imply that
Theorem 3 holds also for £2, mutatis mutandis.

Chapter III. Applications
1. The spectral sequence. We begin by recalling a few general facts con-

cerning the spectral sequence. If Z{ denotes the subgroup of ^4y consisting
of all elements a£^4y for which da£^4y+r, we have E¡. = Zr/iZrt1i+diZrt\~T)).
The differential operator dr is the endomorphism of £r which is induced by
d. The group E1/ is the canonical image of ZrC\Ai+' in E\, and we have
driEJr'i)CEi+T'i+1-T. Hence dr(£f)=(0), if r>i+i, and dr(£r)n£?=(0), if
r>j. In particular, if r>max (J, i+l), then E1r'i = E}¿, which is canonically
isomorphic with Hi+iiA)j/Hi+iiA),-+i, where HiA)¡ denotes the image of
HiAj) in HiA). Generally, £#!«#'•<(£.).

In our case, HiA)=HiG, M). We have canonical maps: H%G, M)
-+E°*-*E%i™HiiK, M)°. The first map is onto, and its kernel is H%G, M)i.
The second map is an isomorphism into, and the composite map is the
natural restriction homomorphism r,-: H'iG, Afj—tH'iK, M)a.

On the other hand, we have canonical maps:

h\g/K, MK) « £2'° -» £Í'° -* h\g, M).
The first map is onto, the second map is an isomorphism into, its image is

H'iG, M)j, and the composite map is the natural "lifting homomorphism"
U: H'iG/K, MK)-*H'iG, M).
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All these facts are consequences of the general properties of the spectral
sequence, combined with the results of Chapter II.

2. A decomposition theorem.

Theorem 1. Let G be a finite group, K an invariant subgroup of G, m
= [G: K], n=[K: (1)], and suppose that m and n are relatively prime. Then,

for each j>0, H'iG, M) can be decomposed uniquely into a direct sum U+ V,
where V is mapped isomorphically onto H'(K, M)° by the restriction homo-
morphism r¡, and where U is the isomorphic image of H'(G/K, MK) by l¡.
Moreover, this decomposition is multiplicative with respect to cup products (u).

First, let Q be a finite group of order q, B a Ç-module, fEZkiQ, B)
with jfe>0. Define f'ECk-liQ, B) by setting /' (71, •••, 7*-i) = Z-HEQ
/(7i, • • • , 7*-i,7)- Then we have d/' = ( — l)hqf. Hence, for any uEHhiQ, B),
g« = 0(12).

Hence, in our present situation, if uEH'(G/K, H%K, M)), then nu=0
if í>0, and mu=0 if j>0. By the results of Chapter II, the same holds
therefore for any uEE^1, and hence also for any uEE1/, if r St 2. In particu-
lar, it follows that £rw = (0), if r^2, i>0, and j>0. Now we have dr(EJ/)
C£/+r,1+1_r. If r^2, we have therefore dr(£/'*) = (0), unless i = r-\ and j = 0.
But if e££?,r_1, then ndre=drine) =0, and also mdre = 0, since dre££¡>°.
Hence dr = 0, for all r^2.

Hence £j'°—>££° and £Ü,J—»££J are isomorphisms onto and by §1 this
means that /,-: H'iG/K, MK)-+H'iG, M) is an isomorphism, and r¡: H'iG, M)
-*HjiK, M)a is onto. Since ££' = (0) for p>0 and q>0, it follows further-
more that H'iG, M)i=H'iG, M)¡. Since these groups are respectively the
kernel of r¡ and the image of l¡, the following sequence is exact:

(0) -> H'iG/K, MK) -^ H'iG, M) -* H'iK, M)G -> (0).
h n

Now choose integers a and b such that am+bn = \. If xEH'iG, M), set
aix)=amx, ßix)=bnx, so that x=aix)+ßix). We have then aß=ßa=0,
a2 = a, and ß2=ß. Hence a and ß define a decomposition of H'iG, M), and
we claim that this decomposition satisfies the requirements of Theorem 1.

In fact, it is clear that ry|3=0, and—using the exactness of the above se-
quence—one sees easily that r¡ maps aiH'iG, M)) isomorphically onto
H'iK, MY, while I, maps H'iG/K, MK) isomorphically onto ßiH'iG, M)).

Now let uEH'(G, M) and vEH''iG, N), where M and N are two G-
modules which are paired to a third G-module, P. Then we have, clearly,

(u) By means of the transfer homomorphism (of the cohomology group of a subgroup into
that for the whole group) which has recently been defined by Eckmann and, independently, by
Artin, a very simple proof for Theorem 1 can be given. The proof we give here is to serve as an
illustration of the use of the spectral sequence.

(12) This result is, of course, well known.
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«(lí)Ua(n) =a2iu\Jv) =aiu\Jv), and /3(w)Uj3(o) =ß\u\Jv) =ßiuUv).
Finally, it is clear that V is uniquely characterized as the subgroup of

H'iG, M) consisting of all elements whose orders divide n.
3. The transgression. We recall that the transgression is a certain homo-

morphism which arises from an arbitrary spectral sequence in the following
way:

Write E°0 = R, so that E^^H^R). Also, let 5i=£1'° and 5= Zi" i S*.
Then di(.Si)C>S'i+1, and the corresponding cohomology groups H*iS) are the
£2°. Hence, for ¿=2, the spectral sequence gives a natural homomorphism
a i oí H'iS) onto £|'°. Furthermore, the injection of Z\ into ^4i induces an iso-
morphism pi of £|'° into WiAi), if ¿ = 2. Clearly the composite map p.,-o-,- is
the homomorphism Vi of H'iS) into II'iAi) which is induced by the injection
of S into Ai. Now let î2ï2, and consider the following diagram:

Hl-\A) -> H^iR)-> Hi(Ai) -> H%A)
x,_i 5,_i v k.   e,-

T,--i i Pi T wt    H'iS)    fr T
0,,-l 0,t—1 ,',0   iS   ai t,0

(0) -r Ei+i        —-» £,- —* £,• -» Ei+i -> (0)
hi di <pi

4 î î Î
(0) (0) (0) (0)

Here, the top line is the natural exact sequence for the pair iA, Ai),
noting that i?=.4/.4i. The bottom line is composed of natural maps of the
spectral sequence, and its exactness is evident from the fact that £i+i»i7(£,-).
The vertical lines are also exact sequences; the nontrivial maps in them are
the natural maps induced by injections of subgroups of A. Finally, all the
commutativity relations are satisfied.

Now an element x£i/i-1(£) is called transgressive if ô,_i(ic)£v,(i/i(5)).
If Ni denotes the kernel of vit then U{x) is defined as the coset j»rl5<_i(*) in
H'iS)/Ni. The map ¿, is called the transgression, and we shall see that, essen-
tially, ti is the map d,: £?'i_1—»£{'°; more precisely:

Proposition 1. Let x££Î'i_1, with ¿=2. Then x is transgressive if and only
if there is an element y££?'i_1 such that x is the canonical image Piiy) of y
in £Î'1_1, and then /¡(x) is the inverse image o-^id^y) of d¡y under the natural
homomorphism o~i of £2'° onto E't'°.

In fact, if x=piiy), then 5,_i(x) =o,_ip¡(y) =p¿diiy), by the diagram. Since
o~i is onto, there is a zEH'iS) such that <r,(2) =d,(y). Then S¿_i(x) =p.¿<r¿(2)
=Vii¿), showing that x is transgressive. Since the kernel of o\- coincides with
Ni, we have then /¿(x) =ai~1idiy).

On the other hand, if 5i_i(x) =j\(z) (i.e., if x is transgressive) then, by the
diagram, \pi<p¿aiiz) =€,-p.¡(r,(z) =tiVii¿) =e¿5¿_i(x) =0, and hence 0¿<r,(z) =0.
Hence there is an  element yi££?'<_1 such  that diyi=aii¿).  Now 5,_!(x)
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=Piidiyi) =S,_ip¿(yi), and hence there is an element aEH'~liA) such that
x— p¿(yi) =7T¿_i(o).    Put   y=yi+Ä,Ti_i(ö).   Then   p¿(y) =p;(yi)+p;&,T<_i(a)
= (x—7r,_i(a))+7Ti_i(a) =x, and Proposition 1 is proved.

In our applications, A=CiG, M), and the restriction of cochains from
G to K clearly induces an isomorphism of R onto CiK, M). On the other
hand, by Theorem 1 of Chapter II, S' may be identified with C'iG/K, MK).
The above definition now becomes the following: an element x£i7i_1(.rv, M)
is called transgressive if there is a cochain/£Ci-1(G, M) whose restriction to
K is a representing cocycle for x and which is such that df is the natural
image in Z'iG, M) of an element of Z'iG/K, MK). Proposition 1 means that
the transgressive elements of H'~liK, M) make up exactly the canonical
image of E*}-'-1 in Hi_1iK, M), and that U takes its values in that factor
group of H'iG/K, MK) which is canonically isomorphic with £|'°. More pre-
cisely, if x and / are as above, then i;(x) is the element of this factor group
which is determined by df.

4. An exact sequence involving the transgression.

Theorem 2. Let w^l, and assume that H»iK, ikf)=(0), for 0<n<m.
Then the subgroup constituted by the transgressive elements of HmiK, M) coin-
cides with HmiK, M)°, the image tm+i(Hm(K, M)°) is a subgroup of
Hm+1(G/K, MK), and the following sequence is exact:

(0) -► Hm(G/K, MK) -* Hm(G, M) -► Hm(K, M)°

-> Hm+1(G/K, MK) —> Hm+1(G, M).
tm+l lm+1

Since £2° is canonically isomorphic with £i¿°, and so with Hl(G, M)i, it
is clear that h is an isomorphism. Hence, by induction on m, it will suffice to
prove the result under the assumption that lm is an isomorphism into. The
hypothesis of the theorem gives that £^ = (0), for 0<i<m and all r^2.
Taking j = m — i and r—m+\, we conclude from this that HmiG, M)m
= HmiG, M)\. Thus the image of lm coincides with the kernel of rm.

Further, dr(£?'m)C£rr'm+1-r = (0), if 2 ^r £m. Hence, E%m is canonically
isomorphic with £^+1, which means, by what we have seen in §3, that the
transgressive elements of HmiK, M) are precisely those of HmiK, M)°.

We have also ETn+1~T'r~1 = (0), if 2 £¡r ^m, and we may conclude from this
that £^|1'0 is canonically isomorphic with E%+1'°. Hence the homomorphism
<rm+i of §3 is an isomorphism, whence tm+i maps HmiK, M)a onto a subgroup
of Hm+1iG/K, MK). Moreover, tm+i corresponds canonically to the map
dm+i: £^+1—>£¡¡j+l'°. Hence the kernel of tm+i is the canonical image of £^™2
in HmiK, M)°; but É¡£2 is canonically isomorphic with HmiG, M)/HmiG, M)i,
whence we conclude that the kernel of tm+ï coincides with the image of rm.

Furthermore, the image of tm+i corresponds canonically to dm+i(£^+1),
which is precisely the kernel of the natural homomorphism: EZXi°—»£^+2°
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**Hm+i(G, M)m+i. This means that the image of tm+i coincides with the kernel
of lm+i, and our proof is complete.

Remark. In the case m = l, the hypothesis of the preceding theorem is
vacuous, and hence we have always the following exact sequence:

(0) -* H\G/K, MK) -* H\G, M) -* H\K, M)° -+ H2iG/K, MK) -+ H2iG,M).

5. Interpretation in the theory of simple algebras(13). A particularly
interesting case of Theorem 2 is the case where M is the multiplicative
group L* of a field L, and G is a finite group of automorphisms of L. Then, as
is well known, H*iK, M) =(0). The exact sequence of Theorem 2, for m = \,

(0) >-» H2(G/K, F*) -► H2(G, L*) -> H\K, L*)G -+ H\G/K, F*) -^ H\G, L*)
h r2 h h

is then significant for the theory of the simple algebras which have the fixed
field, F, say, of K in L for center, and which are split by £(14).

Let U be such an algebra. Then there is a vector space V over L which is
at the same time a right ¿/-module in such a way that LU' is the ring of all
£-linear transformations of V, where U' denotes the ring of endomorphisms
of V which corresponds (by an anti-isomorphism) to U. Those nonzero
(£, £)-semilinear transformations of V which commute with the elements
of U' are automorphisms, and constitute a group S. The m^p which asso-
ciates with each sES the corresponding automorphism a of L (sl = a(l)s)
is a homomorphism <p of S onto the Galois group K of L/F whose kernel is
precisely L*. Thus, to each algebra U, as above, we obtain a group exten-
sion (S, <f>) of L* by K. It follows from the theory of simple algebras that this
construction (l5) establishes an isomorphism of the Brauer group of the alge-
bra classes over F with splitting field L onto the group of extensions of L*
by K, where the multiplication in the latter is the Baer product. Actually,
the commutator ring of U' in the full endomorphism ring of V consists of all
sums of elements of S and is a crossed product, L(K, /), in the similarity
class of U, where/ is the "factor set," i.e., fEZ2(K, L*). Moreover,/ is also
a factor set belonging to the group extension (S, <p), and this correspondence
gives an isomorphism of the group of extensions of L* by K onto H2(K, L*).

Now let T denote the fixed field of G in L ; TQFEL. The algebra U is
normal over T (in the sense that T coincides with the fixed subring of U
for the group of all automorphisms of U/T) if and only if every auto-
morphism of F/T can be extended to an automorphism of U. It is easily seen

(13) For the classical theory of simple algebras, see, for instance, Deuring, Algebren, and
Artin, Nesbitt, Thrall, Rings with minimum condition.

(u) The exactness of the first half of this sequence is well known, cf. [9; 11].
(w) This direct construction of the "crossed product" of a given algebra class is due to

J. Dieudonné (La théorie de Galois des anneaux simples et semi-simples, Comment Math. Helv.
vol. 21 (1948) pp. 154-184).
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from the above that this is the case if and only if every automorphism of F/T
can be extended to an "admissible" automorphism of (S,(p), i.e., to an auto-
morphism of 5 which coincides, on L*, with a field automorphism of L.
This, in turn, is easily seen to be the case if and only if the corresponding ele-
ment of H2(K, L*) is G-fixed. Hence our group H(K, L*)G is isomorphic with
the group of those algebra classes over F whose members are split by L, and
normal over T(u).

If U is normal over T, then the extensions of the elements of G/K to
admissible automorphisms of (S, <p) allow one to regard 5 as a G/K-kemel,
in the sense of Eilenberg-MacLane. This means the following:

If x* is an admissible automorphism of 5 which extends xEG/K, then
there are elements s(x, y)ES such that x*y* =s(x, y)'(xy)*, where 5" denotes
the inner automorphism of 5 which is effected by 5. In fact, x*y*(xy)*~1
induces on L* an automorphism belonging to K. Hence there is an element
Si(x, y) in 5 such that x*y*(xy)*~1 = \p(x, y) si(x, y)\ where \¡/(x, y) is an auto-
morphism leaving the elements of L* fixed. Using the fact that HliK, L*)
= (0), one shows that such an automorphism is an inner automorphism
effected by an element of L*, whence our assertion follows. This defines the
structure of a G/K-kerne\ on S.

Now one shows that x*isiy, z))s(x, yz)=f(x, y, z)s(x, y)sixy, z), where
fEZ\G/K, F*), and that the cohomology class of / (in H\G/K, F*)) does not
depend on the particular choice of the extensions x*. We choose the x* such
that 1 * = 1, and denote by x the automorphism of L* which is induced by x*.
Also we choose elements si(o-) £5 such that </>(si(<r)) =oEK, taking si (1) = 1.
Now define, for a, r in K,

lio-x, rf) =5i(o-)x*(si(r))s(x, y)si(ffxry((xy))-1)-1-

Then one can verify directly that each lia, ß) commutes with every element of
L*, and hence belongs to L*, i.e., lEC2iG, L*). Furthermore, a direct com-
putation shows that dliax, t$, pz) =f(x, y, z). Also, we have l(a, r)
= Si(o-)si(t)si(o-t)-1, i.e., the restriction of / to K2 is in the cohomology class
uEH2(K, L*)G which is determined by (S, </>), or by U.

The cohomology class in LP(G/K, F*) which is determined by the above
/ is the "obstruction" of the G/K-kernel S as defined by Eilenberg-MacLane,
and, at the same time, the "Teichmüller" class of the normal algebra U.
What we have just seen shows again that the element uEH2(K, L*)G is
transgressive, and—furthermore—that the transgression, t-¿(u), is precisely
the Teichmüller class. From Theorem 2, we can now conclude that the Teich-
müller classes make up exactly the kernel of the homomorphism l3 : H3(G/K, F*)
—*H3(G, L*), and that the Teichmüller class of an algebra is 0 if and only if
the corresponding cohomology class in H2(K, L*)G is in the canonical image
of IP(G, L*), which is easily seen to be the case if and only if the given alge-

(16) This is a reformulation of a result of Teichmüller [15].
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bra belongs to the class of a tensor product F®tB, where B is a simple alge-
bra with center T. These are the results of Teichmüller, Eilenberg and
MacLane, [15; 9](17).

6. An exact sequence giving the cup product reduction.

Theorem 3. Let w = l. If m>\, assume that H»iK, M) = (fS), for n
= 2, • ■ • , m. Then there is an exact sequence of homomorphisms:

HmiG/K, MK)^HmiG, M) -? Hm-\G/K, H\K, M))
lm rm

-% Hm+\G/K, MK)-> H>»+\G, M).
d2 lm+l

The proof is similar to that of Theorem 2. Our assumption gives that E1*
= (0),fori = 2, • • -,wandallrè2. Hence HmiG, M)m-i=HmiG, M)m-i+u for
* = 2, • • -,m, whence HmiG,M)=HmiG, M)m-i. Now HmiG,M)m„i/HmiG, M)m
is canonically isomorphic with EZ+V, for «^1, with £^+1'1, for m^2, and
with EST1,1, for m>2. We wish to prove that it is isomorphic with £™-1-1,
for all m^i. From what we have just seen, this will follow if we have shown
that £j£-1,1 is canonically isomorphic with fif1»1, for m>2. But this follows
immediately from the fact that £™~1~r,'' = (0), for /- = 3, ■ • ■ , m. Since this
last fact holds also for r = 2, we find, furthermore, that £jl_1>1 is canonically
isomorphic with the kernel of d2 in £2"-1-1. Thus, we have a canonical homo-
morphism of HmiG, M) into £2n_1,1 whose kernel coincides with the image
HmiG, if) m of HmiG/K, MK) under lm, and whose image is the kernel of d2
in £2B_1,1. To this there corresponds a homomorphism r'm of HmiG, M) into
Hm^1iG/K, H1^, M)). (This homomorphism r'm is induced by restricting
the first argument of a suitably selected cocycle, representing the given
cohomology class, to K.) The kernel of r'm is the image of lm, and the image of
r'm is the kernel of the homomorphism d2' which corresponds canonically to d2.

Finally, the kernel of lm+i is the subgroup of Hm+liG/K, MK) which cor-
responds to the kernel of the canonical homomorphism of £2n+1'° into EZ+l'°.
Since £r",+1-'-r-1 = (0), for r = 3, • • • , m+i, we have EZtlfi*>Ef+1-'>, so that
the kernel in question is d2(£2n~1,1)- Hence the kernel of lm+i is the image of
d{. This completes the proof.

When K operates trivially on M, so that MK = M, we can describe the
map dl as a cup product. In this case, HliK, M) is the group Horn (£, M)
of all homomorphisms of K into M. Let K' denote the commutator subgroup
of K. The factor group K/K' may be regarded as a G/K-module in the na-
tural fashion. We can define a pairing of this G/K-module K/K' with
Horn (£, M) to M by setting, for a'EK/K', a a representative of a' in K, and
/£Hom iK, M), o-'U/=/(o-), which, indeed, is independent of our choice of
representatives. This is evidently a pairing, compatible with the G/K-module

(") It is apparent that our argument is not confined to group extensions arising from simple
algebras. For instance, it applies to idèle classes in class field theory.
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structures. From this we obtain a cup product pairing of HiG/K, K/K'). and
HiG/K, Horn iK, M)) to HiG/K, M). We shall now prove the following:

Theorem 4. Let G be a group, K an invariant subgroup of G which oper-
ates trivially on the G-module M. Let d2 denote the homomorphism of
Hm~liG/K, Horn (K, M)) into Hm+liG/K, M) which corresponds to d2: £2m-1-1
—>£2n+1'°. Let c denote the element of H2iG/K, K/K') which is determined by
the group extension,

K/K'-^G/K'->G/K.
Then, for every uEHm~liG/K,rIom iK, M)), d¿ (m) = -cVJu.

It is easy to see this quite directly, with the filtration (.4*). We shall,
however, give another proof which utilizes Theorem 3 of Chapter II, in order
to illustrate the multiplicative features of the spectral sequence.

Let unprimed letters refer to the spectral sequence for M, primed letters
to the spectral sequence for Horn iK, M), and dotted letters to the spectral
sequence for K/K'. The above pairing of K/K' and Horn iK, M) to M in-
duces a pairing of E'r and £/ to £r. Let us identify the element u of the theo-
rem with its canonical image in £f-1'1. On the other hand, let u' denote the
element of £¿m-1'° which corresponds to u, iHm~1iG/K, Horn iK, M)) being
canonically isomorphic with ££m"~1>0 also). The natural homomorphism of K
onto K/K' may be regarded as a G/K-ñxed one-dimensional cohomology
class for K in K/K', and hence corresponds canonically to an element
o££20,0. It is evident that v\Ju' =w, regarded as an element of Efl,t. We
have d2(w) =d2(o)Ww' — oWd2(tt')> by the formula of the coboundary for cup
products of cochains for G (which represent o, u', and u). But since u'
££^m-1'0, we have d2(w') =0. Hence d2(w) =d2(o)VJw'. Now let x—>x* denote
a choice of representatives in G for the elements of G/K, and let / be the
map of G into K/K' which sends an element <rx*(o-£i£) into the coset mod K'
of a. Then / is a cochain representing o ; moreover, it is easily verified that df is
the natural image in C2(G, K/K') of an element gEZ\G/K, K/K'), and that
g belongs to the cohomology class of — c.

Now if we pass to the cohomology groups by the canonical maps, d2(w)
becomes d2 (m) , d2(o) becomes — c, and u' becomes u. By Theorem 3 of Chap-
ter II, the cup product becomes the cup product of the requisite cohomology
groups, and hence we obtain, indeed, d2 (w) = —c\Ju.

Now suppose that G is a free group. Then K is free, and hence the assump-
tions of Theorem 3 are satisfied. Since now HmiG, M)=i0), for m ^2, we
conclude that d2 is an isomorphism onto for m > 1, and is a homomorphism
onto, with kernel riiHliG, M)), for m = í. If, furthermore, K operates
trivially on M, we can use Theorem 4 to conclude that the map w—»cWw is
an isomorphism of H^iG/K, Horn iK, M)) onto Hm+\G/K, M), if m>\.
In   the  case   m = \,   this   map   is   a   homomorphism   of   Horn   iK,   M)°
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= Ophom iK, M) onto H2iG/K, M), and the kernel is the group of those
operator homomorphisms of K into M (i.e., elements of Horn iK, M)G)
which can be extended to cocycles for G in M. This is the cup product reduc-
tion theorem of Eilenberg-MacLane [8].
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