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COHOMOLOGY OF LINE BUNDLES

ON THE COTANGENT BUNDLE OF A GRASSMANNIAN

ERIC N. SOMMERS

(Communicated by Gail R. Letzter)

To Professor Shoji on the occasion of his 60th birthday

Abstract. We show that certain line bundles on the cotangent bundle of a
Grassmannian arising from an anti-dominant character 𝜆 have cohomology
groups isomorphic to those of a line bundle on the cotangent bundle of the
dual Grassmannian arising from the dominant character 𝑤0(𝜆), where 𝑤0 is

the longest element of the Weyl group of 𝑆𝐿𝑙+1(𝑘).

1. Introduction

Let 𝑘 be an algebraically closed field of characteristic 𝑝 ≥ 0. Consider the
algebraic group 𝐺 = 𝑆𝐿𝑙+1(𝑘). Let 𝑇 ⊂ 𝐵 be a maximal torus contained in a
Borel subgroup of 𝐺 and let 𝑋∗(𝑇 ) denote the characters of 𝑇 . We choose positive
roots and simple roots Π in 𝑋∗(𝑇 ) that correspond to the Borel subgroup opposite
to 𝐵. We index Π = {𝛼𝑗} so that 𝛼1 is an extremal root and 𝛼𝑗 is next to 𝛼𝑗+1

in the Dynkin diagram of type 𝐴𝑙. Let {𝜔𝑖} be the fundamental weights of 𝐺
corresponding to Π. Let 𝛼∨ be the coroot of the root 𝛼 and let ⟨−,−⟩ denote the
pairing of 𝑋∗(𝑇 ) and the cocharacters 𝑋∗(𝑇 ) of 𝑇 .

For a rational representation 𝑉 of 𝐵, denote by 𝐻∗(𝐺/𝐵, 𝑉 ), or just 𝐻∗(𝑉 )
when there is no ambiguity, the cohomology of the sheaf of sections of the vector
bundle 𝐺 ×𝐵 𝑉 over 𝐺/𝐵. For 𝜆 ∈ 𝑋∗(𝑇 ), we use the notation 𝜆 both for a
character of 𝑇 and for the one-dimensional representation of 𝑇 or 𝐵 that it defines.

Let 𝑃 denote the maximal proper parabolic subgroup containing 𝐵 correspond-
ing to all the simple roots except 𝛼𝑚. Thus 𝐺/𝑃 identifies with the Grassmannian
of 𝑚-planes in (𝑙+1)-space. Let 𝔲𝑚 be the Lie agebra of the unipotent radical of
𝑃 . Denote by 𝑆𝑛𝔲∗𝑚 the 𝑛-th symmetric power of the linear dual of 𝔲𝑚.

The result of this paper is the following:

Theorem 1.1. Let 𝑟 be an integer in the range

−∣𝑙 + 1− 2𝑚∣ − 1 ≤ 𝑟 ≤ 0.

If 𝑝 = 0 or

𝑝 > max{𝑟,min{𝑚, 𝑙 + 1−𝑚}},
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then there is a 𝐺-module isomorphism

𝐻𝑖(𝐺/𝐵, 𝑆𝑛𝔲∗𝑚 ⊗ 𝑟𝜔𝑚) ≃ 𝐻𝑖(𝐺/𝐵, 𝑆𝑛+𝑟𝑚𝔲∗𝑙+1−𝑚 ⊗−𝑟𝜔𝑙+1−𝑚) for all 𝑖, 𝑛 ≥ 0.

That the theorem is related to the cohomology of line bundles on the cotangent
bundle of a Grassmannian goes as follows. First, since all roots have the same
length, the cotangent bundle of 𝐺/𝑃 identifies with the vector bundle 𝐺 ×𝑃 𝔲𝑚.
Second, for 𝜆 ∈ 𝑋∗(𝑃 ), let 𝐿𝜆 denote the corresponding line bundle on 𝐺/𝑃 . Let
𝜋 : 𝐺 ×𝑃 𝔲𝑚 → 𝐺/𝑃 be the natural map. The line bundle 𝐿𝜆 can be pulled back
to a line bundle 𝜋∗(𝐿𝜆) on 𝐺×𝑃 𝔲𝑚. We have

𝐻𝑖(𝐺×𝑃 𝔲𝑚, 𝜋∗(𝐿𝜆)) ≃
⊕

𝑛≥0

𝐻𝑖(𝐺/𝑃, 𝑆𝑛𝔲∗𝑚 ⊗ 𝜆).

Finally,
𝐻𝑖(𝐺/𝐵, 𝑉 ) ≃ 𝐻𝑖(𝐺/𝑃, 𝑉 ) for all 𝑖 ≥ 0

for any 𝑃 -representation 𝑉 . See Chapter 8 of Jantzen’s notes [3] or [1] for a discus-
sion of these facts, which hold for any parabolic subgroup of a semisimple group.

Theorem 1.1 was used in the papers [4] and [5] to prove that certain nilpotent
varieties are normal.1 An analogous theorem for 𝐺 of type 𝐷2𝑙+1 was proved
and used in [5], although that theorem was stated only in characteristic zero. The
usefulness of Theorem 1.1 lies in the fact that it can be used for arbitrary semisimple
𝐺 whenever 𝑃 is replaced by a parabolic subgroup of 𝐺 whose Levi subgroup 𝐿
contains a semisimple subgroup 𝑀 of type 𝐴𝑚−1×𝐴𝑙−𝑚 such that 𝐺 contains a Levi
subgroup 𝐿′ of semisimple type 𝐴𝑙 where 𝑀 ⊂ 𝐿′ and [𝐿′, 𝐿] ⊂ 𝐿. Then multiple
applications of Theorem 1.1 often lead to a situation, at least in characteristic zero,
where the cohomology groups vanish for all 𝑛 ≥ 0 when 𝑖 > 0. The reason is that
when 𝑝 = 0 we are in a position to invoke a version of the Grauert-Riemenschneider
theorem.

Perhaps the most interesting feature of the theorem is that it translates the
cohomology of a line bundle on the cotangent bundle of one partial flag variety into
the cohomology of a line bundle on the cotangent bundle of a different partial flag
variety.

2. Preliminaries

Recall the following proposition, due to Demazure and extended to positive
characteristic by Thomsen. It is true for all semisimple groups, although we use it
here only for type 𝐴. From now on, 𝑃𝛼 refers to the minimal parabolic subgroup of
𝐺 containing 𝐵 corresponding to the simple root 𝛼. If 𝛼 = 𝛼𝑡, then we may write
𝑃𝑡 instead of 𝑃𝛼𝑡

.

Proposition 2.1 ([2], [6]). Let 𝑉 be a rational representation of 𝐵 and assume
that 𝑉 extends to a representation of the parabolic subgroup 𝑃𝛼. Let 𝜆 ∈ 𝑋∗(𝑇 )
be such that 𝑠 = ⟨𝜆, 𝛼∨⟩ ≤ −1. If 𝑝 = 0 or 𝑝 > −𝑠, then there is a 𝐺-module
isomorphism

𝐻𝑖(𝐺/𝐵, 𝑉 ⊗ 𝜆) ≃ 𝐻𝑖−1(𝐺/𝐵, 𝑉 ⊗ 𝜆−(𝑠+ 1)𝛼) for all 𝑖 ≥ 0.

In particular, if 𝑠 = −1, then all cohomology groups 𝐻𝑖(𝐺/𝐵, 𝑉 ⊗ 𝜆) vanish.

This leads to the following result for 𝐺 = 𝑆𝐿𝑙+1(𝑘).

1The reference for the theorem in those papers is supplanted by the current paper.
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Lemma 2.2. Let 𝑄 be a representation of 𝐵 that extends to a representation of
each 𝑃𝑡 for 𝑎 ≤ 𝑡 ≤ 𝑏. Let 𝜆 ∈ 𝑋∗(𝑇 ) be such that ⟨𝜆, 𝛼∨

𝑡 ⟩ = 0 for 𝑎 < 𝑡 ≤ 𝑏.
Set 𝑠 = ⟨𝜆, 𝛼∨

𝑎⟩ and assume that 𝑎 − 𝑏 − 1 ≤ 𝑠 ≤ −1. If 𝑝 = 0 or 𝑝 > −𝑠, then
𝐻∗(𝑄⊗ 𝜆) = 0.

Proof. This is an application of Proposition 2.1, utilizing it a total of −𝑠 times,
starting with the parabolic 𝑃𝑎. After one application we have

𝐻𝑖(𝑄⊗ 𝜆) ≃ 𝐻𝑖−1(𝑄⊗ 𝜆+ (−𝑠− 1)𝛼𝑎).

After the second application we have that the latter is isomorphic to

𝐻𝑖−2(𝑄⊗ 𝜆+ (−𝑠− 1)𝛼𝑎 + (−𝑠− 2)𝛼𝑎+1).

Continuing along, we find that after −𝑠− 1 times that

𝐻𝑖(𝑄⊗ 𝜆) ≃ 𝐻𝑖+𝑠+1(𝑄⊗ 𝜆+ (−𝑠− 1)𝛼𝑎 + ⋅ ⋅ ⋅+ 2𝛼𝑎−𝑠−3 + 𝛼𝑎−𝑠−2).

This is possible since 𝑎 − 𝑠 − 2 < 𝑏, and thus 𝑄 extends to a representation of 𝑃𝑗

for 𝑎 ≤ 𝑗 ≤ 𝑎− 𝑠− 2 < 𝑏.
We are done at this point because

⟨𝜆+ (−𝑠− 1)𝛼𝑎 + ⋅ ⋅ ⋅+ 𝛼𝑎−𝑠−2, 𝛼∨
𝑎−𝑠−1⟩ = −1

and 𝑎 − 𝑠 − 1 ≤ 𝑏 so that 𝑄 is a representation of 𝑃𝑎−𝑠−1. Thus Proposition 2.1
applies again, giving the total vanishing of cohomology. □

We can now prove the main result.

3. Proof of Theorem 1.1

Proof. By symmetry we may assume that 𝑚 ≤ 𝑙+1−𝑚, so that the extremal value
for 𝑟 is

−∣𝑙 + 1− 2𝑚∣ − 1 = 2𝑚− 𝑙 − 2.

Step 1. In this step, 𝑟 may be an arbitrary integer. Consider the intersection
𝑉 = 𝔲𝑚 ∩ 𝔲𝑙+1−𝑚. We will show in Step 1 that for all 𝑖, 𝑛,

(1) 𝐻𝑖(𝑆𝑛𝔲∗𝑚 ⊗ 𝑟𝜔𝑚) ≃ 𝐻𝑖(𝑆𝑛𝑉 ∗ ⊗ 𝑟𝜔𝑚).

We begin by taking the Koszul resolution of the short exact sequence

0 → 𝑈 → 𝔲∗𝑚 → 𝑉 ∗ → 0

(this defines 𝑈) and tensoring it with 𝑟𝜔𝑚. This gives

0 → ⋅ ⋅ ⋅ → 𝑆𝑛−𝑗𝔲∗𝑚 ⊗
𝑗⋀

𝑈 ⊗ 𝑟𝜔𝑚 → ⋅ ⋅ ⋅ → 𝑆𝑛𝔲∗𝑚 ⊗ 𝑟𝜔𝑚 → 𝑆𝑛𝑉 ∗ ⊗ 𝑟𝜔𝑚 → 0.

We claim that

𝐻∗(𝑆𝑛−𝑗𝔲∗𝑚 ⊗
𝑗⋀

𝑈 ⊗ 𝑟𝜔𝑚) = 0

for 1 ≤ 𝑗 ≤ dim𝑈 , from which Equation 1 will follow. The 𝑇 -weights of 𝑈 are
those of the form

𝛼𝑐 + 𝛼𝑐+1 + ⋅ ⋅ ⋅+ 𝛼𝑑,

where 𝑐 ≤ 𝑚 and 𝑚 ≤ 𝑑 < 𝑙 + 1 −𝑚. Therefore, if 𝜆 is a 𝑇 -weight of
⋀𝑗

𝑈 , there
exists 𝑎 with 𝑚 < 𝑎 ≤ 𝑙+ 1−𝑚 such that −𝑚 ≤ ⟨𝜆, 𝛼∨

𝑎⟩ ≤ −1 and ⟨𝜆, 𝛼∨
𝑡 ⟩ = 0 for

𝑡 > 𝑎.
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Set 𝑠 = ⟨𝜆, 𝛼∨
𝑎⟩ and 𝑏 = 𝑙. We can invoke Lemma 2.2 for 𝜆 and 𝑄 := 𝑆𝑛−𝑗𝔲∗𝑚 ⊗

𝑟𝜔𝑚. Indeed, 𝑄 is stable under the parabolic subgroups 𝑃𝑡 for 𝑡 ≥ 𝑎. Also 𝑎−𝑏−1 ≤
−𝑚 since 𝑎 ≤ 𝑙 + 1−𝑚 and so 𝑠 is in the range 𝑎− 𝑏− 1 ≤ −𝑚 ≤ 𝑠 ≤ −1 and so
the lemma applies, given our assumption on the characteristic of 𝑘. It follows that

𝐻∗(𝑄⊗ 𝜆) = 0 for all weights 𝜆 appearing in
⋀𝑗 𝑈 for 1 ≤ 𝑗 ≤ dim𝑈 . Thus if we

filter
⋀𝑗

𝑈 by 𝐵-subrepresentations such that the consecutive quotients are one-

dimensional, we deduce that 𝐻∗(𝑄⊗⋀𝑗 𝑈) = 0 for 1 ≤ 𝑗 ≤ dim𝑈 and Equation 1
follows.

Step 2. Let 𝑉1 = 𝑉 ∩𝔲𝑚−1 and 𝑉2 = 𝑉1∩𝔲𝑙+2−𝑚. If 𝑚 = 1, then 𝔲𝑚−1 and 𝔲𝑙+2−𝑚

are considered to be the zero vector space. Let 𝜇 be a weight of the form

𝑟𝜔𝑚 + 𝑟′𝜔𝑙+1−𝑚

and assume that 2𝑚− 2− 𝑙 ≤ 𝑟 ≤ −1 with 𝑟′ unrestricted, unless 𝑟 = 2𝑚− 2− 𝑙,
in which case assume that 𝑟′ = 0. In this step we show for all 𝑛 ≥ 0 that

(2) 𝐻∗(𝑆𝑛𝑉 ∗
1 ⊗ 𝜇) = 0.

Take the Koszul resolution of

0 → 𝑈2 → 𝑉 ∗
1 → 𝑉 ∗

2 → 0

(this defines 𝑈2) and tensor it with 𝜇. We will show that

𝐻∗(𝑆𝑛𝑉 ∗
2 ⊗ 𝜇) = 0

and

𝐻∗(𝑆𝑛−𝑗𝑉 ∗
1 ⊗

𝑗⋀
𝑈2 ⊗ 𝜇) = 0

for 1 ≤ 𝑗 ≤ 𝑚 − 1, and then Equation 2 will follow (the dimension of 𝑈2 is 𝑚 − 1
as shown below).

The subspace 𝑉2 coincides with 𝔲𝑚−1 ∩ 𝔲𝑙+2−𝑚. Hence 𝑉 ∗
2 is stable under 𝑃𝑡

for 𝑚 ≤ 𝑡 ≤ 𝑙 + 1 − 𝑚. It follows that 𝐻∗(𝑆𝑛𝑉 ∗
2 ⊗ 𝜇) = 0 by Lemma 2.2 with

𝑎 = 𝑚, 𝑏 = 𝑙 −𝑚 unless 𝑟′ = 0, in which case 𝑏 = 𝑙 + 1−𝑚. In all cases, we have
𝑎 − 𝑏 − 1 ≤ 𝑟 ≤ −1 by hypothesis and the lemma applies since we are assuming
𝑝 > −𝑟.

Now the weights of 𝑈2 are

𝛼𝑐 + 𝛼𝑐+1 + ⋅ ⋅ ⋅+ 𝛼𝑙+1−𝑚,

where 1 ≤ 𝑐 ≤ 𝑚 − 1. If 𝜆 is a weight of
⋀𝑗 𝑈2, then 𝜆 satisfies ⟨𝜆, 𝛼∨

𝑙+2−𝑚⟩ = −𝑗

and ⟨𝜆, 𝛼∨
𝑡 ⟩ = 0 for 𝑡 > 𝑙+2−𝑚. Consequently, if we filter

⋀𝑗 𝑈2 as in Step 1 and
apply Lemma 2.2, we get

𝐻∗(𝑆𝑛−𝑗𝑉 ∗
1 ⊗

𝑗⋀
𝑈2 ⊗ 𝜇) = 0

for 1 ≤ 𝑗 ≤ 𝑚− 1. The lemma works with 𝑎 = 𝑙 + 2−𝑚, 𝑏 = 𝑙. Thus 𝑎− 𝑏− 1 =
(𝑙+ 2−𝑚)− 𝑙− 1 = −𝑚+ 1 and 𝑗 is in the acceptable range −𝑚+ 1 ≤ −𝑗 ≤ −1.
We are also using the fact that 𝑆𝑛−𝑗𝑉 ∗

1 ⊗ 𝜇 is stable under 𝑃𝑡 for 𝑡 ≥ 𝑙 + 2−𝑚.

Step 3. In this step, we show that for all 𝑖, 𝑛,

(3) 𝐻𝑖(𝑆𝑛𝑉 ∗ ⊗ 𝜇) ≃ 𝐻𝑖(𝑆𝑛−𝑚𝑉 ∗ ⊗ 𝜇+ 𝜔𝑚 + 𝜔𝑙+1−𝑚)

for 𝜇 as in Step 2.
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We take the Koszul resolution of the short exact sequence

0 → 𝑈1 → 𝑉 ∗ → 𝑉 ∗
1 → 0

(this defines 𝑈1) and tensor it with 𝜇 to get

(4) 0 → 𝑆𝑛−𝑚𝑉 ∗ ⊗
𝑚⋀

𝑈1 ⊗ 𝜇 → ⋅ ⋅ ⋅ → 𝑆𝑛−𝑗𝑉 ∗ ⊗
𝑗⋀

𝑈1 ⊗ 𝜇 → . . .

→ 𝑆𝑛𝑉 ∗ ⊗ 𝜇 → 𝑆𝑛𝑉 ∗
1 ⊗ 𝜇 → 0.

The weights of 𝑈1 are of the form

𝛼𝑚 + 𝛼𝑚+1 + ⋅ ⋅ ⋅+ 𝛼𝑑,

where 𝑙 + 1 − 𝑚 ≤ 𝑑 ≤ 𝑙 (and in particular, dim𝑈1 = 𝑚). We study the terms⋀𝑗
𝑈1 for 1 ≤ 𝑗 < 𝑚. If 𝜆 is a weight of

⋀𝑗
𝑈1, then 𝜆 satisfies ⟨𝜆, 𝛼∨

𝑚−1⟩ = −𝑗 and

⟨𝜆, 𝛼∨
𝑡 ⟩ = 0 for 𝑡 < 𝑚 − 1. Consequently, proceeding as in Step 1, we filter

⋀𝑗
𝑈1

and apply Lemma 2.2 (after applying an outer automorphism to 𝐺 to arrive at the
obvious symmetric setup) to get

𝐻∗(𝑆𝑛−𝑗𝑉 ∗ ⊗
𝑗⋀

𝑈1 ⊗ 𝜇) = 0

when 𝑗 < 𝑚. The lemma works with 𝑎 = 1, 𝑏 = 𝑚−1, so that 𝑎−𝑏−1 = −𝑚+1 ≤
−𝑗 ≤ −1. We note that 𝑉 is a representation of 𝑃𝑡 for 𝑡 ≤ 𝑚− 1.

On the other hand, for the case 𝑗 = 𝑚, we have

𝑚⋀
𝑈1 = 𝑚(𝛼𝑚+𝛼𝑚+1 + ⋅ ⋅ ⋅+ 𝛼𝑙+1−𝑚) + (𝑚−1)𝛼𝑙+2−𝑚 + ⋅ ⋅ ⋅+ 2𝛼𝑙−1 + 𝛼𝑙.

So 𝑚− 1 applications of Proposition Demazure as in the proof of Lemma 2.2 yield

𝐻𝑖(𝑆𝑛−𝑚𝑉 ∗ ⊗
𝑚⋀

𝑈1 ⊗ 𝜇) ≃ 𝐻𝑖+𝑚−1(𝑆𝑛−𝑚𝑉 ∗ ⊗ 𝜇+ 𝜔𝑚 + 𝜔𝑙+1−𝑚).

By breaking Equation 4 into short exact sequences and taking their cohomology,
we conclude that

𝐻𝑖(𝑆𝑛𝑉 ∗ ⊗ 𝜇) ≃ 𝐻𝑖(𝑆𝑛−𝑚𝑉 ∗ ⊗ 𝜇+ 𝜔𝑚 + 𝜔𝑙+1−𝑚),

where we are using

𝐻∗(𝑆𝑛𝑉 ∗
1 ⊗ 𝜇) = 0

from Step 2.

Step 4. We obtain the theorem by using Step 3 repeatedly, starting with 𝜇 = 𝑟𝜔𝑚

with 𝑟 in the prescribed range of the statement of the theorem. After −𝑟 steps we
arrive at

𝐻𝑖(𝑆𝑛𝑉 ∗ ⊗ 𝑟𝜔𝑚) ≃ 𝐻𝑖(𝑆𝑛+𝑟𝑚𝑉 ∗ ⊗−𝑟𝜔𝑙+1−𝑚),

for all 𝑖, 𝑛.

The proof is completed by using Step 1 and the symmetric version of Equation 1,
which gives

𝐻𝑖(𝑆𝑛+𝑟𝑚𝑉 ∗ ⊗−𝑟𝜔𝑙+1−𝑚) ≃ 𝐻𝑖(𝑆𝑛+𝑟𝑚𝔲∗𝑙+1−𝑚 ⊗−𝑟𝜔𝑙+1−𝑚)

for all 𝑖, 𝑛. □
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