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1 Introduction

The aim of these notes is to develop a general procedure for computing the rational cohomology

of quotients of group actions in algebraic geometry. The main results were announced in [Ki].

We shall consider linear actions of complex reductive groups on nonsingular complex projec-

tive varieties. To any such action there is an associated projective ‘quotient’ variety defined by

Mumford in [M]. This quotient variety does not coincide with the ordinary topologiacl quotient

of the action. For example, consider the action of SL(2) on complex projective space Pn where

Pn is identified with the space of binary forms of degree n, or equivalently of unordered sets of n

points on the projective line P1. The orbit where all n points coincide is contained in the closure

of every ther orbit and hence the topological quotient cannot possibly be given the structure of a

projective variety. To obtain a quotient which is a variety, such ‘bad’ orbits have to be left out.

The quotient varity can be described as follows. Suppose that X is a projective variety

embedded in some Pn and thatG is a complex reductive group acting onX via the homomorphism

φ : G→ GL(n+ 1). If A(X) denotes the graded coordinate ring of X then the invariant subring

A(X)G is a finitely generated graded ring: let M be its associated projective variety. The

inclusion of A(X)G into A(X) induces a G-invariant surjective morphism ψ from an open subset

Xss of X to M . (The points of Xss are called semistable for the action). There is an open subset

M ′ of M which is an orbit space for the action of G on its inverse image under ψ, in the sense

that each fibre is a single orbit of G.

So we have two ‘quotients’ M and M ′ associated to the action of G on X. Our main purpose

here is to find a procedure for calculating the cohomology, or at least the Betti numbers, of

these in the good caes when they coincide. This happens precisely when M is topologically the

ordinary quotient Xss/G. In fact, we make the slightly stronger requirement that the stabiliser

in G of every semistable point of X should be finite; this is equivalent to requiring that every

semistable point should be (properly) stable. Under these conditions, an explicit formula is

obtained for the Betti numbers of the quotient M (see theorem 8.12). This formula involves the

cohomology of X and certain linear sections of X, together with the classifying spaces for G and

certain reductive subgroups of G.

For example, consider again the action of SL(2) on binary forms of degree n. Then good

cases occur when n is odd, and one finds that the nonzero Betti number of the quotient M are

given by

dimH2j(M ; Q) =

[
1 +

1

2
min (j, n− 3− j)

]
, 0 ≤ j ≤ n− 3

Our approach to the problem follows the method used by Atiyah and Bott to calculate the

cohomology of moduli spaces of vector bundles over Riemann surfaces [A & B]. It consists in

finding a canonical stratification1 of X associated to the action of G whose unique open stratum

1It has been pointed out by the referee that the term ‘stratification’ is usually reserved for the decomposition
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coincides with the set Xss of semistable points provided Xss 6= ∅. There are then Morse-type

inequalities relating the Betti numbers of X to those of Xss and the other strata; and since the

stratification is G-invariant there are also exist equivariant Morse inequalities which turn out in

fact to be equalities.

Recall that the rational equivariant cohomology H?(Y ; Q) of a space Y acted on by G is

defined to be H?(YG; Q) where YG = Y ×GEG and EG→ BG is the universal classifying bundle

for G. When the rational equivariant Morse inequalities of a stratification are equalities they

can be stated in the form

1.1

dimHn
G(Y ; Q) =

∑
S

dimH
n−λ(S)
G (S; Q), n ≥ 0

where the sum runs over all the strata S of the stratification and λ(S) is the codimension of S

in X (see [A&B] §1). Moreover, using the assumption that every point of Xss has finite stabilisr

in G we can show that

H?
G(Xss; Q) = H?(Xss/G; Q) = H?(M ; Q)

Hence the Morse equalities will give us formulae for the Betti numbers of M in terms of the

rational equivariant cohomology of X and of the other strata.

The Morse inequalities are obtained by building up X from the strata and using the Thom-

Gysin sequences of rational equivariant cohomology that occur every time a stratum is added.

Of course, any coefficient field may be used instead of Q, but then the Morse inequalities are

not necessarily equalities, and the cohomology of the quotient M may not be isomorphic to the

equivariant cohomology of Xss. So information about the torsion of M can only be obtained in

special cases.

As in [A & B] there are two different approaches to the problem of defining a suitable strat-

ification. One approach is purely algebraic, and leads to a definition of a stratification given a

linear reductive group action on a projective variety defined over any algebraically closed field.

This method will be developed in Part II. It is based on work of Kempf (see [K] and [Hess] and

[K & N]). The paper [Ne] by Ness has very close links with much of what is covered here and in

Part I, although our results were arrived at independently.

The alternative approach is based on Morse theory and symplectic geometry, and will be

developed in Part I. The idea is to associate a certain function f in a canonical way to the action

of G on X and use it to define a ‘Morse stratification’ of X. The stratum to which any point of

X belongs is determined by the limit of its path of steepest descent for the Kähler metric under

the function f .

which is topologically locally trivial in a neighbourhood of each stratum (Whitney stratifications, for example).
The stratifications in these notes are not required to satisfy this property (see definition 2.11 below). Perhaps
they should be more properly called ‘manifold decompositions’.
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The advantages of this approach are that it is conceptually simpler and that it can be applied

to compact Kähler manifolds as well as to nonsingular projective varieties. More generally still

it enables us to calculate the rational cohomology of the ‘symplectic quotient’, when it exists, of

any symplectic manifold by the actio of a compact Lie group.

The function to which Atiyah and Bott apply the methods of Morse theory in their special

case (where the group and the space are both infinite-dimensional) is the Yang-Mills functional.

As pointed out in [A & B] the latter can be described in terms of symplectic geometry as the

norm-square of the moment map. But in this form it makes sense in our situation.

Recall that a symplectic manifold X is a smooth manifold equipped with a nondegenerate

closed 2-form ω; and a compact Lie group K acts symplectically on the manifold if its acts

smoothly and preserves ω. Associated to such an action one has the concept of a moment map

µ : X → k? where k? is the dual of the Lie algebra of K. For example, when SO(3) acts on the

cotangent bundle T ?R3 (phase space) the moment map can be identified with angular momentum.

The existenc e of a moment map is guaranteed by conditions such as the semisimplicity of G or

the vanishing of H1(X; Q).

Consider again a reductive group G acting on a nonsingular complex projectiv variety X ⊆ Pn

via a homomorphism φ : G → GL(n + 1). Since G is reductive, it is the complexification of a

maximal subgroup K. We may assume that K acts unitarily on Cn+1 and so preserves the

standard Kähler structure on Pn. This Kähler structure makes X into a symplectic manifold on

which K acts symplectically. (It also gives a natural choice of Riemannian metric on X). There

is a moment map µ : X → k? assocaited to this action which can be described explicitly (see

2.7). If we fix an invariant inner product on the Lie algebra of K then the norm-square of the

moment map µ provides us with a K-invariant Morse function f on X.

Unfortunately, the Morse function is not nondegenerate in the sense of Bott, so the results of

Morse theory cannot be applied to it directly. To avoid this problem, one can use the approach

of Part II to define the stratification algebraically and prove that it has all the properties one

wants, showing later that it is is in fact in a natural sense the Morse stratification for f . On

the other hand, of one is prepared to do a little local analysis, one can extend the arguments of

Morse theory to degenerate functions which are reasonably well-behaved. It will be shown that

the norm-square of the moment map is well-behaved in this sense: this is true when X is any

symplectic manifold ated on by a compact group.

More precisely, we shall see that the set of critical points for the function f = ||µ||2 is a finite

disjoint union of closed subsets {Cβ : β ∈ B} along each of which f is minimally degenerate

in the following sense: A locally closed submanifold Σβ containing Cβ with orientable normal

bundle in X is a minimising submanifold for f if

1. the restriction of f to Σβ achieves its minimum value exactly on Cβ and

2. the tangent space to Σβ at any point x ∈ Cβ is maximal among subspaces of TxX on which
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the Hessian Hx(f) is positive definite.

If a minimising submanifold Σβ exists, then f is called minimally degenerate along Cβ.

In the appendix it is shown that these conditions imply that f induces a smooth stratification

{Sβ : β ∈ B} of X such that a point lies in the stratum Sβ if its path of steepest descent for f

has a limit point in the critical subset Cβ. (For this X must be given a suitable metric; when

X is Kähler and f = ||µ||2 the Kähler metric will do). The stratum Sβ then coincides with Σβ

near Cβ. The proof is not hard but involves some analysis of differential equations near critical

points.

As has already been mentioned, it turns out that the unique open stratum of this stratification

coincides with the set Xss; and that in good cases its G-equivariant rational cohomology is

isomorphic to the ordinary rational cohomology of the quotient variety M , which is what we’re

after. Morever, the stratification is G-invariant and equivariantly perfect over Q in the sense

that its equivariant Morse inequalities are in fact equalities. Thus, formula 1.1 can be used to

calculate the Betti numbers of M in terms of the equivariant cohomology of X itself and of the

nonsemistable strata.

In order that this formula should be useful, it is necessary to investigate the nonsemistable

strata. It turns out that the equivariant cohomology of these can be calculated inductively. In

fact, each stratum Sβ has the form

1.2

Sβ
∼= G×Pβ

Y ss
β

where Y ss
β is a locally closed nonsingular subvariety of X and Pβ is a parabolic subgroup of G (see

theorem 6.18). This implies that the G-equivariant cohomology of Sβ is isomorphic to the Pβ-

equivariant cohomology of Y ss
β . Moreover, there is a linear action of a maximal reductive subgroup

of Pβ on a proper nonsingular closed subvariety Zβ of X such that Y ss
β retracts equivariantly onto

the subset Zss
β of semistable points for this action. It follows that H?

Pβ
(Y ss

β ; Q) is isomorphic to the

rational equivariant cohomology of Zss
β with respect to this reductive subgroup. By induction,

we may assume that this is known.

It now remains to consider the equivariant cohomology H?
G(X; Q) of X itself. We shall assume

for convenience that G is connected; then one can show (see Proposition 5.8) that the spectral

sequence of the fibratin

XG = X ×G EG→ BG

degenerates over Q. This means that the equivariant cohomology of X is isomorphic to the

tensor product

H?(X; Q)⊗H?(BG; Q)
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of the cohomology of X and BG. (It is easy to deduce from this what happens for disconnected

groups: For if G has identity component Γ, then H?
G(X; Q) is the invariant part of H?

Γ(X; Q)

under the action of the finite group G/Γ).

Thus the formula for H?
G(Xss; Q) in terms of the equivariant cohomology of X and of the

nonsemistable strata give us an inductive procedure for calculating H?
G(Xss; Q). This leads to an

explicit formula for H?
G(Xss; Q) and hence also in good cases for the Betti numbers of the quotient

variety M . This fomrula involves the cohomology of X and certain nonsingular subvarieties of

X together with the cohomology of the classifying spaces of G and various reductive subgroups

of G (see theorem 8.12).

The stratification induced by the norm-square of the moment map has also been studies by

Ness in [Ne]. Moreover, related research on Betti numbers of quotients by C? and SL(2,C) actions

has been done independently by Bialynicki-Birula and Sommese. In fact, in their paper [B-B

& S], they conside quotients of many different open subsets by G, not just Xss, and completely

classify those subsets for which quotients exist.

When X is merely a compact symplectic manifold acted on by a compact group K, the

function f = ||µ||2 still induces a smooth stratification of X, although most of the structure

of the Morse strata is lost. The lost of structure is to be expected because the stratification

depends on choosing a K-invariant Riemannian metric on X and there is no longer a natural

choice given by the real part of the K-invariant metric Kähler metric. So we concentrate on the

critical subsets Cβ instead (which are not necessarily submanifolds of X).

In fact, the form in which the Morse inequalities are usually stated is that in which the coho-

mology of each Morse stratum Sβ is replaced by that of its critical subset Cβ. This replacelemtn

is allowable because the inclusion of Cβ in Sβ is an equivalence of both equivariant and ordinary

Čech cohomology. These critical subsets are independent of the choice of metric. They have the

following description in terms of minimal sets for small manifolds which is analogous to 1.2. For

each β, there is a symplectic submanifold Zβ of X acted on by a compact subgroup Stab β of G

and a moment map µβ for this action such that

Cβ
∼= K ××Stab βµ

−1
β (0).

Since f is equivariantly perfect and

H?
K(X; Q) ∼= H?(X; Q)⊗H?(BK; Q)

we obtain an inductive procedure for calculating the dimensions of the equivariant cohomology

groups Hn
K(µ−1(0); Q) of the minimum critical set µ−1(0) for f .

The reason by H?
K(µ−1(0); Q) is interesting is that when a symplectic quotient of the action

of K on X exists, then its rational cohomology is isomorphic to H?
K(µ−1(0); Q). In order that

the symplectic quotient should exist in a reasonable sense one has to assume that there is a

moment map µ : X → k? and that the stabiliser in K of every x ∈ µ−1(0) is finite. Then one
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finds that µ−1(0) is a submanifold of X, and that the Kähler form ω on X induces a symplectic

structure on the topological quotient µ−1(0)/K which is a manifold except for singularities due

to the presence of finite isotropy groups. With this structure µ−1(0)/K is a natural symplectic

quotient (or Marsden-Weinstein reduction) of X by K. Because of the assumption on stabilisers,

its rational cohomology is isomorphic to H?
K(µ−1(0); Q).

As we have already seen, the link between algebraic and symplectic geometry is through

Kähler geometry. Except for the connection with semistability and invariant theory, the results

for projective varieties hold when X is any compact Kähler manifold acted on by a complex

group G, provided that G is the complexification of a maximal compact subgroup K which

preserves the Kähler structure on X and that there exists a moment map µ : X → k?. We obtain

an equivariantly perfect stratification of X such that each stratum is a locally closed complex

submanifold of X and can be decomposed in a form analogous to that described in 1.2. Moreover

it turns out that if the symplectic quotient µ−1(0)/K exists then it can be identified with the

quotient of the minimum stratum Xmin by the complex group G. Because of this it can be givne

the structure of a compact Kähler manifold, except for singularities caused by finite isotropy

groups. So

Xmin/G = µ−1(0)/K

is a natural Kähler quotient of X by G, and its Betti numbers can be calculated by the method

already described.

In particular, in the case of a linear action on a projective variety, the quotietn M obtained

from invariant theory coincides topologically with the quotient µ−1(0)/K; inf act, this is true in

all cases, not only good ones.

The set B which indexes the critical subsets Cβ and also the stratification can be identified

with a finite set of orbits of the adjoint representation of K on its Lie algebra k. Each orbit in

B is the image under the moment map µ : X → k? ∼= k of the critical subset which it indexes.

If a choice is made of a positive Weyl chamber t+ in the Lie algebra of some maximal torus of

K, then each adjoint orbit intersects t+ in a unique point, so B can be regarded alteratively as

a finite set of points in t+. When X ⊆ Pn is a projective variety on which K acts linearly via

a homomorphism φ : K → GL(n + 1), these points can be described in terms of the weights of

the representation of K given by φ as follows: A point of t+ lies in B if it is the closest point

to the origin of the convex hull of a nonempty set of these weights. (Recall that there is a fixed

invariant inner product on k which is used to identify k with its dual). This is true also in the

general symplectic case if the definition of weight is extende appropriately.

In terms of this last description, if β ∈ B then the submanifold Zβ of X which appeared in

the inductive description of the critical subset Cβ and of the stratum Sβ is the union of certain

components of the fixed points set of the subtorus of K generated by β. This subgroup Stab β is

the stabiliser of β under the adjoint action of K on its Lie algebra, and in the Kähler case, the
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complexification of Stab β is a maximal reductive subgroup of the parabolic subgroup Pβ.

The function f = ||µ||2 is not unique in possessing the properties described above. The same

arguments work for any convex function of the moment map (cf. [A & B] §§8 and 12).

Finally, it should be noted that the assumption of the compactness is not essential (see §9).

There are interesting examples of quasi-projective varieties and noncompact symplectic manifolds

to which the same sort of analysis can be applied by taking a little extra care. These include the

original examples of symplectic manifolds, viz. cotangent bundles.

The layout of the first part is as follows. §§2-5 are concerned with any symplectic action

of a compact group K on a compact symplectic manifold X. In §2 we introduce the moment

map µ, giving particular emphasis to the case when a compact group acts linearly on a non-

singular complex projective varity. We then describe the Morse stratification associated to the

nondegenerate Morse function, and discuss how the ideas of Morse theory might be applied to

f = ||µ||2 even though it is degenerate. In §3 we describe the set of critical points for f as a

finite disjoint union of closed subsets {Cβ : β ∈ B}. It is then shown in §4 that f is minimally

degenerate along each critical subset Cβ. This implies that there are Morse inequalitie relating

the Betti numbers of the symplectic manifold X to those of the subsets Cβ; the proof of this

fact is left to the appendix. In §5 these Morse inequalities are shown to be equalities for rational

equivariant cohomology (see theorem 5.4). Inductive and explicit formulae are obtained for the

dimensions of the cohomology groups Hn
K(µ−1(0); Q) and it is shown that these coincide with

the Betti numbers of the symplectic quotient µ−1(0)/K when it exists.

The next two sections study the case when X is a Kähler manifold so that there is a natural

choice of metric on X. In §6 we see that the function f = ||µ||2 induces a Morse stratification

{Sβ : β ∈ B} with respect to this metric such that the strata Sβ are localled closed complex

submanifolds of X and are invariant under the action of the complex group G. It is also known

that the strata Sβ have the structure described in 1.2 above. The cohomological formulae of

§5 are interpreted in the Kähler case, and there is a brief discussin of how the stratification is

affected if the choices of moment map and of inner product on the Lie algebra k are altered. In

§7 we see that that if a symplectic quotient exists for the action of K on X, then it has a natural

Kähler structure and can be regarded as a Kähler quotient of the action of G on X.

Then in §8 we consider the case when G is a complex reductive group acting linearly on

X which is a nonsingular complex projective variety. It is showns that the open subset Xss of

semistable points for the action coincides with the minimum stratum of the Morse stratification,

so that §5 gives us an inductive formula for its rational equivariant cohomology. In good cases,

when the stabiliser of every semistable point is finite, we deduce that the projective quotient

variety defined in geometric invariant theory coincides with the symplectic quotient µ−1(0)/K.

Our original aim is then achieved by interpreting the formulae of §5 to give formulae for the

Betti numbers of this quotient variety (see Theorem 8.12).

Section 9 contains some remarks on how to loosen the requirement of compactness. Examples
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are given of formulae obtained by looing at the symplectic actions on cotangent bundles induced

by arbitrary actions of compact groups on manifolds.

Part II gives an algebraic approach to the same problem. It is shown in §§12 and 13 that if k

is any algebraically closed field and G is a reductive group acting linearly on a projective variety

X defined over k, then a stratification {Sβ : β ∈ B} of X can be defined which coincides with the

stratification which coincides with the stratification defined in Part I when k = C. The strata

Sβ are all G-invariant subvarieties of X. Moreover, if X is nonsingular then so are the strata Sβ,

and they have the structure described at 1.2 This algebraic definitio of the stratification relies

heavily on the work of Kempf (as expounded in [He]).

The fact that such stratifications exist when k is the algebraic closure of a finite field provides

an alternative method for obtaining the formulae found in Part I for the Betti numbers of

quotients of nonsingular complex projective varieties. For this one has t count points in quotients

defined over finite fields, and then apply the Weil conjectures (see §15). This is the method used

by Harder and Narasimhanin [H & N] to obtain formulae later rederived by Atiyah and Bott for

the Betti numbers of the moduli spaces of vector bundles over a Riemann surface.

It is shown in §14 how the formulae for the Betti numbers can be refined to give Hodge

numbers as well. As an immediate corollary we have that if the Hodge numbers hp,q of the

variety X vanish when p 6= q, then the same is true of the quotient variety.

In the final section, some detailed examples are given of the stratification and of calculating the

rational cohomology of the quotients. One example studies is that of products of Grassmannians

acted on by general linear groups. It will be shown in a future paper [Ki3] that this can be used to

give an alternative derivation of the formulae of [A & B] for the cohomology of moduli spaces of

vector bundles over Riemann surfaces. This alternative derivation uses finite-dimensional group

actions whereas in [A&B] the groups and spaces are all infinite dimensional.

The formulae for the Betti numbers obtained in this monograph depend upon the restrictive

assumption that the stabiliser of every semistable point is finite. This assumption implies in

particular that the quotient variety has only the minor singularities due to the existence of

finite isotropy groups, whereas in general the quotient has more serious singularities. However,

provided that Xs is not empty, one can obtain interesting information even when there are

semistable points which are not stable. In fact, there is a canonical way to blow up X along a

sequence of nonsingular subvarieties to obtain a projective variety X̃ with a linear action of G

for which every semistable point is stable. Then the geometric invariant theory quotient of X̃

(which has only minor singularities) can be regarded as an approximate desingularisation of the

quotient of X, and there is a formula for its Betti numbers similar to that of Theorem 8.12 (see

[Ki2]).

Finally, there are some differences of notation and also some inaccuracies in the announcement

of these results in [Ki1]. One mistake is that the theorme as it stands is only valid when G is

connected, because remark (1) is only true in this case. Another is that in (d) of the proposition it
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is only the reductive part Stab β of the parabolic subgroup Pβ which acts on Zβ, not the whole of

Pβ. Furthermore, the last sentence might be taken to imply that the geometric invariant theory

quotient of a product of Grassmanians is torsion-free. This is not true since the projective inear

groups PGL(m,C) have torsion.

I would like to thank all those who gave me help and advice, including Michael Pennington,

Simon Donaldson, Michael Murray, John Roe, Graeme Segal and the referee, and to thank

Linda Ness for sending me her results. I also thank Laura Schlesinger for her excellent typing,

and the Science and Engineering Research Council of Great Britain for a grant which supported

me during the course of my research. Above all, I wish to acknowledge my great debt to my

supervisor Michael Atiyah, to whom most of the basic ideas of these notes are due.
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Part I. The Symplectic Approach

2 The moment map

This section introduces the concept of a moment map associated to a compact group action on

a symplectic manifold. Special emphasis will be given to the examples of most interest to us,

which are linear actions on nonsingular complex projective varieties. A precise formula is given

in 2.7 for the moment map in these cases.

The moment map will be used to define a real valued function on the symplectic manifold

concerned. We shall conclude this section by considering how the ideas of Morse theory might

be applied to this function, in spite of the fact that it is not a nondegenerate Morse function.

A symplectic manifold is a smooth manifold X equipped with a nondegenerate closed 2-form

ω. A compact Lie group K is said to act symplectically on X if K acts smoothly and k?ω = ω

for all k ∈ K. We shall assume throughout that every compact group action on a symplectic

manifold is symplectic unless specified otherwise.

Any Kähler manifold X can be given the structure of a symplectic manifold by taking ω to

be the Kähler form on X, which is the imaginary part of a hermitian metric η on X. If K is any

compact Lie group acting on X then the average∫
K

k?η

is a Kähler metric whose imaginary part is a K-invariant symplectic form on X.

The special case which will be of the most interest to us is the following.

Example 2.1. Linear actions on complex projective spaces.

Let X be a nonsingular subvariety of some complex projective space Pn and suppose that a

compact Lie group K acts on Pn via a homomorphism ϕ : K → GL(n + 1). By conjugating ϕ

with a suitable element of GL(n+1) we may assume that ϕ(K) is contained in the unitary group

U(n + 1). The restriction of the Fubini-Study metric on Pn then gives X a Kähler structure

which is preserved by K.

Example 2.2. Configuration of points on the complex sphere.

A particular case of 2.1 which will be used throughout to illustrate definitions and results is

that of the diagonal action of SU(2) on the spaces (P1)
n of sequences of points on the complex

sphere. (P1)
n is embedded in P2n−1 by the Segre embedding. Alternatively one can consider the

action of SU(2) on the space of unordered sets of n points in P1 which can be identified with Pn.
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Let k be the Lie algebra of K. Then the moment map for the action of K on X is a map

µ : X → k? which is K-equivariant with respect to the given action of K on X and the co-adjoint

action Ad? of K on k? and satisfies the following condition.

2.3. For every a ∈ k the composition of dµ : TX → k? with evaluation at a defines a 1-form ω

on X. This 1-form is required to correspond under the duality defined by ω to the vector field

x→ ax on X induced by a. That is, for all x ∈ X and ξ ∈ TxX

dµ(x)(ξ).a = ωx(ξ, ax)

where . denotes the natural pairing of k? and k. In other words the component of µ along a is a

Hamiltonian function for the vector field on X defined by a.

µ is determined up to an additive constant by 2.3. When K is semisimple µ is determined

completely, since the only point of k? fixed by the co-adjoint action is 0. If on the other hand K is

a torus the addition of a constant to µ does not affect its equivalence because K acts trivially on

k?. However if a moment map µ exists we can always make a canonical choice of µ by requiring

that the integral of µ over X (with the highest exterior power of ω as volume form) should vanish.

By a theorem of Marsden-Weinstein a moment map µ : X → k? always exists (and is unique)

when K is semisimple. In addition if H1(X; Q) = 0 then a moment map always exists when K

is a torus. For the adjoint action of a torus on its Lie algebra is trivial, so by 2.3 we just have to

solve the differential equations

dµ(x)(ξ).a = ωx(ax, ξ)

for each a in some basis of the Lie algebra k. This is possible if H1(X,Q) = 0 since dω = 0.

A compact Lie group is the product of a semisimple group and a torus, at least modulo finite

central extensions. Moreover if K1 → K2 is a finite central extension then a moment map for

K1 is the same as a moment map for K2. It follows that a moment map always exists when

H1(X,Q) = 0.

It is easy to see that when K acts on X ⊂ Pn via a homomorphism ϕ : K → U(n + 1) a

moment map always exists. It is sufficient to prove existence when U(n+ 1) acts Pn since µ is a

moment map for this action then the composition

2.4.

X → Pn
µ−→ u(n+ 1)? ϕ?

−→ k?

is a moment map for the action of K on X. But we have
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Lemma 2.5. Let x? = (x0, . . . , xn) be any nonzero vector of Cn+1 over x = (x0 : . . . : xn) in Pn.

Then the map µ : Pn → u(n+ 1)? defined by

µ(x).a =
x̄?tax?

2π||x?||2

is a moment map for the action of U(n+ 1) on Pn. Morever, µ is uniquely determined up to the

addition of a scalar multiple of the trace.

Proof. Note first that

u(n+ 1) = su(n+ 1)⊕ iR1n+1

where 1 is the identity matrix. iR1n+1 is the Lie algebra of the central one-parameter compact

subgroup of U(n+1) which acts trivially on Pn,. The projection of u(n+1) onto iR1n+1 is given

by a → tr(a)(n + 1)−11n+1. Thus any moment map for SU(n + 1) is unique and a moment for

U(n+ 1) is unique up to the addition of a scalar mutliple of the trace.

Clearly the formula given for µ is independent of the choice of x? and satisfies

µ(kx).a =
x̄?tk̄takx?

2πi||x?||2
= µ(x).k−1ak = Ad?kµ(x).a

for all k, a ∈ u(n+ 1); so µ is SU(n+ 1)-equivariant.

In particular since U(n + 1) acts transitively on Pn, to prove that 2.3 holds it suffices to

consider the point o = (1 : 0 : . . . : 0). The Kähler form at p is given by

ωp =
i

2π

n∑
j=1

dxj ∧ dx̄j

with respect to local coordinates (x1, . . . , xn) → (1 : x1 : . . . : xn) near p. But in these coordinate

the vector field induced by a on Pn takes the values (a10, a20, . . . , an0) at p. Also

d(2πi||x?||2)−1x̄?tax?) = (2πi)−1

n∑
j=1

(a0jdxj + aj0dx̄j)

=
i

2π

∑
(āj0dxj − aj0dx̄j)

Remark 2.6. An alternative proof runs as follows. It is known that there is a natural homo-

geneous symplectic structure on any orbit in u(n + 1)? of the co-adjoint action of U(n + 1) and

that the corresponding moment map is the inclusion of the orbit in u(n + 1)?. This is true for

any compact group. The map from Pn to u(n+ 1) given by

x→ x?x̄?t

2πi||x?||2

13
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is a U(n+1)-invariant symplectic isomorphism from Pn to the orbit of the skew-hermitian matrix

(2πi)−1diag(1, 0, . . . , 0). For x?x̄?t is hermitian of rank 1 with x? as an eigenvector with eigenvalue

||x?||2. Lemma 2.5 follows from this because the inner product of x?x̄?t with any a ∈ u(n+ 1) is

x̄?tax?.

To sum up: by 2.4 and 2.5, given a nonsingular complex projective projective variety X ⊂ Pn

and a compact group K acting on X by a homomorphism ϕ : K → U(n + 1) a moment map

µ : X → k? is defined by

2.7

µ(x).a =
x̄?tϕ?(a)x

?

2πi||x?||2

for each a ∈ k and x ∈ X. This moment map is functorial in X,K.

2.8. Consider the example 2.2 of configurations of points on the complex sphere P1 acted on by

SU(2). Now su(2) is isomorphic to R3 and P1 can be identified with S2 in such a way that the

moment map µ : (P1)
n → su(2) sends a configuration of n points on the sphere to its center of

gravity in R3 (up to a scalar factor of n).

Henceforth we shall assume that a moment map µ exists for the action of K on X.

Fix an inner product on k which is invariant under the adjoint action of K and denote the

product of a and b by a.b; use it to identify k with its dual.

For example if K ⊂ U(n + 1) we can take the restriction to k of the standard inner product

given by a.b = −tr(ab) on u(n + 1). Then 2.6 implies that for each x ∈ X the element µ(x) of

k? is identified with the orthogonal projection of the skew-hermitian matrix (2πi||x?||2)−1x?x̄?t

onto k.

Also choose a K-invariant Riemannian metric on X. If X is Kähler (in particular, if X is a

projective variety) then the natural choice is the real part of the Kähler metric on X.

Definition 2.9. Let f : X → R be the function defined by f(x) = ||µ(x)||2 where || || is the

norm on k induced by the inner product.

We want to consider the function f : X → R as a Morse function on X.

For any x ∈ X let {xt : t ≥ 0} be the trajectory of −gradf such that x0 = x, i.e. the path of

steepest descent of f starting from x. Let

ω(x) = {y ∈ X : every neighbourhood of y ∈ X contains points xt for t arbitrarily large}

be the set of limit points of the trajectory as t→∞. Then ω(x) is closed and nonempty (since

X is compact) and is connected. For suppose that there are disjoint open sets U, V in X such

14
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that ω(x) ⊆ U ∪ V . Then for every y 6∈ U ∪ V there is some ty ≥ 0 and a neighbourhood Wy of

y such that xt 6∈ Wy for t ≥ ty. But X\U ∪V is compact so there is some T > 0 such that t ≥ T

implies xt ∈ U ∪ V . Since the set {xt : t ≥ T} is connected it is contained in U or V , and thus

ω(x) is also contained in either open. We conclude that

2.10. For every x ∈ X the limit set ω(x) is connected. Also every point of ω(x) is critical for

f .

If f were a nondegenerate Morse function in the sense of Bott, then the set of critical points

for f on X would be a finite disjoint union of connected submanifolds {C ∈ C} of X. Given

such a function, 2.10 implies that for every x there is a unique C such that ω(x) is contained in

C. The Morse stratum SC corresponding to any C ∈ C is then defined to consist of those x ∈ X
wth ω(x) contained in C. The strata SC retract onto the corresponding critical submanifolds C

and form a smooth stratification of X in the following sense.

Definition 2.11. A finite collection {Sβ : β ∈ B} of subsets form a stratification of X if X is

the disjoint union of the strata Sβ and there is a strict partial order > on the indexing set B
such that

S̄β ⊆
⋃
γ≥β

Sγ

for every β ∈ B. For the Morse stratification associated to a nondegenerate Morse function the

partial order is given by C > C ′ if f(C) > f(C ′) where for C ∈ C, f(C) is the value taken by f

on C.

The stratification is smooth if every Sβ is a locally-closed submanifold of X (possibly discon-

nected).

In fact the set of critical points for the function f = ||µ||2 has singularities in general so that

f cannot be a nondegenerate Morse function in the sense of Bott. Nevertheless we shall see that

the critical set of f is a finite disjoint union of closed subsets {Cβ : β ∈ B} on each of which f

takes a constant value. By 2.10 it follows that for every x ∈ X there is a unique β ∈ B such that

ω(x) is contained in Cβ. So X is the disjoint union of subsets {Sβ} where x ∈ X lies in Sβ if the

limit set ω(x) of its path of steepest descent for f is contained in Cβ. We shall find that for a

suitable Riemannian metric the subsets {Sβ : β ∈ B} form a smooth K-invariant stratification

of X.

Example 2.12. The norm square of the moment map µ associated to the action of SU(2) on

sequences of n points in P1 identified with the unit sphere in R3 is given by

(x1, . . . , xn) → ||x1 + x2 + . . .+ xn||2

15
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where || || is the usual norm on R3. As is always the case ||µ||2 takes its minimum value on

µ−1(0) which consists of all sequences with center of gravity at the origin. Note that if n is even

µ−1(0) is singular near configurations containing two sets of n
2

coincident points. One can check

that the critical configurations not contained in µ−1(0) are those in which some number r > n
2

of the n points coincide somewhere on the sphere and the other n− r coincide at the antipodal

point. The connected components of the set of non-minimal critical points are thus submanifolds

and are indexed by subsets of {1, . . . , n} of cardinality greater than n
2
. The union of the Morse

strata corresponding to subsets of fixed cardinality r consists of all sequences such that precisely

r of the points coincide somewhere on P1.

Given any smooth stratification {Sβ : β ∈ B} of the manifold X one can build up the

cohomology of X inductively from the cohomology of the strata. This is done by using the

Thom-Gysin sequences which for each β ∈ B relate the cohomology groups of the stratum Sβ

and of the two open subsets

⋃
γ<β

Sγ,
⋃
γ≤β

Sγ

of X. These give us the famous Morse inequalities which can be expressed as follows. For any

space Y let Pt(Y ) be the Poincaré series given by

Pt(Y ) =
∑
i≥0

tidimH i(Y ; Q)

Assume for convenience that if β ∈ B then each component of the stratum Sβ has the same

codimension d(β) in X. Then the Morse inequalities say that

2.13. ∑
β

td(β)Pt(Sβ)− Pt(X) = (1 + t)R(t)

where R is a series with non-negative integer coefficients.

2.14. A smooth stratification of X is called perfect if the Morse inequalities are equalities; that

is, if

Pt(X) =
∑

β

td(β)Pt(Sβ)

When the stratification is induced by a nondegenerate Morse function f one can replace

Pt(SC) by Pt(C) for each critical submanifold C because the stratum SC retracts onto C: this

is the form in which the Morse inequalities are usually seen. In this form the metric does not

appear in the inequalities.

16
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If a space Y is acted on by a topological group then the equivariant cohomology H?
G(Y,Q) is

defined by

2.15

H?
G(Y,Q) = H?(EG×G Y ; Q)

where EG → BG is the universal classifying bundle for G and EG ×G Y is the quotient of

EG× Y by the diagonal action of G acting on EG on the right and on Y on the left.

For any smooth stratification {Sβ} of X whose strata are all invariant under the action of

the group K on X we obtain equivariant Morse inequalities

2.16. ∑
β

td(β)PK
t (Sβ)− PK

t (X) = (1 + t)R(t)

where R has nonnegative coefficients and PK
t denotes the equivariant Poincaré series.

The stratification is called equivariantly perfect if these are equalities.

It will be shown that the function f = ||µ||2 on X is equivariantly perfect in the sense that

2.17.

PK
t (X) =

∑
β

tλ(β)PK
t (Cβ)

where the sum is taken over the critical subsets {Cβ} and λ(β) is the index of f along Cβ. This is

done by showing that if X is given a suitable metric then the stratification {Sβ} induced by f is

equivariantly perfect and each stratum Sβ retracts equivariantly onto the corresponding critical

subsets Cβ.

We shall finish this section with a criterion due to Atiyah and Bott for a stratification to be

equivariantly perfect.

Lemma 2.18. Suppose {Sβ : β ∈ B} is a smooth K-invariant stratification of X such that

for each β the equivariant Euler class of the normal bundle to Sβ in X is not a zero-divisor in

H?
K(Sβ; Q). Then the stratification is equivariantly perfect over Q.

Proof. We need to show that the equivariant Thom-Gysin sequences

. . . −→ H
n−d(β)
K (Sβ; Q) −→ Hn

K

(⋃
γ≤β

Sγ; Q

)
−→ Hn

K

(⋃
γ<β

Sγ; Q

)
−→ . . .

split into short exact sequences for all β. It is enough to show that each map
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H
n−d(β)
K (Sβ; Q) −→ Hn

K

(⋃
γ≤β

Sγ; Q

)
is injective. This will certainly happen if the composition with the restriction map

Hn
K

(⋃
γ≤β

Sγ; Q

)
−→ Hn

K(Sβ,Q)

is injective. But this composition is multiplication by the equivariant Euler class of the normal

bundle to Sβ in X. The result follows. �
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3 Critical points for the square of the moment map

Suppose that K is a compact Lie group acting on a compact symplectic manifold X and that

µ : X → k? is a moment map for this action. Our aim is to use the function f = ||µ||2 : X → R
as Morse function on X, where || || is the norm associated to any inner product on k which is

invariant under the adjoint action of K. In this section we shall investigate the set of critical

points for f .

As before if a ∈ k let x→ ax be the vector field on X generated by a.

Lemma 3.1. A point x ∈ X is critical for f iff µ(x)x = 0 where µ(x) ∈ k? is identified with an

element of k by using the fixed invariant inner product on k.

Proof. Let {ai : 1 ≤ i ≤ dim k} be an orthonormal basis of k and for 1 ≤ i ≤ k let µi : X → R be

given by µi(x) = µ(x).ai. Then

µ(x) =
∑

i

µi(x)ai

when k? is identified with k and

f(x) = ||µ(x)||2 =
∑

i

(µi(x))
2 ⇒ df(x) =

∑
2µi(x)dµi(x)

Now df(x) ∈ T ?
xX vanishes iff its ω-dual in TxX does, where ω is the symplectic form on X.

But by definition 2.3 of a moment map the ω-dual of each dµi(x) is just the vector (ai)x. Hence

the ω-dual of df(x) is

3.2.

2

(∑
i

µi(x)ai

)
x

= 2(µ(x))x

and the result follows.

3.3. Now let T be a maximal torus of K and let t be its Lie algebra. Then it is easy to check

that the composition µT : X → k? → t? of µ with the restriction map k? → t? is a moment map

for the action of T on X. When the inner product of k is used to identify k? with k and t? with t

then µT becomes the orthogonal projection of µ onto t. Thus if µ(x) ∈ t then µT (x) = µ(x) and

hence x is critical for the function f = ||µ||2 iff it is critical for the function fT = ||µT ||2 by 3.1.

Therefore we shall next investigate the critical points of fT . The moment maps µT : X → t?

associated to torus actions on X have been studied by Atiyah. Theorem 1 in [A2] tells us that
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3.4. The image under µT of the fixed point set of T on X is a finite set A of points in t? and

µT (x) is the convex hull Conv(A) of A in t?.

The elements of A will be called the weights of the symplectic action of T on X. This termi-

nology is explained in the following example.

Example 3.5. Let X ⊂ Pn be a nonsingular complex projective variety and let T act on X via

a homomorphism ϕ : T → U(n+1). By conjugating ϕ by an element of U(n+1) we may assume

that

ϕ(t) = diag(α0(t), . . . , αn(t)), t ∈ T

where αj : T → S1, 0 ≤ j ≤ n are characters of T whose derivatives at 1 are the weights of the

representation of T on Cn+1. If the tangent space at 1 to S1 is identified with the line 2πiR in

C and hence with R in the usual way then the derivative of each αj at 1 can be identified with

an element of t?. By abuse of notation this element of t? will also be denoted by αj. Then the

derivative ϕ? of ϕ at 1 is given by

ϕ?(ξ) = 2πi diag(ξ.α0, . . . , ξ.αn)

By 2.7 a moment map µT is given by

µT (x).ξ =
x̄?tϕ?(ξ)x

?

2πi||x?||2
=

1

||x?||2
∑

j

|xj|2αj.ξ

for each ξ ∈ t where x? = (x0, . . . , xn) ∈ Cn+1\{0} representing x. Thus

3.6.

µT (x) =
1

||x?||2
∑

j

|xj|2αj

The point x ∈ X is fixed by T iff there is some α ∈ t? such that αj = α whenever xj 6= 0;

and then clearly µT (x) = α. So at least when X is the whole projective space Pn the set A is

just the set {α0, . . . , αn} os weights of the representation of T on Cn+1 and formula 3.6 shows

immediately that µT (Pn) is the convex hull of A.

We need some definitions.

Definition 3.7. For any β ∈ t let Tβ be the closure in T of the real one-parameter subgroup

exp Rβ. Thus Tβ is a subtorus of T . Let µβ : X → R be given by µβ(x) = µ(x).β. Then by

definition of a moment map and cotangent field x → dµβ(x) on X is ω-dual to the vector field

x→ βx induced by β on X. If x ∈ X then βx = 0 iff x is fixed by the subgroup exp Rβ of T and

hence by its closure Tβ in T . Therefore the critical set of the function µβ on X is precisely the
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fixed point set of the subtorus Tβ of T . It is well known that

3.8. Every connected component of the fixed point set of a torus action on X is a submanifold

of X and the induced action of the torus on its normal bundle in X has no nonzero fixed vectors.

(To see this one puts a T -invariant Riemannian metric on X and uses normal coordinates).

Using this fact, Atiyah shows that

3.9. µβ is a nondegenerate Morse function on X in the sense of Bott.

Definition 3.10. Let Zβ be the union of those connected components of the critical set of µβ

on which µβ takes the value ||β||2. Thus if x ∈ Zβ then µ(x) lies in the affine hyperplane in k

containing β and perpendicular to the line from β to the origin.

Zβ is a submanifold of X (possibly disconnected) fixed by Tβ and invariant under T . In fact,

it is a symplectic submanifold of X.

Example 3.11. If X is a smooth projective variety and T acts on X via ϕ : T → U(n+ 1) then

Zβ is the intersection with X of a linear subvariety of Pn. If ϕ(t) = diag(α0(t), . . . , αn(t)) for

t ∈ T where αj are the characters of T identified with points of t? then

Zβ = {(x0 : . . . : xn) ∈ X : xj = 0 unless αj.β = ||β||2}

Note that the inner product on t gives t the structure of a normed space. For any nonempty

closed convex set C ⊂ t there is then a unique of minimal norm in C. This point will be called

the point of C closest to the origin 0.

The point of these definitions is the following result.

Lemma 3.12. Let x ∈ X and let β = µT (x) ∈ t. Then x is critical for fT = ||µT ||2 iff x ∈ Zβ;

and if this is the case then β is the closest point to 0 of the convex hull of some nonempty subset

of the set A of weights defined in 3.4.

Proof. By 3.1 x is critical iff βx = 0, i.e. iff x is fixed by Tβ. Since µβ = µT (x).β = ||β||2 it

follows that x is fixed by Tβ iff it lies in Zβ So β is the closest point to 0 of µT (Zβ) if β ∈ µT (Zβ)

and hence if x ∈ Zβ. But we can apply 3.4 to the action of T on Zβ to deduce that µT (Zβ) is

the convex hull of the image under µT of the fixed point set of T on Zβ which is a subset of A.

The result now follows. �

This lemma can be used to describe the critical set of the function f = ||µ||2 associated to

the action of the whole group K.
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Definition 3.13. Let β ∈ t, the Lie algebra of a maximal torus T of K. Then β will be called

the minimal combination of weights of the action of T on X if it is the closest point to the origin

of the convex hull in t of some nonempty subset of the set of weights A (defined in 3.4). Let t+

be a fixed positive Weyl chamber in t and denote by B the set of all minimal combinations of

weights which lie in t+.

B will be the indexing set for the stratification of X which we shall associate to the function f .

Definition 3.14. For β ∈ B let Cβ = K(Zβ ∩ µ−1(β)).

Then we have

Lemma 3.15. The critical set of f on X is the disjoint union of the closed subsets {Cβ : β ∈ B}
of X.

Proof. For any x ∈ X there is some k ∈ K such that Ad kµ(x) ∈ t+. By the defintion of moment

map Adkµ(x) = µ(kx). Since f is a K-invariant map x is critical for f iff kx is for any such

k. But µ(kx) ∈ t so by 3.3 kx is critical for f = ||µ||2 iff it is critical for fT = ||µT ||2. Let

β = µ(kx) ∈ t+. By 3.12 kx is critical for fT iff kx ∈ Zβ and if this happens then β ∈ B.

Therefore the critical set for f is the union of the closed sets Cβ = K(Zβ ∩µ−1(β)) as β runs

over B. Moreover for each β ∈ B the image of Cβ under µ is preisely the orbit of β under the

adjoint representations of K. Since any adjoint orbit in k intersects the positive Weyl chamber

in a unique point the subsets {Cβ} must be disjoint. The result follows.

The subsets {Cβ : β ∈ B} will therefore be called the critical subsets for f .

Corollary 3.16. The image under µ of each connected component of the critical set for f is a

single adjoint orbit in k? ∼= k. For each β ∈ B, Cβ consists of those critical points for f whose im-

age under µ lies in the adjoint orbit of β. Thus the function f = ||µ||2 takes the value ||β||2 on Cβ.

Example 3.17. If X = (P1)
n is acted on by SU(2) as in 2.2 then Tβ is the maximal torus T of

SU(2) when β 6= 0. The fixed point set of T consists of all configurations such that every point

is either at 0 or ∞. Identify t with R and give it the standard inner product so that the identity

character of T = S1 becomes 1 in R. Take R+ as the positiv Weyl chamber. Then the moment

map sends a configuration with r points at 0 and the rest at ∞ to 2r − n ∈ t. So

B =

{
2r − n :

1

2
n ≤ r ≤ n

}
∪ {0}

and if β = 2r − n then Zβ consists of configurations with r points at 0 and the rest at ∞. Thus

the last lemma agrees with 2.12.
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4 The square of the moment map as a Morse function

As in §§2-3 let X be a compact symplectic manifold acted on by a compact Lie group K and

assume that a moment map µ : X → k? exists. We want to apply Morse theory to the function

f = ||µ||2 where || || is the norm associated to any inner product on k which is invariant under

the adjoint action of K. Problems arise because the critical set of f has singularities. However,

we shall see in this section that f is minimally degenerate. It is show in §10 that such functions

are sufficiently well-behaved to have associated Morse inequalities.

To show that f is minimally degenerate we need to find a minimising submanifold along

each of the critical subsets Cβ. That is, for each β ∈ B we require a submanifold Σβ of some

neighbourhood of Cβ with orientable normal bundle in X and such that the restriction of f to

Σβ takes its minimum value on Cβ. We also require that for each x ∈ Cβ the tangent space TxΣβ

is maximal among subspaces of TxX on which the Hessian Hx(f) is positive semidefinite.

First fix a K-invariant Riemannian metric on X.

4.1. Note that such a metric and the symplectic structure give X a K-invariant almost-complex

structure as follows. The metric can be used to identify the symplectic form with a skew-adjoint

linear operator A on the tangent bundle TX. Then A2 = −AA? and since AA? is self-adjoint

with positive eigenvalues it has a unique square root. If we rescale the metric by (AA?)−
1
2 then

A is replaced by J = A(AA?)−
1
2 so that J2 = −1. Hence there is a complex structure on TX

such that J is multiplication by i.

We can thus assume that the chosen K-invariant metric on X has been suitably normalized

so that

4.2. X has a K-invariant almost-complex structure such that if ξ ∈ TxX then iξ is the dual

with respect to the metric of the linear form ζ → ωx(ζ, ξ) on TxX.

Note that this implies that

4.3. gradµβ(x) = iβx for all x ∈ X, since by the definition of a moment map the cotangent

vector field dµβ on X is ω-dual to the tangent vector field x→ βx.

Remark 4.4. When X is Kähler the real part of the Kähler metric is the obvious choice for

a Riemannian metric on X. The induced almost-complex structure then coincides with the

complex structure of X. In this section where X is merely symplectic, the almost complex

structure is used not only for convenience but also because it links up with the work of later

sections on Kähler manifolds.

Recall from Lemma 3.15 that the set of critical points for f on X is the disjoint union of the

closed subsets {Cβ : β ∈ B}. The indexing set B is the set of minimal weight combinations in the
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positive Weyl chamber as defined in 3.13. For each β ∈ B the critical subset Cβ is K(Zβ∩µ−1(β))

where Zβ is the symplectic submanifold of X defined in 3.10. This submanifold is the union of

certain components of the fixed point set of the subtorus Tβ generated by β or, equivalently, of

the critical set of the function µβ on X (which is nondegenerate as a Morse function in the sense

of Bott). The components contained in Zβ are those on which µβ takes the value ||β||2.
4.6. For each β there is a Morse stratum Yβ associated to Zβ which consists of all points of X

whose paths of steepest descent under µβ have limit points in Zβ. This Morse stratum Yβ (which

depends on the chosen metric) is a locally-closed submanifold of X. (These facts are well known;

a proof is given in the appendix, but this covers the more general case of minimally degenerate

functions, which are harder to deal with than nondegenerate ones such as µβ).

Example 4.7. Consider again the projective variety X = (P1)
n acted on diagonally by SU(2).

We have seen in 3.17 that the nonzero elements of the indexing set B may be identified with

integers r such that n
2
≤ r ≤ n and that Zr consists of sequences of points of which r lie at 0

and the rest at ∞. It is not hard to see that Yr consists of all sequences of points precisely r of

which lie at 0.

Note that KYr thus consists of all sequences of points such that r points and no more coincide

somewhere on P1. By 2.12 this is exactly the Morse stratum indexed by r for the function ||µ||2

on X.

Recall that we need a minimising submanifold Σβ along each critical subset Cβ. It will be

shown that we can take Σβ to be an open subset of KYβ.

Remark. It will then follow from theorem 10.4 that the Morse stratum Sβ coincides with KYβ

in a neighbourhood of Cβ. In fact, in the Kähler case we shall see that Sβ = KY min
β where Y min

β

is a certain open subset of Yβ. If one were onl interested in the Kähler case it would be possible

to avoid minimising manifolds and simplify the appendix somewhat by using this fact. When X

is just a symplectic manifold the equality above does not hold for every invariant metric on X.

For example consider X = (P1)
n with symplectic form ω⊕ . . .⊕ω and metric 2ρ⊕ . . .⊕ ρ where

ω and ρ are the usual symplectic form and metric on P1. It may always be possible to choose a

metric for which the equality holds, or at least when π1(X) = 0 (that would follow immediately

if it were shown that every simply connected compact symplectic manifold is Kähler) but this

has not yet been proven.

First in order to show that KYβ is smooth near Cβ we must investigate what elements of K

preserve Yβ.

Definition 4.8. For each β ∈ B let Stabβ = {k ∈ K : Ad k(β) = β} be the stabiliser of β in K.

Stabβ is also the centralizer of the subtorus Tβ in K so that it is connected if K is connected

and is a compact subgroup of K. Let stabβ = {a ∈ k : [a, β] = 0} be the Lie algebra of Stabβ.
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Stab β acts on the symplectic submanifold Zβ of X and the composition of µ restricted to Zβ

with the orthogonal projection of k onto stab β is a moment map for this action; as usual k and

its dual are identified via the inner product. But if x ∈ Zβ then Tβ fixes x and hence also fixes

µ(x) since µ is a K-equivariant map. Therefore µ(x) ∈ Stab β. It follows that

4.9. The restriction of µ onto Zβ maps Zβ to stab β and can be regarded as a moment map for

the action of Stab β on Zβ.

In order to show that KYβ is smooth in a neighbourhood of Cβ = K(Zβ ∩ µ−1(β)) we need

the following

Lemma 4.10. If x ∈ Zβ ∩ µ−1(β) then {k ∈ K : kx ∈ Yβ} = Stab β and {a ∈ k : ax ∈ TxYβ} =

stab β.

Proof. It is clear from the definitions that Zβ is invariant under Stab β and that Zβ ⊆ Yβ. It

follows that Stab β ⊂ {k : kx ∈ Yβ} and stab β ⊆ {a : ax ∈ TxYβ}. On the other hand suppose

k ∈ K is such that kx ∈ Yβ. Then the path of steepest descent from kx for the function µβ has

limit point in Zβ and by definition µβ takes the value ||β‖2 on Zβ. Thus as µβ(kx) = µ(kx).β we

have µ(kx).β ≥ ||β||2. But ||µ(kx)||2 = ||µ(x)||2 = ||β||2. Together these imply that β = µ(kx)

and since µ(kx) = Ad kµ(x) = Ad kβ it follows that k ∈ Stab β.

Now suppose that a ∈ k is such that ax ∈ TxY . For t ∈ R we have

µ((exp ta)x) = β + tdµ(x)(ax) + e(t)

where e(t) = O(t2) as t→ 0; and

dµ(x)(ax) = [a, µ(x)] = [a, β]

since µ is K-equivariant. As [a, β].β = a.[β, β] = 0, it follows that

µβ((exp ta)x) = ||β||2 + β.e(t)

But also

||µ(exp ta)x||2 = ||µ(x)|| = ||β||2

for all t, so that

||β||2 = ||β + t[a, β] + e(t)||2 = ||β||2 + t2||[a, β]||2 + 2β.e(t) +O(t3)

as t→ 0. Thus

2β.e(t) = −t2||[a, β]||2 +O(t3)
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as t→ 0 and hence

µβ((exp ta)x) = ||β||2 − 1

2
t2||[a, β]||2 +O(t3)

as t→ 0. But by assumption ax ∈ TxYβ which is the sum of the nonnegative eigenspaces of the

Hessian Hx(µβ) of µβ at x since µβ is nondegenerate in the sense of Bott. The last equation

shows that this is impossible unless [a, β] = 0, i.e. unless a ∈ stab β. This completes the proof. �

Corollary 4.11. The subset KYβ of X is a smooth submanifold when restricted to some K-

invariant neighbourhood of Cβ = K(Zβ ∩ µ−1(β)) in X.

Proof. Since Yβ is invariant under Stab β the map σ : K×Yβ → X given by σ(k, x) = kx induces

a map σ̃ : K ×Stab β Yβ → X whose image is KYβ. It is easily checked from the definition of

Yβ that if ε > 0 sufficiently small the subset {y ∈ Yβ : µβ(x) ≤ ||β||2 + ε} of Yβ a is compact

neighbourhood of Zβ in Yβ. Moreover its complement in Yβ is contained in the subset{
y ∈ X : ||µ(y) ≥ ||β||+ || 1

||β||
ε

}
of X which is closed, K-invariant and does not meet Zβ ∩ µ−1(β). From this one can deduce

easily that if x ∈ Zβ ∩ µ−1(β) then σ̃ maps each neighbourhood of the point in K ×Stabβ Yβ

represented by (1, x) onto a neighbourhood of x in the image KYβ of σ̃.

The derivative of σ at any point of the form (1, x) sends (a, ξ) ∈ k × TxYβ to the tangent

vector ax + ξ ∈ TxX. The tangent space of K ×Stabβ Yβ at a point represented by (1, x) is the

quotient of k × TxYβ by the subspace consisting of all (a, ξ) such that a ∈ stab β and ξ = −ax.

Thus 4.11 shows that the derivative of σ̃ is injective at a point rep. by (1, x) with x ∈ Zβ∩µ−1(β)

and hence also in some neighbourhood V of this point. The preceding paragraph shows that

the image σ̃(V ) is a neighbourhood of x in KYβ. Therefore it follows from the inverse function

theorem that the image KYβ of σ̃ is smooth in some neighbourhood of x.

We have thus shown that KYβ is smooth near Zβ ∩ µ−1(β). It follows that KYβ is smooth in

some K-invariant neighbourhood of Cβ, as required. �

We are aiming to show that the intersection Σβ of KYβ with a sufficiently small neighbour-

hood of Cβ is a minimising manifold for f along Cβ. The last corollary shows that the condition

that Σβ be a locally-closed submanifold of X can be satisfied. For the other conditions we need

two technical lemmas.

Lemma 4.12. Zβ is an almost complex submanifold of X. Moreoever TxYβ is a complex sub-

space of TxX for all x ∈ Zβ.
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Proof. Suppose x ∈ Zβ. Then the compact torus Tβ generated by β acts on TxX which decom-

poses into the sum,

V0 ⊕ . . .⊕ Vp

of complex subspaces where V0 is fixed by Tβ and is the tangent space to Zβ while for each

j ≥ 1, Tβ acts on Vj as scalar multiplication by some nontrivial character. Thus β acts on each

Vj as multiplication by some iλj with λ0 = 0 and λj real nonzero for j ≥ 1. Also by 4.3 we

have gradµβ(y) = iβy for all y ∈ Y . Therefore the Hessian Hx(µβ) of µβ at x acts on Vj as

multiplication by λj. Thus TxZβ = V0 and TxYβ is the sum of those Vj such that λj ≥ 0 so both

are complex subspaces of TxX. The result follows. �

Lemma 4.13. Suppose x ∈ Cβ = K(Zβ ∩ µ−1(β)). Then the restriction of the symplectic form

ωx to Tx(KYβ) is nondegenerate.

Proof. First note that by 4.11 KYβ is smooth near x so Tx(KYβ) exists. Moreover since ω is

invariant under K we may assume that x ∈ Zβ ∩ µ−1(β) and then Tx)(KYβ) = kx + TxYβ. So

any element of Tx(KYβ) may be written in the form ax + ξ where ξ ∈ TxYβ and a ∈ k is such

that ax is orthogonal to TxYβ (with respect to the Riemannian metric on X). Suppose that

ωx(ax + ξ, ζ) = 0 for all ζ ∈ Tx(KYβ). By 4.12, iξ ∈ TxYβ so if <,> denotes the metric then

0 = ωx(ax + ξ, ıξ) = 〈ax + ξ, ξ〉 = 〈ξ, ξ〉

by 3.19 and the assumption on a.

Hence ξ = 0. But then as kx ⊂ Tx(KYβ)

0 = ωx(ax, bx) = dµ(x)(ax).b

for every b ∈ k (2.3), so

0 = dµ(x)(ax) = [a, β]

since µ(x) = β. Thus a ∈ stab β and hence ax ∈ TxYβ by 4.10. But by assumption ax is orthog-

onal to TxYβ so ax = 0. This completes the proof. �

Remark 4.14. Lemma 4.13 implies that there is an open neighbourhood Σβ of the critical

subset Cβ in KYβ such that the restriction of the symplectic form ω to the tangent bundle TΣβ

is nondegenerate. It follows that ω and the metric together induce a K-invariant almost complex

structure on Σβ (4.1). It also follows that the normal bundle Σβ in X can be identified with the

ω-orthogonal complement TΣ⊥β in the restriction of TX to Σβ. Since ω is nondegenerate on TΣ⊥β
it gives a complex structure to this normal bundle as well.
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At last we are in a position to prove

Proposition 4.15. There is a K-invariant open neighbourhood Σβ of Cβ in KYβ which is a

minimising manifold for f along Cβ.

So this goes to show that the function f = ||µ||2 is minimally degenerate along each critical

subset Cβ. By theorem 10.2 of the appendix this implies the existence of Morse inequalities for

f and also of equivariant Morse inequalities. Indeed, theorem 10.4 and lemma 10.3 imply the

following

Theorem 4.16. Let X be a compact symplectic manifold acted on by a compact Lie group K

and suppose µ : X → k? is a moment map for this action. Fix an invariant inner product on

k. Then the set of critical points for the function f = ||µ||2 is a finite disjoint union of closed

subsets {Cβ : β ∈ B} on each of which f takes a constant value. There is a smooth stratification

{Sβ : β ∈ B} of X such that a point x ∈ X lies in the stratum Sβ iff the limit set of the path of

steepest descent for f from x (with respect to a suitable K-invariant metric) is contained in Cβ.

For each β the inclusion Cβ ⊂ Sβ is an equivalence of Cech cohomology and also K-equivariant

cohomology.

Theorem 4.10 shows in addition that

4.17. If β ∈ B then the stratum Sβ coincides in a neighbourhood of Cβ with the minimising

manifold Σβ (which is an open subset of KYβ where Yβ is defined as in 4.6). In particular if

x ∈ Zβ ∩ µ−1(β) then

TxSβ ⊇ TxZβ

From this together with remark 4.14 we deduce that

4.18. Both the tangent bundle and the normal bundle to each stratum Sβ have K-invariant

complex structures in some neighbourhood of the critical set Cβ.

Theorem 4.16 implies immediately the existence of equivariant Morse inequalities for f =

||µ||2. We shall not state these explicitly until the next section, where it will be shown that they

are in fact equalities.

We shall conclude this section with some remarks about the codimensions of the components

of the strata Sβ and the equivariant cohomology of the critical sets Cβ.

Recall that when stating the Morse inequalities induced by a smooth stratification of X in

§2 we made the simplifying assumption that every stratum was connected and hence had a well

defined codimension in X. In fact, the stratification {Sβ} defined in theorem 4.16 may contain

disconnected strata. Therefore it is necessary to refine it so that the components of any stratum

all have the same codimension.

For β ∈ B the critical subset Cβ was defined at 3.14 by

Cβ = K(Zβ ∩ µ−1(β))
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where Zβ is the union of certain components of the critical set of the nondegenerate Morse

function µβ. Recall that the index of the Hessian Hx(µβ) at any critical point x for µβ is the

dimension of any subspace of the tangent space TxX to which the restriction of Hx(µβ) is neg-

ative definite and which is maximal with this property. This is the same as the codimension of

a maximal subspace of TxX on which Hx is positive semi-definite. Since µβ is a nondegenerate

Morse function in the sense of Bott, the index of Hx is constant along any component of the

critical set of µβ. Its value is called the index of µβ along this component. So we can make the

following definition.

Definition 4.19. For any integer m ≥ 0 let Zβ,m be the union of those connected components

of Zβ along which the index of µβ is m. Let

Cβ,m = K(Zβ,m ∩ µ−1(β))

Then each Zβ,m is a symplectic submanifold of X and Cβ is the disjoint union of the closed

subsets {Cβ,m : 0 ≤ m ≤ dimX}. The fact that these are disjoint comes from 4.10.

The point of this definition is the following

Lemma 4.20. The index of the Hessian Hx(f) of f = ||µ||2 at any point x ∈ Cβ,m is

d(β,m) = m− dimK + dim Stab β

This is the codimension of the component which contains x of the stratum Sβ.

Proof. By 4.17 the stratum Sβ coincides in a neighbourhood of x with the minimising manifold

Σβ for f along Cβ. It follows immediately from the definition of minimising manifold that the

index of the Hessian Hx(f) equals the codimension of the component of Σβ containing x. Thus

it suffices to show that the component of Σβ containing x has codimension d(β,m) in X.

Since

Cβ,m = K
(
Zβ,m

⋂
µ−1(β)

)
and everything is invariant under K, we may assume x ∈ Zβ,m ∩ µ−1(β). By definition of the

minimising manifold Σβ is an open subset of KYβ where Yβ is the Morse stratum consiting of

all points in X whose paths of steepest descent under the function µβ have limit points in Zβ.

Since µβ is a nondegenerate Morse function, locally Yβ is a submanifold of X whose codimension

is equal to the index of the Hessian Hx(µβ). By definition of Zβ,m, this index is m.

In the proof of 4.11, we saw thatKYβ is locally diffeomorphic toK×Stab β Yβ near x. Therefore,

its codimension is

29



30

d(β,m) = m− dimK + dim Stab β

The result follows. �

It is easy to see that for each β

4.21. The critical subset Cβ = K(Zβ ∩ µ−1(β)) is homeomorphic to K ×Stabβ (Zβ ∩ µ−1(β))

By 4.10, for each x ∈ Zβ ∩ µ−1(β) the set {k ∈ K : kx ∈ Zβ ∩ µ−1(β)) is just the subgroup

Stab β of K. Thus there is a continuous bijection

K ×Stabβ (Zβ ∩ µ−1(β)) → Cβ

which must be a homeomorphism since both spaces are compact and Hausdorff.

As Zβ,m is also preserved by Stabβ we deduce that

4.22. Each Cβ,m is homeomorphic to K ×Stabβ (Zβ,m ∩ µ−1(β)).

It follows immediately (see [A & B] §13) that

4.23. The K-equivariant cohomology H?
K(Cβ; Q) is isomorphic to the Stabβ-equivariant ratio-

nal cohomology of Zβ ∩ µ−1(β) and similarly that

H?
K(Cβ,m; Q) ∼= H?

Stab β(Zβ,m ∩ µ−1(β); Q)

for each m. Indeed, rational coefficients are not necessary here. Any field of coefficients will do.

We now have all the ingredients for writing down the equivariant Morse inequalities and

proving that they are in fact equalities. This will be done in the next section.
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5 Cohomological formulae

As in the previous section we suppose that X is a compact symplectic manifold acted on by a

compact Lie group K, that there is a fixed invariant inner product on k, and that µ : X → k? ∼= k

is a moment map for the action. In the last section we saw that the function f = ||µ||2 is a

minimally degenerate Morse function on X. This implies the existence of Morse inequalities

for f . In this section we shall show that these inequalities calculated for rational equivariant

cohomology are in fact equalities. Thus f is equivariantly perfect for rational cohomology.

We shall see that this provides us with an inductive formula (from which an explicit formula

will be derived) for the rational cohomology of the symplectic quotient of X by K when it exists.

At the end of the last section it was explained how the description of the critical set as

the disjoint union of closed subsets {Cβ : β ∈ B} needs refining in order to state the Morse

inequalities for f . The problem is that the subsets Cβ may be disconnected and hence the index

of the Hessian of f at points of Cβ may not be constant. Because of this we defined the closed

subsets {Cβ,m : β ∈ B, 0 ≤ m ≤ dimX} such that each Cβ is the disjoint union of the subsets

{Cβ,m : 0 ≤ m ≤ dimX} and the index of the Hessian of f at any point of Cβ,m is

d(β,m) = m− dimK + dim Stab β

The statement that the function f is equivariantly perfect for rational coefficients is now

equivalent by 2.16 to the equality

5.1.

PK
t (X) =

∑
β,m

td(β,m)PK
t (Cβ,m)

For each β and m there is a symplectic submanifold Zβ,m of X acted on by Stabβ under the

ajoint action of K on k such that

H?
K(Cβ,m,Q) ∼= H?

K(Zβ,m ∩ µ−1(β),Q)

Thus 5.1 is equivalent to the formula

5.2.

PK
t (X) =

∑
β,m

td(β,m)P Stab β
t (Zβ,m ∩ µ−1(β))

To show 5.1 and 5.2 hold, i.e. that f is equivariantly perfect, we shall use criterion 2.18

together with the folowing result of Atiyah and Bott.

5.3. Suppose that N is a complex vector bundle over a connected space Y and that a compact

group K acts as a group of bundle automorphisms of N . Suppose that there is a subtorus T0

31



32

of K which acts trivially on Y and that the representation of T0 on the fibre of N at any point

of Y has no nonzero fixed vectors. Then the equivariant Euler class of N in H?
K(Y,Q) is not a

divisor of zero.

Theorem 5.4. Let X be a symplectic manifold acted on by a compact group K with moment

map µ : X → k? and give k a fixed invariant inner product. Then the function f = ||µ||2 on X is

equivariantly perfect over the field of rational coefficients. Thus the equivariant Poincaré series

of X is given by

PK
t (X) =

∑
β,m

td(β,m)PK
t (Cβ,m) =

∑
β,m

td(β,m)P Stab β
t (Zβ,m ∩ µ−1(β))

Proof. By theorem 4.16 there is a smooth K-invariant stratification {Sβ} of X such that for each

β the stratum Sβ contains the critical subset Cβ and the inclusion of Cβ in Sβ is an equivalence

of K-equivariant Cech cohomology.

Let Sβ,m denote the union of those components of Sβ which have codimension d(β,m). Then

by 4.20 {Sβ,m : β ∈ B, 0 ≤ m ≤ dimX} is a smooth stratification of X such that

H?
K(Sβ,m,Q) ∼= H?

K(Cβ,m,Q)

for all β,m. We must prove that this stratification is equivariantly perfect over Q.

By 2.18 it is enough to show that the equivariant Euler class of the normal bundle to each

stratum Sβ,m is not a zero divisor in H?
K(Sβ,m). Under the composition of the isomorphisms

H?
K(Sβ,m) ∼= H?

K(Cβ,m) ∼= HStab β(Zβ,m ∩ µ−1(β))

the equivariant Euler class of this normal bundle is identifed with the Stabβ-equivariant Euler

class of its restriction, N say, to Zβ,m ∩ µ−1(β).

It follows from 4.18 that the bundle N has a complex structure preserved by the action of

Stabβ. Also from 4.17 we see that N is a quotient of the restriction to Zβ,m ∩ µ−1(β) of the

normal bundle to Zβ,m. But by definition Zβ,m is the union of certain components of the fixed

point set of the subtorus Tβ of Stab β. So by 3.8 the action of Tβ on the normal bundle to Zβ,m

has no nonzero fixed vectors. The same is therefore true of the action of Tβ on N . Hence by 5.3

the equivariant Euler class of N is not a divisor of zero in HStabβ(Zβ,m ∩ µ−1(β). Note that we

should really have considered each component of Zβ,m separately. The result follows. �

5.5. The subset of X on which the function f = ||µ||2 achieves its minimum is µ−1(0) provided

that µ−1(0) is nonempty. This is a K-invariant subset of X. If we suppose that the stabiliser in

K of every point x therein is finite then the quotient µ−1(0)/K has a natural symplectic structure

and is the symplectic quotient or Marsden-Weinstein reduction of X by K.
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To see why µ−1(0)/K has a natural symplectic structure, note first that if every x ∈ µ−1(0)

has finite stabiliser then dµ(x) is surjective for each x. Otherwise, there is some x ∈ µ−1(0) and

some nonzero a ∈ k such that

0 = dµ(x)(ξ).a = ωx(ξ, ax)

for all ξ ∈ TxX. The second equality comes from the definition of a moment map. Then since

ω is nondegenerate ax = 0 so the one-parameter subgroup of K generated by a fixes x which is

impossible.

Thus µ−1(0) is a submanifold of X and µ−1(0)/K is a rational homology manifold (it can

be thought of as a manifold except for singularities caused by finite isotropy groups). Moreover

from the fact that ωx(ξ, a) = 0 for ξ ∈ Txµ
−1(0) and all a ∈ k it is easy to deduce that ω induces

a nondegenerate symplectic form on µ−1(0)/K.

In particular if K acts freely on µ−1(0) then µ−1(0)/K is a symplectic manifold and moreover

since K is compact the natural map µ−1(0) → µ−1(0)/K is a locally trivial fibration with fiber

K. It follows that the natural map

µ−1(0)×K EK −→ µ−1(0)/K

is a fibration with contractible fiber EK. Hence the equivariant cohomology of µ−1(0) is isomor-

phic to the ordinary cohomology of the symplectic quotient of X by K. Moreover for rational

cohomology the same is true provided only that the stabiliser of every point µ−1(0) is finite.

Thus we have

5.6. If the stabiliser of every x ∈ µ−1(0) is finite then the rational equivariant cohomology

H?
K(µ−1(0); Q) is isomorphic to the ordinary rational cohomology H?(µ−1(0)/K,Q) of the sym-

plectic quotient.

5.7. Since µ−1(0) coincides with the critical subset C0 of X on which f attains its minimum,

theorem 5.4 provides a formula for the equivariant Poincaré series of µ−1(0) in terms of the

equivariant Poincaré series of X itself and of all the series P Stabβ
t (Zβ,m ∩µ−1(β)) with β ∈ B and

0 ≤ m ≤ dimX. Moreover each Zβ,m is a compact symplectic manifold on which the compact

subgroup Stab β of K act. We saw at 4.9 that the restriction of µ to Zβ (which is the disjoint

union of all the Zβ,m) can be regarded as a moment map for the action of Stab β on Zβ. As

usual we use the fixed invariant inner product to identify k? with k. Since Ad k(β) = β for all

k ∈ Stab β by the definition of Stab β, it follows immediately that the map µ−β sending x ∈ Zβ

to µ(x)− β is also a moment map for the action of Stab β on Zβ. The same is true when Zβ is

replaced by Zβ,m for any m. As Zβ,m ∩µ−1(β) is the inverse image of 0 under this moment map,

theorem 5.4 will give us an inductive formula for the equivariant cohomology H?
K(µ−1(0),Q)
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provided we can always calculate PK
t (X). But for connected groups we have

Proposition 5.8. Suppose that X is a compact symplectic manifold acted on by a compact

connected Lie group K such that a moment map µ exists. Then the rational equivariant coho-

mology of X is the tensor product of the ordinary ratioanl cohomology of X and that of the

classifying space BK. That is

PK
t (X) = Pt(X)Pt(BK)

Remark. If K is not connected, let K0 be its identity component. Then it is not hard to show

using 5.8 that H?
K(X,Q) is the invariant part of

H?(X,Q)⊗H?(BK0; Q)

under the action of the finite group K/K0.

Proof of 5.8. By definition the equivariant cohomology of X is the ordinary cohomology of

X ×K EK where EK → BK is the classifying bundle for K. Write XK = X ×K EK.

There is a natural locally trivial fibration XK → BK with X as fibre. We need to show that

this fibration is cohomologically trivial, i.e. that the associated spectral sequence degenerates.

First suppose that the group is a torus T . Let β be a generic element of t so that the subgroup

exp Rβ of T is dense in T and let µβ : X → R be defined by µβ = µ(x).β. Then by 3.9 µβ is

a nondegenerate Morse function on X and its critical points are the fixed points of T on X.

Moreover the induced action of T on the normal bundle to any of the components of the critical

set has no nonzero fixed vectors so by 5.3 it follows that µβ is equivariantly perfect for T . Thus

P T
t (X) =

∑
C

td(C)Pt(CT )

where C runs over the components of the fixed point set and d(C) is the index of µβ along C.

But as T acts trivially on each C we have

CT = C ×T ET ∼= C ×BT

so that Pt(CT ) = Pt(C)Pt(BT ). Thus

P T
t (X) = Pt(BT )

∑
C

td(C)Pt(C)

The ordinary Morse inequalities for µβ imply that

∑
C

td(C)Pt(C)− Pt(X) = Q(t)(1 + t)
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where Q(t) ≥ 0 in the sense that all its coefficients are nonnegative. In particular

Pt(X) ≤
∑

C

td(C)Pt(C)

The Serre spectral sequence for the fibration XT → BT starts with

Ep,q
2 = Hp(X,Q)⊗Hq(BT,Q)

and Ep,q
r+1 is the quotient of a subgroup of Ep,q

r for each r ≥ 2. Thus dimEp,q
r decreases as r

increases so that

dimHn(XT ,Q) =
∑

p+q=n

dimEp,q
∞ ≤

∑
p+q=n

dimEp,q
2

which implies that P T
t (X) ≤ Pt(X)Pt(BT ). But

Pt(X)Pt(BT ) ≤ Pt(BT )
∑

C

td(C)Pt(C) = P T
t (X)

Therefore both these inequalities must be equalities

Now let K be any compact connected group with maximal torus T . There are fibrations

BT → BK XT → XK with fibre the flag manifold K/T . It is well known that the spectral

sequences for these fibrations degenerate. To show this one must check that every cohomology

class of the fibre K/T extends to a cohomology class of XT . But the Q-cohomology of K/T

is multiplicatively generated by the Chern classes of the line bundles Lα on K/T defined by

characters α of T . Since Lα = C ×T K where the action of T on C is multiplication by α the

Chern class of the line bundle C×T (X × ET ) over XT = X ×T ET restricts to c1(Lα) on each

fiber. Therefore

P T
t (X) = PK

t (X)Pt(K/T )

and Pt(BT ) = Pt(BT )Pt(K/T ). The result now follows from the torus case.

5.9. This argument shows that every component µβ of the moment map is both equivariantly

perfect and perfect The function f on the other hand is equivariantly perfect by theorem 5.4 but

is not necessarily perfect. For example if S1 acts on the complex sphere as rotation about some

axis then µ is the projection on that axis and has a maximum and a minimum as its only critical

points. Thus its Morse seris is 1 + t2 and its equivariant Morse series is (1 + t2)(1 − t2)−1. On

the other hand f = ||µ||2 has critical points at the poles and on the equator so its equivariant

Morse series is

1 + 2t2(1− t2)−1 = (1 + t2)(1− t2)−1
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but its ordinary Morse series is (1 + t) + 2t2.

The fact that µβ is perfect is used in the work of Carrell and Sommese on C?-actions on

Kähler manifolds (see [C & S] and also [B-B] and [C&G]).

By using the argument of 5.7 we obtain from theorem 5.4 and proposition 5.8 the inductive

formula

5.10.

PK
t (µ−1(0)) = Pt(X)Pt(BK)−

∑
0 6= β

0 ≤ m ≤ dim X

td(β,m)P Stab β
t (Zβ,m ∩ µ−1(β))

for the equivariant cohomology of µ−1(0) when K is connected.

Moreover if the symplectic quotient exists then by 5.6 its rational cohomology is the same as

the rational equivariant cohomology of µ−1(0) so 5.10 gives us a means of calculating it.

This inductive formula 5.10 was our first goal. It is not hard to deduce from it an explicit

formula for PK
t (µ−1(0)) in terms of the cohomology of certain symplectic submanifolds of X

and of the classifying spaces of certain subgroups of K. These submanifolds and subgroups are

determined by the combinatorial geometry of the finite set of weights. The remainder of this

section will be devoted to obtaining this explicit formula.

As in 3.4 let A be the set of weights of the action. That is, A is the image under µT of the fixed

point set of the maximal torus T of K in X which is a finite set. By definiton 3.13 the indexing set

B of the stratification of the set of all minimal weight combinations in the positive Weyl chamber

t+. A minimal weight combination is the closest point to 0 of the convex hull of some nonempty

set of weights. Thus any β ∈ B is the closest point to 0 of Conv{α ∈ A : (α − β).β = 0}. We

have noted at 5.7 that Zβ ∩ µ−1(β) is the inverse image of 0 under the map µ− β : Zβ → Stab β

and that this is a moment map for the action of Stab β on Zβ. By the definition of Zβ as the

union of those components of the fixed point set of Tβ on which µβ takes the value ||β||2, the

image under this moment map of the fixed points of T (which is a maximal torus of Stab β) on

Zβ is just the set

{α− β : α ∈ A, (α− β).β = 0}

So we make the following

Definition 5.11. A sequence of points {β1, . . . , βq} of nonzero elements of t is called a β-sequence

if for each integer 1 ≤ j ≤ q

1. βj is the closest point to 0 of the convex hull
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Conv{α− β1 − β2 − . . .− βj−1 : α ∈ A, (α− βk).βk = 0, 1 ≤ k ≤ j}

2. βj lies in the unique Weyl chamber containing t+ of the subgroup

⋂
1≤i≤j

Stab βj

Note that T is a maximal torus of ∩iStab βj for each j and its Weyl group is a subgroup of the

Weyl group of K.

Thus a β-sequence of length one is just a nonzero element of the indexing set B while (β1, β2)

is a β-sequence of length 2 iff β1 ∈ B−{0} and β2 lies in the indexing set for the action of Stab β1

on Zβ1 with moment map µ− β1.

Definition 5.12. For each β-sequence β = (β1, . . . , βq) let Tβ be the subtorus of T generated by

{β1, . . . , βq}; that is, the closure in T of the subgroup generated by the one-paramter subgroups

{exp Rβj : 1 ≤ j ≤ q}. The fixed point set of Tβ on X is a (possibly disconnected) symplectic

submanifold of X and the projection µβ of µ onto the Lie algebra of Tβ is constant along each

of its components. Let Zβ be the union of those components on which µβ = βq.

Lemma 5.13. If q ≥ 2 a sequence β = (β1, . . . , βq) in t is a β-sequence iff β1 ∈ B − {0} and

the sequence β′ = (β2, . . . , βq) is a β-sequence for the action of Stab β1 on Zβ1 with moment

map µ− β1. If this is so then Zβ is contained in Zβ1 and coincides with Zβ where Zβ′ is defined

relative to the action of Stab β1 on Zβ1 .

Proof. This follows directly from the definitions. �

If β lies in the Lie algebra tβ of Tβ then every point of Zβ is critical for the function µβ (see

3.7). Since µβ is nondegenerate the index indHx(µβ) of the Hessian Hx(µβ) is constant along

connected components of Zβ; and so the index of its restriction to the tangent space of any

Tβ-invariant submanifold of X containing Zβ. So we make the following

Definition 5.14. Suppose β = (β1, . . . , βq) is a β-sequence. For any integer m let Zβ,m be the

union of those connected components C of Zβ such that if x is any point of C then

m =
∑

1≤j≤q

indHx(µβj
|Tj)

where Tj = Tx(Zβ1 ∩ . . . ∩ Zβj−1
). (So Zβ,m = ∅ unless m lies between 0 and dimX).
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It follows immediately from definition 3.10 and 5.14 that if m and m1 are any integers then

in the terminology of 5.13.

5.15. The intersection of Zβ,m with Zβ1,m1 is Zβ′,m−m1
.

Now we can state the explicit formula for PK
t (µ−1(0)).

Theorem 5.16. Let X be a connected symplectic manifold acted on by a connected compact

group K with moment map µ : X → k? and suppose that k? is equipped with a fixed invariant

inner product. Suppose that µ−1(0) 6= ∅. Then

PK
t (µ−1(0)) = Pt(X)Pt(BK) +

∑
β,m

(−1)qtd(β,m)Pt(Zβ,m)Pt(BStab β)

the sum being over all β-sequences β = (β1, . . . , βq) and all integers 0 ≤ m ≤ dimX. Here

β-sequences and the associated manifolds Zβ,m are as defined in 5.11 and 5.14. Also for any

β-sequence β = (β1, . . . , βq)

Stab β =
⋂

1≤j≤q

Stab βj

BStab β is the classifying space for Stabβ and d(β,m) = m− dimK + dim Stab β.

Proof. The proof is by induction on dimX. By assumption X is connected and µ−1(0) 6= ∅ so

that if dimX = 0 then X consists of a single point x and µ(x) = 0. So there are no β-sequences

and the result is trivial.

Now assume dimX > 0. By 5.10

(a)

PK
t (µ−1(0)) = Pt(X)Pt(BX)−

∑
β1,m1

td(β1,m1)P Stab β1
t (Zβ1,m1 ∩ µ−1(β1))

where the sum is over nonzero elements β1,m1 such that β1 ∈ B and 0 ≤ m ≤ dimX and

d(β1,m1) = m1 − dimK + dim Stab β1. Moreover Zβ1,m1 ∩ µ−1(β1) is the inverse image of 0

under the moment map µ − β1 for the action of Stab β1 on Zβ1,m1 . Recall from 4.8 that since

K is connected so is Stab β1. Without loss of generality we may assume that every component

of Zβ1,m1 meets µ−1(β1). Since µ−1(0) is nonempty and β1 6= 0 every component of Zβ1,m1 is a

proper submanifold of X. Therefore by induction

(b)

P Stab β1
t (Zβ1,m1 ∩ µ−1(β1)) = Pt(Zβ1,m1)Pt(BStab β1) +

∑
β′,m′

(−1)q−1t(β
′,m′)Pt(Zβ′,m′)Pt(BStabβ′)
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where the sum is over β-sequences β′ = (β2, . . . , βq) for the action of Stab β1 on Zβ1 and integers

0 ≤ m ≤ dimZβ1 . Moreover

Stab β′ =
⋂

2≤j≤q

Stab βj ∩ Stab β1 =
⋂

1≤j≤q

Stab βj

and d(β′,m′) = m′− dim Stab β1 + dim Stab β′. Therefore the result follows immediately substi-

tuting (b) into (a) and using 5.13 and 5.15. �

Corollary 5.17. Under the same assumptions as the theorem, suppose that the symplectic quo-

tient of X by K exists. Then its Betti numbers are the same as the equivariant Betti numbers

of µ−1(0) and are thus given by the formula 5.16.

Proof. This follows immediately from 5.6 and 5.16. �

Remark. These results can be extended to the case where K is not connected by using the

remark which follows 5.8.

We shall conclude this section with an example.

Example 5.18. As before consider the diagonal action of SU(2) on (P1)
n. The action of

SU(2) on µ−1(0) is free provided n is odd, since any configuration with center of gravity at 0

must contain at least three distinct points. Since SU(1) has rank 1 and β-sequences consist of

mutually orthogonal points, every β-sequence must be of length 1 and so can be identified with

an element of B − {0}. We have seen in 3.17 that any β ∈ B − {0} corresponds to an integer r

such that n
2
< r ≤ n and that Zr consists of sequences containing r copies of 0 and n−r copies of

∞. Thus Zr,m = ∅ unless m = 2(r−1) and so the rational cohomology of the Marsden-Weinstein

reduction is

Pt(Pn
1 )Pt(BSU(2))−

∑
n
2

<r≤n

(
n

r

)
t2(r−1)Pt(BS

1)

= (1 + t2)(1− t4)−1 −
∑(

n

r

)
t2(r−1)(1− t2)−1

When n is odd this is a polynomial in t2 of degree n− 3 such that the coefficient of t2j is

1 + (n− 1) +

(
n− 1

2

)
+ . . .+

(
n− 1

min(j, n− 3− j)

)
It is not a polynomial when n is even.
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Further examples will be given in Part II.
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6 Complex group actions on Kähler manifolds

Suppose now that Y is a compact Kähler manifold acted on by a complex Lie group G and that

G is the complexifcation of a maximal compact subgroup K. Thus if k, g are the Lie algebras of

K,G then g = k⊕ ik. Suppose also that K preserves the Kähler structure on X. This condition

is always satisfied if the Kähler metric is replaced by its average over K. In particular, X might

be a nonsingular complex projective variety acted on linearly by a complex reductive group.

The Kähler structure makes X into a symplectic manifold acted on by K and in addition

gives X a K-invariant Riemannian metric. Assume that a moment map µ : X → k? exists for

the action of K on X. This always happens if for example K is semisimple or X is a projective

variety or if H1(X,Q) = 0. Let f : X → R be the norm-square of the moment map with respect

to some fixed invariant inner product on k.

When applying Morse theory to the function f on a general symplectic manifold we con-

centrated on the set of critical points for f . We showed that there are Morse inequalities (in

fact, equalities) relating the equivariant Betti numbers of X to those of certain critical subsets

of f . In order to establish these inequalities a metric was introduced on X. Then f induced a

stratification on X such that the stratum containing any point was determined by the limit of

its trajectory under −grad f . This stratification was no more than a technical device: it was not

canonically determined by the symplectic group action since it depended on the metric. How-

ever in the case of a Kähler manifold there is a canonical choice of metric. We shall see in this

section that the stratification induced by f and the Kähler metric has many elegant properties;

in particular, the strata are all complex locally-closed submanifolds of X and are invariant under

the action of the complex group G.

Definition 6.1. For β ∈ B let Sβ consist of all points of X whose paths of steepest descent for

the Kähler metric have limit points in the critical subset Cβ defined at 3.14.

The subsets {Sβ} form a stratification of X by lemma 10.7 of the appendix. We shall see

that they have the following alternative description in terms of the moment map and the orbits

of G.

6.2. A point x ∈ X lies in Sβ iff β is the unique closest point to 0 of µ(Gx) ∩ t?.

Each stratum Sβ also has a decomposition analogous to the decomposition of Cβ as K×Stabβ

(Zβ ∩µ−1(β)). It is described as follows. Recall from 4.9 that for each β the symplectic manifold

Zβ of X is acted on by the stabiliser of β in K and the restriction of µ − β to Zβ is a moment

map for the action of Stab β on Zβ.

6.3. Let Zmin
β be the subset of Zβ consisting of those points x ∈ Zβ such that the limit points

of the path of steepest descent from x for ||µ− β||2 on Zβ lie in Zβ ∩ µ−1(β).
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So Zmin
β is the minimum Morse stratum of Zβ associated to the square of the moment map

µ− β and is an open subset of Zβ.

Recall also that Yβ is the subset of X consisting of all those points in X whose paths of

steepest descent under µβ converge to points of Zβ. This subset is a locally closed submanifold

of X and the inclusion of Zβ in Yβ is a cohomology equivalence. In fact since µβ is nondegenerate

in the sense of Bott, it is straightforward to check that the path of steepest descent of any y ∈ Yβ

has a unique limit point pβ(y) say, in Zβ and that the function pβ : Yβ → Zβ defined thus is a

retraction of Yβ onto Zβ.

Definition 6.4. Let Y min
β be the inverse image of Zmin

β under the retraction pβ : Yβ → Zβ. Then

Y min
β is an open subset of Yβ and retracts on Zmin

β .

We shall see that Sβ = GY min
β for each β and that there is a parabolic subgroup Pβ of G

which preserves Y min
β such that Sβ is isomorphic to G×Pβ

Y min
β .

Example 6.5. Suppose that X ⊂ Pn is a complex projective variety acted on linearly by a

complex reductive group G, and that α0, . . . , αn are the weights of the representation of G. Then

we have seen at 3.11 that

Zβ = {(x0 : . . . : xn) ∈ X : xj 6= 0 unlessαj.β = ||β||2}

It is easily checked that Yβ consists of all (x0 : . . . : xn) ∈ X such that xj = 0 unless αj.β = ||β||2

and xj 6= 0 for some j with αj.β = ||β||2. In particular, suppose X = Pn
1 and G = SL(2) acts

diagonally on X as in 2.2. By example 3.17, B − {0} can be identified with the set of integers

r such that n
2
< r ≤ n. It is easy to see from 3.17 that Y min

r = Yr consists of all sequences

which contain precisely r copies of 0. But the stratum Sr consists of sequences which contain r

coincident points. So Sr
∼= G×B Y

min
r where B is the Borel subgroup of SL(2) fixing 0.

The basic lemma needed is the following.

Lemma 6.6. If β ∈ B then for any x ∈ X

gradµβ(x) = iβx

and

grad f(x) = 2iµ(x)x

where µ(x) ∈ k? is identified with a point of k by using the fixed inner product.

Proof. For any x and ξ ∈ TxX we have

〈ξ, gradµβ(x)〉 = dµβ(x)(ξ) = dµ(x)(ξ).β = ωx(ξ, βx) = 〈ξ, iβx〉
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Hence gradµβ(x) = iβx. The argument used in 3.1 completes the proof.

6.7. Thus the trajectory from any x ∈ X of −gradµβ is {(exp(itβ)x : t ≥ 0} Moreover since

2iµ(x) lies in g all paths of steepest descent for f = ||µ||2 on X are contained in orbits of the

complex group G.

The complexification TC of the maximal torus T of K is a maximal complex torus of G.

Definition 6.8. Let B be the Borel subgroup of G associated to the positive Weyl chamber

t+. That is, if

g = tC +
∑

α

gα

is the root space decomposition of g with respect to TC then B = exp b where

b = tC +
∑
α+

gα

(see [A1], p. 146).

Lemma 6.9. For any β ∈ t+ let Pβ ⊂ G consist of all g ∈ G such that

(exp itβ)g(exp itβ)−1

tends to a limit in G as t → ∞. Then Pβ is a parabolic subgroup of G and is the product

BStab β of the Borel subgroup with the stabiliser of β in K.

Proof. It follows from the Peter-Weyl theorem that the compact group K may be embedded in

some unitary group U(n). Then, as G is the complexification of K, it is isomorphic to a subgroup

of the complex general linear group GL(n) with Lie algebra g = k + ik ⊆ gl(n). We may assume

that the maximal torus T is embedded in the diagonal matrices via t 7→ diag(α1(t), . . . , αn(t))

where α1, . . . , αn are characters of T . If we identify the αi with elements of t? by looking at their

derivatives at the identity, then β becomes the diagonal matrix with entries 2πi(αj.β). Without

loss of generality, suppose that

α1.β ≥ . . . ≥ αn.β;

then Pβ is the subgroup of G which consists of all upper triangular block matrices where the

blocks are determined by the different values of αi.β.

Given any root α, the a matrix x ∈ g lies in the root space gα iff

[h, x] = (α.h)x ∀h ∈ tC
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Thus, if the (i, j) component of x is nonzero, then α = αj − αi. If moreover α is a positive root

then α.β ≥ 0 since β ∈ t+ so αj.β ≥ αi.β. This implies that every element of the Lie algebra

b has an upper triangular block decomposition. Hence the same is true of B = exp b. Thus Pβ

contains B and so is a parabolic subgroup of G.

Since G = BK (by [A1], p. 147), we deduce that Pβ = B(K ∩ Pβ). But as K ⊆ U(n),

an element of K lies in Pβ iff it is of block diagonal form, i.e. iff it ies in Stab β. Therefore,

Pβ = BStab β and the proof is complete. �

Lemma 6.10. The subsets Yβ and Y min
β of X are invariant under Pβ.

Proof. Suppose p ∈ Pβ so that (exp itβ)p(exp itβ)−1 tends to some s ∈ G as t → −∞. By 6.3

and 6.7 an element y of X lies in Yβ iff (exp itβ)y converges to an element x of Zβ as t→ −∞.

But (exp itβ)y → x as t → −∞ iff (exp itβ)py → sx. Clearly, s lies in the stabiliser of β in G

and hence preserves both Zβ and Zmin
β . The result follows.

Corollary 6.11. If x ∈ GYβ then ||µ(x)||2 ≥ ||β||2. Equality occurs iff µ(x) lies in the adjoint

orbit of β in k.

Proof. SinceG = BK and B ⊆ Pβ, it follows from 6.10 thatGYβ = KYβ. As ||µ(kx)||2 = ||µ(x)||2

for all k ∈ K, we can therefore assume that x ∈ Yβ. But then the path of steepest descent for

the function µβ from x converges to a point y ∈ Zβ and µβ(y) = ||β||2 by definition of Zβ. So

µ(x).β = µβ(x) ≥ µβ(y) = ||β||2

from which the result follows.

Corollary 6.12. If x ∈ GY min
β then β is the unique closest point to 0 of µ(Gx) ∩ t+.

Proof. Since the adjoint orbit of β in k intersects t+ only at β, by 6.11 it suffices to show that β

lies in µ(Gx). Without loss of generality, x ∈ Y min
β o that (exp itβ)x converges to some y ∈ Zmin

β

as t→ −∞. Then Gy ⊆ Gx, so it is enough to show that β ∈ µ(Gy).

By definition of Zmin
β the path of steepest descent from y of the function ||µ− β||2 restricted

to Zβ has a limit point in Zβ ∩ µ−1(β). By 4.9, µ− β is a moment map for the action of Stab β

on Zβ, so 6.7 implies that this path is contained in the orbit of y under the complexification of

Stab β. Hence β ∈ µ(Gy). This completes the proof. �

What we are aiming to do is to show that GY min
β = Sβ for each β. Then 6.12 will show that

6.2 is as claimed an alternative definition of the stratification {Sβ}.
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Remark 6.13. The definition 6.2 is neater but less useful, and moreover cannot be given

directly without some guarantee that µ(Gx)∩ t+ contains a unique point which is closest to 0. In

fact it has been proved recently by Mumford that if X is a complex projective variety acted on

linearly by G then µ(Gx)∩t+ is convex for all x ∈ X which implies that it contains a unique point

closest to 0. Indeed the same is true when Gx is replaced by any closed G-invariant subvariety

of X. This generalizes a similar result of Guillemin and Sternberg which requires the subvariety

to be nonsingular and hence does not apply to Gx in general. Mumford’s proof is algebraic but

it can be adapted to the more general Kähler case by using lemma 8.8 and remark 8.9 below.

The next result we need is that GY min
β is diffeomorphic to G ×Pβ

Y min
β . This will imply in

particular that GY min
β is smooth.

We shall first make the following

Assumption 6.14. The minimum stratum Xmin for the function ||µ||2 on X is contained in the

minimum stratum denoted by Xmin
T for the function ||µT ||2. Here as before µT is the composition

X
µ−→ k? → t? and is a moment map for the action of the maximal torus T on X.

The proofs of the following lemma and theorem will depend on this assumption holding for all

actions of closed subgroups of K. But clearly the assumption is valid for all tori so that theorem

6.18 will hold for T at least; and from this we will be able to deduce that the assumption is

always valid.

Lemma 6.15. If x ∈ Y min
β then

{g ∈ G : gx ∈ Y min
β } = Pβ; {a ∈ g : ax ∈ TxY

min
β } = pβ

Proof. Lemma 6.10 shows that

Pβ ⊆ {g ∈ G : gx ∈ Y min
β }

For the reverse inclusion suppose that g ∈ G is such that gx ∈ Y min
β . Let NK(T ) be the normaliser

of T in K; then G = BNK(T )B by the Bruhat decomposition (see e.g. [A1], p. 135), so that

g = b1kb2, k ∈ NK(T ), b1, b2 ∈ B

Since B is contained in Pβ and both x and gx lie in Y min
β , so do b2x and kb2x = b−1

1 (gx). By

assumption 6.14 applied to the moment map µ − β for the action of Stab β on Zβ we have

Zmin
β ⊆ Zmin

β,T . Therefore by applying 6.12 to the action of the complex torus TC on X it follows

that β is the closest point to 0 in t of both µT (TCb2x) and µT (TCkb2x). Since k normalises T

and TC we have that

µT (TCkb2x) = µT (kTCb2x) = AdµT (TCb2x)
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As the inner product on k is invariant under the adjoint action, this implies that Ad k(β) = β,

i.e. k ∈ Stab β. Since Pβ = BStab β by 6.9, the element g = b1kb2 lies in Pβ.

It remains to show that {a ∈ g : ax ∈ TxY
min
β } ⊆ Pβ since we know that the reverse inclusion

holds. By 6.9, pβ = b + stab β so it suffices to show that (a) {a ∈ kLax ∈ TxY
min
β } ⊆ stab β.

This has already been proved (see Lemma 4.10) in the particular case when x ∈ Zβ ∩ µ−1(β).

Moreover (a) is a linear independence condition on x, and hence the subset of Y min
β where it

holds is an open neighbourhood of Zβ ∩ µ−1(β). It is also clearly invariant under Pβ.

But by the proof of 6.12, given any x ∈ Y min
β there is some y ∈ Zβ ∩ µ−1(β) which lies in the

closure of the orbit of x under the complexification StabC(β) of Stab β. Since StabC β ⊆ Pβ it

follows that the only Pβ-invariant neighbourhood of Zβ ∩ µ−1(β) is Y min
β itself. Thus (a) must

hold for every x ∈ Y min
β . This completes the proof. �

It follows from this lemma, by adapting the argument of Corollary 4.11, that

6.16. GY min
β is smooth and diffeomorphic to G×Pβ

Y min
β .

Remark 6.17. In fact Yβ is a locally-closed complex submanifold of X from which it follows

immediately that GY min
β is also complex and is isomorphic as a complex manifold to G×Pβ

Y min
β .

To see that Yβ is complex recall that by definition Yβ consists of those points y ∈ X whose

trajectories under −gradµβ converge to points of Zβ. Since gradµβ(x) = iβx for all x the vector

field −gradµβ on X is holomorphic. Moreover, by 4.12 (and its proof) if x ∈ Zβ then the

Hessian Hx(µβ) acts as a complex linear transformation of the tangent space TxX and depends

holomorphically on x (again because the action of the group is complex analytic). Since µβ is

nondegenerate the local theory of ordinary differential equations tells us that Yβ is a complex

submanifold of X in some neighbourhood of Zβ. But for every y ∈ Yβ there is some t ∈ R such

that the point (exp(itβ))y of the path of steepest descent for µβ from y lies in the neighbourhood

of Zβ. Since exp(itβ) acts as a complex analytic isomorphism of X which preserves Yβ it follows

that Yβ is a complex submanifold of X as required.

We can now prove the result we want, on the assumption that 6.14 and hence also 6.16 hold.

Theorem 6.18. Suppose that X is a compact Kähler manifold acted on by a complex Lie group

G and that G is the complexification of a maximal compact subgroup K which preserves the

Kähler structure. Suppose that µ : X → k? is a moment map for the action of K on X and let

{Sβ : β ∈ B} be the Morse stratification for the function f = ||µ||2 on X. Then for each β we

have Sβ = GY min
β and x ∈ Sβ iff β is the unique closest point to 0 of µ(Gx)∩t+. The subsets {Sβ}

form a smooth stratification of X which is G-equivariantly perfect. Moreover Sβ
∼= G×Pβ

Y min
β

so that
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H?
G(Sβ; Q) ∼= HPβ

(Y min
β ; Q)

for each β ∈ B.

Proof. First we shall use the results of the appendix to show that Sβ = GY min
β .

Since Y min
β is invariant under the action of the parabolic subgroup Pβ we have that GY min

β =

KY min
β . So Proposition 4.15 implies that some open subset of GY min

β is a minimising manifold

for f = ||µ||2 along Cβ. Moreover, by 6.7, the trajectory under −grad f of any x ∈ GY min
β is

contained in the orbit Gx and hence in GY min
β . In particular, the gradient flow of f is tangential

to GY min
β , so by Theorem 10.4 of the appendix, GY min

β coincides with the stratum Sβ in some

neighbourhood U of the critical subset Cβ.

Suppose x ∈ Sβ; then the path of steepest descent for f from x has a limit point in Cβ and

therefore intersects U ∩ Sβ = U ∩ GY min
β . But by 6.7 this path is contained in the orbit Gx

so x must lie in GY min
β . Thus Sβ ⊆ GY min

β for each β ∈ B. But 6.12 implies that the subsets

{GY min
β : β ∈ B} are disjoint. Since

X =
⋃
β∈B

Sβ

it follows that Sβ = GY min
β for each β ∈ B.

We have already seen at 6.16 that

GY min
β

∼= G×Pβ
Y min

β

for each β and hence

H?
G(GY min

β ; Q) ∼= H?
Pβ

(Y min
β ; Q)

by [A & B], §13. Finally, theorem 5.4 shows that the stratification {Sβ : β ∈ B} is equivariantly

perfect for K, and this implies immediately that it is equivariantly perfect for G since K and G

are homotopically equivalent. (Alternatively, the proof of 5.4 can be adapted easily to work for

the complex group).

It remains to check that the assumption 6.14 is valid.

Notation. If it is necessary to make clear what group is involved, the stratum Sβ will be written

Sβ,K .

Lemma 6.20. Assumption 6.14 is always valid. That is, the minimum stratum Xmin = S0,K is

contained in the maximum stratum Xmin
T = S0,T associated to the action of the maximal torus
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T of K.

Proof. Since 6.14 holds trivially for tori, Proposition 6.18 is valid for the maximal torus T of K.

Thus, if x does not lie in the minimum stratum Xmin
T = S0,T for the torus then there exists some

nonzero β ∈ B such that x ∈ Sβ,T ⊆ TCYβ. (Note that Yβ is the same whether the group is K or

T ; also TCYβ = Yβ). Thus by Corollary 6.11 if y ∈ Gx then ||µ(y)||2 ≥ ||β||2 > 0. Since the path

of steepest descent for the function ||µ||2 from x is contained in Gx, we deduce that x cannot lie

in Xmin.

The proof of Theorem 6.18 for any group (torus or not) is now complete. �

Remark 6.20. By theorem 4.16 the inclusion of the minimum set µ−1(0) for f is the minimum

stratum Xmin is an equivalence of equivariant cohomology. So 5.10 and 5.16 may be interpreted

as formulae for the equivariant Poincaré series PG
t (Xmin). These formulae can also be derived

directly from theorem 6.18.

If G acts freely on the open subset Xmin of X then the quotient Xmin/G is a complex

manifold and it would be natural to hope that the rational cohomology of this is isomorphic

to H?
G(Xmin; Q). This could be proved by showing that the quotient map Xmin → Xmin/G is

a locally trivial fibration. However this is unnecessary because in the next section we shall see

that Xmin/G is homeomorphic to the symplectic quotient µ−1(0)/K. This reduces the problem

to the action of a compact group.

Let us conclude this section by considering how the stratification is affected if we alter the

choice of a moment map or of the invariant inner product on k. From the algebraic point of

view changing the moment map on a complex projective variety X corresponds to changing the

projective embedding of X.

First consider the inner product. Clearly if the group is a torus then any inner product is

invariant and different choices give different stratifications. For example, take (C?)2 acting on

P1 via ϕ : (C?)2 → GL(2) given by

ϕ(h) =

(
α0(h) 0

0 α1(h)

)
where αj : (C?)2 → C is the projection onto the (j + 1)st factor. Then the stratum to which

an element (x0 : x1) ∈ P1 belongs is determined by the closest point to 0 in the convex hull of

{αj : xj 6= 0}. But α0 and α1 are linearly independent so there exist inner products on the Lie

algebra of the torus for which the closest point to 0 of their convex hull is respectively α0, α1 and

neither of these. These give different stratifications of P1.

On the other hand if G is semisimple then the stratification is independent of the choice of

inner product. For then G is, up to finite central extentions, the product G1× . . .×Gk of simple
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groups Gi with maximal compact subgroup Ki and maximal compact subtori Ti, say. Then

k = k1 ⊕ . . . ⊕ kk and kα must be mutually orthogonal under any invariant inner product on k.

For each i the projection µi of µ onto ki is a moment map for the action of Ki on X. It is not

hard to see that for any x ∈ X the closest point to 0 of µ(Gx) ∩ t+ is

β = β1 + . . .+ βk

where βi is the closest point to 0 of µi(Gix) ∩ (ti)+. But since ki is simple the invariant inner

product on ki is unique up to scalar multiplication and therefore each βi is independent of the

choice of inner product.

Now consider the effect of changing the choice of moment map µ. The only possible way to

to do this is to add to µ a constant ξ ∈ k? which is invariant under the adjoint action. Thus as

has already been noted when G is semisimple the moment map is unique. On the other hand,

if G is a torus Tc an arbitrary constant may be added to the moment map. We know that the

stratum containing any point x is labelled by the closest point to 0 of µ(Tcx) which is the convex

hull of some subset of {α0, . . . , αn}. Thus by adding different constants to µ one can obtain a

finite number of distinct stratifications of X.

Since any compact group is, up to finite central extensions, the product of a torus by a

semisimple group, it is now easy to deduce what happens in general.
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7 Quotients of Kähler manifolds

Suppose as in §6 that X is a compact Kähler manifold acted on by a complex Lie group G, and

that G is the complexification of a maximal compact subgroup K. Assume that K preseves the

Kähler form ω on X (if necessary replace ω by its average over K) and that a moment map

µ : X → k? exists for the symplectic action of K on X.

Any torus in G will always have fixed points in X so we cannot hope ti give the topological

quotient X/G the structure of a Kähler manifold. However in good cases there is a compat

Kähler manifold which it is natural to regard as the Kähler quotient of the action of G on X.

When X is a complex projective variety on which G acts linearly, this quotient coincides with

the projective quotient defined by Mumford using geometric invariant theory. The good cases

occur when the stabiliser in K of every x ∈ µ−1(0) is finite. Recall that this is the condition

needed for there to be a symplectic quotient associated to the action.

As before let Xmin be the subset of X consisting of points whose paths of steepest descent

under the function f = ||µ||2 have limit points in µ−1(0). By 6.18 Xmin is a G-invariant open

subset of X. We shall see that when K acts with finite stabilisers on µ−1(0) then the symplec-

tic quotient µ−1(0)/K can be identified with Xmin/G and thus has a complex structure. The

symplectic form induced on µ−1(0)/K is then holomorphic and makes µ−1(0)/K into a compact

Kähler manifold except for the singularities caused by finite isotropy groups. Manifolds with

such singularities have been well studied; they are sometimes called V -manifolds). This is the

natural Kähler quotient of X by G.

The rational cohomology of this quotient can be calculated by using 5.10 or 5.17.

Recall from 5.5 that the condition that K acts with finite stabilisers on µ−1(0) implies that

µ−1(0) is smooth. The inclusion of µ−1(0) in Xmin induces a natural continuous map

µ−1(0)/K → Xmin/G

In order to show that this map is a homeomorphism we need some lemmas.

Lemma 7.1. G = K exp ik.

Proof. The left coset space G/K is a complete Riemannian manifold (see [He]) so that the

associated exponential map Exp : TK(G/K) → G/K is onto. Moreover TK(G/K) = g/k and by

[He], p. 169 (4), we have

Exp(a+ k) = (exp a)K, ∀a ∈ g

Since g = k + ik the result follows. �

50



51

Lemma 7.2. If x ∈ µ−1(0) then Gx ∩ µ−1(0) = Kx.

Proof. Suppose g ∈ G is such that gx ∈ µ−1(0). We wish to show that there exists a k ∈ K

such that gx = kx. Since µ−1(0) is K-invariant, by 7.1 it suffices to consider the case g = exp ia

where a ∈ k.

Let h : R → R be defined by h(t) = µ((exp iat)x).a. Then h vanishes at 0 and 1 because x

and (exp ia)x both lie in µ−1(0). Therefore, there is some t ∈ (0, 1) such that

0 = h′(t) = dµ(y)(iay).a = ωy(iay, ay) = 〈ay, ay〉

where y = (exp iat)x and 〈 〉 denotes the metric induces by the Kähler structure. Thus ay = 0 so

that exp iaR fixes y and hence also x. But then (exp ia)x = x ∈ Kx, and the proof is complete. �

It is necessary to strengthen this result.

Lemma 7.3. Suppose that x and y lie in µ−1(0) and x 6∈ Ky. Then there exist disjoint G-

invariant neighbourhoods of x and y in X.

Proof. Since K is compact and x 6∈ Ky there is a compact K-invariant neighbourhood V of

x ∈ µ−1(0) not containing y. Since G = (exp ik)K by 7.1 it suffices to show that (exp ik)V is a

neighbourhood of x ∈ X and that y 6∈ (exp ik)V .

To see that (exp ik)V is a neighbourhood of x in X consider the map σ : k × µ−1(0) → X

which sends (a, w) to (exp ia)w. This is a smooth map of smooth manifolds so it is enough to

show that its derivative at (1, x) is surjective. If not, there is some nonzero ξ ∈ TxX such that

〈ξ, ζ〉 = 0 for all ζ in the image of dσ(1, x). In particular, (ξ, iax〉 = 0 for all a ∈ k. But then

0 = ωx(ξ, ax) = dµ(x)(ξ).a

for all a ∈ k. Thus

ξ ∈ ker dµ(x) = Tx(µ
−1(0))

and hence ξ is in the image of dσ(1, x) which is a contradiction.

Therefore, if

W = exp{ia : a ∈ k, ||a|| ≤ 1}V

then W is a compact neighbourhood of x in X. Let

ε = inf{〈aw, aw〉 : w ∈ W, a ∈ k, ||a|| = 1}
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If w ∈ W then w lies in the G-orbit of some z ∈ µ−1(0) and it follows easily from 7.2 that the

stabiliser of w in G is finite. Therefore aw 6= 0 whenever 0 6= a ∈ k and so ε > 0.

Now suppose z ∈ V and a ∈ k is such that ||a|| = 1. Consider the function h : R → R
given by h(t) = µ((exp ita)z).a. As in (the proof of) 7.2, it t ∈ R then h′(t) = 〈aw, aw〉 where

w = (exp(ita)z. Therefore h′(t) ≥ 0 for all t and h′(t) ≥ ε when t ∈ [0, 1] by the choice of ε.

Since h(0) = 0 the mean value theorem implies that h(t) ≥ 0 when t ≥ 1. As ||a|| = 1 it follows

that

||µ(exp ita)z|| ≥ ε

when t ≥ 1.

We deduce that if z ∈ V then ||µ(exp iaz)|| ≥ ε whenever a ∈ k and ||a|| ≥ 1. Hence as V is

compact (exp ik)V is closed in a neighbourhood of µ−1(0). Since y ∈ µ−1(0) and y 6∈ (exp ik)V

by 7.2 it follows that y ∈ (exp ik)V . �

Now we can prove the result we’re aiming for.

Theorem 7.4. Let X be a Kähler manifold acted on by a group G which is the complexification

of a maximal compact subgroup K that preserves the Kähler structure on X. Suppose that a

moment map µ : X → k? exists for this action of K and suppose that the stabiliser of every

x ∈ µ−1(0) is finite. Then Xmin = Gµ−1(0) and the natural map µ−1(0)/K → Xmin/G is a

homeomorphism.

Proof. Gµ−1(0) ⊂ Xmin since Xmin is G-invariant by 6.18 and contains µ−1(0). Conversely if

x ∈ Xmin then there is some y ∈ µ−1(0) lying in the closure of the path of steepest descent for

||µ||2 from x. By 6.7 this path is contained in the orbit Gx so that y ∈ Gx. Then Gy ⊂ Gx

so that either y ∈ Gx or dimGy < dimGx. But by assumption the stabiliser of y in K is

finite and this implies that dimGy = dimG ≥ dimGx (7.2). We conclude that y ∈ Gx so that

x ∈ Gµ−1(0).

Thus Xmin = Gµ−1(0) so the natural map µ−1(0)/K → Xmin/G is surjective. Lemma

7.2 implies that it is injective while Lemma 7.3 shows that Xmin/G is Hausdorff. Thus the

map is a continuous bijection from a compact space to a Hausdorff space and therefore it is a

homeomorphism

It follows (from the proof of 7.2) that if K acts freely on µ−1(0) then G acts freely on the

open Xmin of X, so that the complex structure on Xmin induces a complex structure on the

topological quotient Xmin/G. The symplectic form on µ−1(0)/K induced by ω is holomorphic

with respect to this complex structure because ω is holomorphic on X and indeed is a Kähler

form since ω is Kähler. Hence the quotient Xmin/G = µ−1(0)/K is a compact Kähler manifold.

More generally when the stabiliser of every point in µ−1(0) is finite the quotient Xmin/G can be

thought of as a Kähler manifold with singularities caused by the finite isotropy groups.
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Remark 7.5. The proof of lemma 7.2 is independent of the assumption that the stabiliser

of every point in µ−1(0) is finite and it is also possible to prove lemma 7.3 without using this

assumption. One uses the fact that if a ∈ k then the function µa defined by µa = µ(x).a

is a nondegenerate Morse function on X. This implies that given any y ∈ µ−1
a (0) and any

neighbourhood U of y in X there is a smaller neighbourhood V of y and ε > 0 such that the

intersection with µ−1
a [−ε, ε] of any trajectory of gradµa which passes through a point of V is

contained in U . The proof of this when y is not critical for µa is easy: see a proof of 7.3.

Using this argument of 7.3 gives the result when G = C? and the torus case also follows without

difficulty. The general case can be then be deduced from the facts that G = KTcK and that K

is compact.

From this it follows without the assumption of finite stabilisers that any x ∈ X lies in

Gµ−1(0) iff x lies in Xmin and its orbit Gx is closed in Xmin; and also that the natural map

µ−1(0)/K → Gµ−1(0)/G is a homeomorphism. In particular when X is a projective variety

on which G acts linearly one finds that µ−1(0)/K is naturally homeomorphic to the geometric

invariant theory quotient of X by G.
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8 The relationship with geometric invariant theory

From now on we’ll assume that our Kähler manifold X is in fact a nonsingular complex projective

variety and that G is a connected reductive complex group acting on X linearly (as in example

2.1). Then geometric invariant theory associates to the action of G on X a projective ‘quotient’

variety M . In fact M is the projective variety ProjA(X)G where A(X)G is the invariant subring

of the coordinate ring of X. In general M has bad singularities even though X is nonsingular.

However in good cases M coincides with the quotient in the usual sense of an open subset Xss

of X by G and the stabiliser in G of every x ∈ Xss is finite. This implies that M behaves like a

manifold for rational cohomology.

It turns out that the geometric invariant theory quotient M coincides with the symplectic

quotient µ−1(0)/K and that the good cases occur precisely when the stabiliser in K of every

x ∈ µ−1(0) is finite. So the work of the preceding sections can be used to obtain formulae

for the Betti numbers of M in these cases. The formulae involve the cohomology of X and var-

ious subvarieties together with that of the classifying space of G and certain reductive subgroups.

Remark 8.1. The example of PGL(n+1) shows that the assumption that G acts on X linearly

via a homomorphism ϕ : G→ GL(n+1) involves some loss of generality. However the finite cover

of SL(n+1) of PGL(n+1) has the same Lie algebra, moment map and orbits on X as PGL(n+1).

Moreover if G is a connected reductive linear algebraic group acting algebraically on a smooth

projective variety X ⊆ Pn then the action is given by a homomorphism ϕ : G → PGL(n + 1)

provided we assume that X is not contained in any hyperplane. The argument for this runs as

follows. Firt we note that the induced action of G on the Picard variety Pic(X) of X is trivial.

For it is enough to show that every Borel subgroup B of G acts trivially. But by [B] theorem

10.4, B has a fixed point on each component of Pic(X). Applying this with X replaced by

Pic(X) we see that there is an ample bundle on Pic(X) fixed by B. By the theorem of [G&H]

p. 326 it follows that the image of B in the group of automorphisms of Pic(X) is discrete. Thus

as B is connected it must act trivially. (Alternatively, see [M] corollary 1.6). Now let L be the

hyperplane bundle on X ⊂ Pn which has automorphism group GL(n + 1). Then g?L ∼= L for

all g ∈ G so that the action of G on X is covered by an automorphism of L and hence is not

contained in a hyperplane. So we get a well defined homomorphism ϕ : G→ PGL(n+ 1) which

induces the action of G on X.

We may now replace G by its image in PGL(n + 1) and then by the inverse image of this

in SL(n + 1) to obtain a linear action on X with essentially the same properties as the original

action.

The inclusion of A(X)G in A(X) induces a surjective G-invariant morphism ψ : Xss → M

from an open subset Xss of X to the quotient M . We shall see that Xss always coincides with

the minimum Morse stratum Xmin associated to the function f = ||µ||2 on X. Therefore §5 and
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§6 give us formulae for the equivariant Betti numbers of Xss. It may happen that a fibrr of ψ

contains more than one orbit of G so that M 6= Xss/G. However there is an open subset Xs of

Xss such that every fiber which meets Xs is a single G-orbit (see [M] theorem 1.10). The image

of Xs in M is an open subset M ′ of M and M ′ = Xs/G.

Definition 8.2. (see [M], definitions 1.7 and 1.8, noting that Mumford calls stable points

‘properly stable’: this seems to be no longer the accepted terminology). A point x ∈ X is

called semistable if there is a homogeneous nonconstant polynomial F ∈ C[X0, . . . , Xn] which is

invariant under the natural action of G on C[X0, . . . , Xn] and is such that F (x) 6= 0. x is stable

if there is an invariant F with F (x) 6= 0 such that all orbits of G in the affine set

XF = {y ∈ X : F (y) 6= 0}

are closed in XF and in addition the stabiliser of x in G is finite.

Xss is the set of semistable points and Xs is the set of stable points of X.

Remark 8.3. Suppose that the stabiliser in G of every semistable point in X is finite. Then

if x ∈ Xss there exists some homogeneous non-constant G-invariant polynomial F such that

F (x) 6= 0. Every point in XF is semistable so every G-orbit in XF has the same dimension as

G. This implies that every orbit is closed in XF and thus that x is stable. Hence Xs = Xss.

We shall use the following facts which follow from [M], theorem 2.1 and proposition 2.2.

8.4. A point x ∈ X is semistable for the action of G on X iff it is semistable for the action of

every one-parameter subgroup λ : C? → G on X.

8.5. If λ : C? → GL(n + 1) is given by z 7→ diag(zr0 , . . . , zrn) with ri ∈ Z then a point

x = (x0 : . . . : xn) ∈ Pn is semistable for the action of C? via λ iff

min{rj : xj 6= 0} ≤ 0 ≤ max{rj : xj 6= 0}

Using this last fact we obtain

Lemma 8.6. When G = C? the set Xss of semistable points coincides with the minimum Morse

stratum Xmin associated to the function ||µ||2.

Proof. There are coordinates in Pn such that G = C? acts diagonally by z 7→ diag(zr0 , . . . , zrn),

say. We haveK = {e2πit : t ∈ R} so that φ?(k) is the subspace u(n+1) spanned by 2πidiag(r0, . . . , rn).

Let a ∈ k? be a basis element of norm 1. By 2.7, if x = (x0 : . . . : xn) ∈ X then

µ(x)

( ∑
0≤j≤n

rj|xj|2
)( ∑

0≤j≤n

|xj|2
)−1

a
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Now, by Theorem 6.18, x ∈ Xmin iff 0 ∈ µ(Gx). The map from G to X is given by z 7→
(zr0x0 : . . . : zrnxn) extends uniquely to a map θ : P1 → X with θ(0) = (y0 : . . . : yn) where

yj = xj if rj = min{ri : xi 6= 0} and yj = 0 otherwise, and θ(∞)(y′0 : . . . : y′n) where y′j = xj

if rj = max{ri : xi 6= 0} and y′j = 0 otherwise. Then Gx is the image of P1 under θ and

µ(θ(0)) = min{rj : xj 6= 0} while µ(θ(∞)) = max{rj : xj 6= 0}. On the other hand 0 ∈ µ(Gx) iff

either rj = 0 whenever xj 6= 0 or

min{rj : xj 6= 0} < 0 < max{rj : xj 6= 0}

This is because if

min{rj : xj 6= 0} < 0 < max{rj : xj 6= 0}

then ∑
j

rj|xj|2|z|2rj

tends to ∞ as |z| → ∞ and tends to −∞ as |z| → 0. It follows that 0 ∈ µ(Gx) iff

min{rj : xj 6= 0} ≤ 0 ≤ max{rj : xj 6= 0}

and thus by 8.5, x ∈ Xmin iff x ∈ Xss.

�

In order to deduce from the lemma that Xss = Xmin in the general case, we investigate next

the relationship between the minimum strata associated to the action of the whole maximal

compact subgroup K and of its closed real one-parameter subgroup λ : S1 → K.

Definition 8.7. A complex one-parameter subgroup λ : C? → G of G will be callsed compatible

with K if it is the complexification of a closed real 1-PS λ : S1 → K of K. When λ is compatible

with K let µλ be the composition of µ with λ? : k? → R. Then µλ is a moment map for the

action of S1 on X via λ.

Lemma 8.8. If x ∈ X then 0 ∈ µ(Gx) iff 0 ∈ µλ(λ(C?)x)) for every 1-PS λ : C? → G compatible

with K. Equivalently the minimum stratum Xmin is the intersection of the minimum strata Xmin
λ

associated to the action on X of all the 1-PSs λ compatible with K.

Remark 8.9. The proof of this lemma is valid when X is any Kähler manifold and G is the

complexification of a compact subgroup K which preserves the Kähler structure on X. We are

going to see that when X is a complex projective variety then Xmin = Xss. Therefore this result
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can be regarded as a generalization to Kähler manifolds of the fundamental fact of geometric

invariant theory which says that a point is semistable for the action of a group iff it is semistable

for the action of every 1-PS.

Proof. First note that the proof given at 6.19 shows that Xmin ⊆ Xmin
λ for every 1-PS λ of G

compatible with K.

Now suppose x does not lie in Xmin; then there exists a nonzero β ∈ B such that x ∈ Sβ.

By 6.18, Sβ = GY min
β and this is the same as KY min

β since Y min
β is invariant under the parabolic

subgroup Pβ and G = KPβ. Therefore, kx ∈ Y min
β for some k ∈ K.

Now µ(X) is compact in k? ∼= k and the rational points are dense in t. Therefore, there exists

δ > 0 and a rational point γ ∈ t such that

{ξ : µ(X) : ξ.β ≥ ||β||2} ⊆ {ξ ∈ k : ξ.γ ≥ δ}

By replacing γ by mγ for a suitable m ∈ Z, we may assume that γ is a lattice point of t and

hence corresponds to a complex 1-PS of TC compatible with T . Since kx ∈ Y min
β , by 6.11 we

have

µ(γ(C?)kx) ⊂ {ξ ∈ µ(X) : ξ.β ≥ ||β||2} ⊆ {ξ ∈ k : ξ.γ ≥ δ}

In particular µγ(γ(C?)kx), which is the projection along γ of µ(γ(C?)kx), does not contain 0.

Let λ = Ad(k)γ; then λ is a 1-PS of G compatible with K such that 0 6∈ µλ(λ(C?)x) and hence

x 6∈ Xmin
λ . Therefore,

⋂
λ

Xmin
λ ⊆ Xmin

and the proof is complete. �

Any 1-PS λ : C? → G has a conjugate Ad(g)λ = gλg−1 : C? → G which is compatible with K.

Therefore from 8.4, 8.6 and 8.8 and the fact that Xmin is G-invariant we can deduce the following

Theorem 8.10. Let X ⊆ Pn be a nonsingular complex projective variety and let G be a complex

reductive algebraic group acting on X via a homomorphism ϕ : G→ GL(n+1). Suppose that G

has a maximal compact subgroup K such that ϕ(K) ⊆ U(n+1). Then the set Xss of semistable

points of X coincides with the minimum Morse stratum Xmin of the function ||µ||2 on X where

µ : X → k? is the moment map and || || is the norm associated to any K-invariant inner product

on k.

Suppose now that the stabiliser in G of every semistable point is finite. Then by remark

8.3 we have Xss = Xs. But we know that there is a morphism ψ : Xss → M from Xss to the
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projective quotient M such that each fiber which meets Xs is a single orbit under the action of

G. Therefore ψ induces a continuous bijection ψ̃ : Xss/G→M .

We saw in §7 that Xss/G is a compact Hausdorff space and so is the projective variety M .

Hence ψ̃ is a homeomorphism.

Thus we obtain formulae for the rational cohomology of the quotient varietyM . Before stating

these formulae in a theorem let us review the definitions of the terms involved and interpret them

in the case of a linear reductive group action on a projective variety.

First recall from 3.5 that the moment map µT for the action of the compact maximal torus

T on X is given by

µT (x) =

∑
j |xj|2αj∑

j |xj|2

where αk are the weights of the action.

Choose an inner product which is invariant under the Weyl group action on the Lie algebra

t of T and use it to identify t? with t. Then a minimal combination of weights is by definition

the closest point to 0 of the convex hull of some nonempty subset of {α0, . . . , αn}. The indexing

set B consists of all minimal weight combinations lying in the positive Weyl chamber t+.

Note that if we assume the inner product to be rational (i.e. to take rational values on lattice

points) then each β ∈ B is a rational point of t+. Thus each subgroup exp Rβ of T is closed and

hence the subtorus Tβ of T generated by β is 1-dimensional.

We saw in 3.11 that for each β ∈ B the submanifold Zβ of X is the intersection of X with

the linear subspace

{x ∈ Pn : xj = 0 unless αj.β = ||β||2}

of Pn. Recall that Zmin
β was defined as the set of points in Zβ whose paths of steepest descent

for the function |µ − β|2 on Zβ have limit points Zβ ∩ µ−1(β). Let Stab(β) be the stabiliser of

β under the adjoint action of G and let StabKβ be its intersection with K. By 4.9 µ − β is a

moment map for the action of StabKβ on Zβ.

8.11. In order to interpret the inductive formula of 5.10 we want to define a subset Zss
β of Zβ

somehow in terms of semistability so that Zss
β will coincide with Zmin

β . There are at least two

alternative ways to do this. One way is to let Gβ be the complexication of the connected closed

subgroup of StabK(β) whose Lie algebra is the orthogonal complement to β and to let Zss
β be

the set of points of Zβ which are semistable which are semistable for the linear action of Gβ on

Zβ defined by the homomorphism ϕ. Then Zss
β = Zmin

β by theorem 8.10 because the projection

onto the Lie algebra of K ∩Gβ of µ restricted to Zβ is µ− β. Another way is to note that since

β is a rational point of the center of stabβ there is a character χ : Stab β → C? whose derivative

is a positive integer multiple rβ of β. One can define Zss
β to be the set of semistable points of

Zβ under the action of Stab β where the action is linearised with respect to the rth tensor of the
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hyperplane bundle by the product of ϕ⊗r with the inverse of the character χ. The corresponding

moment map Zβ is then rµ− rβ so that again Zss
β = Zmin

β . However the details are unimportant.

Zβ,m can be reinterpreted as the union of those components of Zβ which are contained in

components of Yβ of real codimension m. Finally, β-sequences β = (β1, . . . , βq) are the corre-

sponding linear sections Zβ and Zβ,m of X and subgroups Stab β can be defined as in §5.

Theorem 8.12. Let X ⊂ Pn be a complex projective variety acted on linearly by a connected

complex reductive algebraic group G. The equivariant Poincaré series for Xss is given by the

inductive formula

PG
t (Xss) = Pt(X)Pt(BG)−

∑
β,m

td(β,m)P Stab β
t (Zss

β,m)

where the sum is over nonzero β ∈ B and integers 0 ≤ m ≤ dimX. Stab β is a reductive

subgroup of G acting on Zβ,m which is a smooth subvariety of X for each β,m and

d(β,m) = m− dimG+ dim Stab β

Suppose that the stabiliser of every semistable point in X is fintie so that the projective quotient

variety M associated to the action in geometric invariant theory is topologically the quotient

Xss/G. THen the rational cohomology of M is isomorphic to the G-equivariant rational coho-

mology of Xss. It is given by the explicit formula

Pt(M) = Pt(X)Pt(BG) +
∑
β,m

(−1)qttd(β,m)Pt(Zβ,m)Pt(BStabβ)

Each Zβ,m is a smooth subvariety of X acted on by a reductive subgroup Stabβ of G and

d(β,m) = m− dimG+ dim Stabβ

Remark 8.13. Note that the equivariant cohomology must be used in the inductive formula

because the condition of finite isotropy groups may not be satisfied for all the subgroups Stab β

acting on the subvarieties Zβ,m.

Proof. This follows from 5.10, 5.16, 6.20, 8.10 and the remarks of the last few paragraphs.

Remark 8.14. When the stabiliser of every semistable point is finite then the geometric invariant

theory quotient Xss/G is homeomorphic to the symplectic quotient µ−1(0)/K by theorem 7.5.

In fact we can show that M is homeomorphic to µ−1(0)/K without any assumption on stabilisers

as follows.

The inclusions µ−1(0) ↪→ Xmin = Xss together with the surjective G-invariant morphism

ψ : Xss → M induces a continuous map h : µ−1(0)/K → M . By the proofs of [M] theorem 1.10
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and amplification 1.3 two points x, y ∈ Xss are identified by ψ iff the closures in Xss of Gx and

Gy meet each other. But by remark 7.8 Gµ−1(0) consists of those x ∈ Xss such that Gx is closed

in Xss so the map h is injective. Moreover if x ∈ Xss = Xmin then the closure of the path of

steepest descent for the function ||µ||2 from x contains a point of µ−1(0) and by 6.7 this path is

contained in the orbit Gx. Thus h is surjective. It follows that h is a bijection from a compact

space to a Hausdorff space and hence is a homeomorphism.
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9 Some remarks on non-compact manifolds

So far we have considered only compact symplectic manifolds and projective varieties. Now

suppose that X is any symplectic manifold acted on by a compact group K such that a moment

map µ : X → k?. Then one can obtain almost the same results as for compact manifolds subject

only to the condition that

9.1. For some metric on X every path of steepest descent under the function f = ||µ||2 is

contained in some compact subset of X.

One simply checks that all the arugments used in §§3,4,5 and the appendix are still valid

with trivial modifications. The only result which fails is theorem 5.8. This says that the ratio-

nal equivariant cohomology of the total space X is the tensor product of its ordinary rational

cohomology with that of the classifying space of K; i.e.

PK
t (X) = Pt(X)Pt(BK)

Thus in the formulae obtained for the equivariant rational cohomology of µ−1(0) (see 5.10 and

5.16) one must now always use the equivariant Poincaré series PK
t (X) rather than the product

PK
t (X)Pt(BK). Otherwise the formulae are correct and in good cases give the Betti numbers of

the symplectic quotient µ−1(0)/K.

Example 9.2. Cotangent bundles. The examples which motivated the definition of sym-

plectic manifolds and moment maps were phase spaces and conserved quantities such as angular

momentum.

The cotangent bundle T ?M of any manifold M has a natural symplectic structure given by

ω =
∑

i

dpi ∧ dqi

where (q1, . . . , qn) are local coordinates on M and (p0, . . . , pn) are the induced coordinates on the

cotangent space at (q1, . . . , qn). Any action of a compact group K on M induces an action of K

on T ?M which preserves this symplectic structure. Moreover it is not hard to check that there

is a moment map µ : T ?M → k? for this action defined as follows. If m ∈M and ξ ∈ T ?
mM then

9.3

µ(ξ).a = ξ.am

for all a ∈ k where . on the left hand side denotes the natural pairing between k? and k and on

the right denotes the natural pairing between T ?
mM and TmM . So a general moment map is of

the form µ+ c where c lies in the center of k? (see §2).
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Condition 9.1 holds for each of the moment maps on T ?M provided that M is compact. To

see this one fixes a metric on M and uses it to induce a Riemannian metric on T ?M . It can then

be shown that the path of steepest descent for f = ||µ + c||2 from any point ξ ∈ T ?M consists

of cotangent vectors whose norm is bounded by some number depending only on ξ.

The function ||µ||2 = f where µ is given by 9.3 is not an interesting Morse function because

the only critical points are the points in µ−1(0). The reason for this is that by lemma 3.1 if

ξ ∈ T ?
mM is critical for f then the vector field induced by µ(ξ) on T ?M vanishes at ξ. Thus in

particular µ(ξ)m = 0 so if we put a = µ(ξ) in 9.3 we obtain ||µ(ξ)||2 = 0. However if K is not

semisimple then it is often possible to choose c in the center of k such that the norm-square of

the moment map µ+ c has non-minimal critical points.

For example, consider the action of the circle S1 on T ?S2 induced by the rotation of the

sphere S2 about some axis. Let c be an element of norm 1 in the Lie algebra of S1 and let

f = ||µ+ c||2. Then from 9.3 we have

f(ξ) = (cm.ξ + 1)2

for any m ∈ S2 and ξ ∈ T ?
mS

2. So f(ξ) = 0 iff ξ.cm = −1 which means that the minimum set for

f is homeomorphic to a line bundle over the sphere less two points and hence is homotopically

equivalent to S1. Since the circle action on this is free the equivariant cohomology of the minimum

set is trivial.

By lemma 3.1 the other critical points ξ for f are those fixed by S1. There are the two points

of S2 fixed by the rotation. The index of the Hessian at each of these is 2. Thus we obtain

P S1

t (S2) = P S1

t (T ?S2) = 1 + 2t2(1− t2)−1 = (1 + t2)(1− t2)−1 = Pt(S
2)Pt(BS

1)

as one expects from proposition 5.8 since S2 has a symplectic structure preserved by the action

of S1.

As a second example consider the linear action of the torus

T =

{(
eiθ 0
0 eiϕ

)
: θ, ϕ ∈ R

}
on the unit sphere S3 ⊂ C2. By 9.3 if m ∈ S3 and ξ ∈ T ?

mS
3 then

µ(ξ) = (am.ξ)a+ (bm.ξ)b

where a =

(
i 0
0 0

)
and b =

(
0 0
0 i

)
. Consider the function f = ||µ+ a+ b||2 on T ?S3. Any

ξ ∈ T ?S3 satisfies f(ξ) = 0 if µ(ξ) = −a − b, i.e. if am.ξ = −1 = bm.ξ. If am = 0 or bm = 0

these equations for ξ have no solution and otherwise they define an affine line in T ?
mS

3. So the

minimum set f−1(0) is acted on freely by T and its equivariant cohomology is isomorphic to
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the cohomology of the quotient of T by S3 with two circles removed. This quotient is an open

interval so its cohomology is trivial.

From lemma 3.1 we see that if ξ ∈ T ?
mS

3 is a non-minimal critical point for f then either ξ is

fixed by a and µ(ξ) + a+ b is a scalar multiple of a or ξ is fixed by b and µ(ξ) + a+ b is a scalar

multiple of b. In the first case, ξ.b = −1 and ξ ∈ T ?S1 where S1 is the circle fixed by a and the

second case is similar. So the non-minimal critical points form two circles in T ?S3 each of which

is fixed by one copy of S1 in the torus T and is acted on freely by the other. The index of the

function f along each of these circles is 2. Thus we obtain

P T
t (S3) = 1 + 2t2(1− t2)−1

Note that this is not equal to Pt(S
3)Pt(BT ); this does not contradict proposition 5.8 since S3 is

not a symplectic manifold!

Example 9.4. Quasi-projective varieties. Other obvious examples of non-compact symplec-

tic manifolds are nonsingular quasi-projective complex varieties.

Suppose that G is a complex reductive group with maximal compact subgroup K acting lin-

early on a nonsingular locally closed subvariety X of some complex projective space Pn. Suppose

also that the stabiliser of every semistable point is finite. If condition 9.1 is satisfied then we ob-

tain formulae for the Betti numbers of the symplectic quotient µ−1(0)/K which is homeomorphic

to the quotient variety produced by invariant theory. There is also a more algebraic condition

for these formulae to exist which is an alternative to 9.1. It is described as follows.

When X is a closed subvariety of Pn acted on linearly by G then the stratification of X

induced by the action is just the intersection with X of the stratification {Sβ : β ∈ B} induced

on Pn. If X is quasi-projective we can still define a stratification of X with strata {X ∩ Sβ}.
Moreover by 6.18 and 8.10 we have Sβ

∼= Gβ ×Pβ
Y ss

β for each β where Y ss
β is a nonsingular

locally-closed subvariety of Pn and Pβ is a parabolic subgroup of G. Since X is invariant under

G this implies

X ∩ Sβ
∼= G×Pβ

(X ∩ Y ss
β )

There is also a retraction pβ : Y ss
β → Zss

β onto the semistable points of a linear subvariety Zβ of

Pn under the action of a subgroup of G. Provided that

9.5. pβ(x) ∈ X whenever x ∈ X ∩ Y ss
β for each β ∈ B, one can check that each pβ induces a

retraction of X ∩ Y ss
β onto X ∩ Zss

β and that all the results of §8 hold for X.

One can use quasi-projective varieties satisfying this condition to rederive Atiyah and Bott’s

formulae for the cohomology of moduli spaces of vector bundles over Riemann surfaces. For this

one considers spaces of holomorphic maps from Riemann surfaces to Grassmannians. These can

be embedded as quasi-projective subvarieties of products of Grassmanians.
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The results of these notes also apply to reductive group actions on singular varieties satisfying

appropriate conditions (see the work of Carrell and Goresky on C?-actions [C & G]).
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10 Appendix. Morse theory extended to minimally de-

generate functions

Given any nondegenerate Morse function with isolated critical points on a compact manifold,

one has the well-known Morse inequalities which relate the Betti numbers of the manifold to the

numbers of critical points of each index. Bott has shown that this classical Morse theory extends

to a more general class of Morse functions [Bo]. The functions which are nondegenerate in the

sense of Bott are those whose critical sets are disjoint unions of submanifolds along each of which

are the Hessian is nondegenerate in normal directions. The associated Morse inequalities relate

the Betti numbers of the manifold to the Betti numbers and indices of the critical submanifolds.

The purpose of this sectionn is to show that Morse theory can be extended to cover an even

larger class of functions.

Definition 10.1. A smooth function f : X → R on a compact manifold X is called minimally

degenerate if the following conditions hold.

1. The set of critical points for f on X is a finite union of disjoint closed subsets {C ∈ C}
on each of which f takes a constant value f(C). The subsets are called critical subsets of

f . If the critical set of f is reasonably well behaved we can take the subsets {C} to be its

connected components.

2. For every C ∈ C there is a locally closed submanifold ΣC containing C and with orientable

normal bundle in X such that

(a) C is the subset of ΣC on which f takes its minimum value.

(b) at every point x ∈ C the tangent space TxΣC is maximal among all subspaces TxX

on which the Hessian Hx(f) is positive-definite.

A submanifold satisfying these properties is called a minimising manifold for f along C.

Thus minimal degeneracy means that critical sets can be as degenerate as a minimum but

no worse.

The purpose behind this definition is to find a condition on f more general than nondegeneracy

which ensures that for some choice of metric f induces a Morse stratification whose strata are

all smooth. This appendix shows that minimal degeneracy is such a condition. Conversely if

f is any function which induces a smooth Morse stratification then the strata themselves are

minimising manifolds provided that the Hessian at every critical point is definite in directions

normal to the stratum which contains it.

We do not demand that the minimising manifolds be connected. However, this extra condition

is always satisfied if we replace each critical subset C by it intersections with the connected
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components of ΣC . Hence we can assume that the index of the Hessian of f takes a constant value

λ(C) along any C ∈ C, since by 10.1(b) it coincides with the codimension of the submanifold

ΣC . We shall call λ(C) the index of f along C.

Any function which is nondegenerate in the sense of Bott is minimally degenerate. For by

definition the set of critical points of f is the disjoint union of connected submanifolds of X and

these can be taken as the critical subsets of f . If we fix a metric on X then the Hessian of f

induces a self-adjoint endomorphism of the normal bundle NC along each critical submanifold C.

Because f is nondegenerate NC splits as a sum N+
C ⊕N−

C where the Hessian is positive definite

on N+
C and negative definite on N−

C . It is easy to check that locally the image of N+
C under the

exponential map induced by the metric is a minimising manifold for f along C.

We wish to show that any minimally degenerate Morse function on X induces Morse inequal-

ities in cohomology and also in equivariant cohomology if X is acted on by a compact group K

which preserves the function. These inequalities are most easily expressed using the Poincaré

polynomials

Pt(X) =
∑
j≥0

tjdimHj(X)

and equivariant Poincaré polynomials

PK
t (X) =

∑
j≥0

tjdimHj
K(X)

Our aim is to prove the following

Theorem 10.2. Let f : X → R be a minimally degenerate Morse function with critical subsets

{C ∈ C} on a compact manifold X. Then the Betti numbers of X satisfy Morse inequalities

which can be expressed in the form

∑
C∈C

tλ(C)Pt(C)− Pt(X) = (1 + t)R(t)

where λ(C) is the index of f along C and R(t) ≥ 0 in the sense that all its coefficients are

nonnegative. If a compact group K acts on X preserving f and the minimising manifolds, then

X also satisfies equivariant Morse inequalities of the same form.

When f is nondegeneate one method of obtaining the Morse inequalities is to use a metric

to define a smooth startification {SC : C ∈ C} of X. This is perhaps not the easiest approach

but we shall follow it here since the stratification of the particular function relevant to us is

interesting in its own right. A point of X lies in a stratum SC if its trajectory under the gradient

field −grad f converges to a point of the corresponding critical subset C. For a general function

f such a trajectory may not converge to a single point. However the limit set of the trajectory is
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always a connected nonempty set of critical points for f (see 2.10). Therefore if f is minimally de-

generate then any such limit set is contained in a unique critical subset. So we make the following

Definition 10.3. Suppose f : X → R is a minimally degenerate Morse function with critial

subsets {C ∈ C} and suppose that X is given a fixed Riemannian metric. Then for each C let

SC be the subset of X consisting of all points x ∈ X such that the limit set ω(x) of the trajectory

of −grad f from x is contained in C.

X is the disjoint union of the subsets {SC : C ∈ C}. We shall see that if the metric is chosen

appropriately they form a smooth stratification of X such that each stratum SC coincides near

C with the minimising manifold ΣC . The condition which the metric must satisfy is that the

gradient field grad f should be tangential to each minimising manifold ΣC . We shall show that

such a metric exists and then prove the following

Theorem 10.4. Let f be a minimally degenerate Morse function with critical subsets {C ∈ C}
on a compact Riemannian manifold. Suppose that the gradient flow of f is tangential to each of

the minimising manifolds {ΣC : C ∈ C}. Then the subsets {SC : C ∈ C} defined at 10.3 form

a smooth stratification of X called the Morse stratification of the function f on X. For each

C the stratum SC coincides with the minimising submanifold ΣC in some neighbourhood of C.

Moreover each inclusion C → SC is an equivalence of Cech cohomology. If there is a compact

group K acting on X such that f , the minimising manifolds and the metric are all invariant

under K then these inclusions are also equivalences of equivariant cohomology.

In order to be able to apply this result to any minimally degenerate function we need the

following

Lemma 10.5. Let f be a minimally degenerate function on X. Then there is a metric on X

such that near each C the gradient flow of f is tangential to the minimising manifold ΣC . If

f and the minimising manifolds are invariant under the action of a compact group K then the

metric may be taken to be K-invariant.

Proof. A standard argument using partitions of unity shows that it is enough to find such metrics

locally. The only point to note is that one should work with dual metrics because gradρ f is linear

in ρ? but not in ρ.

Suppose x is any point of a critical subset X. Condition (2) of 10.1 implies that there is a

complement to TxΣC in TxX on which the Hessian Hx(f) is negative definite. It follows from the

Morse lemma (lemma 2.2 of [Mi]) that there exist local coordinates (x1, . . . , xn) around x such

that the minimising manifold ΣC is given locally by

0 = xd+1 = xd+2 = . . . = xn,
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and such that

f(x1, . . . , xn) = f(x1, . . . , xd)− (xd+1)
2 − . . .− (xn)2

(To prove this, regard x1, . . . , xd as parameters and apply the Morse lemma to xd+1, . . . , xn).

Then the gradient flow of f with respect to the standard metric on Rn is tangential to ΣC .

Finally, a K-invariant metric is obtained by averaging the dual metric over K.

Because of this lemma theorem 10.2 can be deduced from theorem 10.4 by the standard

argument using Thom-Gysin sequences. The rest of this appendix is devoted to the proof of

theorem 10.4.

The most difficult part of the proof of this theorem will be to show that for each C the stratum

SC coincides with the given submanifold ΣC in some neighbourhood of C. Once we know that

SC is smooth near C it will follow easily that SC is smooth everywhere and the cohomology

equivalences are not hard to prove.

First we shall show that the subsets {SC} form a stratification of X in the sense of 2.11. It

suffices to prove the following lemma which is depends on the assumption 10.1(1) but not on the

existence of minimising manifolds.

Lemma 10.7. For each C ∈ C

S̄C ⊆ SC ∪
⋃

f(C′)>f(C)

SC′

Proof. If a point x lies in SC for some C ∈ C then by definition its path of steepest descent for

f has a limit point in C, and hence f(x) ≥ f(C) since f decreases along this path. Moreover,

f(x) > f(C) unless x ∈ C.

If x lies in the closure S̄C of SC then so does every point of its path of steepest descent.

Hence the closure of this path is contained in S̄C . It follows that x ∈ SC′ for some C ′ with

f(C ′) ≥ f(C). So if x ∈ S̄C and x is not critical for f then f(x) > f(C).

Since the subsets {C ∈ C} are compact, there are open sets {UC : C ∈ C} whose closures

are disjoint such that UC ⊇ C for each C. If x lies on the boundary ∂UC of some UC then x is

not critical for f . Hence, if x ∈ ∂UC ∩ S̄C then f(x) > f(C). Since each ∂UC ∩ S̄C is compact it

follows that there is some δ > 0 such that if C ∈ C and x ∈ ∂UC ∩ S̄C then f(x) ≥ f(C) + δ.

Now suppose that C,C ′ are distinct and that there is some x ∈ SC′ ∩ S̄C . Let {xt : t ≥ 0} be

the path of steepest descent for f with x0 = x; then the limit points of {xt : t ≥ 0} as t → ∞
are contained in C ′. So there exists T ≥ 0 such that xT ∈ UC′ and f(xT ) < f(C ′) + δ. But this

implies that there is a neighbourhood V of x such that yT ∈ UC′ and f(yT ) < f(C ′)+δ whenever

y ∈ V .

Since x ∈ S̄C there is some y ∈ V ∩ SC ; then yT ∈ UC′ , but the limit points as t → ∞ of

{yt : t ≥ 0} are contained in C. Since by assumption ŪC ∩ ŪC′ = ∅ there must exist some t > T
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such that yt ∈ ∂UC ∩SC . This implies that f(yt) ≥ f(C) + δ by the choice of δ. But f decreases

along the path {yt : t ≥ 0} and f(yT ) < f(C ′) + δ since y ∈ V . Therefore,

f(C ′) + δ > f(yT ) ≥ f(yt) ≥ f(C) + δ

so that f(C ′) > f(C).

This shows that if SC′ ∩ S̄C is nonempty then f(C) < f(C ′). Since X is the disjoint union of

the subsets {SC : C ∈ C} the result follows. �

Now we shall begin the proof that each stratum SC coincides near C with the corresponding

minimising manifold ΣC .

Lemma 10.8. For each C ∈ C the intersection of the minimising manifold ΣC with a sufficiently

small neighbourhood of X is contained in the Morse stratum SC .

Proof. As in the proof of 10.7 choose open subsets UC of X whose closures are disjoint and

UC ⊇ C for each C ∈ C. Since each ΣC is a submanifold of some neighbourhood of C, if UC is

taken small enough then ΣC ∩ ŪC is closed for each C.

If C ∈ C then by definition of minimising manifold, C is the subset of ΣC on which f takes

on its minimum value. Hence, if x ∈ ΣC ∩ ∂UC then f(x) > f(C), and so ΣC ∩ ∂UC is compact

there exists γ > 0 such that f(x) ≥ f(C) + γ whenever C ∈ C and x ∈ ΣC ∩ ∂UC . Then, for

every C, the subset

VC = UC ∩ {x ∈ X : f(x) < f(C) + γ}

is an open neighbourhood of C in X.

Suppose x lies in the intersection of this neighbourhood VC with ΣC . Then as grad f is

tangential to ΣC and ΣC is closed in ŪC the path {xt : t ≥ 0} of steepest descent for f from x

stays in ΣC as long as it remains in UC . Hence if the path leaves UC , there exist t > 0 such that

xt ∈ ∂UC ∩ ΣC . This implies that

f(x) ≥ f(xt) ≥ f(C) + γ

which contradicts the assumption that x ∈ VC . So the path remains in UC for all time. Since the

only critical points for f in ŪC are contained in C, it follows that the limit points of the path lie

in C and so x ∈ SC .

Remark 10.9. Note that the same argument shows that given any neighbourhood UC of C in

X there exists a smaller neighbourhood VC such that if x ∈ VC ∩ SC then the entire path of

steepest descent for f from x is contained in UC .
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In order to prove the converse to the last lemma we need to investigate the differential equation

which defines the gradient flow of f in local coordinates near any critical point x. We shall rely

on the standard local results to be found in [H].

Recall that if x ∈ X is a critical point for f then the Hessian Hx(f) of f at x is a symmetric

bilinear form on the tangent space TxX given in local coordinates by the matrix of second partials

of f . The Riemannian metric provides an inner product on TxX so that Hx can be identified

with a self-adjoint linear endomorphism of TxX. Then all the eigenvalues of Hx(f) are real and

TxX splits as the direct sum of the eigenspaces of Hx(f).

The assumption that the gradient field of f is tangential to ΣC implies that for each x ∈ C

the subspace TxΣC of TxX is invariant under Hx(f) regarded as a self-adjoint endomorphism of

TxX. Hence so is its orthogonal complement TxΣ
⊥
C . By the definition of a minimising manifold

the eigenvalues of Hx(f) restricted to TxΣC are all nonnegative while those of Hx(f) restricted

to TxΣ
⊥
C are all strictly negative.

Now fix C ∈ C and a point x ∈ X. Let d be the dimension of ΣC . Then we can find local

coordinates (x1, . . . , xn) in a neighbourhood Wx of x such that
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10.10.

1. x is the origin in these coordinates and the submanifold ΣC is given by xd+1 = xd+2 =

. . . = xn = 0.

2. The Riemannian metric at x is the standard inner product on Rn.

3. The Hessian Hx(f) is represented by a diagonal matrix

Hx(f) = diag (λ1, . . . , λn)

where λ1, . . . , λd ≥ 0 and λd+1, . . . , λn < 0.

Let P be the diagonal matrix

diag (−λ1, . . . ,−λd)

and let Q be the diagonal matrix

diag(−λd+1, . . . ,−λn);

then

−Hx(f) =

(
P 0
0 Q

)
in these coordinates. For (x1, . . . , xn) ∈ Rn write y = (x1, . . . , xd) and z = (xd+1, . . . , xn). Then

the trajectories of −grad f in these coordinates are the solution curves to the differential equation

10.11

y = Py + F1(y, z); z = Qz + F2(y, z)

where Fi are smooth and their Jacobian matrices ∂Fi vanish at the origin [H, IX §4]. By reducing

the neighbourhood Wx of x if necessary we may assume that Fi extend smoothly over Rn in such

a way that there exist complete solution curves to 10.11 through every point (y0, z0) given by

t→ (yt, zt) say, for t ∈ R [H, IX §3,4]. Then we have

10.12

yt = ePty0 + Y (t, y0, z0); zt = eQtz0 + Z(t, y0, z0)

for all t where Y, Z and their partial Jacobians vanish at the origin.

We want to show that if a point x does not lie in ΣC then its path of steepest descent stays

well away from C. If x is sufficiently close to ΣC then it has a well-defined distance d(x,ΣC).

It is sufficient to show that near C this distance function is bounded away from zero along all

paths of steepest descent not contained in ΣC . We can do this by working in local coordinates

near each x ∈ C.
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The submanifold ΣC is defined in the local coordinates (y, z) in Wx by z = 0. Therefore in

the standard metric on Rn the distance from ΣC is given by ||z||. Moreover the coordinates were

chosen so that the given Riemannian metric at x coincides with the standard inner product on

Rn. It follows that given any ε > 0 we may reduce Wx so that

10.13

(1 + ε)−1||z|| ≤ d((y, z),ΣC) ≤ (1 + ε)||z||

everywhere in Wx.

We now need the following technical result.

Lemma 10.14. There is a number b > 1 which depends only on the critical set C ∈ C such that

the following property holds for all x ∈ C. If the neighbourhood Wx of x is taken sufficiently

small and the extensions of F1, F2 over Rn are chosen appropriately, then for every (y0, z0) ∈ Rn

we have ||z1|| ≥ b||z0|| where z1 = eQz0 + Z(1, y0, z0) as in 10.12.

Proof. The gradient field of f is tangential to the submanifold ΣC so F2(y, 0) = 0 whenever (y, 0)

lies in Wx (see 10.11). Therefore, the extension of F2 to Rn can be chosen so that F2(y, 0) = 0

for all y ∈ Rd. This implies that

Z(t, y0, 0) = 0 ∀y0 ∈ Rd, t ∈ R

(see 10.12).

Now for each x ∈ C let cx be the minimum eigenvalue of eQ. Recall that

Q = diag(−λd+1, . . . ,−λn)

where λd+1, . . . , λn are the eigenvalues of the Hessian Hx(f) restricted to TxΣC and that each

of these eigenvalues is strictly negative. Hence cx > 1. Let c = inf{cx : x ∈ C}; since C is

compact and cx depends continuously on x it follows that c > 1. So we can choose θ > 0 such

that c− θ > 1. Set b = c− θ; then b > 1 and b depends only on C.

By 10.12 the partial Jacobian ∂y0,z0Z vanishes at the origin for all t ∈ R. Hence, by reducing

the neighbourhood Wx and choosing the extensions of F1 and F2 appropriately we may assume

that

||∂z0Z(1, y0, z0)|| ≤ θ

for all (y0, z0) ∈ Rn (cf. [H], IX §4). It follows that

||Z(1, y0, z0)|| ≤ θ||z0||

for all (y0, z0) ∈ Rn. Since every eigenvalue of eQ is at least c, for any (y0, z0) we have
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||z1|| = ||eQz0 + Z(1, y0, z0)|| ≥ c||z0|| − θ||z0|| = b||z0||

The result follows. �

Corollary 10.15. The intersection of the Morse stratum SC with a sufficiently small neighbour-

hood of C in X is contained in the minimising manifold ΣC .

Proof. It follows from 10.13 and 10.14 that, given ε > 0, there is a neighbourhood WC of C such

that if {xt : t ≥ 0} is any path of steepest descent with xt ∈ WC when 0 ≤ t ≤ 1 then

d(x1,ΣC) ≥ b(1 + ε)−2d(x0,ΣC)

where b > 1 is independent of ε. If ε is choen sufficienty small we have

b(1 + ε)−2 > 1

By remark 10.9 there is a neighbourhood VC of C in X such that if x0 ∈ VC ∩ SC its entire

path of steepest descent {xt : t ≥ 0} is contained in WC . Then for each n ≥ 1

d(xn,ΣC) ≥ (b(1 + ε)−2)nd(x0,ΣC)

But we may assume without any loss of generality that d(x,ΣC) is bounded on WC . Hence we

must have d(x0,ΣC = 0, i.e. x0 ∈ ΣC . This shows that VC ∩ SC ⊆ ΣC .

From 10.8 and 10.15 we deduce that each stratum SC coincides with ΣC in a neighbourhood

UC of C and hence that SC ∩UC is smooth. But any point of SC is mapped into SC ∩UC by the

diffeomorphism x 7→ xt of SC induced by flowing for some large time t along the gradient field

of f . So we have the following

Lemma 10.16. For each C ∈ C the stratum SC is smooth. It coincides with the minimising

manifold ΣC in some neighbourhood of C.

We have seen that the subsets {SC : C ∈ C} form a smooth stratification of X and it remains

only to prove one more result.

Lemma 10.17. For each C ∈ C the inclusion C → SC is an equivalence for Cech cohomology.

More generally if a compact connected group K acts on X in such a way that the function f

and the Riemannian metric on X are preserved by K then each stratum SC is K-invariant and

the inclusion C ↪→ SC are equivalences of equivariant cohomology.
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Proof. We need only consider the second statement. It is clear from the definition that the Morse

strata {SC} are K-invariant.

For each sufficiently small δ ≥ 0

Nδ = {x ∈ SC : f(x) ≤ f(C) + δ}

in a compact neighbourhood of C in SC (see the proof of 10.8). The paths of steepest descent

induce retractions of SC onto each Nδ with respect to the action of K. So each inclusion Nδ ×K

EK → SC ×K EK is a cohomology equivalence. Also

⋂
δ>0

Nδ = C

So the continuity of Čech cohomology implies that the inclusion C ↪→ SC is an equivalence of

equivariant Čech cohomology [D, VIII 6.18]. The only problem is that X×KEK is not compact.

This can be overcome by regarding EK as the union of compact manifolds which are cohomo-

logically equivalent to EK up to arbitrarily large dimensions.

Remark 10.18. When f is nondegenerate in the sense of Bott, each path of steepest descent

under under f converges to a unique critical point in X. Thus the strata retract onto the critical

sets along the paths of steepest descent. This fails in general for minimally degenerate functions:

there exist minimally degenerate functions with trajectories which spiral in towards a critical

subset without ever converging to a unique limit. This is why Čech cohomology is used above.

However, it is unlikely that the square of the moment map has such bad behaviour.
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Part II. The Algebraic Approach

11 The basic idea

In Part I a formula was obtained in good cases for the Betti numbers of the projective quotient

variety associated in geometric invariant theory to a linear action of a complex reductive group

G on a nonsingular complex projective variety X. The good cases occur when the stabiliser in G

of every semistable point of X is finite. The quotient variety is then topologically the quotient

Xss/G of the set of semistable points by the group. The formula was obtained by employing the

ideas of Morse theory and of symplectic geometry. We shall now approach the same problem

using algebraic methods.

The basic idea common to both approaches is to associate to the group action a canonical

stratification of the variety X. The unique open stratum of this stratification coincides with

the set Xss (provided this is nonempty) and the other strata are all G-invariant locally-closed

nonsingular subvarieties of X. There then exist equivariant Morse-type inequalities relating the

G-equivariant Betti numbers of X to those of the strata. It turns out that these inequalities

are in fact equalities, i.e. that the stratification is equivariantly perfect over Q. From this an

inductive formula can be derived fro the equivariant Betti numbers of the semistable stratum

X ss which in good cases coincide with the ordinary Betti numbers of the quotient variety.

The difference between the two approaches lies in the way the stratification of X is defined.

In Part I symplectic geometry was used to define a function f (the norm-square of the moment

map) which induced a Morse stratification of X. In Part II the stratification will be defined

purely algebraically. The main advantage of this method is that it applies to varieties defined

over any algebaically closed field. On the other hand the approach in Part I generalizes to Kähler

and symplectic manifolds.

The algebraic definition of the stratification is based on the work of Kempf. It also has close

links with the paper [Ne] by Ness. Suppose that we are given a linear action of a reductive group

G on any projective variety X, singular or nonsingular, defined over any algebraically closed

field. Kempf shows that for each unstable point x ∈ X there is a conjugacy class of virtual

one-parameter groups of a certain parabolic subgroup of G which are most responsible for the

instability of x. (The term canonical destabilizing flags is also used). The stratum to whcih

x belongs is determined by the conjugacy class of these virtual one-parameter subgroups in G.

Over the complex field, the stratification is the same as the one already defined in Part I.

Just as in Part I the indexing set B of the stratification may be described in terms of the

weights of the representation of G which defines the action. An element β ∈ B may be thought

of as the closest point to the origin of the convex hull of some nonempty set of weights when the

weights are regarded as elements of an appropriate normed space (see §12.8).
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In §13 it is shown that if X is nonsingular then the strata Sβ are also nonsingular and have

the same structure as in the complex case. That is, to each β in B there is a smooth locally

closed subvariety Y ss
β of X acted on by a parabolic subgroup Pβ of G such that

11.1

Sβ
∼= G×Pβ

Y ss
β

There is also a nonsingular closed subvariety Zβ of X and a locally trivial fibration

11.2

Pβ : Y ss
β → Zss

β

whose fibres are all affine spaces. Here Zss
β is the set of semistable points of Zβ under the action

of a reductive subgroup of Pβ.

These results were precisely what was needed in Part I to show that the stratification {Sβ :

β ∈ B} is equivariantly perfect and hence to derive an inductive formula for the equivariant

Betti numbers of Xss. Thus the reader who is interested in solely in complex algebraic varieties

can avoid the detailed analytic arguments needed for symplectic and Kähler manifolds by using

the definitions and results from these two sections. It will be found that at times the algebraic

method is neater while at others it is more elegant to argue analytically.

In §14 we shall see how the formulae for the Betti numbers of the quotient variety M can

be refined to given the Hodge numbers as well. We use Deligne’s extension of Hodge theory to

complex varieties which are not necessarily compact and nonsingular.

In §15 an alternative method for obtaining the formulae is described though without detailed

proofs. This method was suggested by work of Harder and Narasimhan. It uses the Weil

conjectures which were establised by Deligne. These enable one to calculate the Betti numbers

of a nonsingular complex projective variety by counting the points of associated varieties defined

over finite fields. In our case it is possible to count points by decomposing these varieties

into strata using 11.1-2. However the Weil conjectures apply only when the quotient variety is

nonsingular.

Finally in §16 some examples of stratifications and of calculating the Betti numbers of quo-

tients are considered in detail. The first example is given by the action of SL(2) on the space Pn

of binary forms of degree n which can be identified with the space of unordered sets of poitns on

P1. We also consider the space (P1)
n of ordered sets of points on P1. These have been used as

examples throughout part I. The good cases occur when n is odd and then the Hodge numbers

of the quotient varieties M are given by
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hp,p =

[
1 +

1

2
min(p, n− 3− p)

]
for the case of unordered points, and

hp,p = 1 + (n− 1) +

(
n− 1

2

)
+ . . .

(
n− 1

min(p, n− 3− p)

)
for ordered points. The Hodge numbers hp,q with p 6= q all vanish. Then we generalize (P1)

n to

an arbitrary product of Grassmannians. That is, we consider for any m the diagonal action of

SL(m) on a product of G(`i,m) (`i-dimensional subspaces of Cm). The good cases occur when

m is coprime to
∑
`i. The associated stratification is described in Proposition 16.9 and it is

shown how in good cases this provides an inductive formula for the equivariant Betti numbers

of the semistable stratum in terms of the equivariant Betti numbers of the semistable strata of

products of the same form but with smaller values of m. Explicit calculations are made for some

products of P2.

One reason for studying products of Grassmanians in depth is that it is possible to rederive

the formulae obtained in [H& N] and [A & B] for the Betti numbers of moduli spaces of vector

bundles over Riemann surfaces by applying the results of these notes to subvarieties of products

of Grassmannians [Ki3].

77



78

12 Stratifications over arbitrary algebraically closed fields

Let k be an algebraically closed field. Suppose that X is a k-variety acted on linearly by a

reductive k-group G. In this section we shall define a stratification of X which generalizes the

definition given in Part I for the case whenX is nonsingular and k is the field of complex numbers.

The set Xss of semistable points of X under the action will form one stratum of the stratifi-

cation. To define the others we shall use work of Kempf as expounded in a paper by Hesselink

(see [K] and [Hes]). Kempf associates to each unstable point x of X a conjugacy class of virtual

one-parameter subgroups in a parabolic subgroup of G. These are the one’s most responsible

for the instability of the point x. The stratum to which x belongs will be determined by the

conjugacy class of these virtual one-parameter subgroups. We shall find that each stratum Sβ

can be described in the form

Sβ = GY ss
β

where Y ss
β is a locally-closed subvariety of X, itself defined in terms of the semistable points

of a small variety under the action of a subgroup of G. From this it will be obvious that the

stratification coincides with the one defined in Part I in the complex nonsingular case.

First we shall review briefly Hesselink’s definition and results and relate them to what we

have already done in the complex case: this is completed in lemma 12.13. Note that in [Hes]

arbitrary ground fields are considered. We shall restrict ourselves to algebraically closed fields

for the sake of simplicity.

Remark. The definition of the stratification given at 12.14 makes sense when k is any field.

This is also the stratification of the variety X ×k K defined over the algebraic closure K of k.

When k is perfect it follows from [Hes] that this last stratification is defined over k and coincides

with the first stratification on X. However this fails in general. In §15 where finite fields occur

it will be necessary to avoid certain characteristics when things go wrong.

Hesselink studies reductive group actions on affine pointed varieties. We shall apply his

results to the action of G on the affine cone X? ⊂ kn+1 on X. For each nonzero x? ∈ X? and

one-parameter subgroup λ : k? → G of G. Hesselink defines a measure of instability m(x?, λ).

This really only depends on the point x determined by x? and hence can also be written as

m(x, λ). The following two facts determine m for every x, λ.

12.1. If λ : k? → GL(n+ 1) is given by

z 7→ diag(zr0 , . . . , zrn)

with ri ∈ Z then
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m(x, λ) = min{rj : xj 6= 0}

if this is non-negative and

m(x;λ) = 0

otherwise. Also for any g ∈ G

m(x; gλg−1) = m(gx;λ)

Definition 12.2. x ∈ X is unstable for the action of G if m(x, λ) > 0 for some one-parameter

subgroup λ of G.

Mumford proves that

12.3. x ∈ X is semistable iff m(x, λ) ≤ 0 for every one-parameter subgroup λ of G; that is,

iff x is not unstable!

Definition 12.4. Let Y (G) denote the set of one-parameter subgroups λ : k? → G of G and

let M(G) be the quotient of the product of Y (G) with the natural numbers by the equivalence

relation ∼ such that (λ, `) ∼ (µ,m) if λ, µ satisfy

λ(tm) = µ(t`)

If T is a torus then Y (T ) is a free Z-module of finite rank and M(T ) is a Q-vector space.

Moreoever, there is a natural corespondence between one-parameter sungroups of a torus T over

the complex field and lattice points in the Lie algebra t of its maximal compact subgroup. Hence

in the case M(T ) may be identified with the rational points of t.

The adjoint action of G on Y (G) extends to an action on M(G). Let q be a norm on M(G)

as defined in [Hes] §1; that is, q is a G-invariant map from M(G) to Q which restricts to a

quadratic form on M(T ) for any torus T ⊂ G. If T is a maximal torus of G a norm on M(G) is

the square of an inner product on M(T ) invariant under the Weyl group and any such inner prod-

uct determines a unique norm on M(G). When k = C any invariant rational inner product on

the Lie algebra of a maximal compact subgroup of G induces a norm on M(G) in Hesslink’s sense.

Definition 12.5 ([Hes] 4.1). For any x ∈ X let

q−1(x)G = inf {q(λ) : λ ∈M(G), m(x, λ) ≥ 1}

and

ΛG(x) =
{
λ ∈M(G) : m(x, λ) ≥ 1, q(λ) = q−1

G

}
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Thus x is unstable iff q−1
G <∞ or equivalently ΛG(x) 6= ∅. The definition of m can be extended

uniquely over all λ in M(G) to satisfy m(x, rλ) = m(x, λ) for every r ∈ Q.

The set ΛG(x) will be used to determine the stratum to which the point x ∈ X belongs.

Let T be a maximal torus of G. As when k = C the representation of T on kn+1 splits as

the sum of scalar representations given by characters α0, . . . , αn, say. These αi are elements of

the dual of M(T ) and may be identified with elements of M(T ) by using the inner product on

M(T ) whose square is the norm q.

Fix x = (x0, . . . , xn) ∈ X and let β be the closest point to the origin for the norm q of the

convex hull C(x) of the set {αi : xi 6= 0} in the Q-vector space M(T ). Then

(ξ − β).β ≥ 0

I.e. ξ.β ≥ q(β) for all ξ ∈ C(x) where . denotes the inner product on M(T ) whose square is q.

In Part I this point β indexed the stratum containing x. The next two lemmas show how β is

related to the set ΛT (x).

Lemma 12.6. If β 6= 0 then ΛT (x) = {β/q(β)}.

Proof. By 12.1 if λ ∈ M(T ) then m(x;λ) = min{αi.λ : xi 6= 0} if this is nonnegative and

m(x;λ) = 0 otherwise. Therefore, m(x;λ) ≥ 1 iff λ.αi ≥ 1 for every i such that xi 6= 0. But

if xi 6= 0 thene αi.β ≥ q(β) by the choice of β. Therefore β/q(β).αi ≥ 1 for such i. Moreover,

if λ satisfies λ.αi ≥ 1 whenever xi 6= 0 then λ.β ≥ 1 since β lies in the convex hull of the set

{αi : xi 6= 0}. This means that

q(λ)q(β) ≥ (λ.β)2 ≥ 1

with equality iff λ = β/q(β). Thus it follows straight from definition 12.5 that q−1
G (x) = q(β)−1

and that the set ΛT (x) consists of the single point β/q(β). �

Lemma 12.7. If β = 0 then ΛT (x) 6= ∅.

Proof. If ΛT (x) 6= ∅ then there is some λ ∈ M(T ) such that m(x;λ) ≥ 1 and hence such that

λ.αi ≥ 1 whenever xi 6= 0. This implies that 0 6∈ Conv{αi : xi 6= 0} and hence that β 6= 0. �

Thus the set ΛT (x) determines and is determined by the point β.

Definition 12.8. Call the closest point to 0 of the convex hull in M(T ) of any nonempty

subset of {α0, . . . , αn} a minimal combination of weights. Let B be the set of all minimial

combinations of weights lying in some positive Weyl chamber (i.e. some convex fundamental do-
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main for the action of the Weyl group on M(T )). B will be the indexing set for the stratification.

Definition 12.9. A subgroup H of G is optimal for x if

q−1
H (x) = q−1

G (x)

It is clear from definition 12.5 that if H is optimal then

ΛH(x) = M(H) ∩ ΛG(x)

and that ΛH(x) is nonempty precisely when ΛG(x) is nonempty. By [Hes] there is always some

maximal torus T ′ of G which is optimal for x and T ′ = g−1Tg for some g ∈ G where T is the

fixed maximal torus of G. This implies that

12.10. For every x ∈ X there exists some g ∈ G such that T is optimal for gx.

Next note that G acts on itself by conjugation and hence G becomes an affine pointed G-

variety. So we can make the following definition.

Definition 12.11. If λ ∈M(G) let

Pλ = {g ∈ G : m(g, λ) ≥ 0}

Clearly if r > 0 is rational then Pλ = Prλ. Moreover if λ : k? → G is actually a one-parameter

subgroup of G then Pλ consists of those g ∈ G such that

lim
t→0

λ(t)gλ(t)−1

exists in G. Then Lemma 5.1(a) of [Hes] shows that

12.12. Pλ is a parabolic subgrop of G for each λ ∈M(G).

The main result needed from Kempf’s work can now be stated.

Lemma 12.13.

1. For each unstable x there is a unique parabolic subgroup P (x) of G such that P (x) = Pλ

for all λ in ΛG(x).

2. ΛG(x) is a single P (x) orbit under the adjoint action of G on M(G).

3. If λ ∈ ΛG(x) then g−1λg also lies in ΛG(x) iff g ∈ P (x). In particular P (x) contains the

stabiliser of x in G.

4. ΛG(x) ⊂M(P (x)).
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5. If T is optimal for x and ΛT (x) = {β/q(β)} then P (x) = Pβ.

Proof. (1) and (2) are [Hes], Theorem 5.2 applied to any nonzero x? ∈ X? lying over x. If

λ : k? → G is a one-parameter subgroup of G and if g ∈ G is such that g−1λg = λ, then g

commutes with every element of λ(k?), so m(g;λ) = 0 and hence g ∈ Pλ. The first part of

(3) follows from this together with (1) and (2). The second part is an immediate consequence

since m(x; g−1λg) = m(gx;λ) by 12.1. Also, (4) follows because if λ ∈ ΛG(x) then rλY (G)

for some positive integer r. Since rλ commutes with λ, it represents a one-parameter subgroup

of Pλ = P (x) and so λ ∈ M(P (x)). Finally, if T is optimal for x and ΛT (x) = β/q(β), then

β/q(β) ∈ ΛG(x), hence P (x) = P (β/q(β)) = Pβ by (1) and 12.1. �

This lemma completes the review of the results needed from [Hes].

Definition 12.14. For each nonzero β ∈M(T ) let

Sβ = G {x ∈ X : β/q(β) ∈ ΛG(x)}

and let

S0 = G {x ∈ X : ΛG(x) = ∅}

Then by 12.3 S0 = Xss. Also β/q(β) ∈ ΛG(x) iff T is optimal for x and ΛT (x) = {β/q(β)}
by 12.6-7.

Lemma 12.15. X is the disjoint union of the subsets {Sβ : β ∈ B}.

Proof. Suppose that x ∈ X is unstable, i.e. that ΛG(x) 6= ∅. By 12.10 there is some g ∈ G such

that T is optimal for gx. By 12.6 and 12.7, ΛT (gx) = {β/q(β)} where β 6= 0 is the closest point

to 0 of Conv{αi : (gx)i 6= 0}. Therefore

⋃
β

Sβ = X,

where β runs over all minimal combinations of weights.

Since x is unstable if ΛT (gx) 6= ∅ for any g ∈ G,

S0 ∩
⋂
β 6=0

Sβ 6= ∅

If β, β′ are nonzero and the intersection Sβ ∩Sβ′ 6= ∅, then there exist x ∈ X and g ∈ G such

that both β/q(β) and Ad g(β′/q(β′)) lie in ΛG(x). Therefore, by 12.13 (2), β/q(β) and β′/q(β′)
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are equivalent under the adjoint representation of G on M(G). This implies that q(β) = q(β′),

so β, β′ are also equivalent. As β, β′ ∈ M(T ), if follows that they lie in the same orbit of the

Weyl group in M(T ).

Conversely, suppose that β, β′ are equivalent under the action of the Weyl group, so that there

is some g ∈ G normalising T such that β′ = Ad g(β). Then, for any x we have β/q(β) ∈ ΛG(x)

iff β′/q(β′) ∈ ΛG(gx), so Sβ = Sβ′ . The result follows. �

Write β′ > β if q(β′) > q(β). In order to show that we have a stratification of X (in the

Zariski topology) it now suffices to show that

Lemma 12.16.

S̄β ⊂
⋃

β′≥β

Sβ′

for each β ∈ B.

Proof. For each β ∈ B let

Wβ = {x ∈ X : xi = 0 ifαi.β < q(β)}

By 12.6 and 12.7 and the preceding remark, the stratum Sβ consists of all points of the form

gx such that T is optimal for x and β is the closest point to 0 of Conv{αi : xi 6= 0}. This

implies Sβ ⊆ GWβ for each β ∈ B. It is easy to check that Wβ is invariant under Pβ (see

12.23 belownoting that Wβ = Ȳβ when X is projective space).By a standard argument using the

completeness of G/Pβ (see e.g. [B] 11.9(i), [Hes] 6.3 or theorem 13.7 below) it follows GWβ is

closed in X so that S̄β ⊆ GWβ.

Suppose x ∈ Wβ and let β′ be the closest point to 0 of Conv{αi : xi 6= 0}; then either β′ = β or

q(β′) > q(β). It T is optimal for x then x ∈ Sβ′′ for some β′′ with q(β′′) > q(β′) ≥ q(β). Therefore

12.17. If x ∈ Wβ then either T is optimal for x and β is the closest point to 0 of

Conv{αi : xi 6= 0} or there is some β′ > β such that x belongs to Sβ′ .

Hence

S̄β ⊆ GWβ ⊆
⋃

β′≥β

Sβ′

so the proof is complete. �

This lemma shows that the subsets {Sβ : β ∈ B} form a stratification of X in the sense of

definition 2.11, and in particular
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Sβ = S̄β −
⋃

β′>β

S̄β′

is open in its closure S̄β for each β ∈ B.

We next want to describe the stratum Sβ in such a way that it is clear that when k = C this

stratification coincides with the one defined in Part I.

Definition 12.18. Let

Zβ = {(x0, . . . , xn) ∈ X : xj = 0 if αj.β 6= q(β)}

and let

Yβ = {(x0, . . . , xn) ∈ X : xj = 0 if αj.β < q(β), xj 6= 0, some j with αj.β = q(β)}

Zβ is a closed subvariety of X and Yβ is a locally-closed subvariety. Define pβ : Yβ → Zβ by

pβ(x0, . . . , xn) = (x′0 : . . . : x′n)

where x′j = xj if αj.β = q(β) and x′j = 0 otherwise. This is well defined as a map since if y ∈ Yβ

then pβ(y) ∈ Gy and in particular, lies in X. Let Stab β be the stabilizer of β under the adjoint

action of G on M(G). Stab β is a reductive subgroup of G which acts on Zβ.

The definitions of Zβ, Yβ, pβ depend only on β. They are independent of the choice of coor-

dinates and indeed of the maximal torus T chosen except that β must lie in M(T ). Moreover by

6.5, when k = C and X nonsingular, they coincide with the definitions made in Part I.

Lemma 12.19. If x ∈ Zβ then Stab β is optimal for x.

Proof. If x ∈ Zβ then β fixes x so β ∈ M(P (x)) by 12.13 (3). Also, ΛG(x) ⊆ M(P (x)) by 12.13

(4) so that if λ ∈ ΛG(x) there is some p ∈ P (x) such that pλp−1 and β commute. But this

implies that pλp−1 ∈M(Stab β) ∩ ΛG(x) by 12.13 (2), so Stab β is optimal for x as required.

Note that if x ∈ Zβ then by definition

m(x; β) = min{αi.β : xi 6= 0} = q(β)

Thus in particular when β 6= 0 no point in Zβ is semistable. However, there is an open subset of

Zβ whose elements are unstable only insofar as β makes them unstable. The neatest definition

of this subset is the following.
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Definition 12.20. Let Zss
β be the subset of Zβ consisting of those x ∈ Zβ such that

β/q(β) ∈ ΛG(x).

Since Stab β is optimal for x the condition that β/q(β) ∈ ΛG(x) is equivalent to the condition

m(x;λ) ≤ λ.β, ∀λ ∈M(Stab β)

Note that λ.β makes sense for λ ∈M(Stab β) since there is some maximal torus T ′ such that λ

and β both lie in M(T ′) and there is a unique inner product on M(T ′) whose square is the norm q.

Let Y ss
β be the inverse image of Zss

β under the map pβ : Yβ → Zβ defined at 12.18.

Remark 12.21. It is not hard to give alternative definitions of Zss
β and Y ss

β directly in terms

of semistability (cf. 8.11). One can show that there is a unique connected reductive subgroup

Gβ of Stab β such that

M(Gβ) = {λ ∈M(Stab β) : λ.β = 0}

Then Zss
β consists precisely of those x ∈ Zβ which are semistable under the action of Gβ on Zβ

via the restriction of the homomorphism G → GL(n + 1) to Gβ. This is easily seen by using

lemmas 12.6-7 together with 12.3.

Alternatively there exists a positive integer r such that when M(T ) is identified with its dual

rβ corresponds to a character of T which extends to a character χ of Stab β. Then the action of

Stab β on Zβ is linearized with respect to the rth tensor power of the hyperplane bundle by the

rth tensor power of the homomorphism G → GL(n + 1) multiplied by the character χ−1. It is

not hard to check that a point x lies in Zss
β iff x is semistable for this linear action of Stab β on

Zβ.

It is clear from the definition that

12.22. Zss
β is invariant under Stab β

and it follows that

12.23. Yβ and Y ss
β are invariant under Pβ.

The proof is essentially that of 6.10. It depends on two facts: firstly that if λ : k? → T is any

1-PS which is a positive scalar multiple of β in M(T ) then

lim
t→0

λ(t)gλ(t)−1
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exists in G, and secondly that if y ∈ Yβ then

pβ(y) = lim
t→0

λ(t)y

for any such λ.

Our aim is to show that Sβ = GY ss
β . For this the following lemma is needed.

Lemma 12.24. Suppose that β 6= 0. If y ∈ Yβ and x = pβ(y) then the following are equivalent:

1. T is optimal for y and ΛT (y) = {β/q(β)}

2. y ∈ Sβ

3. y ∈ Y ss
β

4. x ∈ Zss
β

5. x ∈ Sβ

Proof. (3) and (4) are equivalent by definition, while (1) implies (2) by definition 12.14 and the

converse follows from 12.17 since Yβ ⊆ Wβ. By 12.17 again, if y 6∈ Sβ then y ∈ Sβ′ for some

β′ satisfying q(β′) > q(β); then x ∈ S̄β′ since x ∈ Gy, and by Lemma 12.16 this implies that

x 6∈ Sβ. Therefore, (5) implies (2). It follows straight from the definitions that (4) implies (5).

Finally, suppose that x 6∈ Zss
β . Since T is a maximal torus of Stab β there is some s ∈ Stab β

such that T is optimal for sx. By 12.6, β is not the closest point to 0 of Conv{αi : (sx)i 6= 0}.
Moreover (sx)i 6= 0 iff both (sy)i 6= 0 and αi.β = q(β) because pβ(sy) = sx (see definition

12.18). So it follows from the geometry of convex sets that β is not the closest point to 0

of Conv{αi : (sy)i 6= 0}. (This is best seen by drawing a picture). Thus by 12.6 and 12.7,

ΛT (sy) 6= {β/q(β)} and hence by 12.7, sy ∈ Sβ′ for some β′ > β. So y 6∈ Sβ. Thus (2) implies

(4). �

Corollary 12.25. If β 6= 0 then y ∈ Y ss
β iff T is optimal for y and ΛT (y) = {β/q(β)} or

equivalently iff β/q(β) ∈ ΛG(x). Thus Sβ = GY ss
β for any β ∈ B.

Proof. It is obvious that GY ss
0 = Xss = S0. If β 6= 0 and ΛT (y) = {β/q(β)} then by 12.6 and

12.7, β is the closest point to 0 of Conv{αi : yi 6= 0}. Thus y ∈ Yβ so the result follows straight

from Lemma 12.24.

We have now proved the following
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Theorem 12.26. Let X ⊂ Pn be a projective vareity over k and let G be a reductive k-

group. Fix a norm q on the space M(G) of virtual one-parameter subgroups of G. Then to any

linear action of G on X there is associated a stratification {Sβ : β ∈ B} of X by G-invariant

locally closed subvarieties described as follows. If T is a maximal torus of G the indices β are

minimal combinations of weights in a fixed Weyl chamber of M(T ) and S0 = Xss while if β 6= 0,

Sβ = GY ss
β where

Y ss
β = {x ∈ X : β/q(β) ∈ ΛG(x)}

when k = C and X is nonsingular the strata Sβ and the subvarieties Y ss
β coincide with those

defined in Part I.
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13 The strata of a nonsingular variety

Now suppose that X is a nonsingular projective variety over k. In this section we shall see that

the strata {Sβ} of the stratification associated in §12 to the action of a reductive group G are

all nonsingular subvarieties of X. To prove this we shall show firstly that the subvarieties Zβ

and Yβ at 12.20 are all nonsingular and secondly that each Sβ is isomorphic to G ×Pβ
Y ss

β . In

addition we shall see that each morphism pβ : Y ss
β → Zss

β is an algebraic locally trivial fibration

such that every fibre is an affine space.

The following facts about linear actions of the multiplicative group k? on nonsingular projec-

tive varieties such as X will be needed. These are due to Bialynicki-Birula [B-B]. We shall apply

them to certain one-parameter subgroups of G.

13.1. Suppose that k? acts linearly on X. Then the set of fixed points is a finite disjoint

union of closed connected nonsingular subvarieties of X; let Z be one of these. For every x ∈ X
the morphism k? → X given by t 7→ tx extends uniquely to a morphism k → X; the image of

0 will be denoted by limt→0 tx. Let Y consist of all x ∈ X such that lim tx ∈ Z. Then Y is a

connected locally-closed nonsingular subvariety of X and the map p : Y → Z defined by

p(x) = lim
t→0

tx

is an algebraic locally trivial fibration with fibre some affine space over k.

Corollary 13.2. For each β ∈ B the subvarieties Yβ, Zβ defined at 12.18 are nonsingular.

The morphism pβ : Yβ → Zβ is an algebraic locally trivial fibration whose fibre at any point is

an affine space. The same is therefore true of its restriction

pβ : Y ss
β −→ Zss

β

to the open subset Y ss
β ⊂ Yβ.

Proof. Fix β ∈ B and let r > 0 be an integer such that rβ ∈ M(T ) corresponds to a 1-PS of T .

This 1-PS act on X as

t 7→ diag(trα0+β, . . . , trαn+β)

where α0, . . . , αn are the weights of the representation of T on kn+1. The definition of Zβ and Yβ

shows that Zβ is a union of components of the fixed point set of this action and that x ∈ Yβ iff

lim
t→0

tx ∈ Zβ,

in which case this limit coincides with pβ(x). So the result is an immediate consequence of 13.1. �
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Now we want to show that each stratum Sβ is isomorphic to G ×Pβ
Y ss

β where Pβ is the

parabolic subgroup of G defined at 12.11. For simplicity we shall assume that the homomor-

phism φ : G → GL(n + 1) which defines the action of G on X is faithful. The general result

follows immediately from this except that Pβ must be replaced by φ−1(φ(Pβ)) which is also a

parabolic subgroup of G.

Definition 13.3. ([B], 3.3) Let g be the Lie algebra of the k-group G and for each β ∈ B

let pβ be the Lie algebra of the parabolic subgroup Pβ.

As a k-vector space g is just the tangent space to the group G at the origin. The action of G

on X induces a k-linear map ξ → ξx from g to the Zariski tangent space TxX for each x ∈ X.

Lemma 13.4 Suppose G is a subgroup of GL(n+ 1). If x ∈ Y ss
β then

{g ∈ G : gx ∈ Y ss
β } = Pβ; {ξ ∈ g : ξx ∈ Tx(Y

ss
β )} = pβ

Proof (compare with Lemma 6.15). By 12.3, Y ss
β is invariant under Pβ so

Pβ ⊆ {g ∈ G : gx ∈ Y ss
β } and pβ ⊆ {ξ ∈ g : ξx ∈ TxY

ss
β }

By 12.24, x ∈ Y ss
β iff T is optimal for x and ΛT (x) = {β/q(β)}. Suppose that x and gx both

lie in Y ss
β for some g ∈ G; then β/q(β) ∈ ΛG(gx) so that β/q(β) and Ad(g−1)β/q(β) both lie in

ΛG(x). Therefore, g ∈ Pβ by 12.23 (3).

It remains to show that {ξ ∈ g : ξx ∈ TxY
ss
β ⊆ Pβ. As in the proof of 13.2, if r is any positive

integer such that rβ is a 1-PS of T then rβ acts on X as

t 7→ diag(trα0+β, . . . , trαn+β)

By 12.11 the subgroup Pβ consists of all g ∈ G such that (rβ(t))g(rβ(t))−1 tends to some limit

in G as t ∈ k? tends to 0. Hence, an element g ∈ G lies in Pβ iff it is of the form g = (gij) with

gij = 0 when αi.β < αj.β.

Let

g = t +
∑

α

gα

be the root space decomposition of g with respect to the Lie algebra t of the maximal torus T

(see [B] Theorem 13.18). If ξ ∈ gα has a nonzero ij-component then, as [η, ξ] = α(η)ξ for all

η ∈ t, it follows that α = αi−αj. So gα ⊆ pβ whenever α.β ≥ 0. Hence it suffices to show that if

ξ ∈
∑

α.β<0

gα

and ξx ∈ TxY
ss
β then ξ ∈ Pβ.
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Let V+ (resp. V0, V−) be the sum of all the subspaces of kn+1 on which T acts as multiplication

by some character αi with αi.β > q(β) (resp. αi.β = q(β), αi.β < q(β)). Then any element of

∑
α.β<0

gα

is of block form  a 0 0
b 0 0
c d e


with respect to the decomposition of kn+1 as V+ ⊕ V0 ⊕ V−.

If x ∈ Zss
β then x is represented by a vector of the form (0, v, 0) in kn+1. We have a 0 0

b 0 0
c d e

 0
v
0

 =

 0
0
dv


and so by definition of Y ss

β , if ξx ∈ TxY
ss
β then dv = 0 and hence ξx = 0. But this means that ξ

is contained in the Lie algebra of the stabiliser of x in G, and by the first part of the lemma, the

stabiliser of x is contained in Pβ. Therefore, ξ ∈ Pβ, as required.

Thus it has been shown that pβ ⊆ {ξ ∈ g : ξx ∈ TxY
ss
β } and that equality holds when x ∈ Zss

β .

But the subset of Y ss
β where equality holds is open and is invariant under the action of Pβ. So it

suffices to show that the only Pβ-invariant neighbourhood of Zss
β in Y ss

β is Y ss
β itself. This follows

easily from the fact that if y ∈ Y ss
β then the point pβ(y) ∈ Zss

β lies in the closure of the orbit of

x under any 1-PS of T which is an integer multiple of β ∈M(T ). This completes the proof. �

Now we can state the result we’re aiming for.

Theorem 13.5. Suppose X ⊂ Pn is a nonsingular projective variety over k and G is a reductive

subgroup of GL(n+ 1) defined over k which acts on X. Then the stratification {Sβ : β ∈ B} of

X defined in §12 is smooth. For each β the stratum Sβ is isomorphic to G ×Pβ
Y ss

β where Y ss
β

is a nonsingular locally-closed subvariety of X and Pβ is a parabolic subgroup of G. Moreover

there is an algebraic locally trivial fibration pβ : Y ss
β → Zss

β with affine fibres where Zss
β consists

of the semistable points of a closed nonsingular subvariety of X under the action of a maximal

reductive subgroup of Pβ.

Proof. By 12.26 for each β ∈ B the stratum Sβ coincides with GY ss
β where Y ss

β is defined as in

12.10. Moreoever, by 12.23, Y ss
β is invariant under the action of the parabolic subgroup Pβ of G

defined in 12.11. So there is a morphism σ : G×Pβ
Y ss

β → X whose image is Sβ. We shall show
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using Lemma 13.4 that σ is an isomorphism onto its image. The proof is a standard one (cf. e.g.

[B] 11.9).

Recall that

Wβ = {x ∈ X : xi = 0 for αi.β < q(β)};

it is invariant under Pβ. Consider the morphisms

G×Wβ
γ−→ G×X

δ−→ (G/Pβ)×X

given by γ(gx, x) = (g, gx) and δ(g, x) = (gPβ, x). Let

M = δγ(G×Wβ) and M ′ = δγ(G× Y ss
β )

Since Wβ is invariant under Pβ we have

δ−1(M) = {(g, y) : g−1y ∈ Wβ}

which is closed in G ×X and is isomorphic to G ×Wβ via γ. As δ is a quotient morphism, M

is therefore closed in (G/Pβ)×X

Now GWβ is the image of M under the projection

pX : (G/Pβ)×X → X

Since G/Pβ is complete, this shows that GWβ is closed (we have already used this). Furthremore

G(Wβ − Y ss
β ) ⊆

⋃
β′>β

Sβ′

by 12.17 and it follows that

M ′ = M ∩ p−1
X (Sβ)

and hence is an open subset of M . We have

M ′ = {(gPβ, y) : g−1y ∈ Y ss
β }

which is isomorphic to G ×Pβ
Y ss

β and hence is nonsingular. Morever, by Lemma 13.4, the

restriction pX |M ′ is a bijection onto Sβ. Indeed, since G/Pβ is complete, pX is a closed map, so

that pX |M ′ : M ′ → Sβ is a homeomorphism because M ′ is locally closed in G/Pβ ×X. To show

that pX |M ′ is an isomorphism it therefore suffices (by [Ha] Ex. I.3.3 and Lemma II.7.4) to check

that the induced maps of Zariski tangent spaces (pX)? : TmM
′ → TpX(m)Sβ are all injective.

It is only necessary to consider the case when m = (Pβ, y) for some y ∈ Y ss
β ; then an element

of TmM
′ is of the form (a+ pβ, ξ) where a+ pβ ∈ g/pβ, ξ ∈ TyX and −ay + ξ ∈ TyY

ss
β . So if

0 = (pX)?(a+ pβ, ξ) = ξ
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then ay ∈ TyY
ss
β , and hence by Lemma 13.4, a ∈ pβ so that (a+pβ, ξ) is the zero element of TmM

′.

It follows that (pX)? is injective everywhere on M ′ and hence that pX |M ′ is an isomorphism. We

conclude that for each β ∈ B the stratum Sβ is nonsingular and isomorphic to G×Pβ
Y ss

β .

Thanks to Corollary 13.2 the proof is now complete. �
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14 Hodge numbers

Suppose now that X ⊆ Pn is a nonsingular complex projective variety acted on linearly by a

connected complex reductive group G. Suppose that the stabilizer in G of every semistable point

of X is finite. We have obtained a formula for the Betti numbers of the quotient variety M

associated in invariant theory to the action of G on X. In this section we shall see that this

formula can be refined to give a formula for the Hodge numbers of M .

We shall use Deligne’s extension of Hodge theory which applies to algebraic varieties which

are not necessarily compact and nonsingular [D1, D2]. If Y is a variety which is not nonsingular

and projective it may not be possible to decompose Hn(Y,C) as the direct sum of subspaces

Hp,q(Y ) in a way which generalizes the classical Hodge decomposition. However Deligne shows

that there are to canonical filtrations Hn(Y,C) the weight filtration

. . .Wk−1 ⊂ Wk ⊂ Wk+1 ⊂ . . .

which is defined over Q and the Hodge filtration

. . . ⊃ Fp−1 ⊃ Fp ⊃ Fp+1 ⊃ . . .

giving what Deligne calls a mixed Hodge structure on Hn(Y ). One can then define the Hodge

numbers hp,q(Hn(Y )) on Hn(Y ) to be the dimension of appropriate quotients associated to these

filtrations. The Hodge numbers satisfy

dimHn(Y,C) =
∑
p,q

hp,q(Hn(Y ))

if hp,q(Hn(Y )) 6= 0 then p, q lie between max(0, n− dim(Y )) and min(n, dim(Y )) and p+ q 6= n

if Y is projective while p+ q ≥ n if Y is nonsingular. When Y is nonsingular and projective the

hp,q(Hn(Y )) with p + q = n are the same as the classical Hodge numbers hp,q. If f : Y1 → Y2

is a morphism of nonsingular quasi-projective varieties then the induced homomorphism f ? :

H(Y2) → H?(Y1) is strictly compatible with both the Hodge filtration and the weight filtration.

Suppose now that Y is acted on by a group G. Recall that the equivariant cohomology is

defined to be

H?
G(Y,Z) = H?(Y ×G EG,Z)

where EG → BG is the universal classifying bundle for G. Although BG is not a finite di-

mensional manifold there is a natural Hodge structure on its cohomology. Indeed, BG may be

regarded as the union of finite dimensional varieties Mn such that for any n the inclusion of Mn

in BG induces isomorphisms of cohomology in dimensions less than n which preserve the Hodge

structure. In the same way Y ×G EG is the union of finite dimensional varieties whose Hodge
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structures induce a natural Hodge structure on the cohomology of Y ×GEG. Thus we can define

the equivariant Hodge numbers

hp,q;n
G (Y ) = hp,q(Hn

G(Y ))

for Y .

In particular, there are equivariant Hodge numbers for each stratum Sβ of the stratification

associated in §12 to the action ofG on the projective varietyX. These strata may be disconnected

so its convenient to refine the stratification as follows. For each integer m > 0 let Sβ,m be the

union of those components of Sβ whose complex codimension in X is 1
2
d(β,m) where

d(β,m) = m− dim(G) + dim(Stab(β))

In §8 we saw that

14.1

dim Hn
G(X,Q) =

∑
β,m

dim H
n−d(β,m)
G (Sβ,m,Q)

for each n ≥ 0 where the sum is over all β ∈ B and integers 0 ≤ m ≤ dim X. The argument

for this goes as follows. First, because {Sβ,m : β ∈ B, 0 ≤≤ dim X} is a stratification of X the

elements of the indexing set B×{0, . . . , dim X} can be ordered as 1, . . . ,M for some M in such

a way that S1 ∪ . . . Si is open in X for 1 ≤ i ≤ M (see definition 2.11). Let Ti denote this open

subset (for 1 ≤ i ≤ M). Then as each stratum Si is smooth the Thom isomorphism theorem

tells us that

Hn
G(Ti, Ti−1; Q) ∼= Hn−2λi

G (Si; Q)

where λi is the complex codimension of Si in X. Thus for each i there is a long exact sequence

(the Gysin sequence)

. . .→ Hn−2λi
G (Si,Q) → Hn

G(Ti,Q) → Hn(Ti−1,Q) → Hn+1−2λi(Si,Q) → . . .

In §5 we showed that the stratification is equivariantly perfect over Q which means exactly that

each of these long exact sequences splits into short exact sequences

14.2

0 → Hn−2λi
G (Si,Q) → Hn(Ti,Q) → Hn

G(Ti−1,Q) → 0

Then

14.3

dim Hn
G(Ti,Q) = dim Hn

G(Ti−1,Q) + dim Hn−2λi
G (Si,Q)
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for each n and we obtain the formula 14.1 by using induction on i.

In order to extend the formula 14.1 to Hodge numbers all we need is the following

Lemma 14.4. The homomorphism Hn
G(Ti) → Hn

G(Ti−1) induced by the inclusion of Ti−1 in Ti is

strictly compatible with the Hodge structures. So is the homomorphism Hn−2λi
G (Si) → Hn

G(Ti)

except that the Hodge structure of Hn−2λi
G (Si) must be shifted up by λi; that is, the weight

filtration {Wk}k∈Z is replaced by {Wk+2λi
}k∈Z and the Hodge filtration {Fp} by {Fp+λi

}p∈Z.

Proof. The first statement follows from [D1] II 2.3.5 and 3.2.11.1.

When Y is nonsingular of complex dimension N , Poincaré duality gives an isomorphism

Hn(Y ; Q) ∼= Hom(H2N−n
c (Y ; Q), H2N(Y ; Q)) = (H2N−n

c (Y ; Q))?

where Hc is cohomology with compact supports and ? indicates duality. There is a natural

Hodge structure on (H2N−n
c (Y ))? (see [D1] II) and Poincaré duality carries the Hodge structure

on Hn(Y ) to the natural Hodge structure on (H2N−n
c (Y ))? shifted up by N (see [D2] 8.2). If

i : Y ′ → Y is the inclusion in Y of a smooth closed subvariety Y ′ of codimension λ then the

composition

Hn−2λ(Y ′; Q)
Thom∼= Hn(Y, Y ′; Q) → Hn(Y ; Q)

is the composition of two Poincaré duality maps with the dual f the map induced by i on

cohomology with compact supports:

Hn−2λ(Y ′; Q) ∼= (H2N−n
c (Y ′; Q))? (i?)?

−→ H2N−n
c (Y ; Q) ∼= Hn(Y ; Q)

Since (i?)? is strictly compatible with the Hodge structure, we deduce that this composition

carries the usual Hodge structure on Hn(Y ) to the Hodge structure on Hn−2λ(Y ′) shifted up by

λ.

The result follows by applying this to finite dimensional approximations to the inclusion of

Si ×G EG in Ti ×G EG. �

It follows from this lemma and the exact sequence 14.2 that

hp,q;n
G (Ti) = hp,q;n

G (Ti−1) + h
(p,q;n)−λi

G (Si)

where (p, q;n)− λ is shorthand for p− λ, q − λ;n− 2λ. Thus by induction we obtain

14.5
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hp,q;n
G (X) = hp,q;n

G (Xss) +
∑
β,m

h
(p,q;n)− 1

2
d(β,m)

G (Sβ,m)

where the sum is over all nonzero β ∈ B and integers 0 ≤ m ≤ dim X.

By theorem 13.7 for each β we have

Sβ
∼= G×Pβ

Y ss
β

and there is a locally trivial fibration

pβ : Y ss
β → Zss

β

with contractible fibre which respects the action of Stabβ. Since Stavβ is homotopically equiva-

lent to Pβ it follows that

H?
G(Sβ,Q) ∼= H?

Pβ
(Y ss

β ,Q) ∼= H?
Stab β(Zss

β ,Q)

and it is easily checked that these are isomorphism of the Hodge structures. By looking at

components we also get

H?
G(Sβ,m(Sβ,m,Q) ∼= H?

Stab β(Zss
β,m,Q)

for each β and m, where Zss
β,m is the set of semistable points of a nonsingular subvariety Zβ,m of

X under a suitable linearization of the action of Stabβ. Hence

14.6

hp,q;n
G (Sβ,m) = hp,q;n

Stab β(Zss
β,m)

for each p, q, n. Therefore

14.7

hp,q;n
G (Xss) = hp,q;n

G (X)−
∑
β,m

h
(p,q;n)− 1

2
d(β,m)

Stab β (Zss
β,m)

This gives an inductive formula for the equivariant Hodge numbers of Xss in terms of those X

itself and of the semistable strata of smaller varieties acted on by reductive groups.

We also know that the fibration X×GEG→ BG with fibre X is cohomologically trivial over

Q (see theorem 5.4) so that

14.8

H?
G(X,Q) ∼= H?(X,Q)

⊗
H?(BG,Q)

This isomorphism is an isomorphism of Hodge structures.
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Using 14.7 and 14.8 an explicit formula can be derived for the equivariant Hodge numbers

of the semistable stratum Xss. This formula involves the Hodge numbers of X and certain

nonsingular subvarieties of X, and also the Hodge numbers of the classifying space of G and

various reductive subgroups of G (cf. §5).

By assumption the stabiliser in G of every x ∈ Xss is finite. This implises that the quotient

variety M coincides with the topological quotient Xss/G. Moreover, the obvious map Xss ×G

EG→ Xss/G induces an isomorphism

H?(Xss/G; Q) → H?
G(Xss,Q)

which is strictly compatible with the Hodge structures and hence is an isomorphism of Hodge

structures. Thus we obtain a formula for calculating the Hodge numbers hp,q(M) of the quotient

M = Xss/G which are the classical Hodge numbers hp,q(M) when M is smooth.

Note that since hp,q;n
G (X) is nonzero only when p + q = n the same is true by induction on

hp,q;n(Xss) and each hp,q;n
G (Sβ,m) and hence also of hp,q;n(M) when the stabilizer of each x ∈ Xss

is finite. This last fact could be of course also be deduced directly from [D1] and the fact that

Xss/G is a compact rational homology manifold.

Finally, note that 14.2 shows that the map Hn
G(X,Q) → Hn

G(Xss,Q) induced by the inclu-

sion of Xss in X is surjective since it is the composition of the surjective maps Hn
G(Ti,Q) →

Hn
G(Ti−1,Q) for 1 ≤ i ≤M . Thus we have a surjective homomorphism

14.9

H?(X,Q)
⊗

H?(BG,Q) −→ H?(M,Q)

which is strictly compatible with the Hodge structures. In particular if hp,q(X) = 0 for p 6= q

then the same is true for M , because by [D1] III 9.1.1, only the even Betti numbers of BG are

nonzero and H2n(BG,C) is purely of type (n, n) for every n.
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15 Calculating cohomology by counting points

Again let M be the projective quotient variety associated to the linear action of a complex

reductive group G on a nonsingular complex projective variety X. When the action of G on a

semistable stratum Xss is free there is an alternative method for deriving the formulae already

obtained for the Betti numbers of M which uses the Weil conjectures. These conjectures which

were verified by Deligne enable one to calculate the Betti numbers of a nonsingular projective

variety by counting the number of points in associated varieties defined over finite fields. In our

case we can count points by using the stratifications defined in §12 of varieties over the algebraic

closures of finite fields, F̄q. The idea was suggested by work of Harder and Narasimhan who

used the Weil conjectures to calculate Betti numbers of moduli spaces of bundles over Riemann

surfaces. Their formulae were subsequently rederived in the paper of Atiyah and Bott which

motivated Part I.

The idea of the alternative method is explained in this section but the arguments are not given

in detail because nothing new is being proved. Unless the Weil conjectures can be extended in an

appropriate way to projective varieties which are locally the quotients of nonsingular varieties by

finite groups, the same method will not work in all cases where the stabilizer of each semistable

point is finite. It is necessary that the action of G or at least some quotient of G on Xss be free.

First let us summarize what we shall need of the Weil conjectures

Let Y be a nonsingular complex projective variety. Then Y is defined over a finitely generated

subring R of C so that there is a an R-scheme YR such that Y = YR ×R Spec C. Let π be a

maximal ideal of R. Then R/π is a finite field with q elements for some prime power q. Let

15.1

Yπ = YR ×R SpecR/π

be the reduction of Y mod π. For most choices of π if ` is any prime number different from

the characteristic of R/π then the `-adic numbers of Yπ and Y are equal. But the `-adic Betti

numbers of Y are the same as the ordinary Betti numbers of Y regarded as a complex manfiold,

by the comparison theorem of `-adic cohomology.

Provided that the characteristic of R/π is not one of finitely many bad primes, Yπ is a

nonsingular projective variety over the finite field with q elements. Then the Weil conjectures

enable us to calculate its `-adic Betti numbers. In fact, there exist complex numbers α1, . . . , αr,

β1, . . . , βs such that for any integer n ≥ 1 the number of points of Yπ defined over the finite field

with qn elements is

15.2

∑
i

(αi)
n −

∑
j

(βj)
n
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We may assume that αi 6= βj for every i, j. Then the absolute value of each αi is of the form

qn(i) and the absolute value of each βj is of the form qn(j)+ 1
2 where n(i), n(j) are non-negative

integers. Moreover the (2k)th `-adic Betti number of Yπ is equal to the number of αi with

absolute value qk and its (2k+ 1)st `-adic Betti number is the number of βj with absolute value

qk+ 1
2

We shall use the Weil conjectures in a slightly different but equivalent form.

Definition 15.3. For r ≥ 1 let Nr(Y ) be the number of points of Yπ which are defined over

the field of qr elements. If n is the dimension of Y let Nr = q−rnNr(Y ).

15.4. If follows easily from Poincaré duality and the Weil conjectures as stated above that

we can write the series

exp

(∑
r≥1

Ñr(Y )tr/r

)
∈ Q[[t]]

in the form

Q1(t) · · ·Q2n−1(t)

Q0(t) · · ·Q2n(t)

where

Qi(t) =
∏

j

(1− γijt)

for complex numbers γij satisfying

|γij| = q−i/2

and where degQi is the ith Betti number of Y .

We shall use 15.4 to calculate the rational Poincaré polynomial of the quotient variety M

associated to the action of G on X. It seems to be natual to use this dual form of the Weil

conjectures here. This is what AB do when comparing their methods with those of [H&N]. Using

the ordinary form corresponds to using cohomology with compact supports and it is difficulty to

make sense of this for the infinite dimensional manifolds in [A&B].

For simplicity suppose that G is a subgroup of GL(n+ 1). We assume that G acts freely on

Xss. The argument we shall use runs as follows.

We may assume throughout that the action of G on X is defined over R and that all the

finitely many quasi-projective nonsingular varieties of X and subgroups of G which we shall need

to consider are also defined over R and have nonsingular reduction mod π. We may also assume

that their dimensions are unaltered by reduction mod π. Moreover the Weil conjectures still
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hold if q is replaced by some power qs. Hence we may assume that all subvarieties of Xπ and

subgroups of Gπ under consideration are defined over Fq.

We shall find that the stratification of Xπ induced by the action of Gπ is the reduction mod

π of the stratification of X induced by the action of G, and hence using the results of §13 that

15.5

Ñr(X
ss) = Ñr(X)−

∑
β,m

q−
1
2
rd(β,m)Ñr(Z

ss
β,m)Ñr(G/Pβ)

where the sum is over all nonzero β and integers 0 ≤ m ≤ dim X. This gives us an inductive

formula for Ñr(X
ss)/Ñr(G) which is analogous to the formula for the Poincaré series PG

t (Xss)

obtained in Part I. From it an explicit formula can be derived for Ñr(M) by the arguments used

in §5. This formula is such that if q is replaced by t−2 and Ñr(Y ) by Pt(Y ) for each projective

variety Y which appears in it, then the result is the formula for Pt(M) already derived! It then

remains only to justify this substitution.

Let us now examine the details of this argument more closely.

Let T be a maximal torus of G defined over R and let T ⊆ B be a Borel subgroup also defined

over R. By extending R if necessary we may assume that T acts diagonally on Rn+1. It follows

from our assumptions that the group Gπ is reductive and has Tπ as a maximal torus and Bπ as

a Borel subgroup.

Theorem 12.6 can be applied to the action of Gπ on Xπ and to that of G on X to obtain

stratifications of Xπ and X. It is necessary to investigate the relationship between these strat-

ifications. First we must check that they can be indexed by the same set B. Recall that the

indexing set for the stratification of X is a finite subset of the Q-vector space M(T ) = Y (T )⊗Q
where Y (T ) is the free abelian group consisting of all 1-PS of the maximal torus T . Since Tπ

has the same ramk as T , there is a natural identification of M(T ) with M(Tπ). The Weyl group

actions coincide under these identifications, and so do the weights α0, . . . , αn of the representa-

tions of T and Tπ which define their actions on X and Xπ. Hence the stratifications of X and

Xπ may be indexed by the same set B (see 12.8).

Let {Sβ : β ∈ B} be the stratification of X and let {Sβ,π : β ∈ B} be the stratification of

Xπ. Under the assumptions already made, the following lemma follows without difficulty from

the definitions of §12.

Lemma 15.6. The stratification {Sβ : β ∈ B} is defined over R and

(Sβ)π = Sβ,π ∀β ∈ B

Moreover, (Y ss
β )π, (Zss

β )π and (P ss
β )π coincide with the subvarieties of Xπ and parabolic subgroup

of Gπ defined in the corresponding way for the action of Gπ on Xπ. Finally, the quotient variety

M = Xss/G satisfies
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Ñr(M) = Ñr(X
ss)Ñr(G)−1

for each r ≥ 1.

In orde to apply 15.4 we need to calculate Ñr(M) for each r ≥ 1. The last lemma suggests

that we should investigate Ñr(X
ss). It also tells us that for each β ∈ B that Nr(Sβ) is the number

of points in the stratum Sβ,π of Xπ which are defined over the field of qr elements, and so

15.7

Nr(X
ss) = Nr(X)−

∑
β 6=0

Nr(Sβ)

Moreover

Sβ,π
∼= Gπ ×(Pβ)π (Y ss

β )π

by the lemma together with Theorem 2.26, and so

15.8

Nr(Sβ) = Nr(Y
ss
β )Nr(G/Pβ)

for each β. As in §4 we can decompose Y ss
β into a disjoint union of open subsets {Y ss

β,m : 0 ≤ m ≤
dimX} such that each component of Y ss

β,m has real codimension m in X. Then Sβ is the disjoint

union of open subsets GY ss
β,m which have complex codimension

1

2
d(β,m) =

1

2
m− dimG/Pβ

There is also a locally trivial fibration

pβ : (Y ss
β,m)π −→ (Zss

β,m)π

such that each fibre is an affine space (see 13.2), from which it follows that

Ñr(Y
ss
β,m) = Ñr(Z

ss
β,m)

for each r ≥ 1. So by 15.7 and 15.8 we have

15.9

Ñr(X
ss = Ñr(X)−

∑
β,m

q−
1
2
rd(β,m)Ñr(Z

ss
β,m)Ñr(G/Pβ)

for each r ≥ 1 where the sum is over nonzero β ∈ B and integers 0 ≤ m ≤ dimX.
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Next we consider Ñr(G/Pβ). As in 6.9 we have Pβ = BStab β where B is the Borel subgroup

of G and Stab β is the stabiliser of β under the adjoint action of G Since Stab β contains the max-

imal torus T it follows that Pβ = BuStab β, where Bu is the unipotent part of B (see [B] 10.6 (4)).

Lemma 15.10. If H is a unipotent subgroup of G defined over R such that dimHπ = dimH,

then

Nr(H) = qr dim H

and hence Ñr(H) = 1 for all r ≥ 1.

Proof. The remark at the end of [B] 14.4 shows that Hπ is isomorphic as a variety over Fq to an

affine space. The result follows. �

Under our assumptions this lemma applies to the unipotent subgroups Bui and Bu ∩ Stab β

of G. Hence

15.11

Ñr(Pβ) = Ñr(Stab β)

From this together with 5.9 it follows that

15.12

Ñr(X)Ñr(G)−1 = Ñr(X
ss)Ñr(G)−1 +

∑
β,m

q−
1
2
rd(β,m)Ñr(Z

ss
β,mÑr(Stab β)−1

for all r ≥ 1 where the sum is over all nonzero β ∈ B and 0 ≤ m ≤ dimX. This is an inductive

formula for Ñr(X
ss)Ñr(G)−1 (which coincides with Ñr(M) under the assumption that G acts

freely on Xss by Lemma 15.6). By the argument used in §5 we can derive from it the following

explicit formula.

15.13

Ñr(M) = Ñr(X)Ñr(G)−1 +
∑
β,m

(−1)q(β)q−
1
2
rd(β,m)Ñr(Zβ,m)Ñr(Stab β)−1

for each r ≥ 1 where the sum is over all integers 0 ≤ m ≤ dimX and β-sequences β defined

as in §5. If β = (β1, . . . , βq) is a β-sequence then q(β) = q is the length of β. Each Zβ,m is a
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nonsingular closed subvariety of X and

Stab β =
⋂
j

Stab βj

is a reductive subgroup of G.

From 15.4 we know that the Poincaré polynomial Pt(Y ) of any nonsingular projective variety

Y can be calculated from the numbers Ñr(Y ). Our aim is to apply this to the quotient variety

M and use formula 15.13 to obtain an expression for Pt(M). However the groups which appear

in 15.13 are not projective varieties, so we need to modify the formula a little as follows.

The Borel subgroup is the product of its unipotent part Bu and the maximal torus T so

lemma 15.10 implies that

15.14

Ñr(G) = Ñr(G/B)Ñr(T ) = Ñr(G/B)(1− q−r)dim T

for t ≥ 1.

If we apply this to each of the subgroups Stab β of G and substitute in 15.13, we obtain an

expression for Ñr(M) as a rational function of q and the numbers Ñr(Y ) for certain nonsingular

projective varieties Y . The varieties involved here are X and its subvarieties Zβ,m. This gives us

a formula for the Poincaré polynomial Pt(M) of the quotient M because of the following

Lemma 15.15. Suppose that Y1, . . . , Yk are smooth complex projective varieties defined over

R whose reductions modulo π are also smooth. Suppose that f is a rational function of s + 1

variables with integer coefficients such that

f(q−r, Ñr(Y1), . . . , Ñr(Yk)) = 0

for all r ≥ 1. Then

f(t2Pt(Y1), . . . , Pt(Yk)) = 0

Proof. Call a sequence N = {nr : r ≥ 1} ⊆ Z a Weil sequence if there exist finitely many

polynomials Qi(t) of the form

Qi(t) =
∏

j

(1− γijt), |γij| = q−
i
2

for each i, j, and such that

exp

(∑
r≥1

nrt
r/r

)
=
Q1(t) . . . Q2n−1(t)

Q0(t) . . . Q2n(t)
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for some n ≥ 0. These conditions determine each nontrivial Qi uniquely, so we may define a

polynomial Pt(N) by

Pt(N) =
∑
i≥0

(degQi)t
i

It is easy to check that if N and M are Weil sequences then so are NM and N + M and

q−1N := {q−rnr : r ≥ 1}, and that

Pt(NM) = Pt(N)Pt(M), Pt(N +M) = Pt(N) + Pt(M), Pt(q
−1N) = t2Pt(N)

For each positive integer j ≤ k let Nj be the sequence {Ñr(Yj) : r ≥ 1}. It follows from 5.4

that each of the sequences Nj is a Weil sequence and that the polynomial Pt(Nj) coincides with

Pt(Yj).

To prove the lemma it is enough to consider the case when f ∈ Z[x0, . . . , xn]. We can write

such an f as f = g−h where g, h are sums of monomials with positive integer coefficients. Since

N1, . . . , Nk are Weil sequences, so are the sequences whose rth terms are

g(q−r, Ñr(Y1), . . . , Ñr(Yk)) andh(q−r, Ñr(Y1), . . . , Ñr(Yk))

and their corresponding polynomials are

g(t2, Pt(Y1), . . . , Pt(Yk)) and h(t2, Pt(Y1), . . . , Pt(Yk))

But by assumption these sequences are equal, and hence so are the corresponding polynomials. �

This lemma may be applied to the equation obtained from 15.13 by using 15.14 to substitute

for Ñr(G) and for each Ñr(Stab β). This gives us the following formula for the Betti numbers of

the quotient M :
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15.16

Pt(M) = (1−t2)− dim T

Pt(X)Pt(G/B)−1 +
∑
β,m

(−1)q(β)td(β,m)Pt(Zβ,m)Pt(Stab β/(B ∩ Stab β))−1


As before, let BG denote the classifying space for the group G. There is a fibration BG→ BT

whihc has fibe G/B and is cohomologically trivial. Thus

Pt(BG) = Pt(BT )Pt(G/B)−1 = (1− t2)− dim TPt(G/B)−1

By applying this to all the reductive subgroups Stab β of G, we find that the formula for

Pt(M) in 15.16 coincides with the formula derived in Part I.
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16 Examples

In this section the stratifications induced by some particular group actions will be described and

the Betti numbers of their quotients will be calculuated.

We shall start by reviewing the diagonal action of SL(2) on a power (P1)
n. This was used as

an example throughout Part I. When SL(2) acts on Pn identified with the space of binary forms

of degree n very similiar results hold. Then we shall consider the action of SL(m) on a product

of the form

X =
∏

j

G(`i,m)

where G(`,m) is the Grassmannian of `-dimensional subspces of Cm. The subvarieties Zβ which

appear in the inductive formula for P
SL(m)
t (Xss) are all products of varieties of the same form as

X but with smaller values of m. Thus although the calculation of PG
t (Xss) for large m would be

extremely lengthy by hand, it cold be carried out by a computer. We do some explicit calcula-

tions for the special of products (P2)
n of the projective plane. These examples are more intricate

than (P1)
n and are more typical of the general case.
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16.1. Ordered points on the projective line

For fixed n ≥ 1 consider the diagonal action of the special linear group SL(2) on (P1)
n. This

is linear with respect to the Segre embedding; the corresponding representation of SL(2) is the

nth tensor power of its standard representation on C2. Let Tc be the complex maximal torus

consisting of all diagonal elements of SL(2) and let α be the one-parameter subgroup of Tc given

by

z 7→
(
z 0
0 z−1

)
The weights of the representation with respect to this torus are of the form

rα− (n− r)α

where r is any integer such that 0 ≤ r ≤ n. If we choose the positive Weyl chamber to contain

α the it follows that the indexing set for the stratification is

B =
{

(2r − n)α : n ≥ r >
n

2

}⋃
{0}

Suppose β = (2r − n)α where r > n
2
. Then it is easy to check from definition 12.8 that a

sequence in (P1)
n lies in Zβ iff it contains r copies of 0 and n − r copies of β. Also Yβ consists

of sequences containing precisely r copies of 0.

It follows from definition 12.20 that Zss
β = Zβ and hence Y ss

β = Yβ. Since the stratum Sβ

indexed by β is GY ss
β (see 2.26) it follows that Sβ consists of all sequences (x1, . . . , xn) such that

r but no more of the points xi coincide. Thus Sβ has
(

n
r

)
components each of which has complex

codimension r − 1.

Therefore the semistable elements of (P1)
n are those which contain no point of P1 with

multiplicity strictly greater than n/2 [N]. If x ∈ (P1)
n is not semistable, the stratum to which x

belongs is determined by the multiplicity of the unique point of P1 which occurs as a component

of x strictly more than n/2 times.

SL(2) is the complexification of the compact group SU(2) which preserves the standard Kähler

structure on (P1)
n. Since SU(2) is semisimple there is a unique moment map µ : (P1)

n → su(2).

The adjoint action of SU(2) of its Lie algebra su(2) ∼= R3 is via the double cover θ : SU(2) →
SO(3). Use the standard inner product on R3 to identify su(2) with its dual. The complex

projective line P1 may be identified with the unit sphere in R3 which is an orbit of the adjoint

representation of SU(2). By [Ar], the moment map for the action of SU(2) on P1 is then the

inclusion P1 → R3. It follows easily from this or from 2.7 that the moment map µ : (P1)
n → R3

is given by
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µ(x1, . . . , xn) = x1 + . . .+ xn

f(x1, . . . , xn) = ||x1 + . . .+ xn||2

where || || is the standard norm on R3. A point (x1, . . . , xn) is critical for f if either f(x1, . . . , xn) =

0 or each xi is one of a fixed pair of antipodal points of P1.

It is intuitively reasonable that the Morse stratification of this function should coincide with

the stratification {Sβ : β ∈ B} already described. For by symmetry if two components xi, xj

of x = (x1, . . . , xn) agree then these components will remain the same on the path of steepest

descent for f from x. On the other hand, it is possible to move a configuration of n points into a

balanced position (i.e. a position with centre of gravity at the origin) without splitting up points

which coincide iff no point has multiplicity strictly more than n/2.

Note that the stratification for the action of GL(2) is the same as that for SL(2) although

labelled differently. This is because GL(2) is the quotient by a finite subgroup of the product of

SL(2) with a central one-parameter subgroup which acts trivially on P1.

The stabilizer in PGL(2) of a point x ∈ (P1)
n is nontrivial precisely when at most two distinct

points of P1 occur as components of x. So if n is odd PGL(2) acts freely on the semistable points

of (P1)
n. Then as SL(2) is a finite cover of PGL(2) we can use theorem 8.12 to calculate the

Betti numbers and Hodge numbers of the quotient variety M as follows.

Since the rank of SU(2) is 1 each β-sequence has length 1 (see definition 5.11) and so is just

a nonzero element of B. Thus by 8.10 and 5.17

Pt(M) = Pt((P1)
n)Pt(BSU(2))−

∑
n
2

<r≤n

(
n

r

)
t2(r−1)Pt(BS

1)

= (1 + t2)n(1− t4)−1 −
∑(

n

r

)
t2(r−1)(1− t2)−1

= 1 + nt2 + . . .+

{
1 + (n− 1) +

(
n− 1

2

)
+ . . .+

(
n− 1

min(j, n− 3− j)

)}
t2j + . . .+ t2n−6

This obeys Poincaré duality as expected. Note that the equivariant cohomology of the

semistable stratum of (P1)
n is given by the series above for any n, even or odd. However,

this is not a polynomial when n is even!

When n is odd it is also possible to obtain the Hodge numbers of the quotient M . Indeed,

14.9 shows that hp,q(M) = 0 for p 6= q, and, for each p,

hp,p(M) = 1 + (n− 1) + . . .+

(
n− 1

min(p, n− 3− p)

)
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16.2. Binary forms (cf. [M] 4 §1 and [N] 4 §1, §3)

An example which is familiar to 16.1 is the action of SL(2) on the projective space Pn identified

with the nth symmetric product of P1.

The maximal torus Tc acts on Pn via the homomorphism

diag(z, z−1) → diag(zn, zn−2, . . . , z−n)

so that as in 16.1

B = {(2r − n)α : n ≥ r >
n

2
} ∪ {0}

If β = (2r−n)α ∈ B then Zss
β = Zβ consists of the single configuration in which 0 has multiplicity

r and ∞ has multiplicty n − r. The stratum Sβ consists of those configuations with a point of

multiplicity precisely r and has codimension r − 1 in Pn.

Thus the stratifications of (P1)
n and Pn correspond under the quotient map h : (P1)

n → Pn.

However the moment maps do not correspond. This reflects the fact that the symplectic structure

is not preserved by h. The Kähler form on Pn pulls back via h to a form on (P1)
n which is

symplectic except that it degenerates along a subset of positive codimension. In faact, such

forms give moment maps in the same way as nondegenerate ones. Thus we have two different

moment maps on (P1)
n which induce the same stratification.

When n is odd the stabilizers of all semistable points are finite so there is a singular projective

quotient M = Pss
n /SL(2) such that

Pt(M) = (1 + t2 + . . .+ t2n)(1− t4)−1 −
∑

n≥r> n
2

t2(r−1)(1− t2)−1

= (1− t2)−1(1 + t4 + . . .+ tn−1 − tn+1 − . . .− t2(n−1))

= 1 + t2 + 2t4 + 2t6 + 3t8 + . . .+

[
1 +

1

2
min(j, n− 3− j)

]
t2j + . . .+ t2n−6

16.3. Products of Grassmannians

This example is a generalization of 16.1. If V is a complex vector space let G(`, V ) be

the Grassmannian of `-dimensional linear subspaces of V or equivalently of (`− 1)-dimensional

linear subspaces of the projective space P(V ). We can embed G(`, V ) in P(Λ`V ) by using Plücker

coordinates. Thus any product of the form
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X = G(`1,Cm)× . . .×G(`r,Cm)

can be embedded as a subvariety of the projective space

P

(⊗
1≤j≤r

Λ`jCm

)
Since the central one-parameter subgroup of GL(m) acts trivially on

⊗
1≤j≤r

Λ`jCm

the stratification of X arising from this action of GL(m) coincides wtih the SL(m) stratification

except that a stratum labelled by β for GL(m) is labelled in the SL(m) stratification by the

projection

β − (n+ 1)−1

( ∑
1≤j≤r

`j

)
(1, . . . , 1)

of β onto su(m).

By [M] or [N] 4.17 a sequence of subspaces (L1, . . . , Lr) ∈ X is semistable for SL(M) iff∑
1≤j≤r

(dim Lj ∩M)/(dim M) ≤
∑

1≤j≤r

`j/m

for every proper subspace M ⊂ Cm. The stabiliser of (L1, . . . , Lr) is finite if strict inequality

always holds. Therefore if
∑
`j is coprime to m, every semistable point of X has finite stabilizer

and so theorem 8.12 will give us a formula for the Betti numbers of the quotient variety.

Suppose that (L1, . . . , Lr) is not semistable. Let M be the set of proper subspaces M of Cm

such that the ratio

∑
1≤j≤r

(dimLj ∩M)/(dimM)

is maximal. Then by 16.5 for each M ∈ M the sequence (L1 ∩M, . . . , Lr ∩M) is semistable in

∏
1≤j≤r

G(dimLj ∩M,M)

Let M1 be a maximal element of M. If M ∈ M it is easy to check that M + M1 ∈ M and

hence M ⊂M1 by the maximality of M1. In particular, M1 is uniquely determined.

By induction we find that any (L1, . . . , Lr) ∈ X determines a unique sequence

0 = M0 ⊂M1 ⊂ . . . ⊂Ms = Cm
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of subspaces satisfying the following conditions.

16.7(a). The sequence (Li1, . . . , Lir) is semistable in

∏
1≤j≤r

G(`ij,Mi/Mi−1)

for 1 ≤ i ≤ s where

Lij = (Lj ∩Mi +Mi−1)/Mi−1

is the image of Lj in Mi/Mi−1 and `ij = dimLij.

(b) Each Mi is maximal among subspaces with property (a).

(c) ∑
1≤j≤r

(dimLj ∩Mi)/dimMi) >
∑

1≤j≤r

(dimLj ∩Mi−1)/dimMi−1)

for 1 ≤ i ≤ s or equivalently

k1/m1 > k2/m2 > . . . > ks/ms

where

ki =
∑

1≤j≤r

`ij

and mi = dimMi/Mi−1.

Remark 16.8. The equivalence in (c) comes from the fact that if a, b, c, d > 0 then a/b < c/d

if (a+ c)/(b+ d) < c/d.

Let Tc be the complex maximal torus of GL(m) consisting of the diagonal matrices and let

T = Tc ∩ U(m) Denote by t+ the standard positive Weyl chamber in the Lie algebra of T .

Proposition 16.9. Suppose (L1, . . . , Lr) ∈ X. Let

0 = M0 ⊂M1 . . . ⊂Ms = Cm

be the unique sequence of subspaces of Cm satisfying 16.7 and let the integers ki,mi and `ij be

defined as at 16.7. Then the stratum of the GL(m) stratification of X to which (L1, . . . , Lr)

belongs is labelled by the vector

111



112

β = (k1/m1, . . . , k1/m1, k2/m2, . . . , ks/ms) ∈ t+

in which ki/mi appears mi consecutive times for each i.

Note that for convenience in 16.9 we worked with GL(m) not SL(m). However when con-

sidering quotients it is better to work with SL(m). For the central one-parameter subgroup of

GL(m) acts trivially on X and makes every point of X unstable for GL(m).

This proposition gives us an inductive formula for the equivariant Betti numbers of the

semistable stratum in

X =
∏

1≤j≤r

G(`j,Cm)

under the action of SL(m). It is

16.10

P
SL(m)
t (Xss) = Pt(X)Pt(BSL(m))

−
∑
β,`

(1− t2)1−std(β)
∏

1≤j≤s

P
SL(mi)
t

(( ∏
1≤j≤r

G(`ij,mi)

)ss)

The sum is over vectors β ∈ t+ and sequences

` = {`ij : 1 ≤ i ≤ s, 1 ≤ j ≤ r}

such that there are integers ki ≥ 0 and mi > 0 satisfying

k1/m1 > . . . ks/ms,∑
i

mi = m,
∑

j

`ij = ki,
∑

i

`ij = `j

and

β = (k1/m1, . . . , k1/m1, k2/m2, . . . , ks/ms)

with each ki/mi appearing mi times. Also

d(β) =
∑

1≤i<j≤s

2(ki −mi)mj

The factor (1− t2)1−s appears since in 16.9 since we worked with GL(m) not SL(m).

Remark 16.11. In this example it is possible to show that the stratification is equivariantly

perfect for any field of coefficients, not just the rationals. The proof is essentially the same as for
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Q. It works for all fields because GL(m) is torsion-free, and because it is possible to find for each

β ∈ B a subtorus Tβ which fixes Zβ pointwise and whose action on TxSβ is Z-primitive, not just

Q-primitive, for each x ∈ Zβ (cf. [A&B] theorem 7.14). We deduce that the GL(m)-equivariant

cohomology of the semistable stratum has no torsion. Since PGL(m) acts freely on the semistable

points, it follows from considering spectral sequences that the quotient variety has p-torsion for

the same primes p as GL(m), that is, for p ≤ m.

16.12. Ordered points in a projective plane

As a special case of the last example consider the diagonal action of SL(3) on (P2)
n. The first

value of n for which the quotient is interesting is n = 5. Then 3 6 |n so by 16.6 the stabilizer of

every semistable point is finite.

Suppose x ∈ (P2)
5. By 16.5 x is semistable if no point of P2 occurs in x with multiplicity

greater than n/3 and no line contains more than 2n/3 components of x. If a point occurs with

multiplicity k > n/3 and no line in P2 contains more than 2k components then x lies in the

stratum labelled for GL(3) by

β = (k, (5− k)/2, (5− k)/2)

If a line contains k ≥ 2n/3 components then either a point of this line occurs with multiplicity

k1 > k/2 so that

β = (k1, k − k1, 5− k)

or else no such point occurs and

β = (k/2, k/2, 5− k)

So the stratification is given by the following table. The indices β here are indices for the

GL(3)-stratification; the indices for SL(3) are given by replacing each β by β − (5/3, 5/3, 5/3).
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β points lying in Sβ contribution to P
SL(3)
t (X)

(5/3, 5/3, 5/3) semistable for SL(3) Pt(X
ss)

(5, 0, 0) all components coincide t16(1− t2)−1(1− t4)−1

(4, 1, 0) 4 components coincide 5t12(1− t2)−2

(3, 1, 1) 3 components coincide; 10t8(1− t2)−2

others linearly independent

(5/2, 5/2, 0) all components lie in a line; at most 2 coincide t6(1− t2)−1(1 + 5t2 + t4)

(3, 2, 0) all components lie in a line; at most 3 coincide 10t10(1− t2)−2

(2, 2, 1) 4 components lie in a line; at most 2 coincide 5t4(1− t2)−2(1 + 3t2 − t4)

(2, 3/2, 3/2) 2 components coincide; no 4 lie in a line 10t4(1− t2)−1
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By applying 16.10 we obtain the Betti numbers of the quotient M = Xss/SL(3). The Poincaré

series of M is

Pt(M) = (1 + t2 + t4)5(1− t4)−1(1− t6)−1 − t16(1− t2)−1(1− t4)−1

− (1− t2)−2{5t12 + 10t8 + 10t10 + 5t4(1 + 3t2 − t4)}
− (1− t2)−1{t6 + 5t8 + t10 + 10t4}

which works outs as 1 + 5t2 + t4. Here the inductive formula 16.10 was used rather than an

explicit formula involving β-sequences. The former was quicker because the Poincaré series

P
SL(2)
t (((P1)

n)ss) have already been calculated.

When n = 6 we are no longer in a good case and the series P
SL(3)
t (Xss) is not polynomial.

When n = 7

Pt(M) = 1 + 7t2 + 29t4 + 64t6 + 29t8 + 7t10 + t12

In general one finds that if 3 6 |n the Betti numbers of the quotient M for the action of SL(3)

on (P2)
n are given by

b2j = aj + 2aj−1 + . . .+ (j + 1)a0

for 0 ≤ j ≤ 2(n− 5) where ad is given by

ad =
∑

0≤b≤d/2

(n− 2)!

(d− 2b)!b!(n− 2− d+ b)!

{
b+ 1− n(n− 1)

b+ 1

[
χ1(b)− χ2(b)

n− b− 1
+

χ3(b)

n− d− b− 1

]}
−

∑
n/3≤k≤n

n!(χ4(k)− χ5(k))

k(n− k)!(d− n− k + 2)!(d+ 1)!

and χi are the characteristic functions of the intervals

1. [max(n/3, d− n, d/2]

2. [n/3,min(d/2, (2d− n+ 1)/3)]

3. [max(d+ 1− n, (d− 1)/3),min(d+ 1− 2n/3, d/2− 1]

4. [n− d− 2, 2(n− d− 2)]

5. [2(n− d− 2), n]
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