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1 Introduction

The aim of these notes is to develop a general procedure for computing the rational cohomology
of quotients of group actions in algebraic geometry. The main results were announced in [Ki].

We shall consider linear actions of complex reductive groups on nonsingular complex projec-
tive varieties. To any such action there is an associated projective ‘quotient’ variety defined by
Mumford in [M]. This quotient variety does not coincide with the ordinary topologiacl quotient
of the action. For example, consider the action of SL(2) on complex projective space P,, where
P, is identified with the space of binary forms of degree n, or equivalently of unordered sets of n
points on the projective line P;. The orbit where all n points coincide is contained in the closure
of every ther orbit and hence the topological quotient cannot possibly be given the structure of a
projective variety. To obtain a quotient which is a variety, such ‘bad’ orbits have to be left out.

The quotient varity can be described as follows. Suppose that X is a projective variety
embedded in some PP, and that G is a complex reductive group acting on X via the homomorphism
¢:G— GL(n+1). If A(X) denotes the graded coordinate ring of X then the invariant subring
A(X)% is a finitely generated graded ring: let M be its associated projective variety. The
inclusion of A(X)% into A(X) induces a G-invariant surjective morphism + from an open subset
X* of X to M. (The points of X* are called semistable for the action). There is an open subset
M’ of M which is an orbit space for the action of G on its inverse image under v, in the sense
that each fibre is a single orbit of G.

So we have two ‘quotients’ M and M’ associated to the action of G on X. Our main purpose
here is to find a procedure for calculating the cohomology, or at least the Betti numbers, of
these in the good caes when they coincide. This happens precisely when M is topologically the
ordinary quotient X*/G. In fact, we make the slightly stronger requirement that the stabiliser
in G of every semistable point of X should be finite; this is equivalent to requiring that every
semistable point should be (properly) stable. Under these conditions, an explicit formula is
obtained for the Betti numbers of the quotient M (see theorem 8.12). This formula involves the
cohomology of X and certain linear sections of X, together with the classifying spaces for G and
certain reductive subgroups of G.

For example, consider again the action of SL(2) on binary forms of degree n. Then good
cases occur when n is odd, and one finds that the nonzero Betti number of the quotient M are

given by

: 1
dim H* (M;Q) = 1—|—§min(j,n—3—j) : 0<j<n-3

Our approach to the problem follows the method used by Atiyah and Bott to calculate the
cohomology of moduli spaces of vector bundles over Riemann surfaces [A & BJ. It consists in
finding a canonical stratification! of X associated to the action of G whose unique open stratum

Tt has been pointed out by the referee that the term ‘stratification’ is usually reserved for the decomposition



coincides with the set X® of semistable points provided X® # (). There are then Morse-type
inequalities relating the Betti numbers of X to those of X* and the other strata; and since the
stratification is G-invariant there are also exist equivariant Morse inequalities which turn out in
fact to be equalities.

Recall that the rational equivariant cohomology H*(Y;Q) of a space Y acted on by G is
defined to be H*(Yg; Q) where Yo =Y X EG and EG — BG is the universal classifying bundle
for G. When the rational equivariant Morse inequalities of a stratification are equalities they

can be stated in the form

1.1
dim HA(Y; Q) = ZohmH"A (5;Q), n>0

where the sum runs over all the strata S of the stratification and A(S) is the codimension of S
in X (see [A&B] §1). Moreover, using the assumption that every point of X has finite stabilisr
in G we can show that

HE(X™;Q) = H*(X*/G;Q) = H*(M; Q)
Hence the Morse equalities will give us formulae for the Betti numbers of M in terms of the
rational equivariant cohomology of X and of the other strata.

The Morse inequalities are obtained by building up X from the strata and using the Thom-
Gysin sequences of rational equivariant cohomology that occur every time a stratum is added.
Of course, any coefficient field may be used instead of @, but then the Morse inequalities are
not necessarily equalities, and the cohomology of the quotient M may not be isomorphic to the
equivariant cohomology of X*. So information about the torsion of M can only be obtained in
special cases.

As in [A & B] there are two different approaches to the problem of defining a suitable strat-
ification. One approach is purely algebraic, and leads to a definition of a stratification given a
linear reductive group action on a projective variety defined over any algebraically closed field.
This method will be developed in Part II. It is based on work of Kempf (see [K] and [Hess| and
[K & NJ). The paper [Ne| by Ness has very close links with much of what is covered here and in
Part I, although our results were arrived at independently.

The alternative approach is based on Morse theory and symplectic geometry, and will be
developed in Part 1. The idea is to associate a certain function f in a canonical way to the action
of G on X and use it to define a ‘Morse stratification” of X. The stratum to which any point of
X belongs is determined by the limit of its path of steepest descent for the Kahler metric under
the function f.

which is topologically locally trivial in a neighbourhood of each stratum (Whitney stratifications, for example).
The stratifications in these notes are not required to satisfy this property (see definition 2.11 below). Perhaps
they should be more properly called ‘manifold decompositions’.



The advantages of this approach are that it is conceptually simpler and that it can be applied
to compact Kéhler manifolds as well as to nonsingular projective varieties. More generally still
it enables us to calculate the rational cohomology of the ‘symplectic quotient’, when it exists, of
any symplectic manifold by the actio of a compact Lie group.

The function to which Atiyah and Bott apply the methods of Morse theory in their special
case (where the group and the space are both infinite-dimensional) is the Yang-Mills functional.
As pointed out in [A & B] the latter can be described in terms of symplectic geometry as the
norm-square of the moment map. But in this form it makes sense in our situation.

Recall that a symplectic manifold X is a smooth manifold equipped with a nondegenerate
closed 2-form w; and a compact Lie group K acts symplectically on the manifold if its acts
smoothly and preserves w. Associated to such an action one has the concept of a moment map
i X — € where £* is the dual of the Lie algebra of K. For example, when SO(3) acts on the
cotangent bundle T*R? (phase space) the moment map can be identified with angular momentum.
The existenc e of a moment map is guaranteed by conditions such as the semisimplicity of G or
the vanishing of H'(X;Q).

Consider again a reductive group G acting on a nonsingular complex projectiv variety X C P,
via a homomorphism ¢ : G — GL(n 4 1). Since G is reductive, it is the complexification of a
maximal subgroup K. We may assume that K acts unitarily on C"*! and so preserves the
standard Kahler structure on PP,,. This Kéhler structure makes X into a symplectic manifold on
which K acts symplectically. (It also gives a natural choice of Riemannian metric on X). There
is a moment map p : X — € assocaited to this action which can be described explicitly (see
2.7). If we fix an invariant inner product on the Lie algebra of K then the norm-square of the
moment map p provides us with a K-invariant Morse function f on X.

Unfortunately, the Morse function is not nondegenerate in the sense of Bott, so the results of
Morse theory cannot be applied to it directly. To avoid this problem, one can use the approach
of Part II to define the stratification algebraically and prove that it has all the properties one
wants, showing later that it is is in fact in a natural sense the Morse stratification for f. On
the other hand, of one is prepared to do a little local analysis, one can extend the arguments of
Morse theory to degenerate functions which are reasonably well-behaved. It will be shown that
the norm-square of the moment map is well-behaved in this sense: this is true when X is any
symplectic manifold ated on by a compact group.

More precisely, we shall see that the set of critical points for the function f = ||ul|? is a finite
disjoint union of closed subsets {Cs : § € B} along each of which f is minimally degenerate
in the following sense: A locally closed submanifold ¥3 containing Cz with orientable normal
bundle in X is a minimising submanifold for f if

1. the restriction of f to g achieves its minimum value exactly on Cs and

2. the tangent space to Xz at any point # € Cp is maximal among subspaces of T, X on which



the Hessian H,(f) is positive definite.

If a minimising submanifold X exists, then f is called minimally degenerate along Cjg.

In the appendix it is shown that these conditions imply that f induces a smooth stratification
{Sp : B € B} of X such that a point lies in the stratum Sj if its path of steepest descent for f
has a limit point in the critical subset Cs. (For this X must be given a suitable metric; when
X is Kéhler and f = ||u||* the Kdhler metric will do). The stratum Ss then coincides with 34
near Cz. The proof is not hard but involves some analysis of differential equations near critical
points.

As has already been mentioned, it turns out that the unique open stratum of this stratification
coincides with the set X**; and that in good cases its G-equivariant rational cohomology is
isomorphic to the ordinary rational cohomology of the quotient variety M, which is what we’re
after. Morever, the stratification is G-invariant and equivariantly perfect over QQ in the sense
that its equivariant Morse inequalities are in fact equalities. Thus, formula 1.1 can be used to
calculate the Betti numbers of M in terms of the equivariant cohomology of X itself and of the
nonsemistable strata.

In order that this formula should be useful, it is necessary to investigate the nonsemistable
strata. It turns out that the equivariant cohomology of these can be calculated inductively. In

fact, each stratum Sp has the form

1.2
Sﬁ =G XPB Yﬁss

where Y3® is a locally closed nonsingular subvariety of X and Pj is a parabolic subgroup of G (see
theorem 6.18). This implies that the G-equivariant cohomology of Sz is isomorphic to the Ps-
equivariant cohomology of Y3°. Moreover, there is a linear action of a maximal reductive subgroup
of P on a proper nonsingular closed subvariety Zz of X such that Y® retracts equivariantly onto
the subset Z5' of semistable points for this action. It follows that Hp, (Y3% Q) is isomorphic to the
rational equivariant cohomology of Z7 with respect to this reductive subgroup. By induction,
we may assume that this is known.

It now remains to consider the equivariant cohomology HE(X; Q) of X itself. We shall assume
for convenience that G is connected; then one can show (see Proposition 5.8) that the spectral

sequence of the fibratin

Xg =X xqg G — BG

degenerates over (. This means that the equivariant cohomology of X is isomorphic to the
tensor product

H*(X;Q) ® H*(BG;Q)
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of the cohomology of X and BG. (It is easy to deduce from this what happens for disconnected
groups: For if G has identity component I', then HZ(X;Q) is the invariant part of Hf(X;Q)
under the action of the finite group G/T").

Thus the formula for HS(X*;Q) in terms of the equivariant cohomology of X and of the
nonsemistable strata give us an inductive procedure for calculating Hg(X™; Q). This leads to an
explicit formula for HE(X®; Q) and hence also in good cases for the Betti numbers of the quotient
variety M. This fomrula involves the cohomology of X and certain nonsingular subvarieties of
X together with the cohomology of the classifying spaces of G and various reductive subgroups
of G (see theorem 8.12).

The stratification induced by the norm-square of the moment map has also been studies by
Ness in [Ne]. Moreover, related research on Betti numbers of quotients by C* and SL(2, C) actions
has been done independently by Bialynicki-Birula and Sommese. In fact, in their paper [B-B
& S], they conside quotients of many different open subsets by G, not just X*, and completely
classify those subsets for which quotients exist.

When X is merely a compact symplectic manifold acted on by a compact group K, the
function f = ||p||* still induces a smooth stratification of X, although most of the structure
of the Morse strata is lost. The lost of structure is to be expected because the stratification
depends on choosing a K-invariant Riemannian metric on X and there is no longer a natural
choice given by the real part of the K-invariant metric Kahler metric. So we concentrate on the
critical subsets Cp instead (which are not necessarily submanifolds of X).

In fact, the form in which the Morse inequalities are usually stated is that in which the coho-
mology of each Morse stratum Sg is replaced by that of its critical subset C'z. This replacelemtn
is allowable because the inclusion of C'z in Ss is an equivalence of both equivariant and ordinary
Cech cohomology. These critical subsets are independent of the choice of metric. They have the
following description in terms of minimal sets for small manifolds which is analogous to 1.2. For
each 3, there is a symplectic submanifold Z3 of X acted on by a compact subgroup Stab 3 of G
and a moment map pp for this action such that

Cﬁ = K X XStab,H/ngl<0)-

Since f is equivariantly perfect and

Hi(X;Q) = H*(X;Q) ® H*(BK; Q)
we obtain an inductive procedure for calculating the dimensions of the equivariant cohomology
groups H(1171(0); Q) of the minimum critical set ~(0) for f.

The reason by Hj(u~'(0); Q) is interesting is that when a symplectic quotient of the action
of K on X exists, then its rational cohomology is isomorphic to Hj(1~'(0); Q). In order that
the symplectic quotient should exist in a reasonable sense one has to assume that there is a
moment map g : X — € and that the stabiliser in K of every z € p~'(0) is finite. Then one
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finds that p~!(0) is a submanifold of X, and that the Kahler form w on X induces a symplectic
structure on the topological quotient p~(0)/K which is a manifold except for singularities due
to the presence of finite isotropy groups. With this structure x~!(0)/K is a natural symplectic
quotient (or Marsden-Weinstein reduction) of X by K. Because of the assumption on stabilisers,
its rational cohomology is isomorphic to Hj (u~1(0); Q).

As we have already seen, the link between algebraic and symplectic geometry is through
Kéhler geometry. Except for the connection with semistability and invariant theory, the results
for projective varieties hold when X is any compact Kahler manifold acted on by a complex
group G, provided that G is the complexification of a maximal compact subgroup K which
preserves the Kahler structure on X and that there exists a moment map p : X — €. We obtain
an equivariantly perfect stratification of X such that each stratum is a locally closed complex
submanifold of X and can be decomposed in a form analogous to that described in 1.2. Moreover
it turns out that if the symplectic quotient p~'(0)/K exists then it can be identified with the
quotient of the minimum stratum X™® by the complex group G. Because of this it can be givne
the structure of a compact Kéahler manifold, except for singularities caused by finite isotropy
groups. So

X /G = (0)/K

is a natural Kéhler quotient of X by G, and its Betti numbers can be calculated by the method
already described.

In particular, in the case of a linear action on a projective variety, the quotietn M obtained
from invariant theory coincides topologically with the quotient ©~*(0)/K; inf act, this is true in
all cases, not only good ones.

The set B which indexes the critical subsets Cg and also the stratification can be identified
with a finite set of orbits of the adjoint representation of K on its Lie algebra £. Each orbit in
B is the image under the moment map p : X — € = £ of the critical subset which it indexes.
If a choice is made of a positive Weyl chamber t, in the Lie algebra of some maximal torus of
K, then each adjoint orbit intersects t, in a unique point, so B can be regarded alteratively as
a finite set of points in t;. When X C P, is a projective variety on which K acts linearly via
a homomorphism ¢ : K — GL(n + 1), these points can be described in terms of the weights of
the representation of K given by ¢ as follows: A point of t, lies in B if it is the closest point
to the origin of the convex hull of a nonempty set of these weights. (Recall that there is a fixed
invariant inner product on ¢ which is used to identify ¢ with its dual). This is true also in the
general symplectic case if the definition of weight is extende appropriately.

In terms of this last description, if 3 € B then the submanifold Zz of X which appeared in
the inductive description of the critical subset C3 and of the stratum Sg is the union of certain
components of the fixed points set of the subtorus of K generated by (3. This subgroup Stab 3 is
the stabiliser of # under the adjoint action of K on its Lie algebra, and in the Kahler case, the



complexification of Stab 3 is a maximal reductive subgroup of the parabolic subgroup Pj.

The function f = ||u||? is not unique in possessing the properties described above. The same
arguments work for any convex function of the moment map (cf. [A & B] §§8 and 12).

Finally, it should be noted that the assumption of the compactness is not essential (see §9).
There are interesting examples of quasi-projective varieties and noncompact symplectic manifolds
to which the same sort of analysis can be applied by taking a little extra care. These include the
original examples of symplectic manifolds, viz. cotangent bundles.

The layout of the first part is as follows. §§2-5 are concerned with any symplectic action
of a compact group K on a compact symplectic manifold X. In §2 we introduce the moment
map i, giving particular emphasis to the case when a compact group acts linearly on a non-
singular complex projective varity. We then describe the Morse stratification associated to the
nondegenerate Morse function, and discuss how the ideas of Morse theory might be applied to
f = ||p||* even though it is degenerate. In §3 we describe the set of critical points for f as a
finite disjoint union of closed subsets {Cs : # € B}. It is then shown in §4 that f is minimally
degenerate along each critical subset Cs. This implies that there are Morse inequalitie relating
the Betti numbers of the symplectic manifold X to those of the subsets Cy; the proof of this
fact is left to the appendix. In §5 these Morse inequalities are shown to be equalities for rational
equivariant cohomology (see theorem 5.4). Inductive and explicit formulae are obtained for the
dimensions of the cohomology groups H% (1~ '(0); Q) and it is shown that these coincide with
the Betti numbers of the symplectic quotient g~*(0)/K when it exists.

The next two sections study the case when X is a Kéahler manifold so that there is a natural
choice of metric on X. In §6 we see that the function f = ||u||? induces a Morse stratification
{Sp : # € B} with respect to this metric such that the strata Sz are localled closed complex
submanifolds of X and are invariant under the action of the complex group G. It is also known
that the strata Sz have the structure described in 1.2 above. The cohomological formulae of
85 are interpreted in the Kéhler case, and there is a brief discussin of how the stratification is
affected if the choices of moment map and of inner product on the Lie algebra £ are altered. In
§7 we see that that if a symplectic quotient exists for the action of K on X, then it has a natural
Kahler structure and can be regarded as a Kahler quotient of the action of G on X.

Then in §8 we consider the case when G is a complex reductive group acting linearly on
X which is a nonsingular complex projective variety. It is showns that the open subset X of
semistable points for the action coincides with the minimum stratum of the Morse stratification,
so that §5 gives us an inductive formula for its rational equivariant cohomology. In good cases,
when the stabiliser of every semistable point is finite, we deduce that the projective quotient
variety defined in geometric invariant theory coincides with the symplectic quotient p~'(0)/K.
Our original aim is then achieved by interpreting the formulae of §5 to give formulae for the
Betti numbers of this quotient variety (see Theorem 8.12).

Section 9 contains some remarks on how to loosen the requirement of compactness. Examples



are given of formulae obtained by looing at the symplectic actions on cotangent bundles induced
by arbitrary actions of compact groups on manifolds.

Part II gives an algebraic approach to the same problem. It is shown in §§12 and 13 that if k£
is any algebraically closed field and G is a reductive group acting linearly on a projective variety
X defined over k, then a stratification {Ss : § € B} of X can be defined which coincides with the
stratification which coincides with the stratification defined in Part I when & = C. The strata
Sp are all G-invariant subvarieties of X. Moreover, if X is nonsingular then so are the strata Sg,
and they have the structure described at 1.2 This algebraic definitio of the stratification relies
heavily on the work of Kempf (as expounded in [He]).

The fact that such stratifications exist when k is the algebraic closure of a finite field provides
an alternative method for obtaining the formulae found in Part I for the Betti numbers of
quotients of nonsingular complex projective varieties. For this one has t count points in quotients
defined over finite fields, and then apply the Weil conjectures (see §15). This is the method used
by Harder and Narasimhanin [H & N] to obtain formulae later rederived by Atiyah and Bott for
the Betti numbers of the moduli spaces of vector bundles over a Riemann surface.

It is shown in §14 how the formulae for the Betti numbers can be refined to give Hodge
numbers as well. As an immediate corollary we have that if the Hodge numbers h?? of the
variety X vanish when p # ¢, then the same is true of the quotient variety.

In the final section, some detailed examples are given of the stratification and of calculating the
rational cohomology of the quotients. One example studies is that of products of Grassmannians
acted on by general linear groups. It will be shown in a future paper [Ki3] that this can be used to
give an alternative derivation of the formulae of [A & B] for the cohomology of moduli spaces of
vector bundles over Riemann surfaces. This alternative derivation uses finite-dimensional group
actions whereas in [A&B] the groups and spaces are all infinite dimensional.

The formulae for the Betti numbers obtained in this monograph depend upon the restrictive
assumption that the stabiliser of every semistable point is finite. This assumption implies in
particular that the quotient variety has only the minor singularities due to the existence of
finite isotropy groups, whereas in general the quotient has more serious singularities. However,
provided that X® is not empty, one can obtain interesting information even when there are
semistable points which are not stable. In fact, there is a canonical way to blow up X along a
sequence of nonsingular subvarieties to obtain a projective variety X with a linear action of G
for which every semistable point is stable. Then the geometric invariant theory quotient of X
(which has only minor singularities) can be regarded as an approximate desingularisation of the
quotient of X, and there is a formula for its Betti numbers similar to that of Theorem 8.12 (see
[Ki2]).

Finally, there are some differences of notation and also some inaccuracies in the announcement
of these results in [Kil]. One mistake is that the theorme as it stands is only valid when G is

connected, because remark (1) is only true in this case. Another is that in (d) of the proposition it
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is only the reductive part Stab 3 of the parabolic subgroup P which acts on Zg, not the whole of
Pgs. Furthermore, the last sentence might be taken to imply that the geometric invariant theory
quotient of a product of Grassmanians is torsion-free. This is not true since the projective inear
groups PGL(m, C) have torsion.

I would like to thank all those who gave me help and advice, including Michael Pennington,
Simon Donaldson, Michael Murray, John Roe, Graeme Segal and the referee, and to thank
Linda Ness for sending me her results. I also thank Laura Schlesinger for her excellent typing,
and the Science and Engineering Research Council of Great Britain for a grant which supported
me during the course of my research. Above all, I wish to acknowledge my great debt to my

supervisor Michael Atiyah, to whom most of the basic ideas of these notes are due.
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Part I. The Symplectic Approach

2 The moment map

This section introduces the concept of a moment map associated to a compact group action on
a symplectic manifold. Special emphasis will be given to the examples of most interest to us,
which are linear actions on nonsingular complex projective varieties. A precise formula is given
in 2.7 for the moment map in these cases.

The moment map will be used to define a real valued function on the symplectic manifold
concerned. We shall conclude this section by considering how the ideas of Morse theory might
be applied to this function, in spite of the fact that it is not a nondegenerate Morse function.

A symplectic manifold is a smooth manifold X equipped with a nondegenerate closed 2-form
w. A compact Lie group K is said to act symplectically on X if K acts smoothly and k*w = w
for all £ € K. We shall assume throughout that every compact group action on a symplectic
manifold is symplectic unless specified otherwise.

Any Kahler manifold X can be given the structure of a symplectic manifold by taking w to
be the Kahler form on X, which is the imaginary part of a hermitian metric n on X. If K is any

compact Lie group acting on X then the average

J ko
K

is a Kéhler metric whose imaginary part is a K-invariant symplectic form on X.

The special case which will be of the most interest to us is the following.

Example 2.1. Linear actions on complex projective spaces.

Let X be a nonsingular subvariety of some complex projective space P, and suppose that a
compact Lie group K acts on P, via a homomorphism ¢ : K — GL(n + 1). By conjugating ¢
with a suitable element of GL(n+1) we may assume that ¢(K) is contained in the unitary group
U(n 4 1). The restriction of the Fubini-Study metric on P, then gives X a Kéhler structure
which is preserved by K.

Example 2.2. Configuration of points on the complex sphere.

A particular case of 2.1 which will be used throughout to illustrate definitions and results is
that of the diagonal action of SU(2) on the spaces (P;)™ of sequences of points on the complex
sphere. (IP;)" is embedded in Pyn_; by the Segre embedding. Alternatively one can consider the
action of SU(2) on the space of unordered sets of n points in P; which can be identified with P,.

11
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Let € be the Lie algebra of K. Then the moment map for the action of K on X is a map
i X — € which is K-equivariant with respect to the given action of K on X and the co-adjoint

action Ad* of K on £ and satisfies the following condition.

2.3. For every a € £ the composition of du : TX — £ with evaluation at a defines a 1-form w
on X. This 1-form is required to correspond under the duality defined by w to the vector field
r — a, on X induced by a. That is, for all x € X and £ € T, X

dp(r)(§)-a = wu (€, az)

where . denotes the natural pairing of £* and €. In other words the component of i along a is a
Hamiltonian function for the vector field on X defined by a.

i is determined up to an additive constant by 2.3. When K is semisimple p is determined
completely, since the only point of £ fixed by the co-adjoint action is 0. If on the other hand K is
a torus the addition of a constant to p does not affect its equivalence because K acts trivially on
£*. However if a moment map p exists we can always make a canonical choice of p by requiring
that the integral of p over X (with the highest exterior power of w as volume form) should vanish.

By a theorem of Marsden-Weinstein a moment map p : X — £ always exists (and is unique)
when K is semisimple. In addition if H'(X;Q) = 0 then a moment map always exists when K
is a torus. For the adjoint action of a torus on its Lie algebra is trivial, so by 2.3 we just have to
solve the differential equations

d,u(x)(f)@ = w:c(aaza f)
for each a in some basis of the Lie algebra €. This is possible if H'(X,Q) = 0 since dw = 0.

A compact Lie group is the product of a semisimple group and a torus, at least modulo finite
central extensions. Moreover if K; — K is a finite central extension then a moment map for
K, is the same as a moment map for Ks. It follows that a moment map always exists when
H'Y(X,Q) =0.

It is easy to see that when K acts on X C PP, via a homomorphism ¢ : K — U(n+1) a
moment map always exists. It is sufficient to prove existence when U(n + 1) acts P, since p is a
moment map for this action then the composition

2.4.

X—>Pni>u(n+1)*i>é*

is a moment map for the action of K on X. But we have

12
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Lemma 2.5. Let 2* = (zg, ..., 2,) be any nonzero vector of C"*! over z = (zg : ... : x,) in P
Then the map p : P,, — u(n + 1)* defined by

f*t(lx*
~ 2n[a]?

is a moment map for the action of U(n+ 1) on P,,. Morever, p is uniquely determined up to the

w(x).a

addition of a scalar multiple of the trace.
Proof. Note first that

un+1)=su(n+1)®iRl,

where 1 is the identity matrix. iR1,., is the Lie algebra of the central one-parameter compact
subgroup of U(n+ 1) which acts trivially on P,,,. The projection of u(n + 1) onto iR1,,,; is given
by a — tr(a)(n + 1)7'1,,;. Thus any moment map for SU(n + 1) is unique and a moment for
U(n + 1) is unique up to the addition of a scalar mutliple of the trace.

Clearly the formula given for p is independent of the choice of 2* and satisfies

~xt .t *
wulkr).a = % = p(z).k tak = Ad*ku(r).a

for all k,a € u(n +1); so p is SU(n + 1)-equivariant.

In particular since U(n + 1) acts transitively on P,, to prove that 2.3 holds it suffices to
consider the point o = (1:0:...:0). The Kéhler form at p is given by

R )
wp:%;dxj/\dx]

with respect to local coordinates (z1,...,2,) — (1: 21 :...: x,) near p. But in these coordinate
the vector field induced by a on P, takes the values (aiq, asg, - - -, ano) at p. Also

d(2mil|z*|[*) " '2tar*) = (2mi) 7! Z(aojdxj + ajodz;)

j=1
1 _ _
= o > (@jodz; — ajodz;)
Remark 2.6. An alternative proof runs as follows. It is known that there is a natural homo-
geneous symplectic structure on any orbit in u(n + 1)* of the co-adjoint action of U(n + 1) and

that the corresponding moment map is the inclusion of the orbit in u(n + 1)*. This is true for
any compact group. The map from P, to u(n + 1) given by

x*j*t

T onill
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is a U(n+1)-invariant symplectic isomorphism from P, to the orbit of the skew-hermitian matrix
(27i)~tdiag(1,0,...,0). For 2*7** is hermitian of rank 1 with z* as an eigenvector with eigenvalue
||z*||?. Lemma 2.5 follows from this because the inner product of x*z** with any a € u(n +1) is
Ttax*.

To sum up: by 2.4 and 2.5, given a nonsingular complex projective projective variety X C P,
and a compact group K acting on X by a homomorphism ¢ : K — U(n + 1) a moment map

o X — ¥ is defined by

2.7

B :Z*Qp*(a)x*
M0 = il P

for each a € ¢ and x € X. This moment map is functorial in X, K.

2.8. Consider the example 2.2 of configurations of points on the complex sphere P; acted on by
SU(2). Now su(2) is isomorphic to R® and P; can be identified with S? in such a way that the
moment map p : (P1)" — su(2) sends a configuration of n points on the sphere to its center of
gravity in R?® (up to a scalar factor of n).

Henceforth we shall assume that a moment map p exists for the action of K on X.

Fix an inner product on £ which is invariant under the adjoint action of K and denote the
product of a and b by a.b; use it to identify € with its dual.

For example if K C U(n + 1) we can take the restriction to € of the standard inner product
given by a.b = —tr(ab) on u(n + 1). Then 2.6 implies that for each x € X the element p(z) of
t* is identified with the orthogonal projection of the skew-hermitian matrix (27é||z*||?) " a*z*
onto &.

Also choose a K-invariant Riemannian metric on X. If X is Kéahler (in particular, if X is a

projective variety) then the natural choice is the real part of the Kéhler metric on X.

Definition 2.9. Let f : X — R be the function defined by f(z) = ||u(z)||* where || || is the
norm on ¢ induced by the inner product.

We want to consider the function f: X — R as a Morse function on X.

For any « € X let {x; : t > 0} be the trajectory of —gradf such that zy = x, i.e. the path of

steepest descent of f starting from x. Let

w(z) = {y € X : every neighbourhood of y € X contains points x; for ¢ arbitrarily large}

be the set of limit points of the trajectory as ¢t — oco. Then w(z) is closed and nonempty (since
X is compact) and is connected. For suppose that there are disjoint open sets U,V in X such
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that w(x) C U UV. Then for every y ¢ U UV there is some ¢, > 0 and a neighbourhood W, of
y such that =, ¢ W, for t > ¢,. But X\U UV is compact so there is some 7" > 0 such that ¢ > T’
implies z; € U U V. Since the set {z; : t > T} is connected it is contained in U or V, and thus
w(z) is also contained in either open. We conclude that

2.10. For every x € X the limit set w(x) is connected. Also every point of w(x) is critical for
f.

If f were a nondegenerate Morse function in the sense of Bott, then the set of critical points
for f on X would be a finite disjoint union of connected submanifolds {C' € C} of X. Given
such a function, 2.10 implies that for every x there is a unique C' such that w(x) is contained in
C. The Morse stratum Sc corresponding to any C' € C is then defined to consist of those x € X
wth w(z) contained in C. The strata S¢ retract onto the corresponding critical submanifolds C'
and form a smooth stratification of X in the following sense.

Definition 2.11. A finite collection {Ss : § € B} of subsets form a stratification of X if X is
the disjoint union of the strata Sg and there is a strict partial order > on the indexing set B
such that

Ssc S,
=B

for every # € B. For the Morse stratification associated to a nondegenerate Morse function the
partial order is given by C' > C" if f(C) > f(C") where for C € C, f(C) is the value taken by f
on C.

The stratification is smooth if every Sj is a locally-closed submanifold of X (possibly discon-
nected).

In fact the set of critical points for the function f = ||u||? has singularities in general so that
f cannot be a nondegenerate Morse function in the sense of Bott. Nevertheless we shall see that
the critical set of f is a finite disjoint union of closed subsets {C3 : 3 € B} on each of which f
takes a constant value. By 2.10 it follows that for every x € X there is a unique 3 € B such that
w(x) is contained in Cjs. So X is the disjoint union of subsets {Sg} where z € X lies in S if the
limit set w(x) of its path of steepest descent for f is contained in Cz. We shall find that for a
suitable Riemannian metric the subsets {Sg : § € B} form a smooth K-invariant stratification
of X.

Example 2.12. The norm square of the moment map p associated to the action of SU(2) on
sequences of n points in P; identified with the unit sphere in R3 is given by

(T4, 2n) = o1+ 22+ .+ 2|2
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where || || is the usual norm on R3. As is always the case ||u||*> takes its minimum value on
p~1(0) which consists of all sequences with center of gravity at the origin. Note that if n is even
p~1(0) is singular near configurations containing two sets of 5 coincident points. One can check
that the critical configurations not contained in z~'(0) are those in which some number r > %
of the n points coincide somewhere on the sphere and the other n — r coincide at the antipodal
point. The connected components of the set of non-minimal critical points are thus submanifolds
and are indexed by subsets of {1,...,n} of cardinality greater than 3. The union of the Morse
strata corresponding to subsets of fixed cardinality r consists of all sequences such that precisely
r of the points coincide somewhere on P;.

Given any smooth stratification {Sz : § € B} of the manifold X one can build up the
cohomology of X inductively from the cohomology of the strata. This is done by using the
Thom-Gysin sequences which for each 3 € B relate the cohomology groups of the stratum Sg
and of the two open subsets

Us. Us,

¥<B v<B
of X. These give us the famous Morse inequalities which can be expressed as follows. For any
space Y let P,(Y') be the Poincaré series given by

= t'dim H'(Y;Q)

i>0
Assume for convenience that if 3 € B then each component of the stratum Sz has the same
codimension d() in X. Then the Morse inequalities say that

2.13.
Zt )P,(S5) — P(X) = (1+t)R(t)

where R is a series with non—negatlve integer coefficients.

2.14. A smooth stratification of X is called perfect if the Morse inequalities are equalities; that
is, if

Zt ) P,(Sp)

When the stratification is induced by a nondegenerate Morse function f one can replace
P,(Sc) by P,(C) for each critical submanifold C' because the stratum S¢ retracts onto C: this
is the form in which the Morse inequalities are usually seen. In this form the metric does not
appear in the inequalities.
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If a space Y is acted on by a topological group then the equivariant cohomology HA (Y, Q) is
defined by
2.15

Hg(Y,Q) = H'(EG x¢Y;Q)

where EG — BG is the universal classifying bundle for G and FG xg Y is the quotient of
EG x 'Y by the diagonal action of G acting on EG on the right and on Y on the left.

For any smooth stratification {Sg} of X whose strata are all invariant under the action of
the group K on X we obtain equivariant Morse inequalities

2.16.
> t"IPE(Ss) — PR(X) = (1 +t)R(D)
E

where R has nonnegative coefficients and P/ denotes the equivariant Poincaré series.
The stratification is called equivariantly perfect if these are equalities.
It will be shown that the function f = ||u||> on X is equivariantly perfect in the sense that

2.17.
PE(X) =) D PF(Cy)
5

where the sum is taken over the critical subsets {Cs} and A(() is the index of f along C. This is
done by showing that if X is given a suitable metric then the stratification {Sz} induced by f is
equivariantly perfect and each stratum Sp retracts equivariantly onto the corresponding critical
subsets Cl.

We shall finish this section with a criterion due to Atiyah and Bott for a stratification to be
equivariantly perfect.

Lemma 2.18. Suppose {Ss : § € B} is a smooth K-invariant stratification of X such that
for each 3 the equivariant Euler class of the normal bundle to Sz in X is not a zero-divisor in

H}(S5;Q). Then the stratification is equivariantly perfect over Q.

Proof. We need to show that the equivariant Thom-Gysin sequences

C— Hy "9(85,Q) — HE (U SW;@> — H} (U 57;Q> — .

V<8 v<B

split into short exact sequences for all 3. It is enough to show that each map

17



18

Hy")(85,Q) — Hy. (U Sy; @)

v<B

is injective. This will certainly happen if the composition with the restriction map

HL (U 57;@> — H(S5,Q)
v<B

is injective. But this composition is multiplication by the equivariant Euler class of the normal

bundle to Sg in X. The result follows. [J
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3 Ciritical points for the square of the moment map

Suppose that K is a compact Lie group acting on a compact symplectic manifold X and that
p: X — £ is a moment map for this action. Our aim is to use the function f = ||u|[*: X — R
as Morse function on X, where || || is the norm associated to any inner product on ¢ which is
invariant under the adjoint action of K. In this section we shall investigate the set of critical
points for f.

As before if a € £ let x — a, be the vector field on X generated by a.

Lemma 3.1. A point x € X is critical for f iff u(z), = 0 where p(z) € * is identified with an
element of £ by using the fixed invariant inner product on &.

Proof. Let {a; : 1 <i < dim#} be an orthonormal basis of € and for 1 <i < €let y; : X — R be
given by pu;(x) = p(x).a;. Then

= Z,ui(x)a

when £* is identified with £ and

F@) = @I =Y (@) = df (@) = Y 2u5()dpui(a

Now df (z) € Ty X vanishes iff its w-dual in T, X does, where w is the symplectic form on X.
But by definition 2.3 of a moment map the w-dual of each du;(x) is just the vector (a;),. Hence
the w-dual of df (z) is

3.2.
2 <Z m(@m) = 2(pu())a

and the result follows.

3.3. Now let T" be a maximal torus of K and let t be its Lie algebra. Then it is easy to check
that the composition pr : X — & — t* of u with the restriction map € — t* is a moment map
for the action of T on X. When the inner product of £ is used to identify £* with € and t* with t
then pp becomes the orthogonal projection of p onto t. Thus if u(x) € t then pur(z) = p(x) and
hence x is critical for the function f = ||u||? iff it is critical for the function fr = ||ur||* by 3.1.
Therefore we shall next investigate the critical points of f7. The moment maps pp : X — t*
associated to torus actions on X have been studied by Atiyah. Theorem 1 in [A2] tells us that
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3.4. The image under pp of the fixed point set of 7" on X is a finite set A of points in t* and
pr(x) is the convex hull Conv(A) of A in t*.

The elements of A will be called the weights of the symplectic action of 7" on X. This termi-
nology is explained in the following example.

Example 3.5. Let X C P, be a nonsingular complex projective variety and let 7" act on X via
a homomorphism ¢ : T — U(n+1). By conjugating ¢ by an element of U(n+ 1) we may assume
that

o(t) = diag(ap(t), ..., an(t)), t€T

where o; : T — S', 0 < j < n are characters of T whose derivatives at 1 are the weights of the
representation of 7" on C"*!. If the tangent space at 1 to S! is identified with the line 27iR in
C and hence with R in the usual way then the derivative of each a; at 1 can be identified with
an element of t*. By abuse of notation this element of t* will also be denoted by «;. Then the
derivative ¢, of ¢ at 1 is given by

0(§) = 2midiag(€.ap, - .., Eap)

By 2.7 a moment map ur is given by

7kt N * 1
pr(z).§ = o) = 2|2 Z \%‘204]'.5
J

2mi||x*||?

for each ¢ € t where 2* = (zg, ..., z,) € C""1\{0} representing x. Thus

3.6. )
pr(x) = W Z |$j|204j

The point € X is fixed by 7" iff there is some a € t* such that a; = « whenever z; # 0;
and then clearly pr(z) = a. So at least when X is the whole projective space P, the set A is
just the set {ag, ..., a,} os weights of the representation of 7" on C"*! and formula 3.6 shows
immediately that pur(P,) is the convex hull of A.

We need some definitions.

Definition 3.7. For any 3 € t let T be the closure in 7' of the real one-parameter subgroup
expRA. Thus T} is a subtorus of T. Let pg : X — R be given by ug(z) = p(x).5. Then by
definition of a moment map and cotangent field x — dpug(z) on X is w-dual to the vector field

x — [, induced by g on X. If x € X then §, = 0 iff x is fixed by the subgroup expR3 of T" and
hence by its closure T in T'. Therefore the critical set of the function ;13 on X is precisely the
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fixed point set of the subtorus T3 of T'. It is well known that

3.8. Every connected component of the fixed point set of a torus action on X is a submanifold

of X and the induced action of the torus on its normal bundle in X has no nonzero fixed vectors.

(To see this one puts a T-invariant Riemannian metric on X and uses normal coordinates).
Using this fact, Atiyah shows that

3.9. pug is a nondegenerate Morse function on X in the sense of Bott.

Definition 3.10. Let Zg be the union of those connected components of the critical set of g
on which pg takes the value ||3||?>. Thus if z € Zs then u(z) lies in the affine hyperplane in €
containing 3 and perpendicular to the line from 3 to the origin.

Zg is a submanifold of X (possibly disconnected) fixed by T3 and invariant under 7'. In fact,
it is a symplectic submanifold of X.

Example 3.11. If X is a smooth projective variety and T" acts on X via ¢ : T'— U(n+ 1) then
Zg is the intersection with X of a linear subvariety of P,. If p(t) = diag(ao(?),...,a,(t)) for
t € T' where «; are the characters of 7" identified with points of t* then

Zg={(xo:...:2,) € X :2; =0 unless ;.0 =||6]|°}

Note that the inner product on t gives t the structure of a normed space. For any nonempty
closed convex set C' C t there is then a unique of minimal norm in C'. This point will be called
the point of C' closest to the origin 0.

The point of these definitions is the following result.

Lemma 3.12. Let € X and let 3 = pur(x) € t. Then z is critical for fr = ||ur||* iff x € Zg;
and if this is the case then [ is the closest point to 0 of the convex hull of some nonempty subset
of the set A of weights defined in 3.4.

Proof. By 3.1 z is critical iff 8, = 0, i.e. iff z is fixed by Tp. Since pg = pr(z).0 = ||8])* it
follows that x is fixed by T} iff it lies in Z3 So (3 is the closest point to 0 of pur(Z3) if B € ur(Zs)
and hence if z € Zz. But we can apply 3.4 to the action of 7" on Zs to deduce that pr(Zs) is
the convex hull of the image under pr of the fixed point set of T" on Zz which is a subset of A.
The result now follows. [J

This lemma can be used to describe the critical set of the function f = ||ul|*> associated to
the action of the whole group K.
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Definition 3.13. Let ( € t, the Lie algebra of a maximal torus 7" of K. Then [ will be called
the minimal combination of weights of the action of T on X if it is the closest point to the origin
of the convex hull in t of some nonempty subset of the set of weights A (defined in 3.4). Let t,
be a fixed positive Weyl chamber in t and denote by B the set of all minimal combinations of
weights which lie in t,.

B will be the indexing set for the stratification of X which we shall associate to the function f.

Definition 3.14. For 3 € Blet Cs = K(ZgNp 1(6)).
Then we have

Lemma 3.15. The critical set of f on X is the disjoint union of the closed subsets {Cjs : 3 € B}
of X.

Proof. For any = € X there is some k € K such that Ad ku(x) € t,. By the defintion of moment
map Adku(z) = p(kx). Since f is a K-invariant map x is critical for f iff kz is for any such
k. But u(kx) € t so by 3.3 kx is critical for f = ||u||* iff it is critical for fr = ||ur||*. Let
B = p(kx) € ty. By 3.12 kx is critical for fr iff kx € Zs and if this happens then 5 € B.

Therefore the critical set for f is the union of the closed sets Cs = K(ZzNp~'(3)) as 3 runs
over B. Moreover for each # € B the image of C3 under p is preisely the orbit of 5 under the
adjoint representations of K. Since any adjoint orbit in € intersects the positive Weyl chamber
in a unique point the subsets {C3} must be disjoint. The result follows.

The subsets {Cj : # € B} will therefore be called the critical subsets for f.

Corollary 3.16. The image under p of each connected component of the critical set for f is a
single adjoint orbit in € = €. For each 3 € B, Cj consists of those critical points for f whose im-
age under p lies in the adjoint orbit of 3. Thus the function f = ||u||* takes the value ||3]* on Cj.

Example 3.17. If X = (IP)" is acted on by SU(2) as in 2.2 then T} is the maximal torus 7" of
SU(2) when 3 # 0. The fixed point set of T" consists of all configurations such that every point
is either at 0 or co. Identify t with R and give it the standard inner product so that the identity
character of T'= S! becomes 1 in R. Take R™ as the positiv Weyl chamber. Then the moment
map sends a configuration with r points at 0 and the rest at oo to 2r —n € t. So

B:{Qr—n:%ngrgn}u{()}

and if B = 2r —n then Zz consists of configurations with 7 points at 0 and the rest at co. Thus
the last lemma agrees with 2.12.
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4 The square of the moment map as a Morse function

As in §§2-3 let X be a compact symplectic manifold acted on by a compact Lie group K and
assume that a moment map p : X — € exists. We want to apply Morse theory to the function
f = ||p||* where ||| is the norm associated to any inner product on € which is invariant under
the adjoint action of K. Problems arise because the critical set of f has singularities. However,
we shall see in this section that f is minimally degenerate. It is show in §10 that such functions
are sufficiently well-behaved to have associated Morse inequalities.

To show that f is minimally degenerate we need to find a minimising submanifold along
each of the critical subsets Cj3. That is, for each 3 € B we require a submanifold X3 of some
neighbourhood of Cjs with orientable normal bundle in X and such that the restriction of f to
>3 takes its minimum value on Cg. We also require that for each x € U3 the tangent space T,>3
is maximal among subspaces of T, X on which the Hessian H,(f) is positive semidefinite.

First fix a K-invariant Riemannian metric on X.

4.1. Note that such a metric and the symplectic structure give X a K-invariant almost-complex
structure as follows. The metric can be used to identify the symplectic form with a skew-adjoint
linear operator A on the tangent bundle 7X. Then A% = —AA* and since AA* is self-adjoint
with positive eigenvalues it has a unique square root. If we rescale the metric by (AA*)_% then
A is replaced by J = A(AA*)’% so that J?> = —1. Hence there is a complex structure on T'X
such that J is multiplication by <.

We can thus assume that the chosen K-invariant metric on X has been suitably normalized
so that

4.2. X has a K-invariant almost-complex structure such that if ¢ € T, X then £ is the dual
with respect to the metric of the linear form ¢ — w,({,&) on T, X.
Note that this implies that

4.3. gradpug(x) = if, for all x € X, since by the definition of a moment map the cotangent
vector field dpg on X is w-dual to the tangent vector field x — ;.

Remark 4.4. When X is Kéhler the real part of the Kéhler metric is the obvious choice for
a Riemannian metric on X. The induced almost-complex structure then coincides with the
complex structure of X. In this section where X is merely symplectic, the almost complex
structure is used not only for convenience but also because it links up with the work of later
sections on Kahler manifolds.

Recall from Lemma 3.15 that the set of critical points for f on X is the disjoint union of the
closed subsets {Cj : § € B}. The indexing set B is the set of minimal weight combinations in the
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positive Weyl chamber as defined in 3.13. For each § € B the critical subset C is K (ZgNu~*(5))
where Z3 is the symplectic submanifold of X defined in 3.10. This submanifold is the union of
certain components of the fixed point set of the subtorus T generated by 3 or, equivalently, of
the critical set of the function g on X (which is nondegenerate as a Morse function in the sense
of Bott). The components contained in Zg are those on which pg takes the value ||3||?.

4.6. For each (3 there is a Morse stratum Y} associated to Zz which consists of all points of X
whose paths of steepest descent under pz have limit points in Zg. This Morse stratum Y (which
depends on the chosen metric) is a locally-closed submanifold of X. (These facts are well known;
a proof is given in the appendix, but this covers the more general case of minimally degenerate

functions, which are harder to deal with than nondegenerate ones such as pg).

Example 4.7. Consider again the projective variety X = (P1)" acted on diagonally by SU(2).
We have seen in 3.17 that the nonzero elements of the indexing set B may be identified with
integers r such that § < r < n and that Z, consists of sequences of points of which r lie at 0
and the rest at oo. It is not hard to see that Y, consists of all sequences of points precisely r of
which lie at 0.

Note that K, thus consists of all sequences of points such that r points and no more coincide
somewhere on P;. By 2.12 this is exactly the Morse stratum indexed by r for the function ||u/|[?
on X.

Recall that we need a minimising submanifold ¥3 along each critical subset Cs. It will be
shown that we can take X3 to be an open subset of KYj.

Remark. It will then follow from theorem 10.4 that the Morse stratum S coincides with K'Y}
in a neighbourhood of Cjs. In fact, in the Kéhler case we shall see that Sz = KY3"™ where Y""
is a certain open subset of Yj. If one were onl interested in the Kahler case it would be possible
to avoid minimising manifolds and simplify the appendix somewhat by using this fact. When X
is just a symplectic manifold the equality above does not hold for every invariant metric on X.
For example consider X = (P;)" with symplectic form w @ ... ®w and metric 2p& ... & p where
w and p are the usual symplectic form and metric on P;. It may always be possible to choose a
metric for which the equality holds, or at least when 7 (X) = 0 (that would follow immediately
if it were shown that every simply connected compact symplectic manifold is Kéhler) but this
has not yet been proven.

First in order to show that KYj is smooth near C')s we must investigate what elements of K
preserve Yj.

Definition 4.8. For each ( € B let Stabg = {k € K : Ad k() = 3} be the stabiliser of 5 in K.
Stabf is also the centralizer of the subtorus 7 in K so that it is connected if K is connected
and is a compact subgroup of K. Let stabf = {a € ¢: [a, 5] = 0} be the Lie algebra of Stabg.
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Stab 3 acts on the symplectic submanifold Z3 of X and the composition of j restricted to Z3
with the orthogonal projection of € onto stab  is a moment map for this action; as usual £ and
its dual are identified via the inner product. But if x € Zg then Tj fixes  and hence also fixes
w(x) since p is a K-equivariant map. Therefore p(x) € Stab 3. It follows that
4.9.  The restriction of ;1 onto Zg maps Zg to stab 3 and can be regarded as a moment map for
the action of Stab 3 on Zg.

In order to show that KYj is smooth in a neighbourhood of Cs = K(Z5 N p*(5)) we need
the following

Lemma 4.10. If x € ZgNp'(B) then {k € K : kx € Y3} = Stabf and {a € ¢ : a, € T, Y3} =
stab 3.

Proof. 1t is clear from the definitions that Z3 is invariant under Stab § and that Zg C Yj3. It
follows that Stab 3 C {k : kx € Y3} and stab3 C {a : a, € T,Y3}. On the other hand suppose
k € K is such that kx € Y3. Then the path of steepest descent from kz for the function pg has
limit point in Zz and by definition g takes the value ||3||* on Zs. Thus as ug(kx) = p(kz).0 we
have p(kz).8 > ||8|]>. But ||u(kz)||* = ||u(2)||* = ||B]|*>. Together these imply that 3 = u(kz)
and since p(kz) = Ad ku(z) = Ad kg it follows that k € Stab .

Now suppose that a € ¢ is such that a, € T,Y. For t € R we have

p(expta)z) = G+ tdu(x)(az) + e(t)
where e(t) = O(t?) as t — 0; and

dp(z)(as) = [a, p(2)] = la, B]
since p is K-equivariant. As [a, 5].0 = a.[3, ] = 0, it follows that

ps((expta)z) = ||B||* + B.e(t)

But also

[|u(expta)z||* = [|p(2)]] = ||6]I*
for all ¢, so that

18112 = 118 + tla, 8] + e®)]]> = [IBI* + ¢*||[a, BII* + 26.(t) + O(t?)
ast — 0. Thus

28.e(t) = —t*|l[a, BI* + O(t*)
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as t — 0 and hence

ps((expta)z) =|B]* — %lﬂll[a,ﬁ]ll2 +0(t)

as t — 0. But by assumption a, € T,Ys which is the sum of the nonnegative eigenspaces of the
Hessian H,(u3) of g at x since pg is nondegenerate in the sense of Bott. The last equation
shows that this is impossible unless [a, ] = 0, i.e. unless a € stab 3. This completes the proof. [J

Corollary 4.11. The subset KYj of X is a smooth submanifold when restricted to some K-
invariant neighbourhood of Cs = K(Zs N p~'(3)) in X.

Proof. Since Yj is invariant under Stab 3 the map o : K x Y3 — X given by o(k, z) = kx induces
amap 0 : K Xgppg Y3 — X whose image is KYj3. It is easily checked from the definition of
Ys that if € > 0 sufficiently small the subset {y € Y5 : pg(z) < ||B]|> + €} of Y5 a is compact
neighbourhood of Z3 in Yj3. Moreover its complement in Y} is contained in the subset

{y € X : luly) > 18] + Hﬁe}

of X which is closed, K-invariant and does not meet Zg N p~'(5). From this one can deduce
easily that if # € Zg N p~*(5) then & maps each neighbourhood of the point in K Xgiang Y3
represented by (1,z) onto a neighbourhood of x in the image KYj of 4.

The derivative of o at any point of the form (1,z) sends (a,§) € € x T, Y3 to the tangent
vector a, + & € T, X. The tangent space of K Xsans Y at a point represented by (1, z) is the
quotient of € x T, Y by the subspace consisting of all (a,§) such that a € stab and & = —a,.
Thus 4.11 shows that the derivative of & is injective at a point rep. by (1, z) with x € ZzNp~'(5)
and hence also in some neighbourhood V' of this point. The preceding paragraph shows that
the image (V) is a neighbourhood of x in KYj3. Therefore it follows from the inverse function
theorem that the image K'Y} of & is smooth in some neighbourhood of z.

We have thus shown that K'Y} is smooth near Zg N p~'(3). It follows that KYj is smooth in
some K-invariant neighbourhood of Cjg, as required. [

We are aiming to show that the intersection Xz of K'Y with a sufficiently small neighbour-
hood of U3 is a minimising manifold for f along Cjs. The last corollary shows that the condition
that X3 be a locally-closed submanifold of X can be satisfied. For the other conditions we need

two technical lemmas.

Lemma 4.12. Zz is an almost complex submanifold of X. Moreoever T,Yp is a complex sub-
space of T, X for all x € Zg.
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Proof. Suppose x € Zg. Then the compact torus T3 generated by (8 acts on 7, X which decom-
poses into the sum,

Vod... 0V,

of complex subspaces where Vj is fixed by 7 and is the tangent space to Zg while for each
J =1, T acts on V; as scalar multiplication by some nontrivial character. Thus § acts on each
V; as multiplication by some i\; with \g = 0 and \; real nonzero for j > 1. Also by 4.3 we
have grad pg(y) = iB3, for all y € Y. Therefore the Hessian H,(ug) of us at = acts on V; as
multiplication by A;. Thus T, Z3 =V and T,Y}p is the sum of those V; such that A\; > 0 so both

are complex subspaces of T, X. The result follows. [

Lemma 4.13. Suppose z € Cy = K(Zs N p~(3)). Then the restriction of the symplectic form
w, to T,(KY}) is nondegenerate.

Proof. First note that by 4.11 KYj is smooth near = so T, (KY}) exists. Moreover since w is
invariant under K we may assume that z € Z3 N p~'(3) and then T,)(KYj3) = € + T,Y5. So
any element of T,,(KYj3) may be written in the form a, + £ where £ € T,Y3 and a € £ is such
that a, is orthogonal to T,Ys (with respect to the Riemannian metric on X). Suppose that
wy(az +&,¢) =0 for all ( € T,,(KYp). By 4.12, i€ € T,Y3 so if <, > denotes the metric then

0= wx(ax +5,15) = <az +§7€> = <57£>

by 3.19 and the assumption on a.
Hence £ = 0. But then as ¢, C T, (KYj)

0 = wy(ay,by) = du(x)(ag).b

for every b € £ (2.3), so

0 = du(z)(az) = a, 0]

since u(x) = . Thus a € stab § and hence a, € T,Yjs by 4.10. But by assumption a, is orthog-
onal to T,,Ys so a, = 0. This completes the proof. U

Remark 4.14. Lemma 4.13 implies that there is an open neighbourhood Xj of the critical
subset Cg in K'Y} such that the restriction of the symplectic form w to the tangent bundle 7> 4
is nondegenerate. It follows that w and the metric together induce a K-invariant almost complex
structure on Xz (4.1). It also follows that the normal bundle Y5 in X can be identified with the
w-orthogonal complement TE? in the restriction of 7X to X3. Since w is nondegenerate on 7' Eg
it gives a complex structure to this normal bundle as well.
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At last we are in a position to prove

Proposition 4.15. There is a K-invariant open neighbourhood ¥3 of Cs in K'Yz which is a
minimising manifold for f along Cj.

So this goes to show that the function f = ||u||? is minimally degenerate along each critical
subset Cg. By theorem 10.2 of the appendix this implies the existence of Morse inequalities for
f and also of equivariant Morse inequalities. Indeed, theorem 10.4 and lemma 10.3 imply the

following

Theorem 4.16. Let X be a compact symplectic manifold acted on by a compact Lie group K
and suppose i : X — £ is a moment map for this action. Fix an invariant inner product on
t. Then the set of critical points for the function f = ||u||? is a finite disjoint union of closed
subsets {C : 3 € B} on each of which f takes a constant value. There is a smooth stratification
{Sp : p € B} of X such that a point x € X lies in the stratum Sp iff the limit set of the path of
steepest descent for f from = (with respect to a suitable K-invariant metric) is contained in Cp.
For each (3 the inclusion Cz C Sj is an equivalence of Cech cohomology and also K-equivariant
cohomology.
Theorem 4.10 shows in addition that

4.17. If B € B then the stratum Sy coincides in a neighbourhood of Cg with the minimising
manifold ¥ (which is an open subset of KYj3 where Yj is defined as in 4.6). In particular if
x € ZgNp (B) then

T,S5 D Ty Zs

From this together with remark 4.14 we deduce that
4.18.  Both the tangent bundle and the normal bundle to each stratum Sg have K-invariant
complex structures in some neighbourhood of the critical set Cs.

Theorem 4.16 implies immediately the existence of equivariant Morse inequalities for f =
||12]]?. We shall not state these explicitly until the next section, where it will be shown that they
are in fact equalities.

We shall conclude this section with some remarks about the codimensions of the components
of the strata Sz and the equivariant cohomology of the critical sets Cls.

Recall that when stating the Morse inequalities induced by a smooth stratification of X in
§2 we made the simplifying assumption that every stratum was connected and hence had a well
defined codimension in X. In fact, the stratification {Ssz} defined in theorem 4.16 may contain
disconnected strata. Therefore it is necessary to refine it so that the components of any stratum
all have the same codimension.

For 8 € B the critical subset C'3 was defined at 3.14 by

Cs = K(Zs ™ (8))
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where Z3 is the union of certain components of the critical set of the nondegenerate Morse
function pg. Recall that the index of the Hessian H,(ug) at any critical point z for pg is the
dimension of any subspace of the tangent space T, X to which the restriction of H,(us) is neg-
ative definite and which is maximal with this property. This is the same as the codimension of
a maximal subspace of T, X on which H, is positive semi-definite. Since ps is a nondegenerate
Morse function in the sense of Bott, the index of H, is constant along any component of the
critical set of p1g. Its value is called the index of 115 along this component. So we can make the

following definition.

Definition 4.19. For any integer m > 0 let Z3,, be the union of those connected components
of Z3 along which the index of 5 is m. Let

Com = K(Zgm N~ (8))

Then each Zg,, is a symplectic submanifold of X and Cj is the disjoint union of the closed
subsets {Cpg, : 0 < m < dim X }. The fact that these are disjoint comes from 4.10.
The point of this definition is the following

Lemma 4.20. The index of the Hessian H,(f) of f = ||u||* at any point z € Cjy,, is

d(B,m) =m — dim K + dim Stab (3

This is the codimension of the component which contains x of the stratum Sg.

Proof. By 4.17 the stratum Sy coincides in a neighbourhood of  with the minimising manifold
Y for f along Cy. It follows immediately from the definition of minimising manifold that the
index of the Hessian H,(f) equals the codimension of the component of ¥4 containing x. Thus
it suffices to show that the component of ¥ containing  has codimension d(3,m) in X.

Since

Com =K (Zﬁ,m ﬂﬂ_1(5)>

and everything is invariant under K, we may assume = € Zg,, N p~'(3). By definition of the
minimising manifold Yz is an open subset of KYj where Yj is the Morse stratum consiting of
all points in X whose paths of steepest descent under the function pz have limit points in Zg.
Since pu5 is a nondegenerate Morse function, locally Yj is a submanifold of X whose codimension
is equal to the index of the Hessian H,(ug). By definition of Zg,,, this index is m.

In the proof of 4.11, we saw that K'Y} is locally diffeomorphic to K Xgan g Y near x. Therefore,

its codimension is
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d(B,m) =m — dim K + dim Stab (3
The result follows. O

It is easy to see that for each (3
4.21. The critical subset C3 = K(Zg N p~'(B3)) is homeomorphic to K Xsians (Z5 N = (5))

By 4.10, for each z € Zz N = '(B3) the set {k € K : kx € Zg N pu~(B)) is just the subgroup
Stab 8 of K. Thus there is a continuous bijection

K Xswang (Zg N = (B)) — Cs

which must be a homeomorphism since both spaces are compact and Hausdorff.
As Zg , is also preserved by Stab/ we deduce that

4.22. Each Cj,, is homeomorphic to K Xsiabs (Zs.m N (5)).
It follows immediately (see [A & B] §13) that

4.23. The K-equivariant cohomology H}.(Cjs; Q) is isomorphic to the Stabf-equivariant ratio-
nal cohomology of Zz N p~!(3) and similarly that

Hi(Cpm; Q) = Hio5(Zsm N 1 (3); Q)

for each m. Indeed, rational coefficients are not necessary here. Any field of coefficients will do.
We now have all the ingredients for writing down the equivariant Morse inequalities and

proving that they are in fact equalities. This will be done in the next section.
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5 Cohomological formulae

As in the previous section we suppose that X is a compact symplectic manifold acted on by a
compact Lie group K, that there is a fixed invariant inner product on ¢, and that p: X — ¢+ = ¢
is a moment map for the action. In the last section we saw that the function f = ||u||? is a
minimally degenerate Morse function on X. This implies the existence of Morse inequalities
for f. In this section we shall show that these inequalities calculated for rational equivariant
cohomology are in fact equalities. Thus f is equivariantly perfect for rational cohomology.

We shall see that this provides us with an inductive formula (from which an explicit formula
will be derived) for the rational cohomology of the symplectic quotient of X by K when it exists.

At the end of the last section it was explained how the description of the critical set as
the disjoint union of closed subsets {Cs : § € B} needs refining in order to state the Morse
inequalities for f. The problem is that the subsets Cz may be disconnected and hence the index
of the Hessian of f at points of C3 may not be constant. Because of this we defined the closed
subsets {Cs,, 1 f € B,0 < m < dim X} such that each Cs is the disjoint union of the subsets
{Csm : 0 <m < dim X} and the index of the Hessian of f at any point of Cj,, is

d(B,m) =m — dim K + dim Stab (3

The statement that the function f is equivariantly perfect for rational coefficients is now

equivalent by 2.16 to the equality

5.1.
PE(X) = 32 146 PR (€, m)
Bm
For each # and m there is a symplectic submanifold Zg,, of X acted on by Stabg under the
ajoint action of K on € such that

Hi(Cpm, Q) = Hi(Zgm N1 (8), Q)

Thus 5.1 is equivalent to the formula

5.2.
RK(X) _ Z td(ﬁ7m)PtStabﬁ<Zﬁ7m N M_l(ﬂ))
B,m
To show 5.1 and 5.2 hold, i.e. that f is equivariantly perfect, we shall use criterion 2.18
together with the folowing result of Atiyah and Bott.

5.3. Suppose that N is a complex vector bundle over a connected space Y and that a compact
group K acts as a group of bundle automorphisms of N. Suppose that there is a subtorus T
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of K which acts trivially on Y and that the representation of T on the fibre of N at any point
of Y has no nonzero fixed vectors. Then the equivariant Euler class of N in Hj (Y, Q) is not a

divisor of zero.

Theorem 5.4. Let X be a symplectic manifold acted on by a compact group K with moment
map 4 : X — € and give £ a fixed invariant inner product. Then the function f = ||u||* on X is
equivariantly perfect over the field of rational coefficients. Thus the equivariant Poincaré series
of X is given by

PE(X) = Z $dBm) pK (€1 ) = th(g,m)PtStabﬁ(Zﬁm N u ()
B,m B8m
Proof. By theorem 4.16 there is a smooth K-invariant stratification {Sg} of X such that for each
B the stratum S contains the critical subset Cjz and the inclusion of Cs in Sj3 is an equivalence
of K-equivariant Cech cohomology.
Let Sg,m denote the union of those components of Sz which have codimension d(3, m). Then
by 4.20 {Ssm : B € B,0 < m < dim X} is a smooth stratification of X such that

for all 3, m. We must prove that this stratification is equivariantly perfect over Q.
By 2.18 it is enough to show that the equivariant Euler class of the normal bundle to each
stratum Sg ., is not a zero divisor in Hj(Sg,,). Under the composition of the isomorphisms

Hi(Spm) = Hie(Cpm) = Hsanp(Zpm N ' (8))

the equivariant Euler class of this normal bundle is identifed with the Stabg-equivariant Euler
class of its restriction, N say, to Zg, N pu~ ' (3).

It follows from 4.18 that the bundle N has a complex structure preserved by the action of
Stab3. Also from 4.17 we see that N is a quotient of the restriction to Zg,,, N u~'(3) of the
normal bundle to Z3,,. But by definition Zg,, is the union of certain components of the fixed
point set of the subtorus T of Stab 3. So by 3.8 the action of 7 on the normal bundle to Zg3,,
has no nonzero fixed vectors. The same is therefore true of the action of T3 on N. Hence by 5.3
the equivariant Euler class of N is not a divisor of zero in Hgsang(Z.m N ' (3). Note that we

should really have considered each component of Zj3 ,, separately. The result follows. [

5.5. The subset of X on which the function f = ||u||> achieves its minimum is p~*(0) provided
that ¢ ~1(0) is nonempty. This is a K-invariant subset of X. If we suppose that the stabiliser in
K of every point x therein is finite then the quotient ~'(0)/K has a natural symplectic structure
and is the symplectic quotient or Marsden-Weinstein reduction of X by K.

32



33

To see why p~1(0)/K has a natural symplectic structure, note first that if every z € u~1(0)
has finite stabiliser then du(x) is surjective for each z. Otherwise, there is some x € u~1(0) and

some nonzero a € £ such that

0 = dp(z)(§)-a = w: (&, az)

for all £ € T, X. The second equality comes from the definition of a moment map. Then since
w is nondegenerate a, = 0 so the one-parameter subgroup of K generated by a fixes x which is
impossible.

Thus p~*(0) is a submanifold of X and x~!(0)/K is a rational homology manifold (it can
be thought of as a manifold except for singularities caused by finite isotropy groups). Moreover
from the fact that w,(¢,a) = 0 for € € T,u~1(0) and all a € € it is easy to deduce that w induces
a nondegenerate symplectic form on p~1(0)/K.

In particular if K acts freely on p~1(0) then x=*(0)/K is a symplectic manifold and moreover
since K is compact the natural map p='(0) — p~1(0)/K is a locally trivial fibration with fiber
K. It follows that the natural map

pH(0) xx EK — p~1(0)/K

is a fibration with contractible fiber K. Hence the equivariant cohomology of p~1(0) is isomor-
phic to the ordinary cohomology of the symplectic quotient of X by K. Moreover for rational
cohomology the same is true provided only that the stabiliser of every point p~1(0) is finite.
Thus we have

5.6. If the stabiliser of every z € p~!(0) is finite then the rational equivariant cohomology
H3-(171(0); Q) is isomorphic to the ordinary rational cohomology H*(1~'(0)/K, Q) of the sym-

plectic quotient.

5.7.  Since p~'(0) coincides with the critical subset Cy of X on which f attains its minimum,
theorem 5.4 provides a formula for the equivariant Poincaré series of p~'(0) in terms of the
equivariant Poincaré series of X itself and of all the series P>’ (Zg,,, N~ (5)) with 3 € B and
0 <m < dim X. Moreover each Z3,, is a compact symplectic manifold on which the compact
subgroup Stab 3 of K act. We saw at 4.9 that the restriction of y to Zz (which is the disjoint
union of all the Zg,,) can be regarded as a moment map for the action of Stab( on Zs. As
usual we use the fixed invariant inner product to identify € with €. Since Adk(5) = § for all
k € Stab 3 by the definition of Stab 3, it follows immediately that the map p — 3 sending = € Z3
to u(x) — B is also a moment map for the action of Stab 8 on Zg. The same is true when Zj3 is
replaced by Zg,, for any m. As Zg,, N pu~*(3) is the inverse image of 0 under this moment map,
theorem 5.4 will give us an inductive formula for the equivariant cohomology H-(11(0), Q)
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provided we can always calculate P/ (X). But for connected groups we have

Proposition 5.8. Suppose that X is a compact symplectic manifold acted on by a compact
connected Lie group K such that a moment map p exists. Then the rational equivariant coho-
mology of X is the tensor product of the ordinary ratioanl cohomology of X and that of the
classifying space BK. That is

PX(X) = P(X)P,(BK)

Remark. If K is not connected, let K, be its identity component. Then it is not hard to show
using 5.8 that Hj (X, Q) is the invariant part of

H*(X,Q) © H"(BKy; Q)

under the action of the finite group K/Kj.

Proof of 5.8. By definition the equivariant cohomology of X is the ordinary cohomology of
X xg FK where EK — BK is the classifying bundle for K. Write X = X xx FK.

There is a natural locally trivial fibration Xx — BK with X as fibre. We need to show that
this fibration is cohomologically trivial, i.e. that the associated spectral sequence degenerates.

First suppose that the group is a torus 7'. Let 3 be a generic element of t so that the subgroup
expRA of T is dense in T" and let pg : X — R be defined by g = p(z).5. Then by 3.9 g is
a nondegenerate Morse function on X and its critical points are the fixed points of T on X.
Moreover the induced action of T on the normal bundle to any of the components of the critical
set has no nonzero fixed vectors so by 5.3 it follows that pgs is equivariantly perfect for 7". Thus

Pl(X)=> t"IPp(Cyr)
C

where C' runs over the components of the fixed point set and d(C) is the index of usz along C.

But as T acts trivially on each C' we have

Cr=Cxp ET=C x BT
so that P,(Cr) = P,(C)P,(BT). Thus
P/(X)=P/(BT)) t"9Pp,(C)

c
The ordinary Morse inequalities for pg imply that

SO P(C) — P(X) = Q)(1+ 1)
C
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where Q(t) > 0 in the sense that all its coefficients are nonnegative. In particular
P(X) <) 1"9OPR(C)
c
The Serre spectral sequence for the fibration X7 — BT starts with

EY" = HP(X,Q) ® HY(BT,Q)

and EPf is the quotient of a subgroup of EP? for each r > 2. Thus dim EP? decreases as r
increases so that

dim H"(X7,Q) = »_ dimEZ¢ < Y dim E}*
ptg=n ptg=n

which implies that PT(X) < P,(X)P,(BT). But

P,(X)P,(BT) < P(BT) Y t"“P(C) = P(X)
c

Therefore both these inequalities must be equalities

Now let K be any compact connected group with maximal torus 7. There are fibrations
BT — BK Xp — Xk with fibre the flag manifold K/T. It is well known that the spectral
sequences for these fibrations degenerate. To show this one must check that every cohomology
class of the fibre K /T extends to a cohomology class of Xp. But the Q-cohomology of K/T
is multiplicatively generated by the Chern classes of the line bundles L, on K/T defined by
characters a of T'. Since L, = C xp K where the action of 7" on C is multiplication by « the
Chern class of the line bundle C x7 (X x ET) over Xp = X Xp ET restricts to ¢;(L,) on each
fiber. Therefore

P/ (X) = P} (X)P(K/T)
and P,(BT) = P,(BT)P,(K/T). The result now follows from the torus case.

5.9. This argument shows that every component ps of the moment map is both equivariantly
perfect and perfect The function f on the other hand is equivariantly perfect by theorem 5.4 but
is not necessarily perfect. For example if S acts on the complex sphere as rotation about some
axis then p is the projection on that axis and has a maximum and a minimum as its only critical
points. Thus its Morse seris is 1 + ¢* and its equivariant Morse series is (1 + ¢*)(1 — ¢*)~!. On
the other hand f = ||u||? has critical points at the poles and on the equator so its equivariant
Morse series is

1+282(1-?) ' =(1+)(1—#)!
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but its ordinary Morse series is (1 + t) + 2t2.

The fact that pg is perfect is used in the work of Carrell and Sommese on C*-actions on
Kéhler manifolds (see [C & S] and also [B-B| and [C&G]).

By using the argument of 5.7 we obtain from theorem 5.4 and proposition 5.8 the inductive

formula

5.10.

P/ (u71(0)) = P(X)P(BK) — > £ PR (Z g 0 (1))
0# 6

0<m<dimX

for the equivariant cohomology of x~!(0) when K is connected.

Moreover if the symplectic quotient exists then by 5.6 its rational cohomology is the same as
the rational equivariant cohomology of 1~1(0) so 5.10 gives us a means of calculating it.

This inductive formula 5.10 was our first goal. It is not hard to deduce from it an explicit
formula for P/ (17'(0)) in terms of the cohomology of certain symplectic submanifolds of X
and of the classifying spaces of certain subgroups of K. These submanifolds and subgroups are
determined by the combinatorial geometry of the finite set of weights. The remainder of this
section will be devoted to obtaining this explicit formula.

Asin 3.4 let A be the set of weights of the action. That is, A is the image under u7 of the fixed
point set of the maximal torus T of K in X which is a finite set. By definiton 3.13 the indexing set
B of the stratification of the set of all minimal weight combinations in the positive Weyl chamber
t.. A minimal weight combination is the closest point to 0 of the convex hull of some nonempty
set of weights. Thus any 3 € B is the closest point to 0 of Conv{a € A : (o« — 3).8 = 0}. We
have noted at 5.7 that Zg N pu~*(3) is the inverse image of 0 under the map p— 3 : Zg — Stab 3
and that this is a moment map for the action of Stab 3 on Zz. By the definition of Z4 as the
union of those components of the fixed point set of T on which g takes the value ||3]|?, the
image under this moment map of the fixed points of 7' (which is a maximal torus of Stab /3) on
Zg is just the set

{a—=p:achA (a—p).0=0}

So we make the following

Definition 5.11. A sequence of points {3, ..., 8,} of nonzero elements of t is called a 3-sequence
if for each integer 1 < j <g¢

1. B3; is the closest point to 0 of the convex hull
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Conv{ia— 1 —fBo—...—Bjo1:a €A, (a— ). fr=0,1<Fk<j}

2. 3 lies in the unique Weyl chamber containing t; of the subgroup

m Stab ﬂj

1<i<j

Note that 7" is a maximal torus of N;Stab 3; for each j and its Weyl group is a subgroup of the
Weyl group of K.

Thus a (3-sequence of length one is just a nonzero element of the indexing set B while (31, 52)
is a (-sequence of length 2 iff 5; € B—{0} and (3, lies in the indexing set for the action of Stab (3,

on Zg, with moment map p — .

Definition 5.12. For each 3-sequence 8 = (51, ..., 3,) let Tj be the subtorus of T" generated by
{61,...,0,}; that is, the closure in T of the subgroup generajced by the one-paramter subgroups
{expRp; : 1 < j < q}. The fixed point set of T on X is a (possibly disconnected) symplectic
submanifold of X and the projection g of p onto the Lie algebra of T} is constant along each
of its components. Let Z3 be the union of those components on which ;Lg = 0,

Lemma 5.13. If ¢ > 2 a sequence § = (f31,...,/3,) in tis a f-sequence iff 5, € B — {0} and
the sequence @’ = (f2,...,03,) is a B-sequence for the action of Stab 3; on Zs with moment
map p — (3. If this is so then Zs is contained in Zg, and coincides with Z3 where Z4 is defined
relative to the action of Stab ﬁlion Zg, . - -

Proof. This follows directly from the definitions. [J

If 3 lies in the Lie algebra tz of Tj then every point of Zg is critical for the function ug (see
3.7). Since pg is nondegenerate the index ind H,.(pp) of the Hessian H,(ug) is constant along
connected components of Zg; and so the index of its restriction to the tangent space of any
T-invariant submanifold of X containing Zz. So we make the following

Definition 5.14. Suppose 3 = (84,...,0,) is a (-sequence. For any integer m let Zs,, be the

union of those connected components C' of Zg such that if z is any point of C' then

m= 3 ind 1.y 1)

1<j<q

where Ty = T,(Zg, N ... N Zg,_,). (So Zgm = 0 unless m lies between 0 and dim X).

37



38

It follows immediately from definition 3.10 and 5.14 that if m and m; are any integers then

in the terminology of 5.13.
5.15. The intersection of Zg,, with Zg, m, 18 Zg 1, -
Now we can state the explicit formula for PX(u=1(0)).

Theorem 5.16. Let X be a connected symplectic manifold acted on by a connected compact
group K with moment map p : X — £ and suppose that £ is equipped with a fixed invariant
inner product. Suppose that x~1(0) # (. Then

PF(u(0) = PAX)PABEK) + 3 (~1)1440™) P,(Z,,,) P BStab )
Bm
the sum being over all S-sequences 3 = (B1,...,0,;) and all integers 0 < m < dim X. Here

[-sequences and the associated manifolds Zg,, are as defined in 5.11 and 5.14. Also for any

B-sequence 3 = (f,...,53)

Stabj = (7] Stabg;

1<j<q

BStab (3 is the classifying space for Stabf and d(,m) = m — dim K + dim Stab 3.

Proof. The proof is by induction on dim X. By assumption X is connected and p~1(0) # @ so
that if dim X = 0 then X consists of a single point x and p(z) = 0. So there are no -sequences
and the result is trivial.

Now assume dim X > 0. By 5.10

(a)
PE(p(0) = R(X)R(BX) = Y 9 OvmI Pz, 0o (61))
B1,m1

where the sum is over nonzero elements [3;,m; such that 8; € B and 0 < m < dim X and
d(B1,m1) = my — dim K + dim Stab 3;. Moreover Zg, ,,, N p~*(f1) is the inverse image of 0
under the moment map p — (3; for the action of Stab 3, on Zg, ,,,,. Recall from 4.8 that since
K is connected so is Stab (1. Without loss of generality we may assume that every component
of Zg, m, meets p~(3;). Since p~'(0) is nonempty and ; # 0 every component of Zg, ,,, is a
proper submanifold of X. Therefore by induction

(b)
PtStabﬁ1 <Z31,m1 N :u_l(ﬁl)) = Pt(Zﬁl,ml)Pt(BStab 61) + Z (_1)q_1t(gl7m/)Pt(Z§/’m,)Pt(BStabﬁl)

g'm!
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where the sum is over 3-sequences @' = (P2, ..., ;) for the action of Stab 3; on Z3, and integers

0 <m < dim Z3,. Moreover

Stab' = (7] Stab; NStabf = (1] Stabg,
2<5<q 1<j<q
and d(',m’') = m' — dim Stab 3; 4+ dim Stab §'. Therefore the result follows immediately substi-
tuting (b) into (a) and using 5.13 and 5.15. O

Corollary 5.17. Under the same assumptions as the theorem, suppose that the symplectic quo-
tient of X by K exists. Then its Betti numbers are the same as the equivariant Betti numbers
of 1=*(0) and are thus given by the formula 5.16.

Proof. This follows immediately from 5.6 and 5.16. [J

Remark. These results can be extended to the case where K is not connected by using the
remark which follows 5.8.

We shall conclude this section with an example.

Example 5.18. As before consider the diagonal action of SU(2) on (P;)". The action of
SU(2) on u~1(0) is free provided n is odd, since any configuration with center of gravity at 0
must contain at least three distinct points. Since SU(1) has rank 1 and [-sequences consist of
mutually orthogonal points, every (3-sequence must be of length 1 and so can be identified with
an element of B — {0}. We have seen in 3.17 that any 5 € B — {0} corresponds to an integer r
such that § < r < n and that Z, consists of sequences containing r copies of 0 and n —r copies of
oo. Thus Z,,, = () unless m = 2(r —1) and so the rational cohomology of the Marsden-Weinstein

reduction is

rEpR@su) - Y (1) nms

n
§<T§TL

=1+ 1 -t =D <”) 21— )

r

When n is odd this is a polynomial in #? of degree n — 3 such that the coefficient of t% is

1+(n—1)+ (ng 1) teet <min(j?1n_—13 —j))

It is not a polynomial when n is even.
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Further examples will be given in Part II.

40



41

6 Complex group actions on Kahler manifolds

Suppose now that Y is a compact Kahler manifold acted on by a complex Lie group G and that
G is the complexifcation of a maximal compact subgroup K. Thus if £, g are the Lie algebras of
K, G then g = €& €. Suppose also that K preserves the Kahler structure on X. This condition
is always satisfied if the Kéhler metric is replaced by its average over K. In particular, X might
be a nonsingular complex projective variety acted on linearly by a complex reductive group.

The Kahler structure makes X into a symplectic manifold acted on by K and in addition
gives X a K-invariant Riemannian metric. Assume that a moment map pu : X — € exists for
the action of K on X. This always happens if for example K is semisimple or X is a projective
variety or if H'(X,Q) = 0. Let f : X — R be the norm-square of the moment map with respect
to some fixed invariant inner product on &.

When applying Morse theory to the function f on a general symplectic manifold we con-
centrated on the set of critical points for f. We showed that there are Morse inequalities (in
fact, equalities) relating the equivariant Betti numbers of X to those of certain critical subsets
of f. In order to establish these inequalities a metric was introduced on X. Then f induced a
stratification on X such that the stratum containing any point was determined by the limit of
its trajectory under —grad f. This stratification was no more than a technical device: it was not
canonically determined by the symplectic group action since it depended on the metric. How-
ever in the case of a Kahler manifold there is a canonical choice of metric. We shall see in this
section that the stratification induced by f and the Kahler metric has many elegant properties;
in particular, the strata are all complex locally-closed submanifolds of X and are invariant under
the action of the complex group G.

Definition 6.1. For 3 € B let Sz consist of all points of X whose paths of steepest descent for
the Kahler metric have limit points in the critical subset Cs defined at 3.14.

The subsets {S3} form a stratification of X by lemma 10.7 of the appendix. We shall see
that they have the following alternative description in terms of the moment map and the orbits

of GG.

6.2. A point x € X lies in S iff 3 is the unique closest point to 0 of u(Gx) N t*.

Each stratum S3 also has a decomposition analogous to the decomposition of Cs as K Xgtans
(ZgNu=(B)). It is described as follows. Recall from 4.9 that for each 3 the symplectic manifold
Zg of X is acted on by the stabiliser of 3 in K and the restriction of © — 3 to Z3 is a moment
map for the action of Stab 3 on Zs.

6.3. Let Zg“m be the subset of Zs consisting of those points x € Z3 such that the limit points
of the path of steepest descent from z for || — G]|? on Zg lie in Z5 N = (B).
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So Zglin is the minimum Morse stratum of Z3 associated to the square of the moment map
i — (3 and is an open subset of Zg.

Recall also that Yj3 is the subset of X consisting of all those points in X whose paths of
steepest descent under 3 converge to points of Zg. This subset is a locally closed submanifold
of X and the inclusion of Zg in Y} is a cohomology equivalence. In fact since 15 is nondegenerate
in the sense of Bott, it is straightforward to check that the path of steepest descent of any y € Y;
has a unique limit point pg(y) say, in Zz and that the function pg : Y3 — Z3 defined thus is a
retraction of Y3 onto Zg.

Definition 6.4. Let Yﬁmi“ be the inverse image of Zglin under the retraction pg : Yg — Z3. Then
V"™ is an open subset of Y and retracts on Z§™.
We shall see that Sz = GYﬁmin for each 8 and that there is a parabolic subgroup Ps of ¢

min min

which preserves Y5 such that Ss is isomorphic to G X p, Y}

Example 6.5. Suppose that X C P, is a complex projective variety acted on linearly by a
complex reductive group G, and that «y, ..., a, are the weights of the representation of G. Then

we have seen at 3.11 that

Zg={(ro:...:2,) € X :z; #0unless ;.0 = ||ﬁ||2}

It is easily checked that Yj consists of all (zg : ... : 2,,) € X such that x; = 0 unless «;.0 = [|3]]?
and z; # 0 for some j with ;.8 = ||3]]*>. In particular, suppose X = P} and G = SL(2) acts
diagonally on X as in 2.2. By example 3.17, B — {0} can be identified with the set of integers
r such that § < r < n. It is easy to see from 3.17 that Ymin = Y, consists of all sequences
which contain precisely r copies of 0. But the stratum S, consists of sequences which contain r
coincident points. So S, & G x g Y™ where B is the Borel subgroup of SL(2) fixing 0.

The basic lemma needed is the following.

Lemma 6.6. If 3 € B then for any x € X

grad jug(x) = i6,
and

grad f(z) = 2ip(x)s

where p(x) € € is identified with a point of € by using the fixed inner product.

Proof. For any x and ¢ € T, X we have
(€, grad pg(x)) = dpg(x)(§) = du(x)()-8 = wa(§; Ba) = (€, 0z)
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Hence grad pg(x) = i3,. The argument used in 3.1 completes the proof.

6.7. Thus the trajectory from any z € X of —grad pg is {(exp(it3)x : t > 0} Moreover since
2ip(z) lies in g all paths of steepest descent for f = [|u||> on X are contained in orbits of the
complex group G.

The complexification Tt of the maximal torus 7" of K is a maximal complex torus of G.

Definition 6.8. Let B be the Borel subgroup of G associated to the positive Weyl chamber
t,. That is, if

g=tcty ¢

is the root space decomposition of g with respect to T¢ then B = exp b where

bzt@+Zg"‘
a+

(see [Al], p. 146).

Lemma 6.9. For any 3 € t; let P3 C G consist of all g € G such that

(expitB)g(expit3)~

tends to a limit in G as ¢ — oo. Then Pj is a parabolic subgroup of G and is the product
BStab 3 of the Borel subgroup with the stabiliser of 3 in K.

Proof. 1t follows from the Peter-Weyl theorem that the compact group K may be embedded in
some unitary group U(n). Then, as G is the complexification of K, it is isomorphic to a subgroup
of the complex general linear group GL(n) with Lie algebra g = € + i C gl(n). We may assume
that the maximal torus 7" is embedded in the diagonal matrices via t — diag(aq(t),. .., a,(t))
where aq, ..., a, are characters of T'. If we identify the a; with elements of t* by looking at their
derivatives at the identity, then § becomes the diagonal matrix with entries 2mi(c;.3). Without
loss of generality, suppose that
ar.f >0 > a0

then Pj is the subgroup of G' which consists of all upper triangular block matrices where the
blocks are determined by the different values of «a;.03.
Given any root «, the a matrix x € g lies in the root space g iff

[h,z] = (ah)x  Vh € t¢
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Thus, if the (4, j) component of z is nonzero, then a = «; — ;. If moreover « is a positive root
then o.8 > 0 since § € t; so ;. > «;.3. This implies that every element of the Lie algebra
b has an upper triangular block decomposition. Hence the same is true of B = expb. Thus Pj
contains B and so is a parabolic subgroup of G.

Since G = BK (by [Al], p. 147), we deduce that P3 = B(K N Pg). But as K C U(n),
an element of K lies in Pj iff it is of block diagonal form, i.e. iff it ies in Stab 3. Therefore,
Ps = BStab 3 and the proof is complete. [J

Lemma 6.10. The subsets Y3 and Yﬁmin of X are invariant under Pg.

Proof. Suppose p € P so that (expitf)p(expit3)~! tends to some s € G as t — —co. By 6.3
and 6.7 an element y of X lies in Yj iff (expitf)y converges to an element = of Z3 as t — —oc.
But (expit)y — x as t — —oo iff (expitf)py — sx. Clearly, s lies in the stabiliser of § in G
and hence preserves both Z3 and Zg‘in. The result follows.

Corollary 6.11. If z € GYj then ||u(x)||* > ||8]|*. Equality occurs iff u(z) lies in the adjoint
orbit of 3 in €.

Proof. Since G = BK and B C Pj, it follows from 6.10 that GYz = KYj. As ||u(kz)|]* = ||pu(@)])?
for all £ € K, we can therefore assume that x € Y. But then the path of steepest descent for
the function ug from x converges to a point y € Zs and ug(y) = ||3]|> by definition of Zs. So

w(x).0 = pp(x) > ps(y) = ||8]1°

from which the result follows.
Corollary 6.12. If z € GY3™™ then (3 is the unique closest point to 0 of w(Gx) Nty

Proof. Since the adjoint orbit of § in € intersects t, only at 3, by 6.11 it suffices to show that
lies in yu(Gx). Without loss of generality, z € Y™ o that (expit3)z converges to some y € Z5™"
as t — —oo. Then Gy C Gz, so it is enough to show that 5 € u(Gy).

By definition of Zg‘in the path of steepest descent from y of the function ||y — 3||* restricted
to Zs has a limit point in Zz N p~*(3). By 4.9, u — (3 is a moment map for the action of Stab 3
on Zg, so 6.7 implies that this path is contained in the orbit of y under the complexification of
Stab 3. Hence 3 € uu(Gy). This completes the proof. O]

What we are aiming to do is to show that GY™" = S for each . Then 6.12 will show that
6.2 is as claimed an alternative definition of the stratification {Ss}.
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Remark 6.13.  The definition 6.2 is neater but less useful, and moreover cannot be given
directly without some guarantee that p(Gx)Nt, contains a unique point which is closest to 0. In
fact it has been proved recently by Mumford that if X is a complex projective variety acted on
linearly by G then u(Gx)Nt, is convex for all z € X which implies that it contains a unique point
closest to 0. Indeed the same is true when Gz is replaced by any closed G-invariant subvariety
of X. This generalizes a similar result of Guillemin and Sternberg which requires the subvariety
to be nonsingular and hence does not apply to Gz in general. Mumford’s proof is algebraic but
it can be adapted to the more general Kahler case by using lemma 8.8 and remark 8.9 below.

The next result we need is that GYﬁmin is diffeomorphic to G' x p, Yﬁmi“. This will imply in
particular that GY3"" is smooth.

We shall first make the following

Assumption 6.14. The minimum stratum X™ for the function ||u||* on X is contained in the
minimum stratum denoted by X® for the function ||ur||?. Here as before pr is the composition
X £ ¢ — ¢ and is a moment map for the action of the maximal torus 7" on X.

The proofs of the following lemma and theorem will depend on this assumption holding for all
actions of closed subgroups of K. But clearly the assumption is valid for all tori so that theorem
6.18 will hold for T at least; and from this we will be able to deduce that the assumption is
always valid.

Lemma 6.15. If x € Yﬂmin then
{ge€G:gx € Yﬁmin} =P {a€g:a, € TxYﬁmm} =pg
Proof. Lemma 6.10 shows that

Ps C {gEG:g$€Yﬁmi“}

For the reverse inclusion suppose that g € G is such that gz € Y. Let N (T') be the normaliser
of T in K; then G = BNk (T)B by the Bruhat decomposition (see e.g. [Al], p. 135), so that

g = blka, k€ NK(T), b17b2 € B

Since B is contained in P and both x and gz lie in Yﬁmm, so do byr and kbox = by'(gx). By
assumption 6.14 applied to the moment map p — (3 for the action of Stab3 on Zz we have
Zg C Z3. Therefore by applying 6.12 to the action of the complex torus T¢ on X it follows
that g is the closest point to 0 in t of both pp(Tcbex) and pp(Tckbox). Since k normalises T'
and Tt we have that

pr(Tekbox) = pr(ETcbox) = Ad pr(Tebox)
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As the inner product on £ is invariant under the adjoint action, this implies that Ad k(3) = 3,
i.e. k € Stab 3. Since Pg = BStab 3 by 6.9, the element g = b1 kb, lies in Pg.

It remains to show that {a € g : a, € T, xYﬁmin} C Pj since we know that the reverse inclusion
holds. By 6.9, ps = b + stab § so it suffices to show that (a) {a € €La, € T,Y;""} C stabj.
This has already been proved (see Lemma 4.10) in the particular case when z € Zz N u=*(3).
Moreover (a) is a linear independence condition on x, and hence the subset of Yﬂmi“ where it
holds is an open neighbourhood of Zg N u=!(3). It is also clearly invariant under Pj.

But by the proof of 6.12, given any = € Yﬁmin there is some y € Zg N p~!(3) which lies in the
closure of the orbit of x under the complexification Stabe(5) of Stab 5. Since Stabe 3 C Pj it
follows that the only Pg-invariant neighbourhood of Zz N pu=*(8) is Y™™ itself. Thus (a) must
hold for every x € Y;™". This completes the proof. [

It follows from this lemma, by adapting the argument of Corollary 4.11, that

6.16. GY}"™ is smooth and diffeomorphic to G x p, Y3"™.

Remark 6.17. In fact Y3 is a locally-closed complex submanifold of X from which it follows
immediately that GYﬁmin is also complex and is isomorphic as a complex manifold to G X p, Yﬁmin.

To see that Y3 is complex recall that by definition Yj consists of those points y € X whose
trajectories under —grad pig converge to points of Zs. Since grad pg(x) = i3, for all x the vector
field —grad g on X is holomorphic. Moreover, by 4.12 (and its proof) if x+ € Zz then the
Hessian H,(pg) acts as a complex linear transformation of the tangent space 7, X and depends
holomorphically on x (again because the action of the group is complex analytic). Since pg is
nondegenerate the local theory of ordinary differential equations tells us that Y3 is a complex
submanifold of X in some neighbourhood of Z3. But for every y € Yj there is some ¢ € R such
that the point (exp(it(3))y of the path of steepest descent for pg from y lies in the neighbourhood
of Z3. Since exp(it[3) acts as a complex analytic isomorphism of X which preserves Yj it follows
that Y} is a complex submanifold of X as required.

We can now prove the result we want, on the assumption that 6.14 and hence also 6.16 hold.

Theorem 6.18. Suppose that X is a compact Kahler manifold acted on by a complex Lie group
G and that G is the complexification of a maximal compact subgroup K which preserves the
Kahler structure. Suppose that p: X — £ is a moment map for the action of K on X and let
{Ss : B € B} be the Morse stratification for the function f = ||u||> on X. Then for each § we
have Sg = GY3"™ and x € S iff 3 is the unique closest point to 0 of u(Gz)Nt,. The subsets {Ss}
form a smooth stratification of X which is G-equivariantly perfect. Moreover S = G' X p, Y™
so that
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HE(Sp;Q) = Hp, (V5™ Q)
for each 3 € B.

Proof. First we shall use the results of the appendix to show that Sz = GYﬁmm.

Since Y™ is invariant under the action of the parabolic subgroup Ps we have that GY;"" =
KY3"™. So Proposition 4.15 implies that some open subset of GY;™ is a minimising manifold
for f = ||u||* along Cj. Moreover, by 6.7, the trajectory under —grad f of any = € GY3"™ is
contained in the orbit Gz and hence in GY3™". In particular, the gradient flow of f is tangential
to GY3"", so by Theorem 10.4 of the appendix, GY3"" coincides with the stratum Sg in some
neighbourhood U of the critical subset Cj.

Suppose x € Sg; then the path of steepest descent for f from x has a limit point in Cj and
therefore intersects U N Sz = U N GY;*™. But by 6.7 this path is contained in the orbit Gz
so x must lie in GYﬁmm. Thus S C GYﬁmm for each § € B. But 6.12 implies that the subsets
{GY"™ : 3 € B} are disjoint. Since

X =5

BeB

it follows that Sz = GY;™™ for each § € B.
We have already seen at 6.16 that

GYBmin ~ G XPB Yﬁmin

for each 3 and hence

HE(GY,@min§ )gH;ﬁ(Yﬁmin; )

by [A & BJ, §13. Finally, theorem 5.4 shows that the stratification {Ss : § € B} is equivariantly
perfect for K, and this implies immediately that it is equivariantly perfect for G since K and G
are homotopically equivalent. (Alternatively, the proof of 5.4 can be adapted easily to work for
the complex group).

It remains to check that the assumption 6.14 is valid.

Notation. If it is necessary to make clear what group is involved, the stratum Sz will be written

SB,K

Lemma 6.20. Assumption 6.14 is always valid. That is, the minimum stratum X™" = Sy x is
contained in the maximum stratum X}mn = Spr associated to the action of the maximal torus
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T of K.

Proof. Since 6.14 holds trivially for tori, Proposition 6.18 is valid for the maximal torus T" of K.
Thus, if  does not lie in the minimum stratum X®" = S, 7 for the torus then there exists some
nonzero 3 € B such that © € Sz C TcYs. (Note that Yj is the same whether the group is K or
T; also TeYs = Yj). Thus by Corollary 6.11 if y € G then ||u(y)||*> > ||8]|> > 0. Since the path
of steepest descent for the function ||u||? from z is contained in Gz, we deduce that x cannot lie

in X™min,
The proof of Theorem 6.18 for any group (torus or not) is now complete. [

Remark 6.20. By theorem 4.16 the inclusion of the minimum set x~1(0) for f is the minimum
stratum X™" is an equivalence of equivariant cohomology. So 5.10 and 5.16 may be interpreted
as formulae for the equivariant Poincaré series PZ(X™"). These formulae can also be derived
directly from theorem 6.18.

If G acts freely on the open subset X™" of X then the quotient X™1"/G is a complex
manifold and it would be natural to hope that the rational cohomology of this is isomorphic
to H5(X™™: Q). This could be proved by showing that the quotient map X™® — X™in /G is
a locally trivial fibration. However this is unnecessary because in the next section we shall see
that X™" /G is homeomorphic to the symplectic quotient p~!(0)/K. This reduces the problem
to the action of a compact group.

Let us conclude this section by considering how the stratification is affected if we alter the
choice of a moment map or of the invariant inner product on €. From the algebraic point of
view changing the moment map on a complex projective variety X corresponds to changing the
projective embedding of X.

First consider the inner product. Clearly if the group is a torus then any inner product is
invariant and different choices give different stratifications. For example, take (C*)? acting on
P, via ¢ : (C*)? — GL(2) given by

p(h) = ( ao(()h) &1(2h) )

where a; : (C*)? — C is the projection onto the (j + 1)st factor. Then the stratum to which
an element (zq : 1) € P; belongs is determined by the closest point to 0 in the convex hull of
{aj : z; # 0}. But ap and oy are linearly independent so there exist inner products on the Lie
algebra of the torus for which the closest point to 0 of their convex hull is respectively aq, a; and
neither of these. These give different stratifications of IP;.

On the other hand if G is semisimple then the stratification is independent of the choice of
inner product. For then G is, up to finite central extentions, the product G; x ... x Gy, of simple
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groups G; with maximal compact subgroup K; and maximal compact subtori 7;, say. Then
E=¢ @ ...d ¢ and £, must be mutually orthogonal under any invariant inner product on £.
For each i the projection p; of i onto €; is a moment map for the action of K; on X. It is not
hard to see that for any z € X the closest point to 0 of u(Gx) Nt, is

B=01+...+ 5k

where 3; is the closest point to 0 of u;(Gix) N (t;),. But since & is simple the invariant inner
product on ¢; is unique up to scalar multiplication and therefore each [; is independent of the
choice of inner product.

Now consider the effect of changing the choice of moment map p. The only possible way to
to do this is to add to p a constant £ € £ which is invariant under the adjoint action. Thus as
has already been noted when G is semisimple the moment map is unique. On the other hand,
if G is a torus T, an arbitrary constant may be added to the moment map. We know that the
stratum containing any point x is labelled by the closest point to 0 of u(T.z) which is the convex
hull of some subset of {«y,...,a,}. Thus by adding different constants to p one can obtain a
finite number of distinct stratifications of X.

Since any compact group is, up to finite central extensions, the product of a torus by a

semisimple group, it is now easy to deduce what happens in general.
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7 Quotients of Kahler manifolds

Suppose as in §6 that X is a compact Kahler manifold acted on by a complex Lie group G, and
that G is the complexification of a maximal compact subgroup K. Assume that K preseves the
Kéhler form w on X (if necessary replace w by its average over K) and that a moment map
1 X — ¥ exists for the symplectic action of K on X.

Any torus in GG will always have fixed points in X so we cannot hope ti give the topological
quotient X/G the structure of a Kéhler manifold. However in good cases there is a compat
Kéhler manifold which it is natural to regard as the Kéahler quotient of the action of G on X.
When X is a complex projective variety on which G acts linearly, this quotient coincides with
the projective quotient defined by Mumford using geometric invariant theory. The good cases
occur when the stabiliser in K of every z € p~!(0) is finite. Recall that this is the condition
needed for there to be a symplectic quotient associated to the action.

As before let X™" be the subset of X consisting of points whose paths of steepest descent
under the function f = [|u||*> have limit points in ©~'(0). By 6.18 X™" is a G-invariant open
subset of X. We shall see that when K acts with finite stabilisers on z~'(0) then the symplec-
tic quotient p~1(0)/K can be identified with X™" /G and thus has a complex structure. The
symplectic form induced on p~*(0)/K is then holomorphic and makes p~*(0)/K into a compact
Kahler manifold except for the singularities caused by finite isotropy groups. Manifolds with
such singularities have been well studied; they are sometimes called V-manifolds). This is the
natural Kéahler quotient of X by G.

The rational cohomology of this quotient can be calculated by using 5.10 or 5.17.

Recall from 5.5 that the condition that K acts with finite stabilisers on p~'(0) implies that
p~1(0) is smooth. The inclusion of x~*(0) in X™" induces a natural continuous map

pH0)/K — X G
In order to show that this map is a homeomorphism we need some lemmas.
Lemma 7.1. G = K exp1t.
Proof. The left coset space G/K is a complete Riemannian manifold (see [He]) so that the
associated exponential map Exp : Tk (G/K) — G/K is onto. Moreover Tk (G/K) = g/t and by

[Hel, p. 169 (4), we have

Exp(a+¢) = (expa)K, Va € g

Since g = € + i€ the result follows. [
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Lemma 7.2. If z € p~(0) then Gz N p1(0) = K=z.

Proof. Suppose g € G is such that gr € p=1(0). We wish to show that there exists a k € K
such that gz = kz. Since p~1(0) is K-invariant, by 7.1 it suffices to consider the case g = exp ia
where a € &

Let h : R — R be defined by h(t) = p((expiat)x).a. Then h vanishes at 0 and 1 because x
and (expia)z both lie in u='(0). Therefore, there is some t € (0, 1) such that

0= h'(t) = du(y)(iay).a = wy(iay, ay) = (ay, ay)
where y = (expiat)z and () denotes the metric induces by the Kéhler structure. Thus a, = 0 so

that exp iaR fixes y and hence also x. But then (expia)z = x € Kz, and the proof is complete. [J
It is necessary to strengthen this result.

Lemma 7.3. Suppose that z and y lie in = *(0) and z ¢ Ky. Then there exist disjoint G-
invariant neighbourhoods of  and y in X.

Proof. Since K is compact and x ¢ Ky there is a compact K-invariant neighbourhood V' of
x € ;1 (0) not containing y. Since G = (expi€)K by 7.1 it suffices to show that (expi€)V is a
neighbourhood of x € X and that y ¢ W.

To see that (expi€)V is a neighbourhood of z in X consider the map o : € x p=*(0) — X
which sends (a,w) to (expia)w. This is a smooth map of smooth manifolds so it is enough to
show that its derivative at (1,x) is surjective. If not, there is some nonzero £ € T, X such that
(&,¢) =0 for all ¢ in the image of do(1,z). In particular, (£, ia,) = 0 for all a € €. But then

0=w;(§ az) = du(z)(§).a
for all a € €. Thus

¢ € kerdp(z) = To(u™(0))

and hence ¢ is in the image of do(1,z) which is a contradiction.
Therefore, if

W =explia:a €t llal| <1}V

then W is a compact neighbourhood of x in X. Let

e = inf{(ay, ay) : w € W,a € ¢, ||a|| =1}
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If w € W then w lies in the G-orbit of some z € p~'(0) and it follows easily from 7.2 that the
stabiliser of w in G is finite. Therefore a,, # 0 whenever 0 # a € £ and so € > 0.

Now suppose z € V and a € ¢t is such that ||a|| = 1. Consider the function h : R — R
given by h(t) = p((expita)z).a. As in (the proof of) 7.2, it ¢ € R then h'(t) = (ay, a,) where
w = (exp(ita)z. Therefore h'(t) > 0 for all ¢ and A/(t) > € when ¢t € [0,1] by the choice of e.
Since h(0) = 0 the mean value theorem implies that A(t) > 0 when t > 1. As ||a|| = 1 it follows
that

[li(expita)z]| = e

when ¢ > 1.

We deduce that if z € V' then ||u(expiaz)|| > € whenever a € ¢ and ||a|| > 1. Hence as V is
compact (expit)V is closed in a neighbourhood of p~1(0). Since y € p~1(0) and y & (expi€)V
by 7.2 it follows that y € (expi€)V. O

Now we can prove the result we're aiming for.

Theorem 7.4. Let X be a Kahler manifold acted on by a group GG which is the complexification
of a maximal compact subgroup K that preserves the Kahler structure on X. Suppose that a
moment map p : X — € exists for this action of K and suppose that the stabiliser of every
x € p1(0) is finite. Then X™* = Gu=1(0) and the natural map g~ '(0)/K — X™1/G is a

homeomorphism.

Proof. Gu='(0) C X™® gince X™" is G-invariant by 6.18 and contains ;~1(0). Conversely if
x € X™" then there is some y € p~!(0) lying in the closure of the path of steepest descent for
||u||> from z. By 6.7 this path is contained in the orbit Gz so that y € Gz. Then Gy C Gz
so that either y € Gz or dimGy < dimGz. But by assumption the stabiliser of y in K is
finite and this implies that dim Gy = dim G > dim Gz (7.2). We conclude that y € Gz so that
z € Gu(0).

Thus X™" = Gu~'(0) so the natural map p~'(0)/K — X™"/G is surjective. Lemma
7.2 implies that it is injective while Lemma 7.3 shows that X™"/G is Hausdorff. Thus the
map is a continuous bijection from a compact space to a Hausdorff space and therefore it is a
homeomorphism

It follows (from the proof of 7.2) that if K acts freely on pu~'(0) then G acts freely on the
open X™1 of X, so that the complex structure on X™* induces a complex structure on the
topological quotient X™"/G. The symplectic form on p~'(0)/K induced by w is holomorphic
with respect to this complex structure because w is holomorphic on X and indeed is a Kahler
form since w is Kéhler. Hence the quotient X™"/G = 1171(0)/K is a compact Kéhler manifold.
More generally when the stabiliser of every point in x~1(0) is finite the quotient X™" /G can be
thought of as a Kahler manifold with singularities caused by the finite isotropy groups.
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Remark 7.5. The proof of lemma 7.2 is independent of the assumption that the stabiliser
of every point in g ~1(0) is finite and it is also possible to prove lemma 7.3 without using this
assumption. One uses the fact that if @ € € then the function p, defined by p, = p(x).a
is a nondegenerate Morse function on X. This implies that given any y € u;'(0) and any
neighbourhood U of y in X there is a smaller neighbourhood V' of y and € > 0 such that the
intersection with p;'[—¢, €| of any trajectory of grad ju, which passes through a point of V' is
contained in U. The proof of this when y is not critical for pu, is easy: see a proof of 7.3.
Using this argument of 7.3 gives the result when G = C* and the torus case also follows without
difficulty. The general case can be then be deduced from the facts that G = KT, K and that K
is compact.

From this it follows without the assumption of finite stabilisers that any x € X lies in
Gu~(0) iff  lies in X™™ and its orbit Gz is closed in X™"; and also that the natural map
p0)/K — Gu='(0)/G is a homeomorphism. In particular when X is a projective variety
on which G acts linearly one finds that x~!(0)/K is naturally homeomorphic to the geometric
invariant theory quotient of X by G.
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8 The relationship with geometric invariant theory

From now on we’ll assume that our Kahler manifold X is in fact a nonsingular complex projective
variety and that G is a connected reductive complex group acting on X linearly (as in example
2.1). Then geometric invariant theory associates to the action of G on X a projective ‘quotient’
variety M. In fact M is the projective variety Proj A(X)¢ where A(X)Y is the invariant subring
of the coordinate ring of X. In general M has bad singularities even though X is nonsingular.
However in good cases M coincides with the quotient in the usual sense of an open subset X*®°
of X by G and the stabiliser in G of every x € X*° is finite. This implies that M behaves like a
manifold for rational cohomology.

It turns out that the geometric invariant theory quotient M coincides with the symplectic
quotient ~1(0)/K and that the good cases occur precisely when the stabiliser in K of every
r € p~Y(0) is finite. So the work of the preceding sections can be used to obtain formulae
for the Betti numbers of M in these cases. The formulae involve the cohomology of X and var-

ious subvarieties together with that of the classifying space of G and certain reductive subgroups.

Remark 8.1. The example of PGL(n + 1) shows that the assumption that G acts on X linearly
via a homomorphism ¢ : G — GL(n+1) involves some loss of generality. However the finite cover
of SL(n+1) of PGL(n+1) has the same Lie algebra, moment map and orbits on X as PGL(n+1).
Moreover if G is a connected reductive linear algebraic group acting algebraically on a smooth
projective variety X C PP, then the action is given by a homomorphism ¢ : G — PGL(n + 1)
provided we assume that X is not contained in any hyperplane. The argument for this runs as
follows. Firt we note that the induced action of G on the Picard variety Pic(X) of X is trivial.
For it is enough to show that every Borel subgroup B of G acts trivially. But by [B] theorem
10.4, B has a fixed point on each component of Pic(X). Applying this with X replaced by
Pic(X) we see that there is an ample bundle on Pic(X) fixed by B. By the theorem of [G&H]
p. 326 it follows that the image of B in the group of automorphisms of Pic(X) is discrete. Thus
as B is connected it must act trivially. (Alternatively, see [M] corollary 1.6). Now let L be the
hyperplane bundle on X C P, which has automorphism group GL(n + 1). Then ¢*L = L for
all ¢ € G so that the action of G on X is covered by an automorphism of L and hence is not
contained in a hyperplane. So we get a well defined homomorphism ¢ : G — PGL(n + 1) which
induces the action of G on X.

We may now replace G by its image in PGL(n + 1) and then by the inverse image of this
in SL(n + 1) to obtain a linear action on X with essentially the same properties as the original
action.

The inclusion of A(X)% in A(X) induces a surjective G-invariant morphism 1 : X — M
from an open subset X of X to the quotient M. We shall see that X* always coincides with
the minimum Morse stratum X™" associated to the function f = ||u||?> on X. Therefore §5 and
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§6 give us formulae for the equivariant Betti numbers of X*°. It may happen that a fibrr of ¢
contains more than one orbit of G so that M # X®*/G. However there is an open subset X*® of
X* such that every fiber which meets X® is a single G-orbit (see [M] theorem 1.10). The image
of X*®in M is an open subset M’ of M and M' = X*/G.

Definition 8.2. (see [M], definitions 1.7 and 1.8, noting that Mumford calls stable points
‘properly stable’: this seems to be no longer the accepted terminology). A point z € X is
called semistable if there is a homogeneous nonconstant polynomial F' € C[Xy, ..., X,,| which is
invariant under the natural action of G on C[Xj, ..., X,] and is such that F'(x) # 0. z is stable
if there is an invariant F’ with F(z) # 0 such that all orbits of G in the affine set

Xrp={ye X : F(y) #0}

are closed in Xy and in addition the stabiliser of  in G is finite.
X is the set of semistable points and X*® is the set of stable points of X.

Remark 8.3. Suppose that the stabiliser in GG of every semistable point in X is finite. Then

if x € X® there exists some homogeneous non-constant G-invariant polynomial F' such that

F(z) # 0. Every point in X is semistable so every G-orbit in X has the same dimension as

G. This implies that every orbit is closed in Xy and thus that z is stable. Hence X*® = X*®.
We shall use the following facts which follow from [M], theorem 2.1 and proposition 2.2.

8.4. A point x € X is semistable for the action of G on X iff it is semistable for the action of
every one-parameter subgroup A : C* — G on X.

85. If A:C* — GL(n+ 1) is given by z — diag(z™,...,2") with r; € Z then a point

x=(xp:...:x,) € P, is semistable for the action of C* via \ iff
min{r; : x; # 0} <0 < max{r; : z; # 0}

Using this last fact we obtain

Lemma 8.6. When GG = C* the set X*® of semistable points coincides with the minimum Morse
stratum X ™™ associated to the function ||u|[?.

Proof. There are coordinates in P, such that G = C* acts diagonally by z — diag(z",...,2™),
say. We have K = {€?™ : t € R} so that ¢, () is the subspace u(n+1) spanned by 2widiag(ro, ..., 7).

Let a € £ be a basis element of norm 1. By 2.7, if x = (29 : ... : z,) € X then
-1
() ( > 7’j|%‘|2> (Z |%‘|2> a
0<j<n 0<j<n
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Now, by Theorem 6.18, x € X™" iff 0 € u(Gz). The map from G to X is given by z
(2"°xg 1 ... : 2"x,) extends uniquely to a map 6 : Py — X with 6(0) = (yo : ... : y,) where
y; = x; if r; = min{r; : ; # 0} and y; = 0 otherwise, and 6(c0)(yy : ... : y,,) where y; = x;
if r; = max{r; : »; # 0} and y; = 0 otherwise. Then Gz is the image of P, under 6 and
w1(6(0)) = min{r; : z; # 0} while p(0(0c0)) = max{r; : z; # 0}. On the other hand 0 € p(Gx) iff
either r; = 0 whenever x; # 0 or

min{r; : x; # 0} < 0 < max{r; : z; # 0}

This is because if

min{r; : z; # 0} < 0 < max{r; : x; # 0}

> rilailPla*

J

then

tends to oo as |z| — oo and tends to —oc as |z| — 0. It follows that 0 € u(Gx) iff

min{r; : x; # 0} <0 < max{r; : z; # 0}

and thus by 8.5, x € X™ iff z € X5,

O

In order to deduce from the lemma that X = X™® in the general case, we investigate next
the relationship between the minimum strata associated to the action of the whole maximal

compact subgroup K and of its closed real one-parameter subgroup A : S' — K.

Definition 8.7. A complex one-parameter subgroup A : C* — G of GG will be callsed compatible
with K if it is the complexification of a closed real 1-PS X\ : S' — K of K. When \ is compatible
with K let py be the composition of p with \* : £ — R. Then pu, is a moment map for the
action of S! on X via \.

Lemma 8.8. If z € X then 0 € u(Gx) iff 0 € py(A(C*)x)) for every 1-PS A : C* — G compatible
with K. Equivalently the minimum stratum X™? is the intersection of the minimum strata X"
associated to the action on X of all the 1-PSs A compatible with K.

Remark 8.9. The proof of this lemma is valid when X is any Kéahler manifold and G is the

complexification of a compact subgroup K which preserves the Kéhler structure on X. We are
going to see that when X is a complex projective variety then X™® = X5 Therefore this result
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can be regarded as a generalization to Kéahler manifolds of the fundamental fact of geometric
invariant theory which says that a point is semistable for the action of a group iff it is semistable
for the action of every 1-PS.

Proof. First note that the proof given at 6.19 shows that X™" C X" for every 1-PS A of G
compatible with K.

Now suppose = does not lie in X™"; then there exists a nonzero 3 € B such that © € Sg.
By 6.18, S5 = GYﬁmin and this is the same as K Yﬂmin since Yﬂmi“ is invariant under the parabolic
subgroup Ps and G = K Ps. Therefore, kz € Y™ for some k € K.

Now (X)) is compact in £ = ¢ and the rational points are dense in t. Therefore, there exists

0 > 0 and a rational point v € t such that

{€:nX) &8> I8P} S {6 €t 6y >4}

By replacing v by m~ for a suitable m € Z, we may assume that 7 is a lattice point of t and
hence corresponds to a complex 1-PS of Tt compatible with 7. Since kx € Yﬂmin, by 6.11 we
have

p(v(Ckz) C{€ € p(X) : €8 = [BIP} C{E €k &y = 0}

In particular ju.,(y(C*)kx), which is the projection along 7 of u(vy(C*)kz), does not contain 0.

Let A = Ad(k)~; then X is a 1-PS of G compatible with K such that 0 & u(A(C*)x) and hence
x & X, Therefore,

m X/r\nin C Xmin
A
and the proof is complete. [

Any 1-PS X\ : C* — G has a conjugate Ad(g)\ = gA\g~! : C* — G which is compatible with K.
Therefore from 8.4, 8.6 and 8.8 and the fact that X™ is G-invariant we can deduce the following

Theorem 8.10. Let X C P, be a nonsingular complex projective variety and let G be a complex
reductive algebraic group acting on X via a homomorphism ¢ : G — GL(n+1). Suppose that G
has a maximal compact subgroup K such that ¢(K) C U(n+ 1). Then the set X* of semistable
points of X coincides with the minimum Morse stratum X™® of the function ||u|* on X where
p: X — € is the moment map and || || is the norm associated to any K-invariant inner product
on t.

Suppose now that the stabiliser in G of every semistable point is finite. Then by remark
8.3 we have X* = X*. But we know that there is a morphism 1 : X* — M from X** to the
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projective quotient M such that each fiber which meets X® is a single orbit under the action of
G. Therefore 1) induces a continuous bijection 1 : X*/G — M.

We saw in §7 that X*/G is a compact Hausdorff space and so is the projective variety M.
Hence 1/~1 is a homeomorphism.

Thus we obtain formulae for the rational cohomology of the quotient variety M. Before stating
these formulae in a theorem let us review the definitions of the terms involved and interpret them
in the case of a linear reductive group action on a projective variety.

First recall from 3.5 that the moment map pr for the action of the compact maximal torus

T on X is given by

() = Zj Ry
D2 sl
where «y, are the weights of the action.

Choose an inner product which is invariant under the Weyl group action on the Lie algebra
t of T" and use it to identify t* with t. Then a minimal combination of weights is by definition
the closest point to 0 of the convex hull of some nonempty subset of {«y,...,a,}. The indexing
set B consists of all minimal weight combinations lying in the positive Weyl chamber t, .

Note that if we assume the inner product to be rational (i.e. to take rational values on lattice
points) then each @ € B is a rational point of t,. Thus each subgroup exp R3 of T is closed and
hence the subtorus T3 of T' generated by 3 is 1-dimensional.

We saw in 3.11 that for each 3 € B the submanifold Z3 of X is the intersection of X with

the linear subspace

{z € P, :z; =0 unless ;.0 = |||}

of P,,. Recall that Zglin was defined as the set of points in Zg whose paths of steepest descent
for the function |u — B|> on Zg have limit points Zg N p~'(5). Let Stab(8) be the stabiliser of
(£ under the adjoint action of G and let Stabg 3 be its intersection with K. By 4.9 up — 3 is a

moment map for the action of Stabx 3 on Zg.

8.11. In order to interpret the inductive formula of 5.10 we want to define a subset Z3 of Zs
somehow in terms of semistability so that Z3 will coincide with Z5™. There are at least two
alternative ways to do this. One way is to let Gz be the complexication of the connected closed
subgroup of Staby (/) whose Lie algebra is the orthogonal complement to § and to let Z3 be
the set of points of Zg which are semistable which are semistable for the linear action of G5 on
Zg defined by the homomorphism ¢. Then ZF = Zglin by theorem 8.10 because the projection
onto the Lie algebra of K NG of p restricted to Zg is i — 3. Another way is to note that since
[ is a rational point of the center of stab( there is a character y : Stab 3 — C* whose derivative
is a positive integer multiple r3 of . One can define Z3 to be the set of semistable points of
Zg under the action of Stab # where the action is linearised with respect to the rth tensor of the
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hyperplane bundle by the product of ©®" with the inverse of the character y. The corresponding
moment map Zg is then rp— 73 so that again Z3 = Zgﬁ“. However the details are unimportant.
Z3m can be reinterpreted as the union of those components of Zs which are contained in
components of Y of real codimension m. Finally, -sequences 3 = (8y,...,[3,) are the corre-
sponding linear sections Zg and Zg,, of X and subgroups Stab 3 can be defined as in §5.

Theorem 8.12. Let X C P, be a complex projective variety acted on linearly by a connected
complex reductive algebraic group G. The equivariant Poincaré series for X* is given by the

inductive formula

PE(X™) = R(X)P(BG) = ) t"Cm B0 (Z3,)
B.m
where the sum is over nonzero § € B and integers 0 < m < dim X. Stabf is a reductive
subgroup of G acting on Zg,, which is a smooth subvariety of X for each 5, m and

d(B,m) =m — dim G + dim Stab

Suppose that the stabiliser of every semistable point in X is fintie so that the projective quotient
variety M associated to the action in geometric invariant theory is topologically the quotient
X*/G. THen the rational cohomology of M is isomorphic to the G-equivariant rational coho-
mology of X®°. It is given by the explicit formula

P,(M) = P(X)P,(BG) + Y (—=1)*t"®™ P,(Z3,,) P BStaby3)
B,m

Each Zg,, is a smooth subvariety of X acted on by a reductive subgroup Stabj of G and
d(8,m) =m — dim G + dim Stabf

Remark 8.13. Note that the equivariant cohomology must be used in the inductive formula
because the condition of finite isotropy groups may not be satisfied for all the subgroups Stab 3

acting on the subvarieties Zg3 ,.
Proof. This follows from 5.10, 5.16, 6.20, 8.10 and the remarks of the last few paragraphs.

Remark 8.14. When the stabiliser of every semistable point is finite then the geometric invariant
theory quotient X /G is homeomorphic to the symplectic quotient x~1(0)/K by theorem 7.5.
In fact we can show that M is homeomorphic to p~!(0)/K without any assumption on stabilisers
as follows.

The inclusions p~'(0) — X™ = X* together with the surjective G-invariant morphism
¥ : X* — M induces a continuous map h : u~*(0)/K — M. By the proofs of [M] theorem 1.10
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and amplification 1.3 two points x,y € X* are identified by ¢ iff the closures in X* of Gx and
Gy meet each other. But by remark 7.8 G ~1(0) consists of those z € X*® such that Gz is closed
in X* so the map h is injective. Moreover if x € X* = X™o then the closure of the path of
steepest descent for the function ||u|[? from z contains a point of x~(0) and by 6.7 this path is
contained in the orbit Gx. Thus h is surjective. It follows that h is a bijection from a compact

space to a Hausdorff space and hence is a homeomorphism.
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9 Some remarks on non-compact manifolds

So far we have considered only compact symplectic manifolds and projective varieties. Now
suppose that X is any symplectic manifold acted on by a compact group K such that a moment
map g : X — £ Then one can obtain almost the same results as for compact manifolds subject

only to the condition that

9.1. For some metric on X every path of steepest descent under the function f = ||ul|* is
contained in some compact subset of X.

One simply checks that all the arugments used in §§3,4,5 and the appendix are still valid
with trivial modifications. The only result which fails is theorem 5.8. This says that the ratio-
nal equivariant cohomology of the total space X is the tensor product of its ordinary rational

cohomology with that of the classifying space of K; i.e.

PK(X) = P,(X)P,(BK)

Thus in the formulae obtained for the equivariant rational cohomology of p=1(0) (see 5.10 and
5.16) one must now always use the equivariant Poincaré series PX(X) rather than the product
PE(X)P,(BK). Otherwise the formulae are correct and in good cases give the Betti numbers of
the symplectic quotient p~1(0)/K.

Example 9.2. Cotangent bundles. The examples which motivated the definition of sym-
plectic manifolds and moment maps were phase spaces and conserved quantities such as angular
momentum.

The cotangent bundle 7*M of any manifold M has a natural symplectic structure given by

W:dei/\d%‘

where (q1, ..., qn) are local coordinates on M and (py, . . ., p,) are the induced coordinates on the
cotangent space at (qq,...,¢,). Any action of a compact group K on M induces an action of K
on T*M which preserves this symplectic structure. Moreover it is not hard to check that there
is a moment map p : T*M — € for this action defined as follows. If m € M and £ € Tx M then

9.3
w(€).a =E.apn
for all @ € € where . on the left hand side denotes the natural pairing between £ and £ and on

the right denotes the natural pairing between 7Tx M and T,,M. So a general moment map is of

the form p + ¢ where c lies in the center of £ (see §2).
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Condition 9.1 holds for each of the moment maps on T*M provided that M is compact. To
see this one fixes a metric on M and uses it to induce a Riemannian metric on T*M. It can then
be shown that the path of steepest descent for f = ||u + c||* from any point & € T*M consists
of cotangent vectors whose norm is bounded by some number depending only on &.

The function [|u||* = f where p is given by 9.3 is not an interesting Morse function because
the only critical points are the points in p~1(0). The reason for this is that by lemma 3.1 if
¢ € Tr M is critical for f then the vector field induced by p(€) on T*M vanishes at . Thus in
particular p(£),, = 0 so if we put a = p(¢) in 9.3 we obtain ||u(€)||* = 0. However if K is not
semisimple then it is often possible to choose ¢ in the center of € such that the norm-square of
the moment map p + ¢ has non-minimal critical points.

For example, consider the action of the circle S' on 7%5? induced by the rotation of the
sphere S? about some axis. Let ¢ be an element of norm 1 in the Lie algebra of S' and let

f =1+ c|[*>. Then from 9.3 we have

f(&) = (en & +1)°
for any m € S? and £ € TXS?. So f(£) = 0 iff £.¢,,, = —1 which means that the minimum set for

f is homeomorphic to a line bundle over the sphere less two points and hence is homotopically
equivalent to S*. Since the circle action on this is free the equivariant cohomology of the minimum
set is trivial.

By lemma 3.1 the other critical points £ for f are those fixed by S!. There are the two points
of S? fixed by the rotation. The index of the Hessian at each of these is 2. Thus we obtain

P (S?) = PP (T*S?) =1+ 262(1 — )L = (1 + £2)(1 — 3) ! = B(SH)P(BSY)
as one expects from proposition 5.8 since S? has a symplectic structure preserved by the action
of St.

As a second example consider the linear action of the torus

e? 0
p= (48 )insex)

on the unit sphere S* € C2. By 9.3 if m € S3 and & € T%S? then

M(f) = (amf)a + (bmg)b

é 8 and b = ( 8 ? ) Consider the function f = ||p+ a +b||* on T*S*. Any
£ € T*S® satisfies f(§) = 0if u(€) = —a — b, ie. if a,.6 = =1 =b,.¢ Ifa,, =0o0rb, =0
these equations for ¢ have no solution and otherwise they define an affine line in T¥,S®. So the

where a =

minimum set f~!(0) is acted on freely by T and its equivariant cohomology is isomorphic to
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the cohomology of the quotient of T' by S?® with two circles removed. This quotient is an open
interval so its cohomology is trivial.

From lemma 3.1 we see that if £ € T%.5% is a non-minimal critical point for f then either ¢ is
fixed by a and p(€) + a + b is a scalar multiple of a or £ is fixed by b and () +a + b is a scalar
multiple of b. In the first case, £.b = —1 and € € T*S* where S! is the circle fixed by a and the
second case is similar. So the non-minimal critical points form two circles in 7*S® each of which
is fixed by one copy of S! in the torus T and is acted on freely by the other. The index of the

function f along each of these circles is 2. Thus we obtain

PF(S?) =1+ 2t*(1 —¢*)7!
Note that this is not equal to P;(S3)P,(BT); this does not contradict proposition 5.8 since S? is
not a symplectic manifold!

Example 9.4. Quasi-projective varieties. Other obvious examples of non-compact symplec-
tic manifolds are nonsingular quasi-projective complex varieties.

Suppose that G is a complex reductive group with maximal compact subgroup K acting lin-
early on a nonsingular locally closed subvariety X of some complex projective space IP,. Suppose
also that the stabiliser of every semistable point is finite. If condition 9.1 is satisfied then we ob-
tain formulae for the Betti numbers of the symplectic quotient ¢ ~*(0)/K which is homeomorphic
to the quotient variety produced by invariant theory. There is also a more algebraic condition
for these formulae to exist which is an alternative to 9.1. It is described as follows.

When X is a closed subvariety of P, acted on linearly by G then the stratification of X
induced by the action is just the intersection with X of the stratification {Ss : f € B} induced
on P,. If X is quasi-projective we can still define a stratification of X with strata {X N Sg}.
Moreover by 6.18 and 8.10 we have Sg = Gg xp, Yj5* for each 3 where Yj® is a nonsingular
locally-closed subvariety of IP,, and Pj is a parabolic subgroup of G. Since X is invariant under
G this implies

X NSy =G xp, (XNYS)

There is also a retraction pg : Y§* — Z7 onto the semistable points of a linear subvariety Zs of
P,, under the action of a subgroup of GG. Provided that

9.5. ps(r) € X whenever z € X NY3® for each 3 € B, one can check that each pg induces a
retraction of X NY3® onto X N ZF and that all the results of §8 hold for X.

One can use quasi-projective varieties satisfying this condition to rederive Atiyah and Bott’s
formulae for the cohomology of moduli spaces of vector bundles over Riemann surfaces. For this
one considers spaces of holomorphic maps from Riemann surfaces to Grassmannians. These can
be embedded as quasi-projective subvarieties of products of Grassmanians.

63



64

The results of these notes also apply to reductive group actions on singular varieties satisfying

appropriate conditions (see the work of Carrell and Goresky on C*-actions [C & GJ).
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10 Appendix. Morse theory extended to minimally de-
generate functions

Given any nondegenerate Morse function with isolated critical points on a compact manifold,
one has the well-known Morse inequalities which relate the Betti numbers of the manifold to the
numbers of critical points of each index. Bott has shown that this classical Morse theory extends
to a more general class of Morse functions [Bo]. The functions which are nondegenerate in the
sense of Bott are those whose critical sets are disjoint unions of submanifolds along each of which
are the Hessian is nondegenerate in normal directions. The associated Morse inequalities relate
the Betti numbers of the manifold to the Betti numbers and indices of the critical submanifolds.
The purpose of this sectionn is to show that Morse theory can be extended to cover an even
larger class of functions.

Definition 10.1. A smooth function f: X — R on a compact manifold X is called minimally
degenerate if the following conditions hold.

1. The set of critical points for f on X is a finite union of disjoint closed subsets {C' € C}
on each of which f takes a constant value f(C'). The subsets are called critical subsets of
f. If the critical set of f is reasonably well behaved we can take the subsets {C'} to be its
connected components.

2. For every C' € C there is a locally closed submanifold ¥« containing C' and with orientable
normal bundle in X such that

(a) C is the subset of ¥ on which f takes its minimum value.

(b) at every point x € C the tangent space T, ¢ is maximal among all subspaces T, X
on which the Hessian H,(f) is positive-definite.

A submanifold satisfying these properties is called a minimising manifold for f along C.

Thus minimal degeneracy means that critical sets can be as degenerate as a minimum but
Nno Worse.

The purpose behind this definition is to find a condition on f more general than nondegeneracy
which ensures that for some choice of metric f induces a Morse stratification whose strata are
all smooth. This appendix shows that minimal degeneracy is such a condition. Conversely if
f is any function which induces a smooth Morse stratification then the strata themselves are
minimising manifolds provided that the Hessian at every critical point is definite in directions
normal to the stratum which contains it.

We do not demand that the minimising manifolds be connected. However, this extra condition

is always satisfied if we replace each critical subset C' by it intersections with the connected
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components of Y. Hence we can assume that the index of the Hessian of f takes a constant value
A(C) along any C' € C, since by 10.1(b) it coincides with the codimension of the submanifold
Yc. We shall call A(C') the index of f along C.

Any function which is nondegenerate in the sense of Bott is minimally degenerate. For by
definition the set of critical points of f is the disjoint union of connected submanifolds of X and
these can be taken as the critical subsets of f. If we fix a metric on X then the Hessian of f
induces a self-adjoint endomorphism of the normal bundle N¢ along each critical submanifold C'.
Because f is nondegenerate N¢ splits as a sum NJ & N where the Hessian is positive definite
on N and negative definite on N;. It is easy to check that locally the image of NZ under the
exponential map induced by the metric is a minimising manifold for f along C.

We wish to show that any minimally degenerate Morse function on X induces Morse inequal-
ities in cohomology and also in equivariant cohomology if X is acted on by a compact group K
which preserves the function. These inequalities are most easily expressed using the Poincaré
polynomials

P(X) = #dim H(X)

and equivariant Poincaré polynomials

PN(X)=> " #/dim H(X)
=0

Our aim is to prove the following

Theorem 10.2. Let f: X — R be a minimally degenerate Morse function with critical subsets
{C € C} on a compact manifold X. Then the Betti numbers of X satisfy Morse inequalities

which can be expressed in the form

S PORC) ~ PAX) = (L DR()

cecC
where A\(C) is the index of f along C' and R(t) > 0 in the sense that all its coefficients are
nonnegative. If a compact group K acts on X preserving f and the minimising manifolds, then
X also satisfies equivariant Morse inequalities of the same form.

When f is nondegeneate one method of obtaining the Morse inequalities is to use a metric
to define a smooth startification {S¢ : C' € C} of X. This is perhaps not the easiest approach
but we shall follow it here since the stratification of the particular function relevant to us is
interesting in its own right. A point of X lies in a stratum S¢ if its trajectory under the gradient
field —grad f converges to a point of the corresponding critical subset C'. For a general function
f such a trajectory may not converge to a single point. However the limit set of the trajectory is
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always a connected nonempty set of critical points for f (see 2.10). Therefore if f is minimally de-

generate then any such limit set is contained in a unique critical subset. So we make the following

Definition 10.3. Suppose f : X — R is a minimally degenerate Morse function with critial
subsets {C' € C} and suppose that X is given a fixed Riemannian metric. Then for each C' let
Sc be the subset of X consisting of all points € X such that the limit set w(x) of the trajectory
of —grad f from z is contained in C'.

X is the disjoint union of the subsets {S¢ : C' € C}. We shall see that if the metric is chosen
appropriately they form a smooth stratification of X such that each stratum S¢ coincides near
C with the minimising manifold ¥¢. The condition which the metric must satisfy is that the
gradient field grad f should be tangential to each minimising manifold ¥-. We shall show that
such a metric exists and then prove the following

Theorem 10.4. Let f be a minimally degenerate Morse function with critical subsets {C' € C}
on a compact Riemannian manifold. Suppose that the gradient flow of f is tangential to each of
the minimising manifolds {¥¢ : C' € C}. Then the subsets {S¢ : C' € C} defined at 10.3 form
a smooth stratification of X called the Morse stratification of the function f on X. For each
C the stratum S¢ coincides with the minimising submanifold > in some neighbourhood of C.
Moreover each inclusion C' — S¢ is an equivalence of Cech cohomology. If there is a compact
group K acting on X such that f, the minimising manifolds and the metric are all invariant
under K then these inclusions are also equivalences of equivariant cohomology.

In order to be able to apply this result to any minimally degenerate function we need the
following

Lemma 10.5. Let f be a minimally degenerate function on X. Then there is a metric on X
such that near each C' the gradient flow of f is tangential to the minimising manifold . If
f and the minimising manifolds are invariant under the action of a compact group K then the
metric may be taken to be K-invariant.

Proof. A standard argument using partitions of unity shows that it is enough to find such metrics
locally. The only point to note is that one should work with dual metrics because grad, f is linear
in p* but not in p.

Suppose z is any point of a critical subset X. Condition (2) of 10.1 implies that there is a
complement to T, X¢ in T, X on which the Hessian H,(f) is negative definite. It follows from the
Morse lemma (lemma 2.2 of [Mi]) that there exist local coordinates (z1,...,x,) around x such
that the minimising manifold ¥ is given locally by

0=2441 = T2 = ... = Ty,
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and such that

floy,... 2,) :f(lﬁh---,%d)—($d+1)2—--~—(1’n)2

(To prove this, regard xi,...,x4 as parameters and apply the Morse lemma to z4.1,...,2,).
Then the gradient flow of f with respect to the standard metric on R" is tangential to ¥¢.

Finally, a K-invariant metric is obtained by averaging the dual metric over K.

Because of this lemma theorem 10.2 can be deduced from theorem 10.4 by the standard
argument using Thom-Gysin sequences. The rest of this appendix is devoted to the proof of
theorem 10.4.

The most difficult part of the proof of this theorem will be to show that for each C' the stratum
S¢ coincides with the given submanifold > in some neighbourhood of C. Once we know that
Sc¢ is smooth near C' it will follow easily that S¢ is smooth everywhere and the cohomology
equivalences are not hard to prove.

First we shall show that the subsets {Sc} form a stratification of X in the sense of 2.11. It
suffices to prove the following lemma which is depends on the assumption 10.1(1) but not on the

existence of minimising manifolds.

Lemma 10.7. For each C € C

SecScu |J  Se
fF(en>f(C)
Proof. If a point x lies in S¢ for some C' € C then by definition its path of steepest descent for
f has a limit point in C, and hence f(z) > f(C) since f decreases along this path. Moreover,
f(z) > f(C) unless z € C.

If 2 lies in the closure S¢ of S¢ then so does every point of its path of steepest descent.
Hence the closure of this path is contained in Sc. It follows that z € S for some C’ with
f(C") > f(C). So if x € S¢ and z is not critical for f then f(x) > f(C).

Since the subsets {C' € C} are compact, there are open sets {Uq : C' € C} whose closures
are disjoint such that Uz O C for each C. If x lies on the boundary 0U¢s of some U then x is
not critical for f. Hence, if # € OUs N S then f(z) > f(C). Since each QU N S¢ is compact it
follows that there is some § > 0 such that if C' € C and x € Ug N S¢ then f(z) > f(C) + 6.

Now suppose that C, C” are distinct and that there is some x € Sev NS¢, Let {x; : t > 0} be
the path of steepest descent for f with xg = x; then the limit points of {z; : ¢ > 0} as t — oo
are contained in C”. So there exists T' > 0 such that 2 € Ugr and f(z7) < f(C”) + §. But this
implies that there is a neighbourhood V' of & such that yr € Ugr and f(yr) < f(C")+ 0 whenever
yeV.

Since z € S¢ there is some y € V N S¢; then yr € Uer, but the limit points as ¢ — oo of
{y; : t > 0} are contained in C'. Since by assumption Ug N Ugr = ) there must exist some ¢ > T
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such that y, € OUc N Se. This implies that f(y,) > f(C) + d by the choice of §. But f decreases
along the path {y; : t > 0} and f(yr) < f(C") + 0 since y € V. Therefore,

&)+ 0> flyr) = fly) = F(C)+6

so that f(C") > f(C).
This shows that if Scr NS¢ is nonempty then f(C) < f(C”). Since X is the disjoint union of
the subsets {S¢ : C € C} the result follows. [J

Now we shall begin the proof that each stratum S¢ coincides near C' with the corresponding

minimising manifold X¢.

Lemma 10.8. For each C € C the intersection of the minimising manifold ¥ with a sufficiently
small neighbourhood of X is contained in the Morse stratum Se.

Proof. As in the proof of 10.7 choose open subsets Us of X whose closures are disjoint and
Ues 2O C for each C € C. Since each ¢ is a submanifold of some neighbourhood of C', if Uy is
taken small enough then ¢ N Ug is closed for each C'.

If C' € C then by definition of minimising manifold, C' is the subset of ¥¢ on which f takes
on its minimum value. Hence, if x € ¥¢ N U then f(z) > f(C), and so ¥ N OUe is compact
there exists v > 0 such that f(x) > f(C) + v whenever C' € C and = € ¥ N IUq. Then, for
every C', the subset

Vo =Ucn{zeX: f(z) < f(C)+7}

is an open neighbourhood of C' in X.

Suppose x lies in the intersection of this neighbourhood Vi with . Then as grad f is
tangential to Yo and ¢ is closed in Ug the path {z, : t > 0} of steepest descent for f from
stays in Y as long as it remains in Ugc. Hence if the path leaves Ug, there exist ¢ > 0 such that
x; € OUc N Y. This implies that

fl@) = f(z) = fF(C) +

which contradicts the assumption that x € V. So the path remains in Ug for all time. Since the
only critical points for f in U are contained in C, it follows that the limit points of the path lie
in C' and so z € S¢.

Remark 10.9. Note that the same argument shows that given any neighbourhood Ug of C' in

X there exists a smaller neighbourhood Vi such that if z € Vo N Se then the entire path of
steepest descent for f from z is contained in Ug.
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In order to prove the converse to the last lemma we need to investigate the differential equation
which defines the gradient flow of f in local coordinates near any critical point . We shall rely
on the standard local results to be found in [H].

Recall that if x € X is a critical point for f then the Hessian H,(f) of f at z is a symmetric
bilinear form on the tangent space T, X given in local coordinates by the matrix of second partials
of f. The Riemannian metric provides an inner product on 7,X so that H, can be identified
with a self-adjoint linear endomorphism of 7, X. Then all the eigenvalues of H,(f) are real and
T, X splits as the direct sum of the eigenspaces of H,(f).

The assumption that the gradient field of f is tangential to ¥ implies that for each x € C'
the subspace T, %¢ of T, X is invariant under H,(f) regarded as a self-adjoint endomorphism of
T, X. Hence so is its orthogonal complement 7,375. By the definition of a minimising manifold
the eigenvalues of H,(f) restricted to T,%¢ are all nonnegative while those of H,(f) restricted
to T, X4 are all strictly negative.

Now fix C' € C and a point x € X. Let d be the dimension of ¥¢. Then we can find local
coordinates (zy,...,x,) in a neighbourhood W, of x such that
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10.10.

1. x is the origin in these coordinates and the submanifold ¥¢ is given by z411 = x410 =

.=z, =0.
2. The Riemannian metric at x is the standard inner product on R".

3. The Hessian H,(f) is represented by a diagonal matrix

H,.(f) =diag (M, ..., \n)
where \j, ..., g > 0 and A\giq,..., A, <O.

Let P be the diagonal matrix

diag (—=A1,. .., —Aa)
and let @) be the diagonal matrix
diag(_)‘d+17 ) _)\n)v
then
P 0
in these coordinates. For (z1,...,x,) € R" write y = (z1,...,24) and z = (2441, ...,2,). Then

the trajectories of —grad f in these coordinates are the solution curves to the differential equation

10.11
y=Py+ Fi(y,2); z=Qz+ Fy(y,z)

where F; are smooth and their Jacobian matrices OF; vanish at the origin [H, IX §4]. By reducing
the neighbourhood W, of x if necessary we may assume that F; extend smoothly over R" in such
a way that there exist complete solution curves to 10.11 through every point (y, zo) given by
t — (yg, 2¢) say, for t € R [H, IX §3,4]. Then we have

10.12
Pt . _ Qt
y=e Yo+ Y(t,vo,2); 2 =e*"2+Z(t yo,2)

for all t where Y, Z and their partial Jacobians vanish at the origin.

We want to show that if a point & does not lie in X then its path of steepest descent stays
well away from C. If x is sufficiently close to ¢ then it has a well-defined distance d(x,3¢).
It is sufficient to show that near C' this distance function is bounded away from zero along all
paths of steepest descent not contained in . We can do this by working in local coordinates
near each z € C.
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The submanifold ¢ is defined in the local coordinates (y, z) in W, by z = 0. Therefore in
the standard metric on R” the distance from ¢ is given by ||z||. Moreover the coordinates were
chosen so that the given Riemannian metric at x coincides with the standard inner product on

R™. It follows that given any € > 0 we may reduce W, so that

10.13
(L+e) Izl < d((y, 2), ) < (L+e)ll2|

everywhere in W,.
We now need the following technical result.

Lemma 10.14. There is a number b > 1 which depends only on the critical set C' € C such that
the following property holds for all x € C'. If the neighbourhood W, of = is taken sufficiently
small and the extensions of F, F, over R™ are chosen appropriately, then for every (yo, z0) € R”
we have ||z1]| > b||20|| where z; = e%20 + Z(1, 0, 20) as in 10.12.

Proof. The gradient field of f is tangential to the submanifold 3¢ so F(y,0) = 0 whenever (y, 0)
lies in W, (see 10.11). Therefore, the extension of F, to R™ can be chosen so that Fy(y,0) =0
for all y € R This implies that

Z(t,40,0) =0  Vy €R? teR

(see 10.12).
Now for each = € C let ¢, be the minimum eigenvalue of . Recall that
Q = diag(—Agi1, -y —An)
where Agi1,..., A, are the eigenvalues of the Hessian H,(f) restricted to T, and that each

of these eigenvalues is strictly negative. Hence ¢, > 1. Let ¢ = inf{c, : © € C}; since C' is
compact and ¢, depends continuously on z it follows that ¢ > 1. So we can choose # > 0 such
that ¢ — 60 > 1. Set b =c — 0; then b > 1 and b depends only on C.

By 10.12 the partial Jacobian dy, .,Z vanishes at the origin for all ¢ € R. Hence, by reducing
the neighbourhood W, and choosing the extensions of F| and F, appropriately we may assume
that

||aZ()Z(17 Yo, ZO)H S 0
for all (yo, 20) € R™ (cf. [H], IX §4). It follows that

1Z (1, 4o, 20)[| < O] 20]|

for all (o, z0) € R"™. Since every eigenvalue of e¥ is at least ¢, for any (yo, 29) we have
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[zl = [1e9% + Z(1, yo, 20)[] = cllzoll = 0]l 20| = bll2o]]

The result follows. O

Corollary 10.15. The intersection of the Morse stratum S¢ with a sufficiently small neighbour-
hood of C' in X is contained in the minimising manifold .

Proof. 1t follows from 10.13 and 10.14 that, given € > 0, there is a neighbourhood W of C' such
that if {z; : t > 0} is any path of steepest descent with x; € W when 0 <t <1 then

d(x1,%¢) > b(1 + €)2d(x0, S)

where b > 1 is independent of €. If € is choen sufficienty small we have

b(l4+e)2>1

By remark 10.9 there is a neighbourhood V¢ of C' in X such that if 2y € Vo NS¢ its entire
path of steepest descent {z; : ¢ > 0} is contained in We. Then for each n > 1

d(2y,5c) = (b(1+€)7*)"d(z0, Sc)

But we may assume without any loss of generality that d(z,>¢) is bounded on W. Hence we
must have d(zg, Xc =0, i.e. 29 € X. This shows that Ve NS C Y.

From 10.8 and 10.15 we deduce that each stratum S coincides with Y in a neighbourhood
Uc of C and hence that S¢ N Ug is smooth. But any point of S¢ is mapped into Sc N Ug by the
diffeomorphism z +— x; of S¢ induced by flowing for some large time ¢ along the gradient field

of f. So we have the following

Lemma 10.16. For each C' € C the stratum S¢ is smooth. It coincides with the minimising
manifold ¥ in some neighbourhood of C.
We have seen that the subsets {S¢ : C' € C} form a smooth stratification of X and it remains

only to prove one more result.

Lemma 10.17. For each C' € C the inclusion C' — S¢ is an equivalence for Cech cohomology.
More generally if a compact connected group K acts on X in such a way that the function f
and the Riemannian metric on X are preserved by K then each stratum S¢ is K-invariant and
the inclusion C' — S¢ are equivalences of equivariant cohomology.
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Proof. We need only consider the second statement. It is clear from the definition that the Morse
strata {S¢} are K-invariant.
For each sufficiently small § > 0

Ns={z € Sc: f(x) < f(C)+}

in a compact neighbourhood of C' in S (see the proof of 10.8). The paths of steepest descent
induce retractions of S¢ onto each Ny with respect to the action of K. So each inclusion Ns X g
EK — S¢ xg FK is a cohomology equivalence. Also

ﬂm:c

6>0

So the continuity of Cech cohomology implies that the inclusion C' < S¢ is an equivalence of
equivariant Cech cohomology [D, VIII 6.18]. The only problem is that X X x EK is not compact.
This can be overcome by regarding E K as the union of compact manifolds which are cohomo-

logically equivalent to EK up to arbitrarily large dimensions.

Remark 10.18. When f is nondegenerate in the sense of Bott, each path of steepest descent
under under f converges to a unique critical point in X. Thus the strata retract onto the critical
sets along the paths of steepest descent. This fails in general for minimally degenerate functions:
there exist minimally degenerate functions with trajectories which spiral in towards a critical
subset without ever converging to a unique limit. This is why Cech cohomology is used above.

However, it is unlikely that the square of the moment map has such bad behaviour.
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Part II. The Algebraic Approach

11 The basic idea

In Part I a formula was obtained in good cases for the Betti numbers of the projective quotient
variety associated in geometric invariant theory to a linear action of a complex reductive group
G on a nonsingular complex projective variety X. The good cases occur when the stabiliser in G
of every semistable point of X is finite. The quotient variety is then topologically the quotient
X*/G of the set of semistable points by the group. The formula was obtained by employing the
ideas of Morse theory and of symplectic geometry. We shall now approach the same problem
using algebraic methods.

The basic idea common to both approaches is to associate to the group action a canonical
stratification of the variety X. The unique open stratum of this stratification coincides with
the set X* (provided this is nonempty) and the other strata are all G-invariant locally-closed
nonsingular subvarieties of X. There then exist equivariant Morse-type inequalities relating the
G-equivariant Betti numbers of X to those of the strata. It turns out that these inequalities
are in fact equalities, i.e. that the stratification is equivariantly perfect over Q. From this an
inductive formula can be derived fro the equivariant Betti numbers of the semistable stratum
X % which in good cases coincide with the ordinary Betti numbers of the quotient variety.

The difference between the two approaches lies in the way the stratification of X is defined.
In Part I symplectic geometry was used to define a function f (the norm-square of the moment
map) which induced a Morse stratification of X. In Part II the stratification will be defined
purely algebraically. The main advantage of this method is that it applies to varieties defined
over any algebaically closed field. On the other hand the approach in Part I generalizes to Kahler
and symplectic manifolds.

The algebraic definition of the stratification is based on the work of Kempf. It also has close
links with the paper [Ne| by Ness. Suppose that we are given a linear action of a reductive group
GG on any projective variety X, singular or nonsingular, defined over any algebraically closed
field. Kempf shows that for each unstable point x € X there is a conjugacy class of virtual
one-parameter groups of a certain parabolic subgroup of G which are most responsible for the
instability of xz. (The term canonical destabilizing flags is also used). The stratum to whcih
x belongs is determined by the conjugacy class of these virtual one-parameter subgroups in G.
Over the complex field, the stratification is the same as the one already defined in Part 1.

Just as in Part I the indexing set B of the stratification may be described in terms of the
weights of the representation of G which defines the action. An element 3 € B may be thought
of as the closest point to the origin of the convex hull of some nonempty set of weights when the
weights are regarded as elements of an appropriate normed space (see §12.8).
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In §13 it is shown that if X is nonsingular then the strata Sg are also nonsingular and have
the same structure as in the complex case. That is, to each § in B there is a smooth locally
closed subvariety Y3* of X acted on by a parabolic subgroup Ps of G such that

11.1

SﬁgGXPﬁ Yﬁss

There is also a nonsingular closed subvariety Z of X and a locally trivial fibration

11.2

Ps - Yﬁss — ;S

whose fibres are all affine spaces. Here Z3 is the set of semistable points of Zz under the action
of a reductive subgroup of Pg.

These results were precisely what was needed in Part I to show that the stratification {Ss :
B € B} is equivariantly perfect and hence to derive an inductive formula for the equivariant
Betti numbers of X*. Thus the reader who is interested in solely in complex algebraic varieties
can avoid the detailed analytic arguments needed for symplectic and Kahler manifolds by using
the definitions and results from these two sections. It will be found that at times the algebraic
method is neater while at others it is more elegant to argue analytically.

In §14 we shall see how the formulae for the Betti numbers of the quotient variety M can
be refined to given the Hodge numbers as well. We use Deligne’s extension of Hodge theory to
complex varieties which are not necessarily compact and nonsingular.

In §15 an alternative method for obtaining the formulae is described though without detailed
proofs. This method was suggested by work of Harder and Narasimhan. It uses the Weil
conjectures which were establised by Deligne. These enable one to calculate the Betti numbers
of a nonsingular complex projective variety by counting the points of associated varieties defined
over finite fields. In our case it is possible to count points by decomposing these varieties
into strata using 11.1-2. However the Weil conjectures apply only when the quotient variety is
nonsingular.

Finally in §16 some examples of stratifications and of calculating the Betti numbers of quo-
tients are considered in detail. The first example is given by the action of SL(2) on the space P,
of binary forms of degree n which can be identified with the space of unordered sets of poitns on
P;. We also consider the space (IP;)™ of ordered sets of points on P;. These have been used as
examples throughout part I. The good cases occur when n is odd and then the Hodge numbers
of the quotient varieties M are given by
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1

for the case of unordered points, and

WP =14 (n—1)+ (n ; 1) e (min(p,nn_—li% —p))

for ordered points. The Hodge numbers h?? with p # ¢ all vanish. Then we generalize (P1)" to
an arbitrary product of Grassmannians. That is, we consider for any m the diagonal action of
SL(m) on a product of G(¢;,m) (¢;~dimensional subspaces of C™). The good cases occur when
m is coprime to Y ¢;. The associated stratification is described in Proposition 16.9 and it is
shown how in good cases this provides an inductive formula for the equivariant Betti numbers
of the semistable stratum in terms of the equivariant Betti numbers of the semistable strata of
products of the same form but with smaller values of m. Explicit calculations are made for some
products of Ps.

One reason for studying products of Grassmanians in depth is that it is possible to rederive
the formulae obtained in [H& NJ and [A & B| for the Betti numbers of moduli spaces of vector
bundles over Riemann surfaces by applying the results of these notes to subvarieties of products

of Grassmannians [Ki3].
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12 Stratifications over arbitrary algebraically closed fields

Let k£ be an algebraically closed field. Suppose that X is a k-variety acted on linearly by a
reductive k-group G. In this section we shall define a stratification of X which generalizes the
definition given in Part I for the case when X is nonsingular and & is the field of complex numbers.

The set X*° of semistable points of X under the action will form one stratum of the stratifi-
cation. To define the others we shall use work of Kempf as expounded in a paper by Hesselink
(see [K] and [Hes]). Kempf associates to each unstable point = of X a conjugacy class of virtual
one-parameter subgroups in a parabolic subgroup of G. These are the one’s most responsible
for the instability of the point . The stratum to which x belongs will be determined by the
conjugacy class of these virtual one-parameter subgroups. We shall find that each stratum Sp

can be described in the form

Sy = GY’

where Y3® is a locally-closed subvariety of X, itself defined in terms of the semistable points
of a small variety under the action of a subgroup of G. From this it will be obvious that the
stratification coincides with the one defined in Part I in the complex nonsingular case.

First we shall review briefly Hesselink’s definition and results and relate them to what we
have already done in the complex case: this is completed in lemma 12.13. Note that in [Hes]
arbitrary ground fields are considered. We shall restrict ourselves to algebraically closed fields
for the sake of simplicity.

Remark. The definition of the stratification given at 12.14 makes sense when £ is any field.
This is also the stratification of the variety X x; K defined over the algebraic closure K of k.
When £ is perfect it follows from [Hes] that this last stratification is defined over k and coincides
with the first stratification on X. However this fails in general. In §15 where finite fields occur
it will be necessary to avoid certain characteristics when things go wrong.

Hesselink studies reductive group actions on affine pointed varieties. We shall apply his
results to the action of G on the affine cone X* C k"' on X. For each nonzero z* € X* and
one-parameter subgroup A : k* — G of G. Hesselink defines a measure of instability m(xz*, \).
This really only depends on the point x determined by z* and hence can also be written as
m(z, ). The following two facts determine m for every z, A.

12.1. If A: k¥ — GL(n + 1) is given by

z +— diag(z", ..., z™)

with r; € Z then
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m(x, ) = min{r; : x; # 0}

if this is non-negative and

m(x;\) =0

otherwise. Also for any g € G

m(z; gAg™") = m(ga; \)
Definition 12.2. 2 € X is unstable for the action of G if m(x, \) > 0 for some one-parameter

subgroup A of G.
Mumford proves that

12.3. = € X is semistable iff m(z, A) < 0 for every one-parameter subgroup A of G that is,
iff x is not unstable!

Definition 12.4. Let Y (G) denote the set of one-parameter subgroups A : k* — G of G and
let M(G) be the quotient of the product of Y (G) with the natural numbers by the equivalence
relation ~ such that (A, €) ~ (u,m) if A, p satisfy

At™) = p(t)

If T is a torus then Y (7T) is a free Z-module of finite rank and M (T) is a Q-vector space.
Moreoever, there is a natural corespondence between one-parameter sungroups of a torus 7' over
the complex field and lattice points in the Lie algebra t of its maximal compact subgroup. Hence
in the case M(T") may be identified with the rational points of t.

The adjoint action of G on Y (G) extends to an action on M(G). Let ¢ be a norm on M(G)
as defined in [Hes] §1; that is, ¢ is a G-invariant map from M(G) to Q which restricts to a
quadratic form on M (T') for any torus 7' C G. If T' is a maximal torus of G a norm on M(G) is
the square of an inner product on M (7T’) invariant under the Weyl group and any such inner prod-
uct determines a unique norm on M(G). When k = C any invariant rational inner product on
the Lie algebra of a maximal compact subgroup of G induces a norm on M () in Hesslink’s sense.

Definition 12.5 ([Hes| 4.1). For any = € X let

¢ ' (x)g =inf {g(\) : X € M(G), m(z,\) > 1}

and

Ae(a) = {A € M(G) :m(x,\) > 1, 4(N) = g5}
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Thus z is unstable iff g;' < oo or equivalently Ag(z) # 0. The definition of m can be extended
uniquely over all A in M (G) to satisfy m(z,7\) = m(x, A) for every r € Q.

The set Ag(x) will be used to determine the stratum to which the point x € X belongs.

Let T be a maximal torus of G. As when k = C the representation of 7" on k"*! splits as
the sum of scalar representations given by characters ag, ..., a,, say. These a; are elements of
the dual of M(T) and may be identified with elements of M (T) by using the inner product on
M (T) whose square is the norm q.

Fix x = (z¢,...,2,) € X and let 5 be the closest point to the origin for the norm ¢ of the
convex hull C'(z) of the set {«; : z; # 0} in the Q-vector space M(T). Then

€—p0).8=0

Le. £.6 > q(B) for all £ € C(x) where . denotes the inner product on M(T') whose square is g.
In Part I this point § indexed the stratum containing x. The next two lemmas show how ([ is
related to the set Ap(z).

Lemma 12.6. If 5 # 0 then Ap(x) = {3/q(B)}.

Proof. By 12.1 it A € M(T) then m(x;A) = min{a;.A : z; # 0} if this is nonnegative and
m(x; \) = 0 otherwise. Therefore, m(x;\) > 1 iff A.a; > 1 for every i such that z; # 0. But
if ; # 0 thene ;.0 > q(f) by the choice of 3. Therefore 3/q(3).a; > 1 for such i. Moreover,
if \ satisfies A.a; > 1 whenever x; # 0 then \.8 > 1 since (3 lies in the convex hull of the set
{a; : &; # 0}. This means that

g(N)g(B) > (\.B)* >1

with equality iff A = 3/q(8). Thus it follows straight from definition 12.5 that ¢;'(z) = q(3)~!
and that the set Ar(x) consists of the single point 5/q(5). O

Lemma 12.7. If 5 = 0 then Ap(x) # 0.

Proof. If Ap(x) # 0 then there is some A € M(T) such that m(x;\) > 1 and hence such that
A.; > 1 whenever x; # 0. This implies that 0 ¢ Conv{c; : z; # 0} and hence that 5 # 0. O

Thus the set Ap(z) determines and is determined by the point 3.
Definition 12.8. Call the closest point to 0 of the convex hull in M(7T') of any nonempty

subset of {ag,...,®,} a minimal combination of weights. Let B be the set of all minimial
combinations of weights lying in some positive Weyl chamber (i.e. some convex fundamental do-
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main for the action of the Weyl group on M (T")). B will be the indexing set for the stratification.

Definition 12.9. A subgroup H of G is optimal for z if

ai' (z) = 45" (x)
It is clear from definition 12.5 that if H is optimal then

Ap(z) = M(H) N Ag(z)

and that Ag(z) is nonempty precisely when Ag(z) is nonempty. By [Hes] there is always some
maximal torus 7" of G which is optimal for  and 7" = g~ 'Tg for some g € G where T is the

fixed maximal torus of GG. This implies that

12.10. For every x € X there exists some g € G such that T is optimal for gzx.
Next note that G acts on itself by conjugation and hence G becomes an affine pointed G-

variety. So we can make the following definition.

Definition 12.11. If A € M(G) let
Py={g€G:m(g,)) =0}

Clearly if » > 0 is rational then P\ = P,.,. Moreover if A\ : k* — G is actually a one-parameter

subgroup of G then P, consists of those g € GG such that

lim A(t)gA(¢) ™

t—0
exists in G. Then Lemma 5.1(a) of [Hes| shows that

12.12. P, is a parabolic subgrop of G for each A € M (G).
The main result needed from Kempf’s work can now be stated.

Lemma 12.13.

1. For each unstable x there is a unique parabolic subgroup P(z) of G such that P(x) = P,
for all A in Ag(x).

2. Ag(x) is a single P(z) orbit under the adjoint action of G on M(G).

3. If A € Ag(x) then g7'\g also lies in Ag(x) iff g € P(z). In particular P(x) contains the

stabiliser of z in G.
4. Ag(x) C M(P(x)).
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5. If T is optimal for x and Ar(z) = {5/q(5)} then P(x) = Pjs.

Proof. (1) and (2) are [Hes|, Theorem 5.2 applied to any nonzero z* € X* lying over z. If
A k* — G is a one-parameter subgroup of G and if ¢ € G is such that g7'A\g = A, then g
commutes with every element of A(k*), so m(g;\) = 0 and hence g € Py. The first part of
(3) follows from this together with (1) and (2). The second part is an immediate consequence
since m(x; g 'A\g) = m(gx; \) by 12.1. Also, (4) follows because if A\ € Ag(z) then rA\Y(G)
for some positive integer r. Since rA commutes with A, it represents a one-parameter subgroup
of P, = P(z) and so A € M(P(x)). Finally, if T is optimal for z and Ar(z) = 3/q(3), then

B/q(B) € Ag(x), hence P(z) = P(8/q(B)) = Ps by (1) and 12.1. O

This lemma completes the review of the results needed from [Hes].

Definition 12.14. For each nonzero 8 € M(T) let

Sp=G{r e X :8/q(B) € Aa(z)}
and let

SOIG{IEXAg(.T):@}

Then by 12.3 Sy = X*. Also 3/q(8) € Ag(z) iff T is optimal for z and Ar(z) = {5/q(5)}
by 12.6-7.

Lemma 12.15. X is the disjoint union of the subsets {Ss : 5 € B}.

Proof. Suppose that z € X is unstable, i.e. that Ag(z) # 0. By 12.10 there is some g € G such
that 7" is optimal for gx. By 12.6 and 12.7, Ar(gz) = {5/q(5)} where 3 # 0 is the closest point
to 0 of Conv{q; : (gx); # 0}. Therefore

UsSs =X,
B

where  runs over all minimal combinations of weights.

Since x is unstable if Ar(gx) # 0 for any g € G,

Son () Ss#0

B#0
If 3, 3" are nonzero and the intersection Sz NSy # ), then there exist € X and g € G such
that both 3/¢(8) and Ad g(5'/q(F’)) lie in Ag(x). Therefore, by 12.13 (2), 5/q(5) and '/q(5)
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are equivalent under the adjoint representation of G on M (G). This implies that ¢(3) = q(5'),
so 3, are also equivalent. As 3,3 € M(T), if follows that they lie in the same orbit of the
Weyl group in M(T).

Conversely, suppose that (3, 3" are equivalent under the action of the Weyl group, so that there
is some g € G normalising 7" such that ' = Ad g(). Then, for any x we have 3/q(3) € Ag(x)
iff 5'/q(B’) € Ag(gz), so Sg = Sg. The result follows. [

Write §' > 3 if ¢(8') > q(5). In order to show that we have a stratification of X (in the
Zariski topology) it now suffices to show that

Lemma 12.16.
Ssc | S
B'=p
for each € B.

Proof. For each 3 € B let

Ws={re X :z;=0ifa;.0 <q(B)}

By 12.6 and 12.7 and the preceding remark, the stratum Sg consists of all points of the form
gz such that T is optimal for z and ( is the closest point to 0 of Conv{c; : x; # 0}. This
implies Sz C GWjp for each § € B. It is easy to check that Wy is invariant under Ps (see
12.23 belownoting that W = Y3 when X is projective space).By a standard argument using the
completeness of G/Ps (see e.g. [B] 11.9(i), [Hes| 6.3 or theorem 13.7 below) it follows GWj is
closed in X so that Sy C GWj.

Suppose € W3 and let ' be the closest point to 0 of Conv{c; : x; # 0}; then either 5" = [ or
q(0') > q(B). It T is optimal for x then x € Sg» for some 3" with ¢(5”) > ¢(5’') > q(3). Therefore

12.17. If o € Wp then either T is optimal for x and 3 is the closest point to 0 of
Conv{q; : ; # 0} or there is some 3’ > [ such that = belongs to Sp.

Hence

Ss CGWsC | Sw
B'=p

so the proof is complete. [

This lemma shows that the subsets {Ss : § € B} form a stratification of X in the sense of

definition 2.11, and in particular
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Ss=255— | 9w
B8'>p

is open in its closure Ss for each 3 € B.

We next want to describe the stratum Sg in such a way that it is clear that when £ = C this
stratification coincides with the one defined in Part I.

Definition 12.18. Let

Zs = {(z0,...,xn) € X 1 2; = 0 if ;.3 # q(6)}
and let

Ys ={(xo,...,2n) € X 1 2; = 0if ;.0 < q(), z; # 0, some j with ;.0 = q(5)}
Zg is a closed subvariety of X and Yj is a locally-closed subvariety. Define ps : Y3 — Z3 by

ps(zo, ..y xn) = (zg ... a))

where 7, = x; if ;.8 = q(8) and z; = 0 otherwise. This is well defined as a map since if y € Yj
then pg(y) € Gy and in particular, lies in X. Let Stab 8 be the stabilizer of 3 under the adjoint
action of G on M (G). Stab (3 is a reductive subgroup of G' which acts on Zs.

The definitions of Z3, Y3, pg depend only on 3. They are independent of the choice of coor-
dinates and indeed of the maximal torus 7" chosen except that § must lie in M (7). Moreover by
6.5, when k£ = C and X nonsingular, they coincide with the definitions made in Part I.

Lemma 12.19. If x € Z3 then Stab 3 is optimal for .

Proof. If x € Zg then (3 fixes x so f € M(P(z)) by 12.13 (3). Also, Ag(x) C M(P(z)) by 12.13

(4) so that if A\ € Ag(z) there is some p € P(z) such that pAp~! and  commute. But this

implies that pAp~! € M (Stab 3) N Ag(z) by 12.13 (2), so Stab 3 is optimal for z as required.
Note that if © € Z3 then by definition

m(z; 3) = min{a,.0 : 2; # 0} = q(5)

Thus in particular when 3 # 0 no point in Zj3 is semistable. However, there is an open subset of
Z whose elements are unstable only insofar as 3 makes them unstable. The neatest definition

of this subset is the following.
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Definition 12.20. Let Z7 be the subset of Zs consisting of those x € Zs such that
B/a(B) € Ac(x).

Since Stab (3 is optimal for  the condition that 5/q(5) € Ag(z) is equivalent to the condition

m(z; A) < A5, VA € M(Stab f3)

Note that A\.3 makes sense for A € M (Stab ) since there is some maximal torus 7" such that A
and (3 both lie in M (T”) and there is a unique inner product on M (T") whose square is the norm g.

Let Y3® be the inverse image of Z' under the map pg : Y3 — Zp defined at 12.18.

Remark 12.21. It is not hard to give alternative definitions of Z5 and Yj3* directly in terms
of semistability (cf. 8.11). One can show that there is a unique connected reductive subgroup
G of Stab 3 such that

M(Gg) ={X € M(Stab ) : \.f =0}

Then Z3 consists precisely of those € Z which are semistable under the action of Gz on Zg
via the restriction of the homomorphism G — GL(n + 1) to Gg. This is easily seen by using
lemmas 12.6-7 together with 12.3.

Alternatively there exists a positive integer r such that when M (T') is identified with its dual
r( corresponds to a character of T" which extends to a character x of Stab 3. Then the action of
Stab 3 on Zj is linearized with respect to the rth tensor power of the hyperplane bundle by the
rth tensor power of the homomorphism G' — GL(n + 1) multiplied by the character x~'. It is
not hard to check that a point x lies in Z7 iff z is semistable for this linear action of Stab 3 on
Zg.

It is clear from the definition that

12.22. 7% is invariant under Stab
and it follows that
12.23. Y3 and Yﬂss are invariant under Pg.

The proof is essentially that of 6.10. It depends on two facts: firstly that if A : k* — T is any
1-PS which is a positive scalar multiple of 3 in M (T') then

lim A(t)gA(¢) ™

t—0
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exists in (G, and secondly that if y € Y3 then

ps(y) = lim A(t)y

t—0

for any such \.
Our aim is to show that Sz = GYj®. For this the following lemma is needed.

Lemma 12.24. Suppose that 5 # 0. If y € Y3 and « = pg(y) then the following are equivalent:

1. T is optimal for y and Ar(y) = {6/q(5)}
2. ye Sy
3.y ey
4. xe Zy

5.x€5g

Proof. (3) and (4) are equivalent by definition, while (1) implies (2) by definition 12.14 and the
converse follows from 12.17 since Yz C Wj3. By 12.17 again, if y ¢ Sz then y € Sy for some
3 satisfying q(3') > q(B3); then z € Sg since * € Gy, and by Lemma 12.16 this implies that
x ¢ Sp. Therefore, (5) implies (2). It follows straight from the definitions that (4) implies (5).

Finally, suppose that x ¢ Z7. Since T' is a maximal torus of Stab /3 there is some s € Stab (3
such that 7" is optimal for sz. By 12.6, ( is not the closest point to 0 of Conv{c; : (sz); # 0}.
Moreover (sx); # 0 iff both (sy); # 0 and ;.0 = ¢(3) because pg(sy) = sz (see definition
12.18). So it follows from the geometry of convex sets that [ is not the closest point to 0
of Conv{a; : (sy); # 0}. (This is best seen by drawing a picture). Thus by 12.6 and 12.7,
Ar(sy) # {5/q(B)} and hence by 12.7, sy € Sy for some 3 > 3. So y ¢ Sz. Thus (2) implies
(4). O

Corollary 12.25. If 3 # 0 then y € Y3® iff T is optimal for y and Ar(y) = {3/q(B)} or
equivalently iff 3/q(3) € Ag(x). Thus Sp = GY® for any 3 € B.

Proof. 1t is obvious that GY{® = X® = S;. If § # 0 and Az(y) = {3/q(B)} then by 12.6 and
12.7, B is the closest point to 0 of Conv{a; : y; # 0}. Thus y € Yj so the result follows straight

from Lemma 12.24.

We have now proved the following
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Theorem 12.26. Let X C P, be a projective vareity over k and let G be a reductive k-
group. Fiz a norm q on the space M(G) of virtual one-parameter subgroups of G. Then to any
linear action of G on X there is associated a stratification {Sz : f € B} of X by G-invariant
locally closed subvarieties described as follows. If T is a maximal torus of G the indices B are
minimal combinations of weights in a fivzed Weyl chamber of M(T) and Sy = X while if 5 # 0,
Sp = GYj5" where

Y = {z € X : 5/q(8) € Ac(a)}

when k = C and X 1s nonsingular the strata Sg and the subvarieties Y3* coincide with those
defined in Part I.
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13 The strata of a nonsingular variety

Now suppose that X is a nonsingular projective variety over k. In this section we shall see that
the strata {Ss} of the stratification associated in §12 to the action of a reductive group G are
all nonsingular subvarieties of X. To prove this we shall show firstly that the subvarieties Z3
and Y at 12.20 are all nonsingular and secondly that each Ss is isomorphic to G xp, Y5° In
addition we shall see that each morphism pg : Y§* — ZF is an algebraic locally trivial fibration
such that every fibre is an affine space.

The following facts about linear actions of the multiplicative group k* on nonsingular projec-
tive varieties such as X will be needed. These are due to Bialynicki-Birula [B-B]. We shall apply
them to certain one-parameter subgroups of G.

13.1. Suppose that k* acts linearly on X. Then the set of fixed points is a finite disjoint
union of closed connected nonsingular subvarieties of X; let Z be one of these. For every x € X
the morphism k* — X given by t — tx extends uniquely to a morphism & — X; the image of
0 will be denoted by lim;_.gtx. Let Y consist of all x € X such that limtx € Z. Then Y is a
connected locally-closed nonsingular subvariety of X and the map p:Y — Z defined by

p(z) = 1165% tx
is an algebraic locally trivial fibration with fibre some affine space over k.
Corollary 13.2. For each § € B the subvarieties Y3, Z3 defined at 12.18 are nonsingular.

The morphism pg : Yg — Z3 is an algebraic locally trivial fibration whose fibre at any point is
an affine space. The same is therefore true of its restriction

ps: Yy — 2§

to the open subset Y3* C Yj.

Proof. Fix 5 € B and let r > 0 be an integer such that r3 € M(T) corresponds to a 1-PS of T.
This 1-PS act on X as

t — diag(tm@o P, . ¢renth)

where «g, . .., a, are the weights of the representation of 7" on £"*!. The definition of Zz and Yj
shows that Zg is a union of components of the fixed point set of this action and that = € Yj iff

li Z
m tx € 4g,

in which case this limit coincides with pg(z). So the result is an immediate consequence of 13.1. [J
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Now we want to show that each stratum Sg is isomorphic to G X p, Y3* where Pjs is the
parabolic subgroup of G defined at 12.11. For simplicity we shall assume that the homomor-
phism ¢ : G — GL(n + 1) which defines the action of G on X is faithful. The general result
follows immediately from this except that Pz must be replaced by ¢~!(4(Ps)) which is also a
parabolic subgroup of G.

Definition 13.3. ([B], 3.3) Let g be the Lie algebra of the k-group G and for each § € B
let ps be the Lie algebra of the parabolic subgroup Pg.
As a k-vector space g is just the tangent space to the group G at the origin. The action of G

on X induces a k-linear map £ — &, from g to the Zariski tangent space T, X for each x € X.

Lemma 13.4 Suppose G is a subgroup of GL(n + 1). If x € Y then

{l9eG greYt =P {{€g:6 el (Y} =ps

Proof (compare with Lemma 6.15). By 12.3, Y;§* is invariant under Pj so

PsC{geG:greYs} and ps C{l€g:& €T,Y5}

By 12.24, x € Y® iff T' is optimal for x and Ar(x) = {B/q(8)}. Suppose that x and gz both
lie in Y5* for some g € G then 3/q(8) € Ag(gx) so that 3/q(8) and Ad(g~")B/q(3) both lie in
Ag(z). Therefore, g € P3 by 12.23 (3).

It remains to show that {£ € g: §, € T,Y;® C Ps. As in the proof of 13.2, if r is any positive
integer such that r( is a 1-PS of T" then r(3 acts on X as

t +— diag(tm@o P, . ¢renth)

By 12.11 the subgroup Ps consists of all g € G such that (r3(t))g(r3(t))~" tends to some limit
in G as t € k* tends to 0. Hence, an element g € G lies in Pg iff it is of the form g = (g;;) with
gi; = 0 when ;.0 < o;.3.

Let

g=t+> g

be the root space decomposition of g with respect to the Lie algebra t of the maximal torus T
(see [B] Theorem 13.18). If £ € g* has a nonzero ij-component then, as [1,¢] = a(n)¢ for all
n € t, it follows that o = o — ;. So g* C pg whenever o.3 > 0. Hence it suffices to show that if

e d g

a.6<0
and &, € T,Y§® then § € Pp.
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Let V. (resp. Vp, V_) be the sum of all the subspaces of k"1 on which T acts as multiplication
by some character «; with a;.0 > q(f) (resp. «;.0 = q(5), «;.0 < q()). Then any element of

2.9

a.6<0

is of block form

o o
QU O O
o O O

with respect to the decomposition of k"™t as V. &V, & V_.
If x € ZF then x is represented by a vector of the form (0,v,0) in k"1, We have

a 0 0 0 0
b 0 0 v | = 0
c d e 0 dv

and so by definition of Y%, if £, € T,Y§® then dv = 0 and hence §, = 0. But this means that ¢
is contained in the Lie algebra of the stabiliser of x in GG, and by the first part of the lemma, the
stabiliser of x is contained in Ps. Therefore, { € Pj3, as required.

Thus it has been shown that pg C {§ € g: &, € T,Y5"} and that equality holds when = € Z3'.
But the subset of Y3* where equality holds is open and is invariant under the action of Ps. So it
suffices to show that the only Pg-invariant neighbourhood of Z5 in Yj® is Y® itself. This follows
easily from the fact that if y € Y3® then the point ps(y) € Z3 lies in the closure of the orbit of
x under any 1-PS of T" which is an integer multiple of 5 € M(T'). This completes the proof. O

Now we can state the result we’re aiming for.

Theorem 13.5. Suppose X C P, is a nonsingular projective variety over k and G is a reductive
subgroup of GL(n + 1) defined over k which acts on X. Then the stratification {Ss : 5 € B} of
X defined in §12 is smooth. For each [ the stratum Sg is isomorphic to G xp, Y3* where Y3°
is a nonsingular locally-closed subvariety of X and Pj is a parabolic subgroup of G. Moreover
there is an algebraic locally trivial fibration pg : Y3* — Z3 with affine fibres where Z3* consists
of the semistable points of a closed nonsingular subvariety of X under the action of a maximal
reductive subgroup of Pg.

Proof. By 12.26 for each § € B the stratum Sg coincides with GY5* where Yj§* is defined as in

12.10. Moreoever, by 12.23, Y® is invariant under the action of the parabolic subgroup Ps of G
defined in 12.11. So there is a morphism o : G Xp, Y3*> — X whose image is Sg. We shall show
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using Lemma 13.4 that o is an isomorphism onto its image. The proof is a standard one (cf. e.g.
[B] 11.9).
Recall that
Wsg={xe X :z;=0for a;.0 < q(p)};

it is invariant under Pg. Consider the morphisms
GxWs; -5 GxX - (G/Ps) x X

given by y(g9z,z) = (g, gz) and 6(g,x) = (9F3, x). Let
M=06y(GxWs) and M =dy(G x Y

Since Wj is invariant under Pz we have

0H(M) ={(g9,9) : g~ 'y € Wp}
which is closed in G x X and is isomorphic to G x W3 via 7. As J is a quotient morphism, M

is therefore closed in (G/P3) x X
Now GWj is the image of M under the projection

px: (G/Ps) x X — X

Since G/ P3 is complete, this shows that GWj is closed (we have already used this). Furthremore

GWs Y5 < | Sp
B'>p
by 12.17 and it follows that

M' = M N py'(Ss)

and hence is an open subset of M. We have

M'={(gPs,y) : g~ 'y € Y5*}

which is isomorphic to G Xp, Y3* and hence is nonsingular. Morever, by Lemma 13.4, the
restriction px|M’ is a bijection onto Ss. Indeed, since G/Pjs is complete, px is a closed map, so
that px|M' : M' — Sp is a homeomorphism because M’ is locally closed in G/Ps x X. To show
that px|M’ is an isomorphism it therefore suffices (by [Ha] Ex. 1.3.3 and Lemma I1.7.4) to check
that the induced maps of Zariski tangent spaces (px). : TpnM' — T, (m)Sp are all injective.

It is only necessary to consider the case when m = (Pg,y) for some y € Y3®; then an element
of T,,, M’ is of the form (a + pg,§) where a + pg € g/pp, £ € T, X and —a, +§ € T,Y5*. So if

0= (px)ela+pg, ) =&
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then a, € T, Y5, and hence by Lemma 13.4, a € pg so that (a+pg, §) is the zero element of T, M’
It follows that (px ), is injective everywhere on M’ and hence that px|M' is an isomorphism. We
conclude that for each 5 € B the stratum Sg is nonsingular and isomorphic to G X p, Y3°.

Thanks to Corollary 13.2 the proof is now complete. [
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14 Hodge numbers

Suppose now that X C P, is a nonsingular complex projective variety acted on linearly by a
connected complex reductive group G. Suppose that the stabilizer in G of every semistable point
of X is finite. We have obtained a formula for the Betti numbers of the quotient variety M
associated in invariant theory to the action of G on X. In this section we shall see that this
formula can be refined to give a formula for the Hodge numbers of M.

We shall use Deligne’s extension of Hodge theory which applies to algebraic varieties which
are not necessarily compact and nonsingular [D1, D2]. If Y is a variety which is not nonsingular
and projective it may not be possible to decompose H"(Y,C) as the direct sum of subspaces
HP4(Y') in a way which generalizes the classical Hodge decomposition. However Deligne shows
that there are to canonical filtrations H"(Y, C) the weight filtration

o Wiy CW C Wi C e

which is defined over Q and the Hodge filtration

...DFp_lDFpDFp+1D...

giving what Deligne calls a mixed Hodge structure on H™"(Y"). One can then define the Hodge
numbers h?4(H™(Y")) on H"(Y') to be the dimension of appropriate quotients associated to these
filtrations. The Hodge numbers satisfy

dim H"(Y,C) = > h""(H"(Y))
P

if h»1(H"(Y')) # 0 then p, ¢ lie between max(0,n — dim(Y")) and min(n,dim(Y")) and p+ ¢ # n
if Y is projective while p + ¢ > n if Y is nonsingular. When Y is nonsingular and projective the
hP2(H™(Y)) with p + ¢ = n are the same as the classical Hodge numbers h??. If f : Y] — Y5
is a morphism of nonsingular quasi-projective varieties then the induced homomorphism f* :
HY5;) — H*(Y}) is strictly compatible with both the Hodge filtration and the weight filtration.

Suppose now that Y is acted on by a group G. Recall that the equivariant cohomology is
defined to be

H(Y,Z) = H*(Y x¢ EG,Z)

where EG — BG is the universal classifying bundle for G. Although BG is not a finite di-
mensional manifold there is a natural Hodge structure on its cohomology. Indeed, BG may be
regarded as the union of finite dimensional varieties M,, such that for any n the inclusion of M,
in BG induces isomorphisms of cohomology in dimensions less than n which preserve the Hodge
structure. In the same way Y X EG is the union of finite dimensional varieties whose Hodge
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structures induce a natural Hodge structure on the cohomology of Y X EG. Thus we can define

the equivariant Hodge numbers

he™" (V) = WP (Hg (Y)

for Y.

In particular, there are equivariant Hodge numbers for each stratum Sp of the stratification
associated in §12 to the action of G on the projective variety X. These strata may be disconnected
so its convenient to refine the stratification as follows. For each integer m > 0 let Sg,, be the
union of those components of Sz whose complex codimension in X is %d(ﬂ ,m) where

d(8,m) = m — dim(G) + dim(Stab(53))
In §8 we saw that

14.1
dim H3(X,Q) = dim H "™ (S5, Q)
B,m

for each n > 0 where the sum is over all 3 € B and integers 0 < m < dim X. The argument
for this goes as follows. First, because {Ss,, : B € B,0 << dim X} is a stratification of X the
elements of the indexing set B x {0,...,dim X} can be ordered as 1, ..., M for some M in such
a way that S;U...S; is open in X for 1 <i < M (see definition 2.11). Let T; denote this open
subset (for 1 < ¢ < M). Then as each stratum .S; is smooth the Thom isomorphism theorem
tells us that

HE(T;, Ti1; Q) = HEY 2(S; Q)

where ); is the complex codimension of S; in X. Thus for each i there is a long exact sequence
(the Gysin sequence)

C— HY (S, Q) — HA(T, Q) — H™ (T4, Q) — H™ 1 24(5,, Q) — ...

In §5 we showed that the stratification is equivariantly perfect over Q which means exactly that
each of these long exact sequences splits into short exact sequences

14.2

0 — HX?(S;,Q) — HY(T;,Q) — HX(T;—1,Q) — 0
Then
14.3

dim HZ(T;,Q) = dim HA(T;_1,Q) + dim HL *(S;,Q)
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for each n and we obtain the formula 14.1 by using induction on i.

In order to extend the formula 14.1 to Hodge numbers all we need is the following

Lemma 14.4. The homomorphism Hp(7T;) — H{(T;—1) induced by the inclusion of T;_; in T; is
strictly compatible with the Hodge structures. So is the homomorphism Hg Y (S;) — HE(T;)
except that the Hodge structure of Hg_Q)"'(SZ-) must be shifted up by A;; that is, the weight
filtration {Wj }xez is replaced by {Wi oy, trez and the Hodge filtration {F,} by {Fpix, }pez.-

Proof. The first statement follows from [D1] II 2.3.5 and 3.2.11.1.

When Y is nonsingular of complex dimension N, Poincaré duality gives an isomorphism

H"(Y;Q) = Hom(HY (Y;Q), H*(Y;Q)) = (HN"(Y; Q)"

where H,. is cohomology with compact supports and x indicates duality. There is a natural
Hodge structure on (H2V="(Y))* (see [D1] IT) and Poincaré duality carries the Hodge structure
on H™(Y) to the natural Hodge structure on (H>Y~"(Y))* shifted up by N (see [D2] 8.2). If
1 : Y’ — Y is the inclusion in Y of a smooth closed subvariety Y’ of codimension A then the

composition

=

Thom

H'2(Y'Q) = H'(Y,Y;,Q) — H"(Y;Q)

is the composition of two Poincaré duality maps with the dual f the map induced by ¢ on
cohomology with compact supports:

H 2 (5Q) = (HY ' (VhQ) 5 HN (Y Q) = H'(YV:Q)

Since (¢*)* is strictly compatible with the Hodge structure, we deduce that this composition
carries the usual Hodge structure on H*(Y) to the Hodge structure on H"~2*(Y") shifted up by
A

The result follows by applying this to finite dimensional approximations to the inclusion of
Si XaG EG in E Xa EG. O

It follows from this lemma and the exact sequence 14.2 that

W () = W (Tia) + b ™™ (S5)
where (p, ¢;n) — A is shorthand for p — A\, ¢ — A\;n — 2X. Thus by induction we obtain
14.5
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hng;”(x) _ hpqn Xss _|_ Z h(P»q n)— *d(ﬁam)(sﬁ’m)
B,m
where the sum is over all nonzero # € B and integers 0 < m < dim X.
By theorem 13.7 for each 3 we have

S5 2 G xp, V5P

and there is a locally trivial fibration

DB : Ygs — ZZ;S

with contractible fibre which respects the action of Stab(. Since Stav( is homotopically equiva-
lent to Py it follows that

Hg(Sp, Q) = Hp, (Y5%, Q) = Hgi5(Z5 Q)

and it is easily checked that these are isomorphism of the Hodge structures. By looking at
components we also get

Hé(Sg,m(Sl&m, Q) = Hgtabﬁ(ZZ’S,mu @)

for each 5 and m, where ZF is the set of semistable points of a nonsingular subvariety Zg, of
X under a suitable linearization of the action of Stab. Hence

14.6

he™ (Sam) = sian 5(Z5m)

for each p, q,n. Therefore
14.7
hp’qm(Xss) _ hp,qn h (p,g;m)— d (8,m) 788 )
G G Z Stab 3 ( B,m

This gives an inductive formula for the equivariant Hodge numbers of X* in terms of those X
itself and of the semistable strata of smaller varieties acted on by reductive groups.

We also know that the fibration X x5 EG — BG with fibre X is cohomologically trivial over
Q (see theorem 5.4) so that

14.8
Hy(X,Q) = H*(X,Q) (X) H*(BG,Q)

This isomorphism is an isomorphism of Hodge structures.
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Using 14.7 and 14.8 an explicit formula can be derived for the equivariant Hodge numbers
of the semistable stratum X®. This formula involves the Hodge numbers of X and certain
nonsingular subvarieties of X, and also the Hodge numbers of the classifying space of G and
various reductive subgroups of G (cf. §5).

By assumption the stabiliser in G of every x € X* is finite. This implises that the quotient
variety M coincides with the topological quotient X*/G. Moreover, the obvious map X®* x¢
EG — X*/G induces an isomorphism

H'(X®/G;Q) — H5(X™,Q)

which is strictly compatible with the Hodge structures and hence is an isomorphism of Hodge
structures. Thus we obtain a formula for calculating the Hodge numbers h?9(M) of the quotient
M = X* /G which are the classical Hodge numbers h?9(M) when M is smooth.

Note that since A" (X) is nonzero only when p + ¢ = n the same is true by induction on
hP 4 (X*) and each h¥"(Ssm) and hence also of h?%" (M) when the stabilizer of each z € X™
is finite. This last fact could be of course also be deduced directly from [D1] and the fact that
X* /G is a compact rational homology manifold.

Finally, note that 14.2 shows that the map Hx(X,Q) — HZ(X*,Q) induced by the inclu-
sion of X* in X is surjective since it is the composition of the surjective maps Hp(T;, Q) —
HJ(T;—1,Q) for 1 <i < M. Thus we have a surjective homomorphism

14.9

H*(X,Q) (X H*(BG,Q) — H*(M,Q)

which is strictly compatible with the Hodge structures. In particular if A?9(X) = 0 for p # ¢
then the same is true for M, because by [D1] III 9.1.1, only the even Betti numbers of BG are
nonzero and H*"(BG, C) is purely of type (n,n) for every n.
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15 Calculating cohomology by counting points

Again let M be the projective quotient variety associated to the linear action of a complex
reductive group G on a nonsingular complex projective variety X. When the action of G on a
semistable stratum X*®° is free there is an alternative method for deriving the formulae already
obtained for the Betti numbers of M which uses the Weil conjectures. These conjectures which
were verified by Deligne enable one to calculate the Betti numbers of a nonsingular projective
variety by counting the number of points in associated varieties defined over finite fields. In our
case we can count points by using the stratifications defined in §12 of varieties over the algebraic
closures of finite fields, F,. The idea was suggested by work of Harder and Narasimhan who
used the Weil conjectures to calculate Betti numbers of moduli spaces of bundles over Riemann
surfaces. Their formulae were subsequently rederived in the paper of Atiyah and Bott which
motivated Part I.

The idea of the alternative method is explained in this section but the arguments are not given
in detail because nothing new is being proved. Unless the Weil conjectures can be extended in an
appropriate way to projective varieties which are locally the quotients of nonsingular varieties by
finite groups, the same method will not work in all cases where the stabilizer of each semistable
point is finite. It is necessary that the action of GG or at least some quotient of G on X* be free.

First let us summarize what we shall need of the Weil conjectures

Let Y be a nonsingular complex projective variety. Then Y is defined over a finitely generated
subring R of C so that there is a an R-scheme Yj such that Y = Yi xz SpecC. Let m be a
maximal ideal of R. Then R/7 is a finite field with ¢ elements for some prime power ¢. Let

15.1

Y, =Yg Xr Spec R/m

be the reduction of Y mod 7. For most choices of 7 if ¢ is any prime number different from
the characteristic of R/ then the f-adic numbers of Y, and Y are equal. But the ¢-adic Betti
numbers of Y are the same as the ordinary Betti numbers of Y regarded as a complex manfiold,
by the comparison theorem of ¢-adic cohomology.

Provided that the characteristic of R/m is not one of finitely many bad primes, Y, is a
nonsingular projective variety over the finite field with ¢ elements. Then the Weil conjectures
enable us to calculate its f-adic Betti numbers. In fact, there exist complex numbers aq, ..., a,,
01, ..., s such that for any integer n > 1 the number of points of Y, defined over the finite field

with ¢" elements is

15.2

Y () =Y B

@ J
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We may assume that o; # 3; for every 4, j. Then the absolute value of each «; is of the form
¢"" and the absolute value of each j3; is of the form ¢"9*2 where n(i), n(j) are non-negative
integers. Moreover the (2k)th /-adic Betti number of Y, is equal to the number of «; with
absolute value ¢" and its (2k + 1)st f-adic Betti number is the number of 3; with absolute value
qk+%

We shall use the Weil conjectures in a slightly different but equivalent form.

Definition 15.3. For r > 1 let N,.(Y") be the number of points of Y, which are defined over
the field of ¢" elements. If n is the dimension of Y let N, = ¢7"™N,.(Y).

15.4. If follows easily from Poincaré duality and the Weil conjectures as stated above that

we can write the series

exp (Z M(Y)tr/r) € Qllf)

r>1

in the form

Q1(t) -+ Qan—1(?)
Qo(t) - - Qan(t)

where

Qi(t) = H(1 — Vijt)

for complex numbers v;; satisfying

il = ¢
and where deg (); is the ith Betti number of Y.

We shall use 15.4 to calculate the rational Poincaré polynomial of the quotient variety M
associated to the action of G on X. It seems to be natual to use this dual form of the Weil
conjectures here. This is what AB do when comparing their methods with those of [H&N]. Using
the ordinary form corresponds to using cohomology with compact supports and it is difficulty to
make sense of this for the infinite dimensional manifolds in [A&B].

For simplicity suppose that G is a subgroup of GL(n + 1). We assume that G acts freely on
X®. The argument we shall use runs as follows.

We may assume throughout that the action of G on X is defined over R and that all the
finitely many quasi-projective nonsingular varieties of X and subgroups of G which we shall need
to consider are also defined over R and have nonsingular reduction mod 7. We may also assume
that their dimensions are unaltered by reduction mod 7. Moreover the Weil conjectures still
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hold if ¢ is replaced by some power ¢°. Hence we may assume that all subvarieties of X, and
subgroups of G under consideration are defined over F,,.

We shall find that the stratification of X, induced by the action of G, is the reduction mod
7 of the stratification of X induced by the action of GG, and hence using the results of §13 that

15.5
NA(X*) = No(X) = > q 2 ¥OmN, (25, )N (G Ps)
B,m

where the sum is over all nonzero 8 and integers 0 < m < dim X. This gives us an inductive
formula for N,(X%)/N,(G) which is analogous to the formula for the Poincaré series PS(X™)
obtained in Part I. From it an explicit formula can be derived for N, (M) by the arguments used
in §5. This formula is such that if ¢ is replaced by ¢~2 and N,(Y) by P,(Y) for each projective
variety Y which appears in it, then the result is the formula for P,(M) already derived! It then
remains only to justify this substitution.

Let us now examine the details of this argument more closely.

Let T be a maximal torus of G defined over R and let T" C B be a Borel subgroup also defined
over R. By extending R if necessary we may assume that T acts diagonally on R". It follows
from our assumptions that the group G, is reductive and has 7T, as a maximal torus and B, as
a Borel subgroup.

Theorem 12.6 can be applied to the action of G, on X, and to that of G on X to obtain
stratifications of X, and X. It is necessary to investigate the relationship between these strat-
ifications. First we must check that they can be indexed by the same set B. Recall that the
indexing set for the stratification of X is a finite subset of the Q-vector space M (T) =Y (T)®Q
where Y (7T') is the free abelian group consisting of all 1-PS of the maximal torus 7. Since T}
has the same ramk as T, there is a natural identification of M (T') with M (7). The Weyl group
actions coincide under these identifications, and so do the weights «y, ..., a, of the representa-
tions of T" and T, which define their actions on X and X,. Hence the stratifications of X and
X, may be indexed by the same set B (see 12.8).

Let {Ss : B € B} be the stratification of X and let {Ss, : 8 € B} be the stratification of
X,. Under the assumptions already made, the following lemma follows without difficulty from
the definitions of §12.

Lemma 15.6. The stratification {Ss : 8 € B} is defined over R and

(Sﬁ)ﬂ' = S,BJT Vﬁ €B

Moreover, (Y3°)r, (Z5)x and (P§), coincide with the subvarieties of X and parabolic subgroup
of G defined in the corresponding way for the action of GG, on X. Finally, the quotient variety
M = X /G satisfies
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NT<M) = T(XSS) T(Gyl
for each r > 1.
In orde to apply 15.4 we need to calculate NT(M ) for each r > 1. The last lemma suggests

that we should investigate N, (X*°). It also tells us that for each 3 € B that N,(Sj) is the number
of points in the stratum S, of X, which are defined over the field of ¢" elements, and so

15.7
N (X*) = N,(X) - ZNT(Sﬂ)
B0
Moreover
Sg’ﬂ. ~ G, X (Pg)x (Ygs)ﬂ-

by the lemma together with Theorem 2.26, and so

15.8
N, (Sp) = N.(Y5")N,(G/ Ps)

for each 3. As in §4 we can decompose Y5* into a disjoint union of open subsets {Yﬂssm 0<m<
dim X'} such that each component of Y5 has real codimension m in X. Then Sp is the disjoint

union of open subsets GY}§5, which have complex codimension

%d(ﬁ, m) = %m —dim G/ P;

There is also a locally trivial fibration

P (Yim)r — (Z5m)x

such that each fibre is an affine space (see 13.2), from which it follows that

Nr(Yﬂsin) = NT<Z;Sm)
for each r > 1. So by 15.7 and 15.8 we have

15.9
N(X* = N(X) = > q 24 OmN, (25, )N, (G/ Ps)
B,m

for each r > 1 where the sum is over nonzero € B and integers 0 < m < dim X.
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Next we consider NT(G/Pﬁ). As in 6.9 we have P3 = BStab 3 where B is the Borel subgroup
of G and Stab (3 is the stabiliser of § under the adjoint action of G' Since Stab 3 contains the max-
imal torus 7' it follows that Ps = B,Stab 3, where B, is the unipotent part of B (see [B] 10.6 (4)).

Lemma 15.10. If H is a unipotent subgroup of G defined over R such that dim H, = dim H,
then
NT(H) — qr dim H

and hence N,(H) =1 for all r > 1.

Proof. The remark at the end of [B] 14.4 shows that H, is isomorphic as a variety over F, to an
affine space. The result follows. [

Under our assumptions this lemma applies to the unipotent subgroups B,i and B, N Stab 3
of GG. Hence

15.11

N, (Py) = N,(Stab 9)

From this together with 5.9 it follows that

15.12

N (X)N,(G)™" = N,(X®)N,.(G)" + Zq_ rdBm N, (75, N, (Stab 8) !

for all » > 1 where the sum is over all nonzero 3 € B and 0 < m < dim X. This is an inductive
formula for N,(X*)N,(G)~" (which coincides with N,(M) under the assumption that G acts
freely on X* by Lemma 15.6). By the argument used in §5 we can derive from it the following

explicit formula.

15.13

N, (M) = N,(X)N,(G +Z Bm) N, (Zg ) Ny (Stab )~

for each » > 1 where the sum is over all integers 0 < m < dim X and [-sequences @ defined
as in §5. If 3 = (B1,...,0;) is a B-sequence then () = ¢ is the length of 8. Each Zg,, is a
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nonsingular closed subvariety of X and

Stab 3 = (] Stab 3;
J

is a reductive subgroup of G.

From 15.4 we know that the Poincaré polynomial P,(Y') of any nonsingular projective variety
Y can be calculated from the numbers NT(Y). Our aim is to apply this to the quotient variety
M and use formula 15.13 to obtain an expression for P,(M). However the groups which appear
in 15.13 are not projective varieties, so we need to modify the formula a little as follows.

The Borel subgroup is the product of its unipotent part B, and the maximal torus 7T so
lemma 15.10 implies that

15.14
N,(G) = N,(G/B)N,(T) = N,(G/B)(1 — ¢~ ")4mT

for t > 1.

If we apply this to each of the subgroups Stab 3 of G' and substitute in 15.13, we obtain an
expression for N, (M) as a rational function of ¢ and the numbers N, (Y for certain nonsingular
projective varieties Y. The varieties involved here are X and its subvarieties Z3,,. This gives us
a formula for the Poincaré polynomial P,(M) of the quotient M because of the following

Lemma 15.15. Suppose that Y7,..., Y, are smooth complex projective varieties defined over
R whose reductions modulo 7 are also smooth. Suppose that f is a rational function of s + 1

variables with integer coefficients such that

fl@" N (Yr), ..o, No(Y)) = 0
for all » > 1. Then

FEPYD), ... P(Yi)) =0

Proof. Call a sequence N = {n, : r > 1} C Z a Weil sequence if there exist finitely many
polynomials @;(t) of the form

Q) =T[a—t).  |hul=q2
J

for each i, j, and such that

ro L Qi) Qo (t)
exp (Z nit"/ 7") = Qo). .. Qon()

r>1
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for some n > 0. These conditions determine each nontrivial ¢); uniquely, so we may define a

polynomial P,(N) by

P(N) =) (deg Qi)'

i>0
It is easy to check that if N and M are Weil sequences then so are NM and N + M and
¢ 'N :={q¢"n, :r > 1}, and that

P,(NM) = P,(N)P(M),  P(N+M)=P(N)+P,(M),  Pl(qg'N)=t*P(N)

For each positive integer j < k let N; be the sequence {N,(Y;) : r > 1}. It follows from 5.4
that each of the sequences N; is a Weil sequence and that the polynomial P;(N;) coincides with
P,(Y;).

To prove the lemma it is enough to consider the case when f € Z[zo, ..., x,]. We can write
such an f as f = g — h where g, h are sums of monomials with positive integer coefficients. Since

Ny, ..., N, are Weil sequences, so are the sequences whose rth terms are

g(q_rv Nr(}/l)a s aNr(Yk’)) andh(q_rv NT(}/l)v LRI Nr(Yk))

and their corresponding polynomials are

g(t*, P(Y1),...,P(Y)) and  Rh(t*, P,(V1),...,P.(Y}))
But by assumption these sequences are equal, and hence so are the corresponding polynomials. []
This lemma may be applied to the equation obtained from 15.13 by using 15.14 to substitute

for N,(G) and for each N,(Stab 3). This gives us the following formula for the Betti numbers of
the quotient M:
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15.16

P(M) = (1-t*)~9T { p(X)P,(G/B)~" + Z(—1)q@td(ﬁ’m)Pt(Z@m)Pt(Stab B/(B N Stab )~
Bm

As before, let BG denote the classifying space for the group G. There is a fibration BG — BT
whihc has fibe G/B and is cohomologically trivial. Thus

P(BG) = P(BT)P(G/B)™ = (1 - )" "™ P(G/B)"™

By applying this to all the reductive subgroups Stab 8 of G, we find that the formula for
P,(M) in 15.16 coincides with the formula derived in Part I.
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16 Examples

In this section the stratifications induced by some particular group actions will be described and
the Betti numbers of their quotients will be calculuated.

We shall start by reviewing the diagonal action of SL(2) on a power (P;)™. This was used as
an example throughout Part I. When SL(2) acts on P, identified with the space of binary forms
of degree n very similiar results hold. Then we shall consider the action of SL(m) on a product

of the form

X =[G m)
j
where G(¢,m) is the Grassmannian of /-dimensional subspces of C™. The subvarieties Zz which
appear in the inductive formula for PtSL(m) (X®) are all products of varieties of the same form as
X but with smaller values of m. Thus although the calculation of PY(X*) for large m would be
extremely lengthy by hand, it cold be carried out by a computer. We do some explicit calcula-
tions for the special of products (Py)™ of the projective plane. These examples are more intricate
than (P;)"™ and are more typical of the general case.
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16.1. Ordered points on the projective line

For fixed n > 1 consider the diagonal action of the special linear group SL(2) on (P;)". This
is linear with respect to the Segre embedding; the corresponding representation of SL(2) is the
nth tensor power of its standard representation on C2. Let T, be the complex maximal torus
consisting of all diagonal elements of SL(2) and let a be the one-parameter subgroup of T, given

by
L F 0
z 0 2zt

The weights of the representation with respect to this torus are of the form

ra—(n—r)a

where r is any integer such that 0 < r < n. If we choose the positive Weyl chamber to contain
a the it follows that the indexing set for the stratification is

B:{(2r—n)a:n2r>g}U{0}

Suppose 3 = (2r — n)a where r > 5. Then it is easy to check from definition 12.8 that a
sequence in (P;)" lies in Zg iff it contains r copies of 0 and n — r copies of 5. Also Y} consists
of sequences containing precisely r copies of 0.

It follows from definition 12.20 that Z§ = Zz and hence Yj® = Yj. Since the stratum Sg
indexed by 3 is GYj5* (see 2.26) it follows that S consists of all sequences (z1, ..., ,) such that
r but no more of the points x; coincide. Thus S has (’;) components each of which has complex
codimension r — 1.

Therefore the semistable elements of (P;)" are those which contain no point of P; with
multiplicity strictly greater than n/2 [N]. If x € (P;)™ is not semistable, the stratum to which x
belongs is determined by the multiplicity of the unique point of P; which occurs as a component
of x strictly more than n/2 times.

SL(2) is the complexification of the compact group SU(2) which preserves the standard Kéhler
structure on (IP1)". Since SU(2) is semisimple there is a unique moment map p : (P1)" — su(2).
The adjoint action of SU(2) of its Lie algebra su(2) = R3 is via the double cover § : SU(2) —
SO(3). Use the standard inner product on R? to identify su(2) with its dual. The complex
projective line P, may be identified with the unit sphere in R?® which is an orbit of the adjoint
representation of SU(2). By [Ar], the moment map for the action of SU(2) on P; is then the
inclusion P; — R3. Tt follows easily from this or from 2.7 that the moment map x : (P;)" — R?

is given by
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pley, ... xn) =x1+ ...+,

flzy,... x,) = Hxl—l—...—i-:anQ

where || || is the standard norm on R®. A point (xy, ..., x,) is critical for f if either f(zy,...,x,) =
0 or each z; is one of a fixed pair of antipodal points of PP;.

It is intuitively reasonable that the Morse stratification of this function should coincide with
the stratification {Sz : § € B} already described. For by symmetry if two components x;, z;
of x = (x1,...,x,) agree then these components will remain the same on the path of steepest
descent for f from x. On the other hand, it is possible to move a configuration of n points into a
balanced position (i.e. a position with centre of gravity at the origin) without splitting up points
which coincide iff no point has multiplicity strictly more than n/2.

Note that the stratification for the action of GL(2) is the same as that for SL(2) although
labelled differently. This is because GL(2) is the quotient by a finite subgroup of the product of
SL(2) with a central one-parameter subgroup which acts trivially on P;.

The stabilizer in PGL(2) of a point € (IP1)" is nontrivial precisely when at most two distinct
points of P; occur as components of z. So if n is odd PGL(2) acts freely on the semistable points
of (P;)". Then as SL(2) is a finite cover of PGL(2) we can use theorem 8.12 to calculate the
Betti numbers and Hodge numbers of the quotient variety M as follows.

Since the rank of SU(2) is 1 each f-sequence has length 1 (see definition 5.11) and so is just
a nonzero element of B. Thus by 8.10 and 5.17

P(M) = P((P)")P(BSUE2) — Y <”)t2<rl>a<351)

r
5<r<n
_ (1 + t2)n(1 B t4>71 . Z (n) t2(r71)(1 _ t2)71
r

—1 —1 .
= l4+nl4. 41+ -1+ oo " L) et S
2 min(j,n — 3 — j)

This obeys Poincaré duality as expected. Note that the equivariant cohomology of the
semistable stratum of (IP1)" is given by the series above for any n, even or odd. However,
this is not a polynomial when n is even!

When n is odd it is also possible to obtain the Hodge numbers of the quotient M. Indeed,
14.9 shows that h?2(M) = 0 for p # ¢, and, for each p,

WPP(M) =1+ (n—1)+...+ <min(pjln_—13 - p))
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16.2. Binary forms (cf. [M] 4 §1 and [N] 4 §1, §3)

An example which is familiar to 16.1 is the action of SL(2) on the projective space P, identified
with the nth symmetric product of P;.
The maximal torus T, acts on P, via the homomorphism

diag(z, 27 ) — diag(z", 2" 2,...,27")

so that as in 16.1

B:{(Zr—n)a:n2r>%}u{0}

If 3 = (2r—n)a € Bthen Z§ = Zs consists of the single configuration in which 0 has multiplicity
r and oo has multiplicty n — r. The stratum Sj consists of those configuations with a point of
multiplicity precisely r and has codimension r — 1 in P,,.

Thus the stratifications of (P;)" and P,, correspond under the quotient map h : (P1)" — P,.
However the moment maps do not correspond. This reflects the fact that the symplectic structure
is not preserved by h. The Kéhler form on P, pulls back via h to a form on (P;)"™ which is
symplectic except that it degenerates along a subset of positive codimension. In faact, such
forms give moment maps in the same way as nondegenerate ones. Thus we have two different
moment maps on (P;)" which induce the same stratification.

When n is odd the stabilizers of all semistable points are finite so there is a singular projective
quotient M = P /SL(2) such that

P(M) = (144 41—t = > 20—

n>r>g

= 1=t A 4t 4. gt -2

1 .
= 1+ +2 424388+ ..+ {1+§min(j,n—3—j) A R

16.3. Products of Grassmannians

This example is a generalization of 16.1. If V is a complex vector space let G(¢,V) be
the Grassmannian of /-dimensional linear subspaces of V' or equivalently of (¢ — 1)-dimensional
linear subspaces of the projective space P(V). We can embed G(¢, V) in P(A*V) by using Pliicker
coordinates. Thus any product of the form
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X =G(6,C™) x ... x G((,,C™)

can be embedded as a subvariety of the projective space

P ( & A%‘Cm)

1<j<r

Since the central one-parameter subgroup of GL(m) acts trivially on

® AGC™

1<5<r
the stratification of X arising from this action of GL(m) coincides wtih the SL(m) stratification
except that a stratum labelled by § for GL(m) is labelled in the SL(m) stratification by the

projection

B—(n+1)" ( >y ) 1)
1<j<r
of 3 onto su(m).
By [M] or [N] 4.17 a sequence of subspaces (Ly, ..., L,) € X is semistable for SL(M) iff
> (dim L;n M)/(dim M) < Y~ 4;/m
1<j<r 1<j<r
for every proper subspace M C C™. The stabiliser of (Lq,...,L,) is finite if strict inequality
always holds. Therefore if ) ¢; is coprime to m, every semistable point of X has finite stabilizer
and so theorem 8.12 will give us a formula for the Betti numbers of the quotient variety.
Suppose that (Ly,..., L,) is not semistable. Let M be the set of proper subspaces M of C™
such that the ratio

> (dim L N M)/(dim M)

1<j<r

is maximal. Then by 16.5 for each M € M the sequence (L; N M, ..., L. N M) is semistable in

[] G(dimL;n s, )

1<j<r
Let M; be a maximal element of M. If M € M it is easy to check that M + M; € M and
hence M C M; by the maximality of M;. In particular, M; is uniquely determined.
By induction we find that any (L, ..., L,) € X determines a unique sequence

O=MyCcM cC...cMy,=C"
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of subspaces satisfying the following conditions.

16.7(a). The sequence (Lji, ..., L; ) is semistable in

[T Gy, Mi/aiy)

1<y<r

for 1 < i < s where

Lij = (L 0" M; + M)/ M;—q
is the image of L; in M;/M,;_ and {;; = dim L;;.

(b) Each M; is maximal among subspaces with property (a).

()

1<j<r 1<j<r
for 1 < i < s or equivalently
k‘l/ml > k?g/mg > ... > ks/ms
where

1<j<r

and m; = dim MZ/szl

Remark 16.8. The equivalence in (c) comes from the fact that if a,b,¢,d > 0 then a/b < ¢/d
if (a+¢)/(b+d) < ¢/d.

Let T, be the complex maximal torus of GL(m) consisting of the diagonal matrices and let
T = T.NU(m) Denote by t, the standard positive Weyl chamber in the Lie algebra of T

Proposition 16.9. Suppose (L1,...,L,) € X. Let

O=MyCcM,...Cc M,=C™

be the unique sequence of subspaces of C™ satisfying 16.7 and let the integers k;, m; and ¢;; be
defined as at 16.7. Then the stratum of the GL(m) stratification of X to which (Ly,..., L,)
belongs is labelled by the vector
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ﬁ: (kl/mb...,kl/ml,kz/mg,...,ks/ms) c tJr

in which k;/m; appears m; consecutive times for each i.

Note that for convenience in 16.9 we worked with GL(m) not SL(m). However when con-
sidering quotients it is better to work with SL(m). For the central one-parameter subgroup of
GL(m) acts trivially on X and makes every point of X unstable for GL(m).

This proposition gives us an inductive formula for the equivariant Betti numbers of the

semistable stratum in

x =] Gu.cm

1<j<r
under the action of SL(m). It is
16.10
SL(m) ss
P, (X*) = P(X)P(BSL(m))
- Y a-&—ee I p (( 11 G(%mﬁ) )
B:L 1<j<s 1<j<r

The sum is over vectors § € t, and sequences

@z{fmlgzgs,lgjgr}

such that there are integers k; > 0 and m; > 0 satisfying

k’l/ml > ...k’s/ms,
Zmi =1m, Z&j = ki7 Z&J :gj
% J 7

and
p= (/ﬁ/ml, cees k1/m1, k‘z/mm cees k’s/ms)
with each k;/m; appearing m; times. Also

diB) =D 2(ki—mi)m;

1<i<j<s

The factor (1 — )% appears since in 16.9 since we worked with GL(m) not SL(m).

Remark 16.11. In this example it is possible to show that the stratification is equivariantly
perfect for any field of coefficients, not just the rationals. The proof is essentially the same as for
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Q. It works for all fields because GL(m) is torsion-free, and because it is possible to find for each
B € B a subtorus T3 which fixes Zg pointwise and whose action on 73,53 is Z-primitive, not just
Q-primitive, for each x € Zs (cf. [A&B] theorem 7.14). We deduce that the GL(m)-equivariant
cohomology of the semistable stratum has no torsion. Since PGL(m) acts freely on the semistable
points, it follows from considering spectral sequences that the quotient variety has p-torsion for
the same primes p as GL(m), that is, for p < m.

16.12. Ordered points in a projective plane

As a special case of the last example consider the diagonal action of SL(3) on (IPy)™. The first
value of n for which the quotient is interesting is n = 5. Then 3 Jn so by 16.6 the stabilizer of
every semistable point is finite.

Suppose x € (P;)°. By 16.5 x is semistable if no point of Py occurs in z with multiplicity
greater than n/3 and no line contains more than 2n/3 components of x. If a point occurs with

multiplicity & > n/3 and no line in Py contains more than 2k components then z lies in the
stratum labelled for GL(3) by

p=k0G-k)/20-k)/2)

If a line contains k > 2n/3 components then either a point of this line occurs with multiplicity
ki1 > k/2 so that

8= (ki k—ki,5— k)

or else no such point occurs and

B =(k/2.k/2,5 k)

So the stratification is given by the following table. The indices § here are indices for the
GL(3)-stratification; the indices for SL(3) are given by replacing each § by 5 — (5/3,5/3,5/3).
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(5/3,5/3,5/3)
(5,0,0)
(4,1,0)

(3,1,1)

(5/2,5/2,0)
(3,2,0)
(2,2,1)

(2,3/2,3/2)

points lying in Sg

semistable for SL(3)

all components coincide

4 components coincide

3 components coincide;

others linearly independent

all components lie in a line; at most 2 coincide
all components lie in a line; at most 3 coincide
4 components lie in a line; at most 2 coincide

2 components coincide; no 4 lie in a line

114

contribution to PP (X)

Pt<Xss)
t16(]_ _ t2)71(1 _ t4)71
5t (1 — %)~

10£3(1 — ¢2)2

(1 — )71 + 52 + t4)
10¢610(1 — ¢2)~2
5t4(1 — ¢*)72(1 + 3t* — t4)

10¢4(1 — %)~
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By applying 16.10 we obtain the Betti numbers of the quotient M = X*°/SL(3). The Poincaré
series of M is

Pt(M) — (1 + t2 + t4)5(1 o t4>71(1 o Z56)71 o t16(1 o t2)71<1 o t4>71
— (1 =375t 4+ 10£* + 1010 + 5¢*(1 + 3% — 1)}
— (=) + 5% + 10 + 10t"}

which works outs as 1 + 5t2 + t*. Here the inductive formula 16.10 was used rather than an
explicit formula involving (-sequences. The former was quicker because the Poincaré series
pt@ (((P1)™)*) have already been calculated.

When n = 6 we are no longer in a good case and the series PtSL(?’) (X**) is not polynomial.
When n =7

Py(M) =1+ Tt* + 29" + 64¢° + 29¢° + 7¢10 4 ¢12
In general one finds that if 3 fn the Betti numbers of the quotient M for the action of SL(3)
on (IPy)" are given by
b2j:a/]+2a]71++(]+1)a,0

for 0 < j < 2(n —5) where aq is given by

(n — 2)! n(n — 1) [xa(b) — xa(b) s (®)
" 0<%/2(d_2b)!b!<n_2_d+b)!{b+1_ b+1 n—b—1 +n—d—b—1]}

n!(xa(k) — xs(k))
- k(n — k) (d—n—k—+2)(d+1)!

and y; are the characteristic functions of the intervals

—_

. [max(n/3,d —n,d/2]

N

[n/3, min(d/2, (2d — n+1)/3)]
3. [max(d+1—n,(d—1)/3),min(d + 1 —2n/3,d/2 — 1]
4. [n—d—2,2(n —d—2)]

5. 2(n —d—2),n]
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