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ABSTRACT by humans who apply statistical tests, hoping to learn every-

Finding the differences and similarities between two datasets
is a common analytics task. With temporal event sequence
data, this task is complex because of the many ways sin-
gle events and event sequences can differ between the two
datasets (or cohorts) of records: the structure of the event se-
quences (e.g., event order, co-occurring events, or event fre-
quencies), the attributes of events and records (e.g., patient
gender), or metrics about the timestamps themselves (e.g.,
event duration). In exploratory analyses, running statistical
tests to cover all cases is time-consuming and determining
which results are significant becomes cumbersome. Current
analytics tools for comparing groups of event sequences em-
phasize a purely statistical or purely visual approach for com-
parison. This paper presents a taxonomy of metrics for com-
paring cohorts of temporal event sequences, showing that the
problem-space is bounded. We also present a visual analyt-
ics tool, CoCo (for “Cohort Comparison”), which implements
balanced integration of automated statistics with an intelli-
gent user interface to guide users to significant, distinguishing
features between the cohorts. Lastly, we describe two early
case studies: the first with a research team studying medical
team performance in the emergency department and the sec-
ond with pharmacy researchers.
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INTRODUCTION

Sequences of timestamped events are currently being gener-
ated across nearly every domain of data analytics. Consider
a typical e-commerce site tracking each of its users through
a series of search results and product pages until a purchase
is made. Or consider a database of electronic health records
containing the symptoms, medications, and outcomes of each
patient who is treated. Every day, this data type is reviewed
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thing they can about how these processes work, why they
break, and how they can be improved upon.

Human eyes and statistical tests, however, reveal very dif-
ferent things. Statistical tests show metrics, uncertainty, and
statistical significance. Human eyes see context, accountabil-
ity, and most notably, things that they may not have even been
looking for.

Visualization tools strive to capitalize on these latter, human
strengths. For example, the EventFlow visualization tool [39]
supports exploratory, visual analyses over large datasets of
temporal event sequences. This support for open-ended ex-
ploration, however, comes at a cost. The more that a visual
analytics tool is designed around open-ended questions and
flexible data exploration, the less it is able to effectively inte-
grate automated, statistical analysis. Automated statistics can
provide answers, but only when the questions are known.

The opportunity to combine these two approaches lies in the
middle ground. By all accounts, the goal of open-ended ques-
tions is to generate more concrete ones. As these questions
come into focus, so too does the ability to automatically gen-
erate the answers. This paper introduces CoCo (for “Cohort
Comparison”, Figure 1), a visual analytics tool that is de-
signed to capitalize on one such scenario.

Consider again the information that is tracked on an e-
commerce site. From a business perspective, the users of the
site fall into one of two groups: people who bought something
and people who did not. If the goal is to convert more of the
latter into the former, it is critical to understand how these
two groups, or cohorts, are different. Did one group look at
more product pages? Or spend more time on the site? Or
have some clear demographic identifier such as gender, race,
or age? Similar questions arise in the medical domain as well.
Which patients responded well to a given medication? How
are did their treatment patterns differ the patients who didn’t?

Although comparing two groups of data is a common task,
with temporal event sequence data in particular, the task of
running many statistical tests becomes complex because of
the variety of ways the cohorts, sequences (entire records),
subsequences (a subset of events in a record), and events can
differ. In addition to the structure of the event sequences (e.g.,
order, co-occurrences, or frequencies of events), the attributes
about the events and records (e.g., gender of a patient), and
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Figure 1. CoCo combines automated statistical analysis with an intelligent user interface to enable insights, hypothesis generation, and data exploration
when comparing two groups of temporal event sequences. Users are provided with pre-defined metrics (bottom right) as a starting point for their
exploration and they are able to parse results with a visualization and interactions such as sorting and filtering. In this example, we have two groups of
patients as they are transferred throughout a hospital: those who lived and those who died. The selected metric is the most differentiating subsequences.
We can see that being transferred from the emergency room (purple) directly to the normal floor bed (blue) appears statistically significantly more in

the group of patients who died (p < 0.01).

the timestamps themselves (e.g., an event’s duration) can be
distinguishing features between the cohorts. For this reason,
running statistical tests to cover all these cases and determin-
ing which results are significant becomes cumbersome. Addi-
tionally, the factor on which the cohorts are formed may call
for different types of questions to be asked about the data. For
example, in a set of medical records split by date (e.g., last
month’s trials vs. this month’s), a research may be interested
in how outcomes for the patients differ between the cohorts,
whereas a dataset split by the patient’s outcome (e.g., patients
who die vs. those who live) would ignore such a metric.

Current tools for cohort comparison of temporal event data
(described in the next section) emphasize one of two strate-
gies: 1) purely visual comparisons between groups, with
no integrated statistics, or 2) purely statistical comparisons
over one or more features of the dataset. By contrast, CoCo
is designed to provide a more balanced integration of both
human-driven and automated strategies. We begin by show-
ing that the task of cohort comparison is specific enough to
support automatic computation against a bounded set of po-
tential questions and objectives. From this starting point, we
demonstrate that the diversity of these objectives, both across
and within different domains, as well as the inherent com-
plexities of real world datasets, still require human involve-
ment to determine meaningful insights. Through case studies,
we look at how CoCo can support the task of cohort compar-
ison more specifically than previous visualization efforts.

The direct contributions of this paper are:

1. A taxonomy of metrics for comparing groups of temporal
event sequences.

2. A visual analytics tool which demonstrates balanced in-
tegration of automated analysis and user-guided analysis
with an intelligent user interface.

3. Case studies that illustrate the benefits of CoCo’s utility
while suggesting further refinements.

On a broader level, the goal of this paper is to highlight the
relationship between task specificity and the ideal balance be-
tween humans and statistical analysis, so that future efforts
can better leverage the strengths of both approaches.

RELATED WORKS

Visualizing Groups of Sequential Data

Work on visualization of sequential data is described here in
two parts: visualizations of a single group of event sequences
and visualizations comparing two or more sequences.

Single Groups

EventFlow [39] (Figure 2) and OutFlow [56] create simplified
visualizations of collections of event and interval sequences.
Both tools aggregate a single cohort and the complete se-
quences of records, with EventFlow allowing users to view
details about individual records as well. While they only sup-
port visualizing a single group of records, comparison of mul-
tiple cohorts can be facilitated by using multiple instances
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Figure 2. EventFlow visualizes event sequences in an aggregated, tree-

like overview and as individual records in a timeline.
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of the visualization and visual inspection by the user. These
tools do not provide statistical information about the differ-
ences. CoCo borrows some event icon motifs from Event-
Flow (such as triangles for point events and T-shaped markers
for interval events).

Event Sequence Comparison

Solutions for comparing sequential data have been explored
in many different fields, including comparative genomics,
text mining, and tree comparison. They are discussed here in
the context of event history data and discrete-time models [3].

We draw first on methods to compare collections of general
sequences without the notion of time, most notably the fields
of comparative genomics and text mining, where the data is
ordered with respect to some index [32].

Genome browsers [13, 21, 29, 52, 55, 12] visualize genome
sequences. They compare genomes by visualizing the po-
sition of each nucleotide and consider a genome as a long
and linear sequence of nucleotides. Scientists also compare
genomes at the gene level. However, most existing tools
are able to compare either only the similarities or only the
differences of collections of gene sequences. For example,
MizBee [37] measures the similarity between genomes by
visualizing the regions of shared sequences, while Variant
View [20], cBio [11] and MuSiC [17] only support display-
ing sequence variants. Further, genome sequences are often
compared as a sequence of linear positions, which does not
lend itself to distinctions between point and interval events.

Texts are often compared by extraction of frequent n-
grams [9]. FeatureLens by Don et al. [18] define an n-gram
as a contiguous sequence of words and use a visualization ap-
proach to compare the co-occurrences of frequent n-grams in
texts. However, it only supports locating n-grams with spe-
cific features but does not find which n-grams are the most
differentiating. Jankowska et al. [28] proposed the conver-
sion of documents into vectors of frequent character n-grams
and designed a relative n-gram signature to encode the dis-
tance between n-gram vectors. Viégas et al. presented history
flow [54] to visually compare between versions of a docu-
ment, which assumes that the later version of a document is
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developed based on the earlier one, which is not applicable to
event history data.

Most of the techniques mentioned above (in both genomics
and text mining) only provide a visual comparison between
single long sequences, whereas event history data consists of
large numbers of independent transactional sequences.

Temporal event sequences are often represented as trees.
While many comparison techniques exist for trees, many do
not take into account values or attributes of nodes and none
are specifically designed for temporal data. Munzner pre-
sented the TreeJuxtaposer [42] system to help biologists ex-
plore structural details of phylogenetics, but focuses only on
structural differences in the trees and not any attributes about
the nodes (such as timestamps). Bremm [8] studied the com-
parison of phylogenetic trees in a more statistical way by ex-
tending the algorithms of TreeJuxtaposer to compare more
than two trees and considers “edge length” which could be
generalized to durations of gaps between sequential events.
Holten [27] presented an interactive visualization method to
compare different versions of hierarchically organized soft-
ware systems. He proposed two methods of tree compari-
son: icicle plot and hierarchical sorting, but does not pro-
pose any statistical comparison technique, and focuses more
on “leaf-to-leaf” matching, which considers whole paths (or
sequences) only. TreeVersity2 [24] compares by tree struc-
ture and the node values. Though TreeVersity2 is general to
all trees, it leaves out temporal-specific analysis such as du-
ration of or between interval events. TreeVersity2 compares
two datasets over time, but assumes these time periods are
disjoint. TreeVersity2 also includes a textual reporting tool
that highlights outliers in the data.

Many of these comparison techniques also lack statistical
tests for the comparisons. In our work, the balanced inte-
gration supports both visual and statistical approaches.

Statistics for Comparing Cohorts

In medical cohort studies, the most prevalent approach for
comparison is survival analysis, where survival time is de-
fined as the time from a defined point to the occurrence of a
given event [7]. The Kaplan-Meier method is often used to
analyze the survival time of patients on different treatments
and to compare their risks of death [14, 19, 23]. Based on the
Kaplan-Meier estimate, survival time of two groups of pa-
tients can be visualized and compared with survival curves,
which plot the cumulative proportion surviving against the
survival times [7]. Also, the log-rank test is often used to
statistically compare two survival curves by testing the null
hypothesis. Compared with survival analysis, the event se-
quences data used in our work is much more complicated,
and requires a more advanced analysis model.

Currently tools that combine visualization and statistics for
medical cohort analysis focus on single cohorts. CAVA [57]
is a visualization tool for interactively refining cohorts and
performing statistics on a single group. Recently, Oracle pub-
lished a visualization tool for cohort study [45]. Based on
patients’ clinical data, it supports interactive data exploration
and provides statistics as well as visualization functionalities.



These tools similarly focus on combining visualization with
automated statistics and providing an interactive interface for
selecting cohorts; however, both tools aim at grouping and
identifying patient cohorts for further characterization, while
our work focuses on comparing two existing cohorts based on
their event histories.

Temporal Data Mining

Previous work studying temporal data mining has mostly fo-
cused on discovering frequent temporal patterns [4, 6, 15, 43,
33, 22, 2, 36, 46] and computing temporal abstractions [30,
41, 5] of time-oriented data.

Pattern discovery is an open-ended problem which aims to
unearth all patterns of interest [32]. Much of the literature is
concerned with developing efficient algorithms to automati-
cally discover frequent temporal patterns and extract tempo-
ral association rules [4, 6, 15, 33, 22, 2, 36]. To constrain the
search procedure, some algorithms [4, 15] allow users to pro-
vide initial knowledge and rules. To show the results, Norén
et al. [43] used a graphical approach to visualize temporal
associations. This work can be extended to address unique
temporal constraints, such as dealing with concurrent events,
which Cule et al. address in the context of pattern mining [16]
and association rule mining [50].

Temporal abstraction focuses on obtaining a succinct and
meaningful description of a time series [41]. Various ap-
proaches have been proposed. Klimov et al. [30] devel-
oped VISITORS to visualize patient records by grouping
the event attribute values at different temporal granularities.
Moskovitch et al. [41] aggregated values of point data by
state and trend, to obtain its interval representation. Batal
et al. [5] converted time series data into vectors of frequent
patterns, which can be used with standard vector-based al-
gorithms. However, most of the work in this topic only fo-
cused on the time and changes in an event’s value (a con-
cept), which is considered as event attributes in our work.
Tatti and Vreekan [51] introduce a novel algorithm for sum-
marizing a set of a sequences by providing a descriptive and
non-redundant set of sequences, accounting for long gaps.

METRICS FOR COMPARING COHORTS

Metrics for comparing cohorts are numerous and can be
grouped into five main categories: summary metrics, time
metrics, event sequence (both whole record sequences and
subsequences thereof) metrics, event attribute metrics, and
record attribute metrics. These metrics are a direct result
of observing EventFlow users as they analyzed cohorts of
event sequences in seven case studies performed over three
years [38]. Five case studies were in the health care domain
(with pharmacists and epidemiologists), one in sports analyt-
ics (basketball), and one in transportation.

Summary Metrics
Summary statistics deal with the cohorts as a whole and pro-
vide a high-level overview of the datasets.

Number of records Total number of records in each cohort.

Number of events Total number of events in each cohort.

Number of unique records Total number of unique records
in each cohort based on the sequence of events (absolute
times are not considered).

Number of each event Total number of occurrences for
each event type per cohort.

Minimum, Maximum, and Average length of records
The length of a record is considered as the number of
events per that record.

Event Sequence Metrics

Event sequence metrics deal with the order and structure of
event sequences. Sequences are differentiated by whether
they occur as an entire sequence in a record or a subsequence
of arecord. Each of the following metrics can be presented as
the percent of records containing the event or sequence or as
the percent of all events or sequences that it occurs. The for-
mer method provides a sense of how many individual records
had this sequence occur, whereas the latter method provides
a sense of how events or sequences might repeat themselves
within one record.

Prevalence of an event The percent of records or total num-
ber of events that a particular event occurs in.

Prevalence of a subsequence The percent of records in
which the subsequence appears. For example, patients who
lived are given aspirin before going to the emergency room
more often than the patients who died.

Prevalence of a whole sequence Percent of records with a
given sequence.

Order of sequential events in a subsequence The percent
of records containing event A directly preceding event B
versus B preceding A. For example, perhaps patient who
go to the ICU before the floor are more likely to live than
patients who have these events in the reverse order.

Commonly Co-occurring (non-consecutive) events The
percent of records containing both events A and B (in any
order, with any number of events between them).

Prevalence of Outcomes If a single event is prevalent as an
“outcome” (i.e., the last event in the sequence). This metric
in particular applies only to cohorts that are not already
split on an outcome event.

Time Metrics
Time metrics deal with the timestamps at both the event and
sequence levels — relative and absolute.

Absolute time of an event Prevalence of a particular times-
tamp of an event or multiple events (e.g., if all events in
one cohort occurred on the same day).

Duration of interval events The duration of particular inter-
val event. For example, this can be the length of exposure
to a treatment or the duration of a prescription.

Duration between sequential events The time between the
end of one event and the beginning of the next. For exam-
ple, the average length of time between hospital patients



entering the emergency room and being transferred to the
ICU is under two hours in patients who lived and over two
hours in those who died.

Duration between co-occurring (non-sequential) events
The length of time between non-sequential events (two
events with some number of other events occurring
between them).

Duration of a subsequence The length of time from the be-
ginning of the first event in a subsequence to the end of the
last event in the subsequence.

Duration from a fixed point in time The length of time
from a user-specified, fixed point — aligned by either a se-
lected event or absolute date-time.

Duration of overlap in interval events The overlap (or lack
thereof) of interval events. For example, the overlap of
Drug A and Drug B could be more common in the cohort
of patients who lived versus those who died.

Cyclic events and sequences The duration between cyclic
events and sequences.

Survivor analysis How an event or sequence occurs or di-
minishes over time.

Statistics for each of these metrics include the minimum,
maximum, and average durations or values and the distribu-
tions of the values between the cohorts.

Event Attribute Metrics

Any of the above metrics can be applied over values of an at-
tribute of the events instead of the event type itself. This can
be done by swapping an event type by the values of a partic-
ular attribute. For example, in a medical dataset, we might be
interested in seeing how a particular emergency room doctor
might be related to the outcome of a patient. We would then
switch all events of type “Emergency” with the value of its
“doctor” attribute. If there are three doctors, this would create
3 new pseudo-event types. We can use the metrics from above
to see the difference in event sequences, times, or prevalence
of each doctor in either cohort.

Record Attribute Metrics

Record level attributes (such as patient gender or age) com-
pare the cohorts as population statistics. General statistics
across the entire dataset is a problem already tackled by an-
alytics tools such as Spotfire [53] or Tableau [1], however
these tools look at a single attribute. For example, they
might compare the number of males versus females or pa-
tients on Wednesday versus Thursday. There may be impli-
cations about the combinations of record attributes (e.g., the
women on Wednesday versus the women on Thursday ver-
sus the men on Wednesday versus the men on Thursday). In
clinical trials, it is important that all patient attributes are bal-
anced and currently no tools exist for visually confirming that
all attribute combinations are balanced.

Combining Metrics

The number of metrics is further multiplied because any com-
bination of the above metrics is a new metric. For example, a
sports analytics researcher may be interested in how a partic-
ular player (as an attribute of an event) performs within two
minutes (time) after halftime (event order).

BALANCING AUTOMATION WITH HUMAN INTERACTION

Purely statistical methods of comparison would benefit from
user intervention. With the sheer number of metrics, it would
be computationally time consuming to run every metric ahead
of time, especially when not every metric may be required for
analysis. Users with domain knowledge about the datasets
would ideally be able to select from the metrics and easily
eliminate unnecessary metrics. Further, questions asked dur-
ing cohort comparison may vary based on how the cohorts
were divided. If the cohorts were divided by outcome (e.g.,
patients who lived versus patients who died), the sequence of
events leading up to them becomes more important. Analy-
sis might revolve around determining what factors (time or
attributes) or events lead to the outcome by determining how
the metrics differ between the groups. Conversely, if the co-
horts were split based on an event type, questions may re-
volve around finding distinguishing outcomes (e.g., patients
who took Drug A may result in more strokes than patients
who took Drug B). Exploration of cohorts that are split by
time (e.g., the same patients over two different months) may
be more open-ended and require all metrics. The cohorts can
be distinguished by time factors, event attributes, or events
themselves (sequences of events or outcomes).

Our contribution is to enable researchers to be far more flex-
ible in examining cohorts and facilitate human intervention
where it can save time and effort. Because of the pre-defined
problem space of comparing temporal event sequences, we
can save users time by having answers to common questions
readily available and giving them a starting point for their ex-
ploration.

Purely visual tools for temporal event sequences are a good
starting point for developing analysis tools for cohort stud-
ies, but can be improved by the inclusion of the statistical
tests used in automated approaches. For example, EventFlow
assumes that each patient record consists of time-stamped
point events (e.g. heart attack, vaccination, first occurrence of
symptom), temporal interval events (e.g. medication episode,
dietary regime, exercise plan), and patient attributes (e.g.
gender, age, weight, ethnic background, etc.). In multiple
case studies with EventFlow, the researchers repeatedly ob-
served users visually comparing event patterns in one group
of records with those in another group. In simple terms the
question was: what are the sequences of events that differenti-
ate one group from the other? A common aspiration is to find
clues that lead to new hypotheses about the series of events
that lead to particular outcomes, but many other simple ques-
tions also involved comparisons. Epidemiologists analyzing
the patterns of drug prescriptions [40] tried to compare the
patterns of different classes of drugs. Hospital administra-
tors looking at patient journeys through the hospital compared
the data of one month with the previous month. Researchers



analyzing task performance during trauma resuscitation [10]
wanted to compare performance between cases where the re-
sponse team was alerted of the upcoming arrival of the patient
or not alerted. Transportation analysts looking at highway
incident responses [25] wanted to compare how an agency
handled its incidents differently from another. Their obser-
vations suggest that some broad insights can be gained by
visually comparing pairs of EventFlow displays (e.g., users
could see if the patterns were very similar overall between
one month and the next) or very different (e.g., a lot more
red or the most common patterns were different) but users
repeatedly expressed the desire for more systematic ways to
compare cohorts of records.

COHORT COMPARISON WITH COCO

Though CoCo can be used in a variety of fields, the synthetic
dataset used as an example for the remainder of the paper con-
sists of records of patients admitted to the emergency room
and follows their movement through their stay at the hospital:
being administered aspirin, being admitted into the hospital
room, transferring between a normal floor bed, intermediate
care, and the intensive care unit (ICU), and ultimately being
discharged either dead or alive. The dataset is split into two
cohorts: patients who died and patients who lived.

Design
Based on the case studies which shaped the taxonomy, our
three design goals for balanced integration were:

G1. Automatic, efficient computation of metrics.
G2. Guided process for reading results.

G3. Visualization and interaction techniques for parsing and
sorting results.

We used an iterative design process based on feedback from
on-going case study partners and a user study [35]. We now
describe the first operational CoCo prototype, organized by
those three goals.

G1: Computation of Metrics

In automatically applying the metrics to the datasets, we must
consider (1) what are the appropriate statistical tests for each
metrics, and (2) how to compute the results quickly for the
user.

Towards the first goal, the user should be involved in select-
ing appropriate significant tests for the metrics. Currently,
CoCo implements only non-parametric tests and thus does
not provide methods for selecting parametric tests. Percent
prevalence and attribute significances are calculated by Chi-
squared and the time significance metrics use a Wilcoxon
sum-rank test across the distribution of values.

To date, we implemented two methods for automatically
computing these metrics on a large set of data. The first was
to apply every metric after the datasets are loaded, in order
to rank the metrics from potentially most meaningful to least.
However, this resulted in a long wait time for users. The cur-
rent implementation computes a metric as the user selects it.
However, this offers less guidance than if the metrics were

pre-computed. Our future goal is to minimize wait time, but
give prompt feedback on which metrics might be meaning-
ful to look at immediately, in accordance with Stolper et al.’s
design guidelines for progressive visual analytics [49].

G2: Interface

To guide users to most meaningful results, we organize re-
sults by first providing high-level dataset statistics followed
by specific metrics grouped by type.

CoCo consists of a file manager pane, a dataset statistics pane,
an event legend, a list of available metrics, the CoCo visual-
ization, and options for filtering and sorting the results (Fig-
ure 1).

The summary statistics panel includes high-level statistics
about both datasets, including the total number of records and
events in each record. Users are then shown the Event Type
pane, which serves as the legend (pairing each event type
with a marker and color) and filter control. When an event
is checked or unchecked, it displays or hides rows containing
that event from the analysis. Frequencies of each event in the
two cohorts are also shown, as the raw number of occurrences
of that event type.

The right panel consists of filtering and sorting mechanisms
and a list of metrics. The metrics panel contains the list of
metrics is organized according to the taxonomy. We found
that many users started with metrics dealing with prevalence
to understand how events and sequence occur within the
datasets before moving onto metrics dealing with time. Simi-
larly, within each group, the metrics are organized from sim-
plest to more complex: singular event metrics, subsequence
metrics, then finally whole record metrics.

The filtering and sorting panels provide ways for users to
parse the results of their selected metric. Users may filter
by p-value or sequence length. The default sorting behavior
for the results is first by p-value group, then by magnitude of
difference. Users may also choose to sort by only p-value,
only absolute difference, or by most differentiating in cohort
« or by .

Preliminary versions of CoCo introduce each panel one-by-
one, so users could click-through as they finished analyzing
each section. However, feedback from users suggested this
was more cumbersome than helpful and we opted to display
all panels at once.

G3: CoCo Visualization

The visualization needs to convey the differences themselves
(e.g., proportion of records in each cohort containing a se-
quence), but also the result of the statistical test. Since the
meaning of the results differ between results (e.g., some met-
rics refer to a percentage of records while others refer to a
time duration), it was also important to visualize the results
in a way that supports both types of results. Because users
are more focused on the difference of a value between two
cohorts, we chose to use a back-to-back bar chart in order to
emphasize the magnitude and direction of the difference, so
users can more easily scan across multiple rows for results
they are interested in.
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Figure 3. The CoCo visualization shown with the event legend. In this example, we see that ICU, Normal Floor Bed, and Intermediate Care events occur
significantly more frequently in the ‘“‘died” cohort than in the “lived.” Because of the nature of the dataset, 100% of records in both cohorts contain the
“Emergency” and “Exit” events, so there is no significant difference and the circle marker is placed in the middle.

The CoCo visualization (Figure 3) displays the results of sig-
nificance tests in a unified form. For each event or sequence
of events, CoCo displays the value of the metric in each co-
hort (e.g., percent of prevalence, gap duration), the difference
between the two values, and the significance value of the dif-
ference.

20% 30% 40% 50%
| | I

lived
60%

AA

Figure 4. The sequence ‘“Emergency” followed by a ‘“Normal Floor Bed”
event occurs in about 60% of records in ‘“died”” and only 10% of records
in “lived” for a statistically significant difference of 50% (p < 0.01)

Each row (Figure 4) consists of a horizontal axis, where the
left is cohort «v and the right is cohort 3 (the labels can be re-
named by users). A semi-transparent bar grows from the mid-
dle towards each direction in the respective cohort to show the
value of the metric for that particular event or sequence. The
axis is scaled by the maximum value for all sequences (e.g.,
if the maximum percentage is 60%, the maximum value on
the axis will also be 60%). The axis works for both per-
centage and time. The circle marker is placed horizontally
based on the difference between the values, in the direction of
whichever cohort’s value is higher. The circle marker is filled
corresponding to the significance of the difference: black is
used for p-values with a significance of less than or equal to
0.01, grey for less than or equal to 0.05 but higher than 0.01,
and white for values over 0.05 up to 1.

Rows are ranked first by their p-value group (with records
with the most significant p-value appearing first), and within
each of the three significance groups, rows are ordered by the
absolute percent difference between the two groups. Users
can filter out records by p-values in a certain group with the
legend on the top right of the visualization.

Hovering over any sequence displays an informational tooltip
(Figure 5), which gives the event names for each event
marker, the corresponding value in each cohort, the values’
difference, and the exact p-value. Users can choose to always

A 8% [ ]

A = 36.5% (p = 0.000)
CNS
%o, %
% 60,

3

4

Figure 5. Exact values for each row are shown in the hover tooltip. The
sequence “Aspirin,” “Emergency,” “Normal Bed Floor,” then “ICU” ap-
pears in 44.6 % of records in ‘““died” and 8.1% of records in “lived.”

display these values in the display options in the top left of
the visualization (Figure 3).
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Figure 6. Rows whose sequence are a subsequence of another row are
aggregated together and only the longest sequence is shown. The nested
records are expanded on click and are visually grouped with the rest of
the aggregated rows in the group on a dark background.

With rows that are sequences of events, there are sometimes
shorter subsequences of that sequence that have a similar sig-
nificance value. In these cases, CoCo aggregates rows when
a sequence is a subsequence of another row and both event
sequences fall within the same significance category. An ag-
gregated row is indicated with a “+” indicator to the right of
the sequence markers (Figure 5) and is expanded on when the
top-level (nested) row is clicked. Nested subsequences of the
row are aligned with the marker and displayed on a darker
background color with the top-level record (Figure 6). Users
can expand or collapse all nested records at once in the dis-
play options to the top left of the visualization (Figure 3).

In metrics dealing with attributes, users can select a particular
attribute from a drop-down under the display options in the
visualization. Events that contain a value with the selected
attribute are outline with a black border and the value of the
attribute is shown on hover as the value appended to the event
type with a pipe (“|””) separator (Figure 7).
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Figure 7. Users can select an attribute from the drop-down in the display
options. Events containing an attribute value are outlined in black and
its value is shown in the hover tooltip. In this example, the attribute
selected is the doctor that is on call in the emergency room (purple). The
event containing the attribute is highlighted in black.

G3: Interactions for Parsing Results

Though CoCo initially sorts the results based on the signif-
icance and magnitude of difference in the results, in prelim-
inary sessions with case study partners, it became clear that
researchers might have more specific questions that require
displaying the results differently. CoCo allows users to sort
and filter the results based on their needs. Specifically, the
sorting method may be changed based on:

e Magnitude of difference and p-value group (default)

e P-value only

Magnitude of difference only
e Most differentiating towards the alpha group

Most differentiating towards the beta group

To further filter out potentially noisy data, we added controls
for filtering by p-value or sequence length. For example, if
users are interested in a particular subset of events, they can
use the event type legend to uncheck events that they are not
interested in. Then, only sequences containing the checked
event types will appear.

PRELIMINARY CASE STUDIES
Case Study: Exploring Adherence to Advanced Trauma

Life Support Protocol

To investigate the strengths and limitations of CoCo as an au-
tomated cohort comparison tool, we conducted a case study
following the procedure of a Multi-Dimensional, Long-term
In-depth case study (MILC) [48]. We worked with medi-
cal researchers at Children’s National Medical Center who
were investigating trauma teams’ adherence to the Advanced
Trauma Life Support (ATLS) protocol and possible reasons
for deviations. In a previous study [10], they found that about
50% of resuscitations did not follow the ATLS protocol. As a
follow-up, the researchers collected additional data about the
resuscitation process after implementation of an ATLS com-
pliance checklist to re-evaluate the attributes associated with
protocol deviations. Specifically, the researchers’ questions
were:

1. What percent of patients are treated in adherence to proto-
col?

2. Are there distinguishing attributes (e.g., time of day, pa-
tient gender, team lead) between protocol adherence and
non-adherence?

3. What are the most common deviations from the protocol?

After an initial training session and interviews to understand
the researchers’ goals and questions, we observed the re-
searchers as they conducted a 3-hour session of data explo-
ration and analysis.

The dataset consisted of 181 patient records, with event types
for the five steps in the ATLS protocol: airway evaluation,
listening for breath sounds, assessment of circulation, evalua-
tion of neurological status disability, and temperature control.
Patient attributes included injury severity score (ISS), the day
of week, length of hospital stay, time between notification and
arrival at the hospital, and if the patient was admitted to the
hospital.

The dataset was stored as a single file. They used Event-
Flow’s “group by attribute” feature to split the dataset into
separate cohorts based on attributes and adherence to the pro-
tocol. Over the course of the 3 hours, the researchers split
the dataset in six ways to load six different pairs of cohorts in
Coco as they explored different hypotheses:

1. Patients treated in adherence to the ATLS protocol versus
those that showed any deviation.

2. Patients admitted to the floor versus ICU (with discharged
patients removed).

3. Patients who arrived with at least five minutes warning be-
fore arrival at the trauma bay versus those who arrived with
no warning (“now” patients).

4. Patients with a high (above 25) versus low ISS.
5. Patients treated on the weekend versus on a weekday.

6. Patients treated during the day versus at night.

In every comparison group, the analysts began by looking at
the prevalence of single events, to determine how often they
occurred. The analysts then looked at the most differentiat-
ing entire record sequences, because the subsequences were
less informative about how the protocol was followed. They
would then make their way down the provided metrics list, in
the order that they appeared: most differentiating time gaps
and then prevalence of record attributes. They did not look at
the prevalence of record attribute combinations for any of the
datasets.

For this dataset, they expected to see that all records contained
every event. This finding was not observed for two of the
comparisons: correctly treated patients versus those with de-
viations and day versus night patients, with the latter of both
groups receiving the airway check significantly less that day-
time patients. In the day versus night group, the analyst also
found that the “most differentiating sequence” was the cor-
rect order, meaning that the nighttime patients were treated in
the correct order significantly less than daytime patients. Ad-
ditionally, patients treated at night had more variance in the
procedure, with 26 unique sequences in the 83 patients versus
20 unique sequences in the 101 daytime patients. A possible



reason for this finding is that during the day, nurse practition-
ers perform these procedures, but at night, less experienced
junior residents are on-call instead.

At times, the researchers saw that certain groups occurred
only rarely in the cohorts (under 20 times), so the researchers
decided not to consider the comparisons. For example,
among patients admitted to the ICU or floor, only about 80
patients remained, making the sample sizes too small to run
many of the significance metrics about event types. As one
analyst worked to confirm her expectations and check several
hypotheses, she found a surprising and potentially important
result: about 25% more patients who were admitted to the
floor were “now” patients (p < 0.05), which led to splitting
the cohort into the third group: now versus not now patients.

In the closing interview, one analyst said, “We don’t need to
solve everything with EventFlow and CoCo. These tools let
us explore the data and narrow our hypothesis.” From these
results, the analysts submitted abstracts on their findings and
presented these findings at an internal symposium on trauma
care.

Additional case studies and targeted controlled studies will
be necessary to characterize the effectiveness of CoCo, but
this first case study suggests that CoCo can be effective for
exploratory analysis and hypothesis generation.

On-going Case Study: Comparing Algorithms for Distin-

guishing Types of Radiation to the Bone

We are currently working with our partners at the Department
of Pharmaceutical Health Services Research at the University
of Maryland School of Pharmacy in Baltimore. In previous
work, the researchers were interested in developing an algo-
rithm using claims data to differentiate between radiation de-
livered to the bone versus radiation delivered to the prostate
gland, because billing codes available in claims data do not
distinguish the site of radiation. Reliable measures for iden-
tifying the receipt of radiation to the bone are important in
order to avoid bias in estimating the prevalence and/or mor-
tality impact of skeletal-related events, including radiation to
the bone.

Studies using healthcare claims employ various claims-based
algorithms to identify radiation to the bone and mostly condi-
tion on prior claims with a bone metastasis diagnosis (billing)
code [47, 44, 31]. They developed three classification algo-
rithms that were compared using CoCo and EventFlow to in-
vestigate the timing of possible radiation to the bone among
patients diagnosed with incident metastatic and nonmetastatic
prostate cancer. One algorithm was based on prior literature
while the other two were based on insights gained from data
visualization software. Based on clinical input regarding the
duration of palliative [26, 34] versus curative radiation, the
researchers investigated the length of radiation episodes and
found differences between cohorts in terms of the length of
radiation. As expected, patients diagnosed with metastatic
disease received shorter course radiation and patients diag-
nosed with nonmetastatic disease received longer course ra-
diation.

The feedback on CoCo was positive and the team valued
the opportunity to visually compare cohorts of patients using
summary statistics that pertained to the timing and frequency
of events. The graphical results were shared with clinicians
on the research team in order to determine whether the pat-
terns were consistent with their expectations. The researchers
felt the meaning of metrics could be explained more clearly; it
was sometimes unclear what the x-axis represented and what
statistical tests were used. They also suggested always show-
ing the event labels, particularly for single-event metrics, to
make understanding the icons a bit easier. The researchers
expressed a need to be able to sort the rows of results with dif-
ferent factors, including by raw percentage of values in each
cohort. We implemented this feature before the formal case
study.

We are also starting to work on case studies in other applica-
tion domains such as transportation. For example, we started
a project with the Baltimore Metropolitan Council and are
currently preparing and cleaning data with EventFlow so that
their analysts can then use CoCo to compare how different
jurisdictions are managing highway incidents or how their in-
cident management has changed over the years.

CONCLUSIONS AND FUTURE WORK

CoCo is a novel visual analytics tool with balanced integra-
tion of visual analytics and statistics. CoCo’s benefits in-
clude: better collaboration among colleagues, easier interme-
diate results discussion, and meaningful outcome presenta-
tions. Though CoCo was initially designed for expert users,
primarily in healthcare, the taxonomy can be extended and
refined for other specific domains, and our approach for the
interface and visualizations would allow extensions in many
ways. First, the metrics implemented are already proving
valuable, but many more metrics are possible. Our current fo-
cus has been identifying sequential, contiguous subsequences
in the datasets, but generalizing to identify any co-occurring,
non-contiguous events is a natural next step (e.g., did patients
have more than three aspirins at any time during their treat-
ment) which would require more research. The comments
by our colleagues in the usability study and the way they
compared the cohorts motivate CoCo design improvements
including new visualizations. Additional data mining and
statistical techniques could be added to improve insight dis-
covery, such as anomaly detection to find unusual records or
clustering find similar records between the datasets. As we
continue developing CoCo, we will conduct controlled ex-
periment to understand its strength and weaknesses, as well
as long-term case studies with domain experts to demonstrate
value with realistic problems and to guide our development.

We recognize that there are limitations to CoCo in terms of
the complexity of datasets, current emphasis on two cohorts,
and the need for more user control on which events to study.
On the other hand, the fresh possibilities for statistical com-
parisons, supported by visual presentations and an intelligent
user interface, opens many doors for further research. While
we are encouraged by our initial feedback, we see a huge set
of possible features to add, which will empower medical and



other researchers as they conduct exploratory data analysis on
temporal event sequences.
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