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Abstract

There are substantial instructional videos on the Inter-

net, which enables us to acquire knowledge for completing

various tasks. However, most existing datasets for instruc-

tional video analysis have the limitations in diversity and

scale, which makes them far from many real-world applica-

tions where more diverse activities occur. Moreover, it still

remains a great challenge to organize and harness such da-

ta. To address these problems, we introduce a large-scale

dataset called “COIN” for COmprehensive INstructional

video analysis. Organized with a hierarchical structure, the

COIN dataset contains 11,827 videos of 180 tasks in 12 do-

mains (e.g., vehicles, gadgets, etc.) related to our daily life.

With a new developed toolbox, all the videos are annotated

effectively with a series of step descriptions and the corre-

sponding temporal boundaries. Furthermore, we propose a

simple yet effective method to capture the dependencies a-

mong different steps, which can be easily plugged into con-

ventional proposal-based action detection methods for lo-

calizing important steps in instructional videos. In order

to provide a benchmark for instructional video analysis, we

evaluate plenty of approaches on the COIN dataset under

different evaluation criteria. We expect the introduction of

the COIN dataset will promote the future in-depth research

on instructional video analysis for the community.

1. Introduction

Instructional videos provide intuitive visual examples for

learners to acquire knowledge to accomplish different tasks.

With the explosion of video data on the Internet, people

around the world have uploaded and watched substantial

instructional videos [10, 36], covering miscellaneous cate-

gories. According to the scientists in educational psycholo-

gy [34], novices often face difficulties in learning from the

whole realistic task, and it is necessary to divide the whole

task into smaller segments or steps as a form of simplifica-

∗the corresponding author is Jiwen Lu.

tion. Actually, a variety of video analysis tasks in comput-

er vision (e.g., action temporal localization [45, 50], video

summarization [19, 30, 49] and video caption [27, 47, 53],

etc) have been developed recently. Also, growing efforts

have been devoted to exploiting different challenges of in-

structional video analysis [10, 24, 36, 52].

In recent years, a number of datasets for instructional

video analysis [10, 14, 28, 35, 40, 41, 52] have been collect-

ed in the community. Annotated with texts and temporal

boundaries of a series of steps to complete different tasks,

these datasets have provided good benchmarks for prelimi-

nary research. However, most existing datasets focus on a

specific domain like cooking, which makes them far from

many real-world applications where more diverse activities

occur. Moreover, the scales of these datasets are insufficient

to satisfy the hunger of recent data-driven learning methods.

To tackle these problems, we introduce a new dataset

called “COIN” for COmprehensive INstructional video

analysis. The COIN dataset contains 11,827 videos of 180

different tasks, covering the daily activities related to ve-

hicles, gadgets, etc. Unlike existing instructional video

datasets, COIN is organized in a three-level semantic struc-

ture. Take the top row of Figure 1 as an example, the first

level of this root-to-leaf branch is a domain named “vehi-

cles", under which there are numbers of video samples be-

longing to the second level tasks. For a specific task like

“change the car tire", It is comprised of a series of step-

s such as “unscrew the screws", “jack up the car", “put on

the tire", etc. These steps appear in different interval of a

video, which belongs to the third-level tags of COIN. We

also provide the temporal boundaries of all the steps, which

are effectively annotated based on a new developed toolbox.

As another contribution, we propose a new task-

consistency method to localize different steps in instruction-

al videos by considering their intrinsic dependencies. First,

as a bottom-up strategy, we infer the task label of the w-

hole video according to the prediction scores, which can be

obtained by existing proposal-based action detection meth-

ods. Then, as a top-down scheme, we refine the proposal

scores based on the predicted task label. In order to set
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Figure 1. Visualization of two root-to-leaf branches of the COIN. There are three levels of our dataset: domain, task and step. Take the

top row as an example, in the left box, we show a set of frames of 9 different tasks associated with the domain “vehicles”. In the middle

box, we present several images of 9 videos belonging to the task “change the car tire”. Based on this task, in the right box, we display

a sequence of frames sampled from a specific video, where the indices are presented at the left-top of each frame. The intervals in red,

blue and yellow indicate the step of “unscrew the screws”, “jack up the car” and “put on the tire”, which are described with the text in

corresponding color at the bottom of the right box. All figures are best viewed in color.

Table 1. Comparisons of existing instructional video datasets.

Dataset Duration Samples Segments Type of Task Video Source Hierarchical Classes Year

MPII [35] 9h,48m 44 5,609 cooking activities self-collected ✗ - 2012

YouCook [14] 2h,20m 88 - cooking activities YouTube ✗ - 2013

50Salads [40] 5h,20m 50 966 cooking activities self-collected ✗ - 2013

Breakfast [28] 77h 1,989 8,456 cooking activities self-collected ✗ 10 2014

"5 tasks" [10] 5h 150 - comprehensive tasks YouTube ✗ 5 2016

Ikea-FA [41] 3h,50m 101 1,911 assembling furniture self-collected ✗ - 2017

YouCook2 [52] 176h 2,000 13,829 cooking activities YouTube ✗ 89 2018

EPIC-KITCHENS [13] 55h 432 39,596 cooking activities self-collected ✗ - 2018

COIN (Ours) 476h,38m 11,827 46,354 comprehensive tasks YouTube ✓ 180

up a benchmark, we implement various approaches on the

COIN. The experimental results have shown the great chal-

lenges of our dataset and the effectiveness of the proposed

method for step localization.

2. Related Work

Tasks for Instructional Video Analysis: There are var-

ious tasks for instructional video analysis, e.g., step local-

ization, action segmentation, procedure segmentation [52],

dense video caption [53] and visual grounding [25, 51]. In

this paper, we focus on the first two tasks, where step local-

ization aims to localize the start and end points of a series of

steps and recognizing their labels, and action segmentation

targets to parse a video into different actions at frame-level.

Datasets Related to Instructional Video Analysis:

There are mainly three types of related datasets. (1)

The action detection datasets are comprised of untrimmed

video samples, and the goal is to recognize and local-

ize the action instances on temporal domain [23, 26] or

spatial-temporal domain [21]. (2) The video summariza-

tion datasets [15, 22, 30, 38] contain long videos arranging

from different domains. The tasks is to extract a set of in-

formative frames in order to briefly summarize the video

content. (3) The video caption datasets are annotated with

descried sentences or phrases, which can be based on either

a trimmed video [46, 47] or different segments of a long

video [27]. Our COIN is relevant to the above mentioned

datasets, as it requires to localize the temporal boundaries

of important steps corresponding to a task. The main dif-

ferences lie in the following two aspects: (1) Consistency.

The steps belonging to different tasks shall not appear in the

same video. For example, it is unlikely for an instructional

video to contain the step “pour water to the tree” (belongs to

task “plant tree”) and the step “install the lampshade” (be-

longs to task “replace a bulb”). (2) Ordering. There may be

some intrinsic ordering constraints among a series of steps

for completing different tasks. For example, for the task of

“planting tree", the step “dig a hole" shall be ahead of the
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step “put the tree into the hole".

There have been a variety of instructional video dataset-

s proposed in recent years. Table I summarizes the com-

parison among some publicly relevant instructional datasets

and our proposed COIN. While the existing datasets present

various challenges to some extent, they still have some limi-

tations in the following two aspects. (1) Diversity: Most of

these datasets tend to be specific and contain certain types

of instructional activities, e.g., cooking. However, accord-

ing to some widely-used websites [7–9], people attempt to

acquire knowledge from various types of instructional video

across different domains. (2) Scale: Compared with the re-

cent datasets for image classification (e.g., ImageNet [16]

with 1 million images) and action detection (e.g., Activ-

ityNet v1.3 [23] with 20k videos), most existing instruc-

tional video datasets are relatively smaller in scale. The

challenge to build such a large-scale dataset mainly stems

from the difficulty to organize enormous amount of video

and the heavy workload of annotation. To address these

two issues, we first establish a rich semantic taxonomy cov-

ering 12 domains and collect 11,827 instructional videos to

construct COIN. With our new developed toolbox, we also

provide the temporal boundaries of steps that appear in all

the videos with effective and precise annotations.

Methods for Instructional Video Analysis: The ap-

proaches for instructional video analysis can be roughly di-

vided into three categories: unsupervised learning-based,

weakly-supervised learning-based and fully-supervised

learning-based. For the first category, the step localization

task usually takes a video and the corresponding narration

or subtitle as multi-modal inputs 1. For example, Sener et

al. [36] developed a joint generative model to parse both

video frames and subtitles into activity steps. Alayrac et

al. [10] leveraged the complementary nature of the instruc-

tional video and its narration to discover and locate the main

steps of a certain task. Generally speaking, the advantages

to employ the narration or subtitle is to avoid human an-

notation, which may cost huge workload. However, these

narration or subtitles may be inaccurate [52] or even irrele-

vant to the video2.

For the second category, Kuehne et al. [28] develope-

d a hierarchical model based on HMMs and a context-free

grammar to parse the main steps in the cooking activities.

Richard et al. [32] [33] adopted Viterbi algorithm to solve

the probabilistic model of weakly supervised segmentation.

Ding et al. [17] proposed a temporal convolutional feature

pyramid network to predict frame-wise labels and use soft

boundary assignment to iteratively optimize the segmenta-

tion results. In this work, we also evaluate these three meth-

1The language signal should not be treated as supervision since the

steps are not directly given, but need to be further explored in an unsuper-

vised manner.
2For example, in a video with YouTube ID CRRiYji_K9Q, the instruc-

tor talks a lot about other things when she performs the task “injection”.

Replace a Bulb Install a Ceiling Fan

Figure 2. Illustration of the COIN lexicon. The left figure shows

the hierarchical structure, where the nodes of three different sizes

correspond to the domain, task and step respectively. For brevi-

ty, we do not draw all the tasks and steps here. The right figure

presents detailed steps of the task “replace a bulb", which belongs

to the domain “electrical appliances".

ods3 to provide a benchmark results on COIN.

For the third category, we focus on step localization.

This task is related to the area of action detection, where

promising progress has also been achieved recently. For ex-

ample, Zhao et al. [50] developed structured segment net-

works (SSN) to model the temporal structure of each ac-

tion instance with a structured temporal pyramid. Xu et

al. [45] introduced a Region Convolutional 3D Network (R-

C3D) architecture, which was built on C3D [42] and Faster

R-CNN [31], to explore the region information of video

frames. Compared with these methods, we attempt to fur-

ther explore the dependencies of different steps, which lies

in the intrinsic structure of instructional videos. Towards

this goal, we proposed a new method with a bottom-up s-

trategy and a top-down scheme. Our method can be easily

plugged into recent proposal-based action detection meth-

ods and enhance the performance of step localization in in-

structional videos.

3. The COIN Dataset

In this section we present COIN, a video-based dataset

which covers an extensive range of everyday tasks with ex-

plicit steps. To our best knowledge, it is currently the largest

dataset for comprehensive instructional video analysis. We

will introduce COIN from the following aspects: the estab-

lishment of lexicon, a new developed toolbox for efficient

annotation, and the statistics of our dataset.

Lexicon: The purpose of COIN is to establish a rich se-

mantic taxonomy to organize comprehensive instructional

videos. In previous literature, some representative large-

scale datasets were built upon existing structures. For ex-

ample, the ImageNet [16] database was constructed based

on a hierarchical structure of WordNet [20], while the Ac-

tivityNet dataset [23] adopted the activity taxonomy orga-

3The details of the weak supervisions are described in section 5.2.
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nized by American Time Use Survey (ATUS) [29]. In com-

parison, it remains great difficulty to define such a semantic

lexicon for instructional videos because of their high diver-

sity and complex temporal structure. Hence, most existing

instructional video datasets [52] focus on a specific domain

like cooking or furniture assembling, and [10] only consists

of five tasks.

Towards the goal of constructing a large-scale bench-

mark with high diversity, we proposed a hierarchical struc-

ture to organize our dataset. Figure 1 and Figure 2 present

the illustration of our lexicon, which contains three levels

from roots to leafs: domain, task and step.

(1) Domain. For the first level, we bring the ideas from

the organization of several websites [7] [9] [8], which are

commonly-used for users to watch or upload instructional

videos. We choose 12 domains as: nursing & caring, ve-

hicles, leisure & performance, gadgets, electric appliances,

household items, science & craft, plants & fruits, snacks &

drinks, dishes, sports, and housework.

(2) Task. As the second level, the task is linked to the do-

main. For example, the tasks “replace a bulb” and “install

a ceiling fan” are associated with the domain “electrical ap-

pliances”. As most tasks on [7] [9] [8] may be too specific,

we further search different tasks of the 12 domains on Y-

ouTube. In order to ensure the tasks of COIN are commonly

used, we finally select 180 tasks, under which the searched

videos are often viewed 4.

(3) Step. The third level of the lexicon are various se-

ries of steps to complete different tasks. For example, steps

“remove the lampshade”, “take out the old bulb”, “instal-

l the new bulb” and “install the lampshade” are associated

with the tasks “replace a bulb”. We employed 6 expert-

s (e.g. driver, athlete, etc.) who have prior knowledge in

the 12 domains to define these steps. They were asked to

browse the corresponding videos as a preparation in order

to provide the high-quality definition, and each step phrase

will be double checked by another expert. In total, there are

778 defined steps, where there are 4.84 words per phrase for

each step. Note that we do not directly adopt the narrated

information, which might have large variance for a specific

task, because we expect to obtain the simplification of the

core steps, which are common in different videos of accom-

plishing a certain task.

Annotation Tool: Given an instructional video, the goal

of annotation is to label the step categories and the corre-

sponding segments. As the segments are variant in length

and content, it will cost huge workload to label the COIN

with conventional annotation tool. In order to improve the

annotation efficiency, we have developed a new toolbox

which has two modes: frame mode and video mode. Fig-

ure 4 shows an example interface of the frame mode, which

presents the frames extracted from a video under an ad-

4We present the statistics of browse times in supplementary material.

Figure 3. The interface of our new developed annotation tool under

the frame mode.
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Figure 4. The duration statistics of the videos (left) and segments

(right) in the COIN dataset.

justable frame rate (default is 2fps). Under the frame mode,

the annotator can directly select the start and end frame of

the segment as well as its label. However, due to the time

gap between two adjacent frames, some quick and consec-

utive actions might be missed. To address this problem, we

adopted another video mode. The video mode of the anno-

tation tool presents the online video and timeline, which is

frequently used in previous video annotation systems [27].

Though the video mode brings more continuous information

in the time scale, it is much more time-consuming than the

frame mode because of the process to locate a certain frame

and adjust the timeline5.

During the annotation process, each video is labelled by

three different workers with payments. To begin with, the

first worker generated primary annotation under the frame

mode. Next, the second worker adjusted the annotation

based on the results of the first worker. Ultimately, the third

worker switched to the video mode to check and refine the

annotation. Under this pipeline, the total time of the anno-

tation process is about 600 hours.

Statistics: The COIN dataset consists of 11,827 videos

related to 180 different tasks, which were all collected from

YouTube. Figure 5 shows the sample distributions among

all the task categories. In order to alleviate the effect of

long tails, we make sure that there are more than 39 videos

5 For a set of videos, the annotation time under the frame mode is only

26.8% of that under the video mode. Please see supplementary material for

details.
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Figure 5. The sample distributions of all the tasks in COIN. The blue bars and the grey bars indicate the number of training and testing

videos in each class respectively.

Figure 6. Flowchart of our proposed task-consistency method.

During the first bottom-up aggregation stage, the inputs are a se-

ries of scores Sp = {s1p, ..., snp , ..., sNp } of an instructional video,

which denotes the probabilities of each step appearing in the cor-

responding proposal. We first aggregate them into a video-based

score sv , and map it into another score st to predict the task label

L. At top-down refinement stage, we generate a refined mask

vector vr based on the task label. Then we alleviate the weights of

other bits in Sp by vr to ensure the task-consistency. The refined

scores Sr are finally utilized to perform NMS process and output

the final results.

for each task. We split the COIN into 9030 and 2797 video

samples for training and testing respectively. Figure 4 dis-

plays the duration distribution of videos and segments. The

averaged length of a video is 2.36 minutes. Each video is

labelled with 3.91 step segments, where each segment last-

s 14.91 seconds on average. In total, the dataset contains

videos of 476 hours, with 46,354 annotated segments.

4. Task-Consistency Analysis

Given an instructional video, one important real-world

application is to localize a series of steps to complete the

corresponding task. In this section, we introduce a new

proposed task-consistency method for step localization in

instructional videos. Our method is motivated by the intrin-

sic dependencies of different steps which are associated to

a certain task. For example, it is unlikely for the steps of

“dig a pit of proper size” and “soak the strips into water”

to occur in the same video, because they belong to different

tasks of “plant tree” and “make french fries” respectively.

In another word, the steps in the same video should be task-

consistent to ensure that they belong to the same task. Fig-

ure 6 presents the flowchart of our task-consistency method,

which contains two stages: (1) bottom-up aggregation and

(2) top-down refinement.

Bottom-up aggregation: As our method is built up-

on the proposal-based action detection methods, we start

with training an existing action detector, e.g. SSN [50], on

our COIN dataset. During inference phase, given an input

video, we send it into the action detector to produce a series

of proposals with their corresponding locations and predict-

ed scores. These scores indicate the probabilities of each

step occuring in the corresponding proposal. We denote

them as Sp = {s1p, ..., snp , ..., sNp }, where snp ∈ RK repre-

sents the score of the n− th proposal and K is the number

of the total steps. The goal of the bottom-up aggregation

stage is to predict the task labels based on these proposal
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Table 2. Comparisons of the step localization accuracy (%) on the COIN dataset.

mAP @ α mAR @ α

Method 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

Random 0.03 0.03 0.02 0.01 0.01 2.57 1.79 1.36 0.90 0.50

R-C3D [45] 9.85 7.78 5.80 4.23 2.82 36.82 31.55 26.56 21.42 17.07

SSN-RGB [50] 19.39 15.61 12.68 9.97 7.79 50.33 43.42 37.12 31.53 26.29

SSN-Flow [50] 11.23 9.57 7.84 6.31 4.94 33.78 29.47 25.62 21.98 18.20

SSN-Fusion [50] 20.00 16.09 13.12 10.35 8.12 51.04 43.91 37.74 32.06 26.79

R-C3D+TC 10.32 8.25 6.20 4.54 3.08 39.25 34.22 29.09 23.71 19.24

SSN+TC-RGB 20.15 16.79 14.24 11.74 9.33 54.05 47.31 40.99 35.11 29.17

SSN+TC-Flow 12.11 10.29 8.63 7.03 5.52 37.24 32.52 28.50 24.46 20.58

SSN+TC-Fusion 20.01 16.44 13.83 11.29 9.05 54.64 47.69 41.46 35.59 29.79

scores. To this end, we first aggregate the scores along al-

l the proposals as sv =
∑N

n=1
snp , where sv indicates the

probability of each step appearing in the video. Then we

construct a binary matrix W with the size of K × M to

model the relationship between the K steps and M tasks:

wij =

{

1, if step i belongs to task j

0, otherwise
(1)

Having obtained the step-based score sv and the binary

matrix W , we calculate a task-based score as st = sv ∗W .

This operation is essential to combine the scores of steps

belonging to same tasks. We choose the index L with the

max value in the st as the task label of the entire video.

Top-down refinement: The target of the top-down re-

finement stage is to refine the original proposal scores with

the guidance of the task label. We first select the L − th
row in W as a mask vector v, based on which we define a

refined vector as:

vr = v + γ(I − v). (2)

Here I is an vector where all the elements equal to 1. γ
is an attenuation coefficient to alleviate the weights of the

steps which do not belong to the task L. We empirically set

γ to be e−2 in this paper. Then, we employ the vr to mask

the original scores snp as follow:

snr = snp ⊙ vr, (3)

where ⊙ is the element-wise Hadamard product. We com-

pute a sequence of scores as Sr = {s1r, ..., snr , ..., sNr }.

Based on these refined scores and their locations, we em-

ploy a Non-Maximum Suppression (NMS) strategy to ob-

tain the results of step localization. In summary, we first

predict the task label through the bottom-up scheme, and

refine the proposal scores by the top-down strategy, hence

the task-consistency is guaranteed.

5. Experiments

In order to provide a benchmark for our COIN dataset,

we evaluate various approaches under two different set-

tings: step localization and action segmentation. We also

conduct experiments on our task-consistency method under

the first setting. The following describes the details of our

experiments and results.

5.1. Evaluation on Step Localization

Implementation Details: In this task, we aim to localize

a series of steps and recognize their corresponding labels

given an instructional video. We mainly evaluate the fol-

lowing approaches: (1) Random. We uniformly segment-

ed the video into three intervals, and randomly assigned

the label to each interval. (2) R-C3D [45] and SSN [50].

These two methods are state-of-the-arts for action detection,

which output the same type of results (interval and label for

each action instance) with step localization. For R-C3D,

our implementation was built upon the codebase [3]. Fol-

lowing [45], we extracted the RGB frames of each video as

the inputs, and it took around 3.5 days to train the model

on a GTX 1080Ti GPU. For SSN, we used the PyTorch im-

plementation [4]. The reported results are based on the in-

puts of different modalities as: SSN
−RGB , SSN

−Flow and

SSN
−Fusion. Here SSN

−Flow adopted the optical flows

calculated by [48], and SSN
−Fusion combined the predict-

ed scores of SSN
−RGB and SSN

−Flow. (3) R-C3D+TC

and SSN+TC. In order to demonstrate the advantages of the

proposed method to explore the task-consistency in instruc-

tional videos, we further conducted experiments on apply-

ing our approach to R-C3D and SSN respectively.

Evaluation Metrics: As the results of step localization

contain time intervals, labels and confidence scores, we em-

ployed Intersection over Union (IoU) as a basic metric to

determine whether a detected interval is positive or not. The

IoU is defined as |G ∩ D|/|G ∪ D|, where G denotes the

ground truth action interval and D denotes the detected ac-

tion interval. We followed [12] to calculate Mean Average

Precision (mAP) and Mean Average Recall (mAR). The re-

sults are reported under the IoU threshold α ranging from

0.1 to 0.5.

Results: Table 2 presents the compared experimental re-
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Figure 7. Visualization of step localization results. The video is associated with the task “paste screen protector on Pad”.

sults, which reveal great challenges to performing step lo-

calization on the COIN dataset. Even for the state-of-the-

art method SSN
−Fusion, it only attains the results of 8.12%

and 26.79% on mAP@0.5 and mAR@0.5 respectively. Be-

sides, we observe that R-C3D+TC and SSN+TC consistent-

ly improve the performance over the original models, which

illustrates the effectiveness of our proposed method to cap-

ture the dependencies among different steps.

We show the visualization results of different methods

and ground-truth in Figure 7. We analyze an instruction-

al video of the task “paste screen protector on Pad”. When

applying our task-consistency method, we can discard those

steps which do not belong to this task, e.g., “line up a screen

protector with cellphone” and “open the slot of SIM card”,

hence more accurate step labels can be obtained. More vi-

sualization results are presented in supplementary material.

5.2. Evaluation on Action Segmentation

Implementation Details: The goal of this task is to as-

sign each video frame with a step label. We present the re-

sults on three types of approaches as follows. (1) Random.

We randomly assigned a step label to each frame. (2) Fully-

supervised method. We used VGG16 network pretrained

on ImageNet, and finetuned it on the training set of COIN

to predict the frame-level label. (3) Weakly-supervised ap-

proaches. In this setting, we evaluated recent proposed

Action-Sets [32], NN-Viterbi [33] and TCFPN-ISBA [17]

without temporal supervision. For Action-Sets, only a set

of steps within a video is given, while the occurring order of

steps are also provided for NN-Viterbi and TCFPN-ISBA.

We used frames or their representations sampled at 10fps as

input. We followed the default train and inference pipeline

of Action-Sets [1], NN-Viterbi [2] and TCFPN-ISBA [5].

However, these methods use frame-wise fisher vector as

video representation, which comes with huge computation

and storage cost on the COIN dataset6. To address this, we

employed a bidirectional LSTM on the top of a VGG16 net-

work to extract dynamic feature of a video sequence [18].

Evaluation Metrics: We adopted frame-wise accuracy

6 The calculation of fisher vector is based on the improved Dense Tra-

jectory (iDT) representation [43], which requires huge computation cost

and storage space.

Table 3. Comparisons of the action segmentation accuracy (%) on the

COIN dataset.

Method Frame Acc. Setting

Random 0.13 -

CNN [37] 25.79 fully-supervised

Action-Sets [32] 4.94 weakly-supervised

NN-Viterbi [33] 21.17 weakly-supervised

TCFPN-ISBA [17] 34.30 weakly-supervised

(FA), which is a common benchmarking metric for action

segmentation. It is computed by first counting the number

of correctly predicted frames, and dividing it by the number

of total video frames.

Results: Table 3 shows the experimental results of ac-

tion segmentation on the COIN dataset. Given the weakest

supervision of video transcripts without ordering constraint,

Action-Sets [32] achieves the result of 4.94% frame accura-

cy. When taking into account the ordering information, NN-

Viterbi [33] and TCFPN-ISBA [17] outperform Action-Sets

with a large margin of 16.23% and 29.66% respectively. As

a fully-supervised method, CNN [37] reaches an accura-

cy 25.79%, which is much higher than Action-Sets. This

is because CNN utilizes the label of each frame to perfor-

m classification and the supervision is much stronger than

Action-Sets. However, as the temporal information and or-

dering constraints are ignored, the result of CNN is inferior

to TCFPN-ISBA.

5.3. Discussion

What are the hardest and easiest domains for instruc-

tional video analysis? In order to provide a more in-depth

analysis of the COIN dataset, we report the performance of

SSN+TC
−Fusion among the 12 domains of COIN. Table 4

presents the comparison results, where the domain “sport-

s” achieves the highest mAP of 30.20%, This is because

the differences between the “sports” steps are more clear,

thus they are easier to be identified. In contrast, the results

of “gadgets” and “science & craft” are relatively low. The

reason is that the steps in these two domains usually have

higher similarity with each other. For example, the step “re-

move the tape of the old battery” is similar with the step

“take down the old battery”. Hence it is harder to localize
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Table 4. Comparisons of the step localization accuracy (%) over 12

domains on the COIN dataset. We report the results obtained by

SSN+TC−Fusion with α = 0.1.

Domain mAP Domain mAP

nursing & caring 22.92 vehicles 19.07

science & craft 16.59 electric appliances 19.86

leisure & performance 24.32 gadgets 17.99

snacks & drinks 19.79 dishes 23.76

plants & fruits 22.71 sports 30.20

household items 19.07 housework 20.70

Table 5. Comparisons of the step localization accuracy (%) on the Break-

fast dataset. The results are all based on the combination scores of RGB

frames and optical flows.

Metrics mAP mAR

Threshold 0.1 0.3 0.5 0.1 0.3 0.5

SSN [50] 28.24 22.55 15.84 54.86 45.84 35.51

SSN+TC 28.25 22.73 16.39 55.51 47.37 36.20

Table 6. Comparisons of the proposal localization accuracy (%) with Y-

ouCook2 dataset [52]. The results are obtained by temporal actionness

grouping (TAG) method [50] with α = 0.5.

YouCook2 COIN YouCook2 COIN

mAP 40.16 39.67 mAR 54.12 56.16

the steps in these two domains. We also show the com-

pared performance across different tasks in the supplemen-

tary material.

Can the proposed task-consistency method be applied

to other instructional video datasets? In order to demon-

strate the effectiveness of our proposed method, we fur-

ther conduct experiments on another dataset called “Break-

fast" [28], which is also widely-used for instructional video

analysis. The Breakfast dataset contains over 1.9k videos

with 77 hours of 4 million frames. Each video is labelled

with a subset of 48 cooking-related action categories. Fol-

lowing the default setting, we set split 1 as testing set and

the other splits as training set. Similar to COIN, we employ

SSN [50], which is a state-of-the-art method for action de-

tection, as a baseline method under the setting of step local-

ization. As shown in Table 5, our proposed task-consistency

method improves the performance of the baseline model,

which further shows its advantages to model the dependen-

cies of different steps in instructional videos.

Comparison of state-of-the-art performance on exist-

ing datasets for video analysis. In order to assess the d-

ifficulty of COIN, we report the performance on different

tasks compared with other datasets. For proposal localiza-

tion, which is a task defined in [52] for instructional video

analysis, we evaluated COIN and Youcook2 [52] based on

temporal actionness grouping (TAG) approach [50]. From

the results in Table 6, we observe that these two datasets are

almost equally challenging on this task. For video classi-

fication on COIN, we present the recognition accuracy of

180 tasks, which refer to the second level of the lexicon.

Table 7. Comparisons of the performance (%) on different datasets. The

video classification task is evaluated by temporal segment networks (TSN)

model [44], while the action detection task is tested on stuctured segment

networks (SSN) method [50] with α = 0.5.

Video Classification Action Detection / Step Localization

Dataset Acc. Dataset mAP

UCF101 [39] 97.00 THUMOS14 [26] 29.10

ActivityNet v1.3 [23] 88.30 ActivityNet v1.3 [23] 28.30

Kinectics [11] 73.90 Breakfast [28] 15.84

COIN 88.02 COIN 8.12

We employed the temporal segment network (TSN) mod-

el [6, 44], which is a state-of-the-art method for video clas-

sification. As shown in the Table 7, the classification accu-

racy on COIN is 88.02%, suggesting its general difficulty

in comparison with other datasets. For action detection or

step localization, we display the compared performances of

structured segment networks (SSN) approach [50] on COIN

and the other three datasets. The THUMOS14 [26] and

ActivityNet [23] are conventional datasets for action detec-

tion, on which the detection accuracies are relatively higher.

The Breakfast [28] and COIN contain instructional videos

with more difficulty. Hence, the performance on these two

datasets are lower. Especially for our COIN, the results of

mAP@0.5 is only 8.12%. We attribute the low performance

to two aspects: (1) The step intervals are usually short-

er than action instances, which brings more challenges for

temporal localization; (2) Some steps in the same tasks are

similar, which carry ambiguous information for the recog-

nition process. These two phenomena are also common in

real-world scenarios, and future works are encouraged to

address these two issues.

6. Conclusions

In this paper we have introduced COIN, a new large-

scale dataset for comprehensive instructional video anal-

ysis. Organized in a rich semantic taxonomy, the COIN

dataset covers boarder domains and contains more tasks

than existing instructional video datasets. In addition, we

have proposed a task-consistency method to explore the re-

lationship among different steps of a specific task. In or-

der to establish a benchmark, we have evaluated various

approaches under different scenarios on the COIN. The ex-

perimental results have shown the great challenges on the

COIN and the effectiveness of our proposed method.
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