
International Journal of Information Security (2022) 21:833–846
https://doi.org/10.1007/s10207-022-00585-8

REGULAR CONTRIBUT ION

Coin-based Secure Computations

Yuichi Komano1 · Takaaki Mizuki2

Published online: 6 April 2022
© The Author(s) 2022

Abstract
In the history of cryptography, many cryptographic protocols have relied on random coin tosses to prove their security.
Although flipping coins is indispensable in this manner, the coins themselves have never been in the spotlight. Therefore, we
would like to make physical coins rise to the level of cryptography, just as a deck of physical playing cards has been used
to perform a secure multi-party computation. Such a card-based protocol is known to be helpful both to perform a secure
computation without any black-box computers and to understand the principles of secure protocols. In this paper, we propose
a new framework of secure multi-party computation using physical coins, named a coin-based protocol. One advantage of
the use of coins is that they are more ubiquitous than cards. Whereas a face-down card can conceal the information about its
face side, one side of a coin reveals the information of its other side. Hence, more careful design is required for a secure coin-
based protocol than for a card-based one. We formalize a computational model of the coin-based protocol and explicitly give
protocols for NOT, AND, COPY, OR, and XOR computations. We also discuss the composability of the extended protocols
and how to implement them in practice.

Keywords Multi-party computation · Card-based protocol · Physical coin

1 Introduction

Physical coins are widely used to perform random and fair
selections, such as coin tosses in sports games. In the research
of cryptography, coins have conceptually appeared as “the
probability is taken over the random coin toss.” Although
coins play an important but invisible role, the coins them-
selves have never been on the center stage of cryptographic
research. Therefore, we would like to make coins rise to
this level. In contrast, a deck of physical playing cards has
received the spotlight. That is, designing card-based pro-

An earlier version of this study was presented at the 7th International
Conference on the Theory and Practice of Natural Computing, TPNC
2018, Dublin, Ireland, December 12–14, 2018, and appeared in
Proc. TPNC 2018, Lecture Notes in Computer Science, Springer
International Publishing, vol. 11324, pp. 87–98, 2018 [10].

B Yuichi Komano
yuichi1.komano@toshiba.co.jp

Takaaki Mizuki
tm-paper+coin@g-mail.tohoku-university.jp

1 Toshiba Corporation, 1, Komukai-Toshiba-cho, Saiwai-ku,
Kawasaki, Japan

2 Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-ku,
Sendai, Japan

tocols, which perform secure multi-party computations [6]
using physical cards, is an active research area. Let us start
with a review of card-based protocols.

1.1 RelatedWork: Card-based Protocol

Thefirst card-based protocolwas proposed by denBoer [3] in
1989. His protocol performs a secure AND computationwith
five physical cards. Since the five-card AND protocol was
invented, many protocols using fewer cards or realize other
useful functions have been developed [4,7,14,16,19,20,22].
In addition, a computational model [17] and its implementa-
tion [23] have been established. Refer to [18] for a survey of
recent the recent progress on card-based protocols.

In a card-based protocol, a two-suit deck of cards, for
example, ♣ , ♥ are typically used. For example, in the six-
card AND protocol [19], each player first places face-down
cards ? ? in accordance with his or her private input, based

on the encoding ♣ ♥ = 0 and ♥ ♣ = 1. Such a pair
of face-down cards is called a commitment and the proto-
col starts with two commitments ? ? ? ? placed by two

players, together with two more cards ♣ ♥ . (For exam-

ple, the initial sequence is �01 =
(

?
♣ , ?

♥ , ♣
? , ♥

? , ?
♥ , ?

♣
)
for

a = 0 and b = 1, where ?
♣ and ?

♥ denote face-down cards,

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10207-022-00585-8&domain=pdf
http://orcid.org/0000-0002-5121-3458
http://orcid.org/0000-0002-8698-1043

834 Y. Komano, T. Mizuki

Fig. 1 Examples of coins (left) and creating a coin-based commitment
(right two)

and ♣
? and ♥

? denote face-up cards.) Then, they change the
order of the cards by a series of card operations, such as
rearrangements and shuffles, to obtain a commitment to the
AND value. Because these operations are easy to implement
and both their correctness and security are intuitively under-
standable, such card-based protocols have been widely used
to solve social problems in daily life, as well as to educate
non-experts about cryptography [12,18].

One drawback of card-based protocols is that people do
not typically carry a deck of cards to solve social problems.
In contrast, many people have physical coins in their pockets
or wallets. Thus, it would be beneficial to make use of such
coins for secure multi-party computations.

1.2 Our Contribution

In this paper, we introduce a framework for multi-party com-
putation that uses physical coins. We also give concrete
examples of the coin-based protocols, such as an AND pro-
tocol. We assume that the head and tail of each coin have
different patterns, as depicted in Fig. 1. Throughout this
paper, we assume that the design of every coin is the same
and that nobody can distinguish one coin from another1.

Hereinafter, ◦ and • denote a face-up coin (head) and
a face-down coin (tail), respectively. For example, the first
(leftmost) and second coins in Fig. 1 are denoted by ◦ and
•, respectively. Given a single coin, we can encode a one-bit
value with ◦ and • as

• = 0 and ◦ = 1. (1)

Recall that in a card-basedprotocol, twoplayers, sayAlice
and Bob, place face-down cards according to their private
input values; these values can be kept secret because the back-
side ? of every card has no information. In contrast, a coin
placed on a table reveals, from either side, the information of
the other side. This means that, if we simply replace a card
with a coin in a card-based protocol, say, ♣ and ♥ with •
and ◦, respectively, then the resulting “coin-based” protocol

1 If coins have additional information, such as the year of manufacture
in metallic currencies, we should use coins with the same exact design,
such as coins made in the same year.

is no longer secure. To construct a secure coin-based proto-
col, new ideas for implementation and a computationalmodel
are required. Our answer is to hide the surface of the coin by
having the player grab it and hold it in their hand or by stack-
ing another coin onto the coin. For example, as illustrated in
Fig. 1, a player can create a “coin-based” commitment to her
or his private input bit by grabbing a coin without anyone
else seeing which side is up. We give a formal treatment for
coin-based protocols and their security in this paper.

In addition,we showconcrete examples of coin-based pro-
tocols for NOT, AND, COPY, OR, and XOR computations,
consisting of action sequences.We then confirm their correct-
ness and security with the probability trace and the extended
diagram proposed in [15]. We also discuss the implementa-
tion of actions and show that our protocols are executable in
practice.

We emphasize that there are threemerits to our coin-based
protocols:

1 As we review in Section 1.1, there are many studies on
card-based protocols. In addition to card-based protocols,
other protocols use a physical tool, such as, protocols
with a PEZ dispenser [1,2], tamper-evident seals [21],
and visual secret sharing sheets [5], and bags and balls
[13]. Compared with the physical objects in these pro-
tocols, a coin is a simple tool representing just one-bit
information by itself. Specifically, with such a simple
tool, the coin-based protocol can provide the most fun-
damental protocol with familiar tools. Its computation
model or procedure can be useful in developing proto-
cols with other tools.

2 Similar to the card-based protocol, it is easy to trace the
steps of the coin-based protocol by tracking the actions
of players’ hands. Moreover, intuitively, it is also easy
to check whether there is information leakage. Hence,
the coin-based protocol is useful for understanding the
principles of information security and cryptology. That
is, the coin-based protocol, with a coin as a simpler and
more familiar tool compared with other protocols, is a
good tool for educating not only students but also new
researchers and engineers of information security, and
for enlightening citizens.

3 As with the card-based protocol, the coin-based proto-
col is executed without any black-box computers or any
network communication. Hence, as players perform the
coin-based protocols, they are reassured that there is no
unintended leakage of their secrets, such as spyware sur-
reptitiously transferring hidden information.

The main difference from the conference version of this
paper [10] is thatwe add, as newmaterial, Sections 3.4, 3.5, 4,
and 5. In Sections 3.4 and 3.5, we give two basic coin-based
protocols, namely, OR and XOR protocols, respectively. In

123

Coin-based... 835

Section 4.1, we formalize another action, pick, which is nec-
essary for the protocol composition. We also modify the
inputs of our coin-based protocols to be suitable for protocol
composition, and give examples of protocol compositions,
namely, a three-input AND protocol and a three-input major-
ity decision protocol in Sections 4.2 and 4.3, respectively.
Furthermore, in Section 5, we add discussions on the effect
of human errors, namely, the correctness of the protocol and
the information leakage of players’ private inputs.

1.3 Organization

The remainder of this paper is organized as follows. In Sec-
tion 2, we present our idea behind formalizing coin-based
protocols and their definitions, and show that our actions are
implementable. We then show concrete examples of coin-
based protocols in Section 3. In Section 4, we introduce
another action, pick, and give examples of protocol composi-
tions. Moreover, following the discussion of human error in
the card-based protocol [15], we discuss the effect of human
error on the coin-based protocol in Section 5. Finally, Section
6 concludes this paper.

2 Model of Coin-based Protocols

In this section, we first present the idea behind our con-
struction of coin-based protocols and then define their
computationalmodel formally.Wealso discuss how to imple-
ment the actions appearing in coin-based protocols.

2.1 Basic Idea

As mentioned in Section 1.2, given an existing card-based
protocol, we can immediately transform it into an (insecure)
coin-based protocol, by replacing the cards with coins, that
is, by replacing ♣ and ♥ with • and ◦, respectively. For
example, if we execute the six-card AND protocol men-
tioned in Section 1.1 with a sequence of coins, such as
�01 = (•, ◦, •, ◦, ◦, •) for a = 0 and b = 1, we obtain
a pair of coins corresponding to the value of a ∧ b.

The above coin-based protocol is insecure because a single
coin cannot hold any secret information. How can we make
coins behave more like cards? If we place a dummy coin
on a given coin, the stack of both coins can simulate a card.
Therefore, if we use twice as many coins as the number of
cards used in a card-based protocol, we can construct a secure
coin-based protocol. For example, let us put ◦ on all six coins
in �01 = (•, ◦, •, ◦, ◦, •). Because only the dummy coins
are visible during the execution of the protocol, no secret
information is revealed.

Technically, such a coin-based protocol using dummy
coins works correctly and securely, but it may be hard for

humans to use a stack of coins as if they were a card. There-
fore, we should make use of more human-friendly actions.
For instance, as already seen in Fig. 1, a player can create a
commitment by grabbing a coin, which is an easy action for
humans. Thus, our questions are:

1 Can we construct human-friendly coin-based protocols?
2 How can we model such a coin-based protocol formally?

As an answer, we formalize the computational model with
five actions in the next subsection.

2.2 Coin-based Protocols

As stated in Section 1.2, let ◦ and • denote face-up and face-
down coins, respectively. As also stated, we assume that all
coins are indistinguishable from each other by their surface
appearance.

For two coins c, c′ ∈ {◦, •}, let a stack of coins, where c
is on c′, be denoted by cc′. For example, cc′ = ◦• is a stack
of two coins for c = ◦ and c′ = •, such that the top coin of
the stack is head up and the bottom coin is tail up. For more
than two coins, we consider a stack in a similar manner. For
two stacks of two coins c1 = ◦• and c2 = •◦, for instance,
c1c2 is the stack of four coins ◦••◦.

Sk denotes the set of all stacks of at most k coins for some
integer k, namely, let

Sk = {ε} ∪
k⋃

i=1

{◦, •}i

= {ε, ◦, •, ◦◦, ◦•, •◦, ••, ◦◦◦, ◦◦•, · · · },

which is a finite set of all strings over the alphabets {◦, •}.
Here, we designate the symbol ε as an empty stack with no
coin.

Let us consider a coin-based protocol to be executed by
two semi-honest players, Alice and Bob, with a table and k
coins.We use a tuple to describe the status of the coins, which
we call an arrangement, during execution of the protocol:

(aL , aR |bL ,bR |t1, t2, · · · , tk) ,

where, aL , aR,bL ,bR, ti ∈ Sk are stacks of coins in (closed)
Alice’s left hand, Alice’s right hand, Bob’s left hand, Bob’s
right hand, and the i-th area of the table where 1 ≤ i ≤ k,
respectively. We assume that every hand is closed. Then,
AL ,AR,BL ,BR , and Ti denote their variables, namely, the
locations where stacks of coins are placed. We use this nota-
tion to define the set of all arrangements of stacks from k
coins as

123

836 Y. Komano, T. Mizuki

Argk =
{

(c1, c2|c3, c4|c5, c6, · · · , ck+4)

∈
(
Sk

)k+4 :
k+4∑
i=1

size(ci) = k

}
,

where size(ci) means the size of ci , namely, the number of
coins in ci , which is defined by

size(c1c2 · · · cn) = n and size(ε) = 0

for a stack of n coins c1c2 · · · cn ∈ Sk (ci ∈ {◦, •}).
As seen below, we use U ⊆ Argk to represent a set of

initial arrangements, that is, inputs of the protocol. In the
subsequent operations, we may omit t j in an arrangement
and the corresponding variable T j if a protocol requires k′
areas on the table, and no coin is placed on the j-th area
(j > k′) throughout the protocol.

For a stack of coins c ∈ Sk , top(c), bottom(c), and
turn(c) denote the top of c, the bottom of c, and the turned
stack of c, respectively (they are defined to be ε if c = ε).
Namely, for a stack of n coins c = c1c2 · · · cn ∈ Sk

(ci ∈ {◦, •}),

top(◦c2 · · · cn) = ◦, top(•c2 · · · cn) = •,
bottom(c1c2 · · · cn−1◦) = •,bottom(c1c2 · · · cn−1•) = ◦,
turn(c1c2 · · · cn) = turn(cn) · · · turn(c2)turn(c1), and

top(ε) = bottom(ε) = turn(ε) = ε,

where turn(◦) = • and turn(•) = ◦.
Let us define a visible sequence for an arrangement � =

(c1, c2|c3, c4|c5, c6, · · · , ck+4) ∈ Argk . We first extend top
as follows. For ci ∈ Sk, 1 ≤ i ≤ 4, in such �, top(ci) is “?”
if a stack of coins is in Alice’s or Bob’s (closed) hand, that
is, ci �= ε; otherwise, it is ε. Namely, for ci ∈ Sk ,

top(ci) =
⎧
⎨
⎩
? (i ∈ [1, 4] and ci �= ε)

ε (i ∈ [1, 4] and ci = ε)

top(ci) (i ≥ 5)
,

where [i, j] denotes a set of integers {x ∈ Z|i ≤ x ≤ j} for
integers i and j .

Now, for the above �, we set

top(�) = (top(c1), top(c2)|top(c3), top(c4)|
top(c5), top(c6), · · · , top(ck+4)),

which we call the visible sequence of �. For example, if
c1 = c5 = ◦•, c2 = c4 = c6 = •◦ and c3 = ε, that is,
� = (◦•, •◦|ε, •◦|◦•, •◦), top(�) = (?, ?|ε, ?|◦, •). Fur-
thermore, the set of all visible sequences (of � with k coins)
is defined as

Visk =
{
top(�) : � ∈ Argk

}
.

With these notations, let us formally define a coin-based
protocol.

Definition 1 (Coin-based protocol) A coin-based protocol is
specified with a quadruple P = (k,U , Q, A):

– k is the number of coins used in the protocol;
– U is an input set where U ⊆ Argk ;
– Q is a state set having an initial state q0 ∈ Q and a final
state qf ∈ Q;

– A : (Q−{qf})×Visk → Q×Action is an action function,
where Action is the set of the following actions:

– (move,P1 → P2, n) for P1,P2 ∈ {AL ,AR,BL ,
BR,T1,T2, · · · ,Tk} with P1 �= P2: A player moves
the uppern coins of the stackp1, consistingofm(≥ n)

coins, on P1 onto p2 on P2. Let p(u) and p(l) denote
the stack of the upper n coins and lower m − n coins
of p, respectively. This action changes the arrange-
ment from (· · · ,p1, · · · ,p2, · · ·) to (· · · ,p(l)

1 , · · · ,

p(u)
1 p2, · · ·).

If P1 ∈ {AL ,AR,BL ,BR}, the player opens her
or his hand at first. If another stack p2 is in
P2 ∈ {AL ,AR,BL ,BR}, she or he opens their
hand and moves p(u)

1 onto p2. At the end, she
or he closes their hands. Note that, when Alice
and Bob hold stacks of coins in all their hands in
{AL ,AR,BL ,BR}\{P1,P2}, it is infeasible to exe-
cute this action; hence, the protocol stops (fails) in this
case. Also note that top(p1), top(p(l)

1), and top(p2)
are visible to the public. The players perform oper-
ates this action so that no information leaks except
the visible coins.

– (hand,P2 ← P1) for P1,P2 ∈ {AL ,AR,BL ,BR}
with P1 �= P2: A player puts a hand P1 holding
a stack of coins p1 ∈ Sk on another hand P2 so
that the palms of both hands touch each other. Then,
the players open their hands at the same time, and
close their bottom hand so that the composite stack
is hidden in the closed hand. This action changes the
arrangement from (· · · ,p1, · · · ,p2, · · ·) to (· · · , ε,
· · · , turn(p1)p2, · · ·).

– (shuffle,P1,P2) forP1,P2 ∈ {T1,T2, · · · ,Tk}with
P1 �= P2: A player shuffles the two stacks placed on
P1 and P2. This action changes the arrangement from
(· · · ,p1, · · · ,p2, · · ·) to (· · · ,p1, · · · ,p2,
· · ·) (which is unchanged) or (· · · , p2, · · · ,p1, · · ·),
where each case occurs with a probability of 1

2 . No
player can know which case occurs if size(p1) =
size(p2) and top(p1) = top(p2). Note that, unless at
least one of Alice and Bob holds no stack of coins

123

Coin-based... 837

Fig. 2 Example of
implementation of hand

in both hands, it is infeasible to execute this action;
hence, the protocol stops (fails) when both players
hold a stack of coins in her or his hand.

– (flip,P) for P ∈ {T1,T2, · · · ,Tk}: A player turns
over the stack on P. This action changes the arrange-
ment from (· · · ,p, · · ·) to (· · · , turn(p), · · ·). Note
that, unless at least one of Alice and Bob holds no
stack of coins in her or his hand, it is infeasible to
execute this action; hence, the protocol stops (fails)
when both players hold stacks of coins in their hands.

– (rflip,P) for P ∈ {T1,T2, · · · ,Tk}: A player ran-
domly flips the stack placed onP. This action changes
the tuple from (· · · ,p, · · ·) to (· · · ,p, · · ·) (which is
unchanged) or (· · · , turn(p), · · ·); each case occurs
with a probability of 1

2 . No player can know which
case occurs if top(p) = bottom(p). Note that, sim-
ilar to shuffle, unless at least one of Alice and Bob
holds no stack of coins in both hands, it is infeasible
to execute this action; hence, the protocol stops (fails)
when both players hold a stack of coins in her or his
hand.

We say that the protocol for a function f is correct if
it finally outputs the correct value of f (a, b) for any input
(a, b).

The protocol P = (k,U , Q, A) proceeds as a Turing
machine does. That is, starting from an initial state q0 and
an initial arrangement �0 ∈ U , its current state q and
arrangement � move to the next state q ′ and arrangement �′,
respectively, according to the output of the action function A.

2.3 Feasibility of Actions

In this subsection, we discuss the implementation of the five
actions in Definition 1. Among these five actions,move and
flip are naturally implementable without explanation. There-
fore, we focus on the remaining three actions; hand, shuffle,
and rflip.

Figure 2 shows an example of the implementation of
hand, consisting of five steps. Initially, each player holds
stacks of coins in both hands (top left in Fig. 2). Then,
they each place one hand on top of the other to move
(and overturn) the stack in the upper hand onto the stack
in the lower hand (top middle). After that, both players
open both hands to pile up the stacks under the upper
hand (top right). After the stacks are piled up, both play-
ers close their lower hand to hide the stack (lower left).
Subsequently, both remove their upper hand (lower middle).
Finally, they open the removed hand to show that there is no
coin (lower right). Note that, after this action, the stack of
coins in the upper hand becomes upside down. For example,
the operation (hand, AL ← BL) changes the arrange-
ment (◦, ◦|◦•, ••|ε, ε, ε, ε) to (turn(◦•)◦, ◦|ε, ••|ε, ε, ε, ε),
which is equal to (◦ • ◦, ◦|ε, ••|ε, ε, ε, ε) because turn(◦•)

= turn(•)turn(◦) = ◦•.
As for shuffle, it can be operated in a similar manner to

the shuffling operation in the card-based protocol. A player
exchanges the positions of two stacks of coins multiple times
so that the number of moves cannot be traced.

We then show two implementations for rflip. One of them
is performed without any item and the other uses an item
such as a binder clip. In the former implementation, a player
holds the stack of coins and rotates it horizontally multiple
times so that the number of the rotations cannot be traced,
as shown in the left of Fig. 3. In the latter case, the player
clips stacks into one stack with, for example, a binder clip, as
shown in the right side of Fig. 3, and then, throws the clipped
stack in the air like a coin toss.

Note that, tomake the results shuffle and flip random from
the viewpoint of both players, they can execute the action in
relays (sequentially).

In addition, it is natural to assume that a semi-honest player
is able to create a coin-based commitment (according to her
or his private bit) by adjusting the direction of the coin after
grabbing it.

123

838 Y. Komano, T. Mizuki

Fig. 3 Examples of implementations of rflip

2.4 Definitions for Security

This subsection gives definitions related to the security of the
protocols. As we explain in Section 2.2, we assume that the
players are semi-honest. Let us assume that other entities,
including an adversary, are also semi-honest. That is, the
aim of an attacker is to maliciously obtain any information
from the secret input, by observing the protocol.

To discuss security, we need to consider publicly observ-
able information, which may leak a secret input with a
protocol. There are two kinds of such information. The first
one is visible information of coins on the table, such as the
surface (direction) of the topmost coin and the number of
stacked coins. The second one is publicly detectable infor-
mation of coins in a player’s hand, such as the coin of an
initial arrangement, that is independent from the input, and
one which is publicly detectable from the previous state of
the protocol.

Let us define a detectable sequence for an arrangement
� = (c1, c2|c3, c4|c5, c6, · · · , ck+4) ∈ Argk . We first extend
top and size as follows. Unlike top(c) which returns “?”
if c is in a player’s hand, the following t̃op(c) and s̃ize(c)
return invisible information if it is publicly detectable from
the specification of the protocol. That is, for ci ∈ Sk ,

t̃op(ci) =
⎧
⎨
⎩
top(ci) (i ∈ [1, 4] and it is detectable)
? (i ∈ [1, 4] and it is not detectable yet)
top(ci) (i ≥ 5)

, and

s̃ize(ci) =
⎧
⎨
⎩
size(ci) (i ∈ [1, 4] and it is detectable)
? (i ∈ [1, 4] and it is not detectable yet)
size(ci) (i ≥ 5)

.

We then set the detectable sequence of �,
(
t̃op(�),

s̃ize(�)
)
, with

t̃op(�) = (
t̃op(c1), t̃op(c2)|t̃op(c3), t̃op(c4)|t̃op(c5),

t̃op(c6), · · · , t̃op(ck+4)
)
and

s̃ize(�) =
(̃
size(c1), s̃ize(c2)|̃size(c3), s̃ize(c4)|̃size(c5),
s̃ize(c6), · · · , s̃ize(ck+4)

)
.

For example, assume that c1 = c5 = ◦•, c2 = c4 = c6 =
•◦, and c3 = ε, that is, � = (◦•, •◦|ε, •◦|◦•, •◦). If coins
in Alice’s hands are undetectable (but the number of coins
are detectable), and if ones in Bob’s hands are detectable,
t̃op(�) = (?, ?|ε, •|◦, •) and s̃ize(�) = (2, 2|0, 2|2, 2).

To confirm the correctness and security of a coin-based
protocol, we used an extended diagram [15] that replaces a
probabilitywithin the diagram, as proposed byKoch,Walzer,
andHärtel [7], with the probability trace.We give a definition
of the probability trace below, which is a modification from
[15] to replace the step number j to the detectable sequence
trace d for Step j of the protocol. Here, the detectable
sequence trace for Step j is a set of detectable sequences
which appear before or at Step j of the protocol.

Definition 2 (Probability trace) Let |U | be the number of

elements in an input set U=
{
�1
0, �

2
0, · · · , �

|U |
0

}
of a coin-

based protocol P . Let d be a detectable sequence trace. An
|U |-tuple (q1,d,s, q2,d,s, · · · , q|U |,d,s) such that

qi,d,s = Pr
[
M = �i

0,Gv = s|D = d
]

is called a probability trace for an arrangement s and the
detectable sequence trace d, whereM ,G j , and D are random
variables of the original input sequence of the arrangement
when d is seen, and of the detectable sequence trace, respec-
tively.

With the detectable sequence trace and probability trace,
let us define the security of the coin-basedprotocol as follows.

Definition 3 (Perfect security of coin-based protocol)We say
that a coin-based protocol P is perfectly secure if it leaks no
information for any run of the protocol (i.e., the input and the
detectable sequence trace are independent).

Note that an implementation of a coin-based protocol may
leak the number of held coins (c where s̃ize(c) =?) via side-
channel information2, such as the volume of players’ hands
and the jingle of coins in players’ hands. Depending on the
protocol, the number of held coins may be different based on
the secret input, and, in this case, such side-channel informa-
tion may leak a secret, that is, the protocol may be insecure.
In our protocols presented later, the number of held coins
does not depend on the secret input and no secret leaks from
the side-channel information. For the sake of simplicity, we
hereafter ignore such information leakage in this paper.

2 In the implementation of a cryptographic protocol, it is known that
side-channel information, such as the timing information and the power
consumption, can leak a secret from the protocol, a.k.a., side-channel
attacks [8,9]. Against such attacks, many countermeasures have been
discussed [11].

123

Coin-based... 839

Fig. 4 Extended diagram of the
coin-based AND protocol (?, ◦|?, ?|ε, ε, ε, ε),

(1, 1|2, 2|0, 0, 0, 0)

(◦, ◦|◦•, ••|ε, ε, ε, ε) (p00, 0, 0, 0)
(◦, ◦|••, ◦•|ε, ε, ε, ε) (0, p01, 0, 0)
(•, ◦|◦•, ••|ε, ε, ε, ε) (0, 0, p10, 0)
(•, ◦|••, ◦•|ε, ε, ε, ε) (0, 0, 0, p11)

(hand,AL ← BL)
(hand,AR ← BR)

(◦, ◦|ε, ε|ε, ε, ε, ε),
(3, 3|0, 0|0, 0, 0, 0)

(◦ • ◦, ◦ ◦ ◦|ε, ε|ε, ε, ε, ε) (p00, 0, 0, 0)
(◦ ◦ ◦, ◦ • ◦|ε, ε|ε, ε, ε, ε) (0, p01, 0, 0)
(◦ • •, ◦ ◦ ◦|ε, ε|ε, ε, ε, ε) (0, 0, p10, 0)
(◦ ◦ •, ◦ • ◦|ε, ε|ε, ε, ε, ε) (0, 0, 0, p11)

(move,AL → T1, 3)
(move,AR → T2, 3)

(ε, ε|ε, ε|◦, ◦, ε, ε),
(0, 0|0, 0|3, 3, 0, 0)

(ε, ε|ε, ε|◦ • ◦, ◦ ◦ ◦, ε, ε) (p00, 0, 0, 0)
(ε, ε|ε, ε|◦ ◦ ◦, ◦ • ◦, ε, ε) (0, p01, 0, 0)
(ε, ε|ε, ε|◦ • •, ◦ ◦ ◦, ε, ε) (0, 0, p10, 0)
(ε, ε|ε, ε|◦ ◦ •, ◦ • ◦, ε, ε) (0, 0, 0, p11)

(shuffle,T1,T2)

(ε, ε|ε, ε|◦, ◦, ε, ε),
(0, 0|0, 0|3, 3, 0, 0)

(ε, ε|ε, ε|◦ • ◦, ◦ ◦ ◦, ε, ε) (p00/2, p01/2, 0, 0)
(ε, ε|ε, ε|◦ ◦ ◦, ◦ • ◦, ε, ε) (p00/2, p01/2, 0, 0)
(ε, ε|ε, ε|◦ • •, ◦ ◦ ◦, ε, ε) (0, 0, p10/2, 0)
(ε, ε|ε, ε|◦ ◦ ◦, ◦ • •, ε, ε) (0, 0, p10/2, 0)
(ε, ε|ε, ε|◦ ◦ •, ◦ • ◦, ε, ε) (0, 0, 0, p11/2)
(ε, ε|ε, ε|◦ • ◦, ◦ ◦ •, ε, ε) (0, 0, 0, p11/2)

(move,T1 → T3, 1)
(move,T2 → T4, 1)

revealed
•◦

(ε, ε|ε, ε|•, ◦, ◦, ◦),
(0, 0|0, 0|2, 2, 1, 1)

(ε, ε|ε, ε|•◦, ◦◦, ◦, ◦) (p00, p01, 0, 0)
(ε, ε|ε, ε|••, ◦◦, ◦, ◦) (0, 0, p10, 0)
(ε, ε|ε, ε|•◦, ◦•, ◦, ◦) (0, 0, 0, p11)

revealed
◦•

(ε, ε|ε, ε|◦, •, ◦, ◦),
(0, 0|0, 0|2, 2, 1, 1)

(ε, ε|ε, ε|◦◦, •◦, ◦, ◦) (p00, p01, 0, 0)
(ε, ε|ε, ε|◦◦, ••, ◦, ◦) (0, 0, p10, 0)
(ε, ε|ε, ε|◦•, •◦, ◦, ◦) (0, 0, 0, p11)

2.5 Extended Diagram

This subsection briefly reviews the extended diagram intro-
duced in [15] with the concrete example described in Fig. 4.

The diagramconsists of nodes, and each node is connected
to its neighboring node(s) through action(s). For example,
Fig. 4 contains six nodes. The topmost node corresponds to
an initial arrangement, and it is connected to the next node
which corresponds to an arrangement after the actions of
hand (Steps 1 and 2 in the six-coin AND protocol in Section
3.2).

Each node consists of a “detectable sequence,” “arrange-
ments,” and “probability traces.” Let us look at the topmost
node in Fig. 4 again. There are four entries, each of which
consists of the arrangement and the probability trace, which
comes from one of the four kinds of inputs (0, 0), (0, 1),
(1, 0), and (1, 1). The first entry corresponds to the input
(0, 0). The arrangement is an initial one for input (0, 0) of the

protocol itself,which is derived onlywhen the input sequence
is (0, 0) with a probability of p00, and hence, the first coor-
dinate of the probability trace is p00 and the remaining three
coordinates are 0.

Similarly, let us consider the fourth node in Fig. 4, which
corresponds to the state after shuffle (Step 5 in the six-
coin AND protocol in Section 3.2). The probability trace
in the first entry is (p00/2, p01/2, 0, 0)which means that the
arrangement (ε, ε|◦ • ◦, ◦ ◦ ◦|ε, ε) comes from inputs (0, 0)
(shuffle does not change the arrangement) with probabil-
ity p00/2 and (0, 1) (shuffle changes one) with probability
p01/2.

Note that, if there is more than one detectable sequence
after some action (move at Step 7 in the six-coin AND proto-
col in Section 3.2, for example), we prepare a node for each
sequence as in the fifth and sixth nodes in Fig. 4.

123

840 Y. Komano, T. Mizuki

3 Examples of the Coin-based Protocol

In this section, we give examples of coin-based protocols
for NOT, AND, and COPY computations, and check their
correctness and security with the extended diagram [15].

3.1 NOT Protocol

Assume that Alice holds a coin-based commitment; that is,
she grabs a coin that encodes a one-bit information according
to Eq. (1), as illustrated in Fig. 1. Then, theNOT computation
can be executed by turning over the coin. For example, hand
performs such a computation. With hand, the correctness
and security trivially hold. Note that, ignoring the security,
flip also performs the NOT computation.

3.2 AND Protocol

Let a ∈ {0, 1} and b ∈ {0, 1} be private inputs of Alice and
Bob, respectively. Also, let a and b be flipped bits of a and b,
namely, a⊕1 and b⊕1, respectively. Alice and Bob initially
grab stacks of coins as follows: aL is set to aL = a according
to the encoding defined in Eq. (1), aR is always ◦, bL = b•,
and bR = b•. Namely, the initial arrangement can be written
as

(
a, ◦|b•, b • |ε, ε, ε, ε) .

Note that there are four candidates �ab ∈ U for the initial
arrangement of this protocol.

Six-coin AND Protocol PAND
coin

Input:

�ab =

⎧
⎪⎪⎨
⎪⎪⎩

(◦, ◦|◦•, ••|ε, ε, ε, ε) ((a, b) = (0, 0))
(◦, ◦|••, ◦•|ε, ε, ε, ε) ((a, b) = (0, 1))
(•, ◦|◦•, ••|ε, ε, ε, ε) ((a, b) = (1, 0))
(•, ◦|••, ◦•|ε, ε, ε, ε) ((a, b) = (1, 1))

(2)

Steps:

1. (hand,AL ← BL)

2. (hand,AR ← BR)

3. (move,AL → T1, 3)
4. (move,AR → T2, 3)
5. (shuffle,T1,T2)

6. (move,T1 → T3, 1)
7. (move,T2 → T4, 1)

Output:

{
bottom(t1) ((top(t1), top(t2)) = (◦, •))

bottom(t2) (otherwise)
(3)

The result of the protocol also follows the encoding
defined in Eq. (1).

We can check the correctness and security of PAND
coin by

using the extended diagram. Fig. 4 shows a summary of
the diagram. In this diagram, the topmost node consists of
triplet of the detectable sequence, the arrangements, and
the probability traces of inputs, namely, just before the first
step.

We first check the correctness. The output is the bot-
tom of the corresponding underlined coin in the final step
of this figure, such as3 ◦◦ and ◦•. With this diagram, it
is obvious that (a, b) = (1, 1), namely, the fourth compo-
nent in the probability trace, p11, is non-zero if and only
if the output is bottom(◦•) = ◦ which is the encoding of
1.

We now discuss the security. If (top(t1), top(t2)) is
(•, ◦) in Fig. 4, the sum of the probability traces is
(p00, p01, p10, p11). Namely, the probability distribution of
the input after the topmost coin of each stack is removed is
unchanged from the viewpoint of the players and observers.
This means that no information leaks through the protocol.
Similarly, no information leaks when (top(t1), top(t2)) is
(◦, •). Hence, we have confirmed the security of the proto-
col.

3.3 COPY Protocol

Here, we present how tomake an identical commitment copy
from a given coin-based commitment. In addition to a coin
for Alice’s secret bit a, we prepare two coins of •(= 0) and
two more dummy coins. Alice stacks these coins as ◦0a0•
(where we write 0 instead of • for convenience) and per-
forms rflip, resulting in ◦ra′r• for a random bit r where
a′ = a ⊕ r . If a′ = 0, we have a = r , which leads to
the situation where the second and fourth coins are equal
to a; conversely, if a′ = 1, they are equal to a ⊕ 1. From
these relations, we can obtain a COPY protocol as follows.
In this protocol, there are two input candidates �a ∈ U for
a ∈ {0, 1}.

3 We use underlining for clarity to indicate which coin corresponds to
an output.

123

Coin-based... 841

Five-coin COPY Protocol PCOPY
coin

Input:

�a =
{

(•, ◦•|ε, ε|••, ε, ε) (a = 0)
(◦, ◦•|ε, ε|••, ε, ε) (a = 1)

(4)

Steps:

1. (hand,AL ← AR)

2. (move,AL → T1, 3)
3. (rflip,T1)

4. (move,T1 → T2, 2)
5. if top(t1) = ◦,

(move,T1 → T3, 2)
6. else

(a) (flip,T1)

(b) (move,T1 → T3, 2)
(c) (flip,T1) (�optional)
(d) (move,T2 → T1, 2)
(e) (flip,T1)

(f) (move,T1 → T2, 2)

Output:

(bottom(t2)bottom(t3)) (5)

We can check the correctness and security, similarly to the
procedure forPAND

coin , regardless ofwhether the optional action
at Step 6(c) is executed.With the optional action, the resulting
stacks are ◦a; whereas, without it, one of them becomes •a
with a probability of 1

2 .
Note that the above COPY protocol, with one coin for

input a, uses four additional coins and obtains two coins for
a. If we use 2k + 2 coins, instead of the four coins, we can
obtain 2k coins for a. Specifically, we replace the stacks for
AR and T1 in the inputs as follows. Instead of ◦• on AR (••
on T1, respectively), we set ◦◦ · · · ◦• (•• · · · •, respectively).
The above protocol ends with two stacks, with k + 1 coins
each, on T1 and T2. With these two stacks, the bottoms k
lower coins in each obtained stack are coins for a (2k coins
in total).

3.4 OR Protocol

We now obtain a coin-based OR protocol by combining the
above AND and NOT protocols. The OR of a, b ∈ {0, 1} is
computed by flipping the result ofPAND

coin (�ab). The following
specifically shows the protocol. Note that, in the follow-
ing protocol, we change the encoding in �00, �01, �10, and
�11 from the above AND protocol so that we can perform
PAND
coin (�ab) without any action in advance.

Six-coin OR Protocol POR
coin

Input:

�ab =

⎧⎪⎪⎨
⎪⎪⎩

(•, ◦|••, ◦•|ε, ε, ε, ε, ε) ((a, b) = (0, 0))
(•, ◦|◦•, ••|ε, ε, ε, ε, ε) ((a, b) = (0, 1))
(◦, ◦|••, ◦•|ε, ε, ε, ε, ε) ((a, b) = (1, 0))
(◦, ◦|◦•, ••|ε, ε, ε, ε, ε) ((a, b) = (1, 1))

(6)

Steps:

1. execute PAND
coin (�ab)

2. if (top(t1), top(t2)) = (◦, •)

(move,T1 → T3, 2)
3. else if (top(t1), top(t2)) = (•, ◦)

(move,T2 → T3, 2)
4. (flip,T3)

5. (move,T3 → T5, 2)

Output:

bottom(t5) (7)

We can check the correctness and security of this protocol
in the same manner as for the AND protocol.

3.5 XOR Protocol

Next, we explain a coin-based XOR protocol executed by
Alice and Bob. To compute a ⊕ b, we introduce a random
bit r , which is the remainder of the number of flips in rflip
divided by 2. Note that both the number of flips and r are
unknown to Alice and Bob. We add this r to both a and b,
that is, we have a′ = a⊕r and b′ = b⊕r so that we compute
a′ ⊕ b′ = a ⊕ b.

Precisely, a′ and b′ are generated for an unknown unique
r , as follows: We place the coin for b onto the coin for a
as ba, and randomly flip the stack to b′a′ = ba (unchanged
when r = 0) or a′b′ = ab (flipped when r = 1). Therefore,
after the random flip, these coins are for a′ = a ⊕ r and
b′ = b ⊕ r . To compute a′ ⊕ b′ = a ⊕ b, we select one of
coins for a′ and b′, and then flip the other coin if the selected
coin is for a bit one. To avoid information leakage, we need
to cover the coins with dummy coins and shuffle the coins in
the selection.

The following shows the protocol. The initial arrangement
is (◦a•, ε| ◦ b•, ε|ε, ε, ε), and similarly to the above two
protocols, there are four input candidates �ab ∈ U for this
protocol.

123

842 Y. Komano, T. Mizuki

Six-coin XOR Protocol PXOR
coin

Input:

�ab =

⎧⎪⎪⎨
⎪⎪⎩

(◦••, ε|◦◦•, ε|ε, ε, ε) ((a, b) = (0, 0))
(◦••, ε|◦••, ε|ε, ε, ε) ((a, b) = (0, 1))
(◦◦•, ε|◦◦•, ε|ε, ε, ε) ((a, b) = (1, 0))
(◦◦•, ε|◦••, ε|ε, ε, ε) ((a, b) = (1, 1))

(8)

Steps:

1. (hand,AL ← BL)

2. (move,AL → T1, 6)
3. (rflip,T1)

4. (move,T1 → T2, 3)
5. (shuffle,T1,T2)

6. (move,T1 → T3, 1)
7. if top(t1) = •

(a) (flip,T2)

(b) (move,T2 → T3, 2)

8. else
(move,T2 → T3, 2)

Output:

bottom(t3) (9)

In a manner similar to that of previous protocols, we can
check the correctness and security.

4 TowardMore Protocols

The previous section shows concrete examples of coin-based
protocols. Let us discuss protocols for other functionalities.
Note that the set {NOT, AND} is known to be functionally
complete. Hence, a protocol for any (two-variable) Boolean
function can be realized by combining the coin-based NOT
and AND protocols presented above.

Let us consider the composition of logical gates in a logic
circuit. If the fan-out of a logical gate is two or more, the
signal is duplicated to be connected to each gate. In a coin-
based protocol, a one-bit value can be duplicated by the coin-
basedCOPYprotocol presented in Section 3.3. Therefore, by
combining the coin-based NOT, AND, and COPY protocols,
a protocol for any function can be constructed.

To make the discussion on the composition more clear
and universal, we introduce another action, pick, and modify
the initial states of the coin-based protocols presented in the
above.

4.1 Pickup Action

Our example protocols in Section 3 produce their output as
a coin with an unknown state (head or tail) because the coin
is covered by another coin. Hence, it may be possible to
compose protocols if a player can move the resulting coin of
the first protocol into her or his hand as an input to the next
protocol.

Therefore, if it is possible to pick the resulting coin in one’s
hand without revealing its information, any secure function
evaluation can be executed with our examples of NOT, AND,
and COPY protocols. To this end, we provide the follow-
ing action, called pick, which can also be implemented by
humans.

• (pick,P1 → P2, n) for P1 ∈ {T1,T2, · · · ,Tk} and
P2 ∈ {AL ,AR,BL ,BR} with p2 = ε: A player, Alice,
places her empty hand, say her left hand, over the stack
of m coins p1 ∈ Sk on the table area P1 to hide the
stack. Then, she slips her right hand under her left hand,
picks the upper n coins from the stack under her left
hand, and moves the stack of n coins to the table so that
only the topmost coin is visible. After that, she slips her
right hand under her left hand again, lifts the remaining
coins, and closes her left hand to hold the raised coins
without revealing the surfaces of the coins. This action
changes the tuple from (· · · ,p2 = ε, · · · | · · ·,p1, · · ·) to
(· · · , turn(p(l)

1), · · · | · · ·,p(u)
1 , · · ·), where p(u)

1 and p(l)
1

are the stacks of upper n coins and lower m − n coins of
p1, respectively.

The following is an implementation of pick that picks up
a coin in three steps. Assume that there is a stack of two
coins t1 (◦• or ◦◦ if the result is 1 or 0, respectively) on the
table area T1 as a result of the AND protocol, and that a
player, Alice, wants to pick up the lower coin by performing
(pick,T1 → AL , 1) with her left hand AL where aL = ε.
She places her hand over the stack to hide it (left of Fig. 5),
removes the upper coin(s) of t(u)

1 by picking the coin(s) with

her right hand (middle), and holds the lower coin(s) t(l)1 in
her left hand by slightly lifting the coin(s) with her right hand
(right). Note that, during the last step, the direction of the coin
or coin stack t(l)1 is changed to turn(t(l)1) because the top of t(l)1
contacts Alice’s left palm (which is the bottom side in AL).

4.2 Modified Protocols Suitable for Composition

We are now ready to modify the protocols in Section 3. In
Section 3, for simplicity, we assume that the players initially
hold coins in their hands, in accordance with their inputs.
In this subsection, we modify the initial arrangement of the
protocol so that the players do not hold coins but the coins
are initially placed on the table.

123

Coin-based... 843

Fig. 5 Example of picking the
resulting coin

Let us first recall the COPY protocol presented in Sec-
tion 3.3, with which the initial arrangement can be written
as (a, ◦•|ε, ε|•, •, ε, ε). Instead of this, let us consider the
arrangement (ε, ε|ε, ε|•, •, ◦a, ◦•) where the coin corre-
sponding to a is put on the table area T3 with a dummy coin
(and bothAlice’s hands are empty). Using thepick action, we
can easily move this commitment on T3 to Alice’s hand AL ,
namely (pick,T3 → AL , 1). Then, (move,T4 → AR, 2)
brings the initial arrangement for the original COPY pro-
tocol. Thus, we modify the COPY protocol to start with a
commitment to a on the table. Note that its output, namely
two coins with dummy coins corresponding to a are on the
table.

Next, let us recall the coin-based AND protocol in Section
3.2. The initial arrangement was (a, ◦|b•, b•|ε, ε, ε, ε) for
their inputs (a, b). We change the initial arrangement to

(ε, ε|ε, ε|◦a, •, ◦b, ε).

Then, using the modified COPY protocol together with
other actions, we can easily transform the initial arrangement
into (ε, ε|ε, ε|◦a, •, ◦b, ◦b). After this, the following actions
create coin-based commitments in hands that suffice for the
AND computation.

1 (pick,T1 → AL , 1)
2 (pick,T2 → AR, 1)
3 (pick,T3 → BL , 2)
4 (pick,T4 → BR, 2)

That is, after these actions, the arrangement becomes
identical to the initial arrangement of the coin-based AND
protocol in Section 3.2; therefore, the players compute a ∧ b
by performing Steps 1 to 9 of the protocol.

Note that it may be difficult to execute the above pick
actions only by two players. In such case, another player,
Charlie, provides assistance. For example, the first action is
proceeded by:

a. (pick,T1 → CL , 1)
b. (hand,CR ← CL)

c. (hand,AL ← CR),

where CL and CR are Charlie’s left hand and right hand,
respectively. Hereinafter, we simply write that the pick
actions are executed by Alice and Bob.

Similarly, one can easily modify the protocols for OR and
XOR, where the coins are on the table in the initial arrange-
ment.

4.3 Examples of Composition Protocols

In this section, we discuss a three-input AND protocol and a
three-input majority decision protocol for inputs (a, b, c) ∈
{0, 1}3, as examples of composition.

The three-inputAND is evaluated bya∧b∧c = (a∧b)∧c,
which executes the (two-input) AND protocol twice. The
procedure of the three-input coin-based AND protocol is as
follows:

1 Alice, Bob, and Charlie place their inputs ◦a, ◦b, and ◦c
on table T1,1, T2,1, and T3,1, respectively.

2 Alice and Bob perform the modified coin-based AND
protocol so that they obtain t1,1 = ◦(a ∧ b), namely the
stack of resulting coins on T1,1 for a ∧ b.

3 Alice and Charlie perform the modified coin-based AND
protocol to compute (a ∧ b) ∧ c as in Step 2.

The three-input majority decision is evaluated by (a ∧
b)∨ (b∧c)∨ (c∧a). The coin-based OR protocol in Section
3.4 is a natural composition of the coin-based NOT protocol
and AND protocol. Therefore, we use the protocols for NOT,
AND, COPY, and OR as building blocks below.

1 Alice, Bob, and Charlie place their inputs ◦a, ◦b, and ◦c
on table T1,1, T2,1, and T3,1, respectively.

2 Alice copies her input by using the modified COPY pro-
tocol so that the resulting stacks are t1,1 = t1,2 = ◦a.

3 Bob andCharlie each copy their inputs as in Step 2 above.
The resulting stacks are t2,1 = t2,2 = ◦b and t3,1 =
t3,2 = ◦c.

4 Alice and Bob perform the modified coin-based AND
protocol with coin stacks t1,1 and t2,1 to compute a ∧ b.
Let t1,1 = ◦(a ∧ b) be the resulting stack of coins.

5 Bob and Charlie perform the modified coin-based AND
protocol with coin stacks t2,2 and t3,1 to compute b ∧ c.
Let t2,1 = ◦(b ∧ c) be the resulting stack of coins.

123

844 Y. Komano, T. Mizuki

Fig. 6 Extended diagram of the
coin-based AND protocol with
erroneous hand actions

(?, ◦|?, ?|ε, ε, ε, ε),
(1, 1|2, 2|0, 0, 0, 0)

(◦, ◦|◦•, ••|ε, ε, ε, ε) (p00, 0, 0, 0)
(◦, ◦|••, ◦•|ε, ε, ε, ε) (0, p01, 0, 0)
(•, ◦|◦•, ••|ε, ε, ε, ε) (0, 0, p10, 0)
(•, ◦|••, ◦•|ε, ε, ε, ε) (0, 0, 0, p11)

Either (hand,AL ← BL); (hand,AR ← BR) (prob. q1)
or (hand,AR ← BL); (hand,AL ← BR) (prob. 1 − q1)

(◦, ◦|ε, ε|ε, ε, ε, ε),
(3, 3|0, 2|0, 0, 0, 0)

(◦ • ◦, ◦ ◦ ◦|ε, ε|ε, ε, ε, ε) (q1p00, (1 − q1)p01, 0, 0)
(◦ ◦ ◦, ◦ • ◦|ε, ε|ε, ε, ε, ε) ((1 − q1)p00, q1p01, 0, 0)
(◦ • •, ◦ ◦ ◦|ε, ε|ε, ε, ε, ε) (0, 0, q1p10, (1 − q1)p11)
(◦ ◦ •, ◦ • ◦|ε, ε|ε, ε, ε, ε) (0, 0, (1 − q1)p10, q1p11)

(move,AL → T1, 3)
(move,AR → T2, 3)

(ε, ε|ε, ε|◦, ◦, ε, ε),
(0, 0|0, 0|3, 3, 0, 0)

(ε, ε|ε, ε|◦ • ◦, ◦ ◦ ◦, ε, ε) (q1p00, (1 − q1)p01, 0, 0)
(ε, ε|ε, ε|◦ ◦ ◦, ◦ • ◦, ε, ε) ((1 − q1)p00, q1p01, 0, 0)
(ε, ε|ε, ε|◦ • •, ◦ ◦ ◦, ε, ε) (0, 0, q1p10, (1 − q1)p11)
(ε, ε|ε, ε|◦ ◦ •, ◦ • ◦, ε, ε) (0, 0, (1 − q1)p10, q1p11)

(shuffle,T1,T2)

(ε, ε|ε, ε|◦, ◦, ε, ε),
(0, 0|0, 0|3, 3, 0, 0)

(ε, ε|ε, ε|◦ • ◦, ◦ ◦ ◦, ε, ε) (p00/2, p01/2, 0, 0)
(ε, ε|ε, ε|◦ ◦ ◦, ◦ • ◦, ε, ε) (p00/2, p01/2, 0, 0)
(ε, ε|ε, ε|◦ • •, ◦ ◦ ◦, ε, ε) (0, 0, q1p10/2, (1 − q1)p11/2)
(ε, ε|ε, ε|◦ ◦ ◦, ◦ • •, ε, ε) (0, 0, q1p10/2, (1 − q1)p11/2)
(ε, ε|ε, ε|◦ ◦ •, ◦ • ◦, ε, ε) (0, 0, (1 − q1)p10/2, q1p11/2)
(ε, ε|ε, ε|◦ • ◦, ◦ ◦ •, ε, ε) (0, 0, (1 − q1)p10/2, q1p11/2)

(move,T1 → T3, 1)
(move,T2 → T4, 1)

revealed
•◦

(ε, ε|ε, ε|•, ◦, ◦, ◦),
(0, 0|0, 0|2, 2, 1, 1)

(ε, ε|ε, ε|•◦, ◦◦, ◦, ◦) (p00, p01, 0, 0)
(ε, ε|ε, ε|••, ◦◦, ◦, ◦) (0, 0, q1p10, (1 − q1)p11)
(ε, ε|ε, ε|•◦, ◦•, ◦, ◦) (0, 0, (1 − q1)p10, q1p11)

revealed
◦•

(ε, ε|ε, ε|◦, •, ◦, ◦),
(0, 0|0, 0|2, 2, 1, 1)

(ε, ε|ε, ε|◦◦, •◦, ◦, ◦) (p00, p01, 0, 0)
(ε, ε|ε, ε|◦◦, ••, ◦, ◦) (0, 0, q1p10, (1 − q1)p11)
(ε, ε|ε, ε|◦•, •◦, ◦, ◦) (0, 0, (1 − q1)p10, q1p11)

6 Charlie and Alice perform the modified coin-based AND
protocol with coin stacks t3,1 and t1,2 to compute c ∧ a.
Let t3,1 = ◦(c ∧ a) be the resulting stack of coins.

7 Alice and Bob perform the modified coin-based OR pro-
tocol for t1,1 = ◦(a ∧ b) and t2,1 = ◦(b ∧ c) to obtain
t1,1 = ◦((a ∧ b) ∨ (b ∧ c)), namely the resulting stack
of coins for (a ∧ b) ∨ (b ∧ c).

8 Alice and Charlie perform the modified OR protocol, as
in the previous step, to compute ((a∧b)∨(b∧c))∨(c∧a),
with t1,1 = ◦((a ∧ b) ∨ (b ∧ c)) and t3,1 = ◦(c ∧ a).

Similarly to the above compositions, a protocol for any
function can be constructed with the coin-based protocols
for NOT, AND, and COPY.

5 Effect of Human Error

In Section 3, we propose coin-based protocols that produce
correct results when the players perform them. However,
because humans make mistakes in general, the effect of
human error on the protocols is discussed. For example, for
the card-basedANDprotocol,Mizuki andKomanodiscussed
the effect, the information leakage, human error [15]. Thus,

in this section, we analyze the effect of human error in terms
of information leakage and correctness.

Let us discuss the effect on the six-coin AND protocol
PAND
Coin in Section 3.2. This protocol consists of the following

five actions; “set the initial configuration,” “hand coins from
Bob’s left hand (right hand, respectively) to Alice’s left hand
(right hand, respectively),” “move the stack of coins on the
table,” “shuffle the stacks of coins on the table,” and “move
the topmost coins of the stacks.” Among these actions, Alice
and Bob may make a mistake when they “hand coins from
Bob’s hand to Alice’s hand”; namely, Bob may hand the
stack of coins in his left hand (right hand, respectively) to
Alice’s right hand (left hand, respectively) incorrectly. As
for the other four actions, because these actions are simple
to execute, it seems that mistakes while performing them
would be rare. Hence, let us consider the erroneous six-coin
AND protocol where the following two steps are executed,
with the probability of (1 − q1), instead of Steps 1 and 2 in
PAND
Coin .

(1′) (hand,AL ← BR)

(2′) (hand,AR ← BL)

Figure 6 shows the extended diagram for the incorrectly
performed protocol. If Bob hands a stack of coins to the

123

Coin-based... 845

wrong hand as (1’) and (2’) above, the protocol outputs a∧ b̄
instead of a ∧ b.

Each sumof the probability traces of the bottom two nodes
(final states) in Fig. 6 is (p00, p01, p10, p11), which means
that no information on the inputs leaks even if the players
make a mistake during the hand action. However, as we dis-
cussed the erroneous protocol outputs an incorrect result. For
example, the protocol outputs 0 with an input pair (1, 1)with
the probability of (1− q1)p11 as in the second line from the
bottom of the bottommost node in the diagram. Conversely,
the protocol outputs 1 with an input pair (1, 0)with the prob-
ability of q1 p10, as in the first line from the bottom of the
bottommost node in the diagram.

6 Conclusions

This paper introduced the formal treatment for coin-based
protocols and presented concrete examples to show that the
secure multi-party computation is reliably executed with
physical coins. An intriguing future work includes the devel-
opment of more practical protocols with fewer coins.

Acknowledgements This work was supported by JSPS KAKENHI
Grant Numbers JP17K00001 and JP18H05289. We would like to thank
the reviewers for their invaluable comments.

Declarations

Conflict of interest The authors declare that they have no conflict of
interest.

Ethical approval This article does not contain any studies with human
participants or animals performed by any of the authors.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Abe, Y., Iwamoto,M., Ohta, K.: Efficient private PEZ protocols for
symmetric functions. In: D. Hofheinz, A. Rosen (eds.) Theory of
Cryptography - 17th International Conference, TCC 2019, Nurem-
berg, Germany, December 1-5, 2019, Proceedings, Part I, Lecture

Notes in Computer Science, vol. 11891, pp. 372–392. Springer
(2019). doi:https://doi.org/10.1007/978-3-030-36030-6_15

2. Balogh, J., Csirik, J.A., Ishai, Y., Kushilevitz, E.: Private computa-
tion using a PEZ dispenser. Theor. Comput. Sci. 306(1–3), 69–84
(2003). https://doi.org/10.1016/S0304-3975(03)00210-X

3. den Boer, B.: More efficient match-making and satisfiability: The
Five Card Trick. In: J. Quisquater, J. Vandewalle (eds.) Advances
in Cryptology - EUROCRYPT ’89, Workshop on the Theory and
Application of of Cryptographic Techniques, Houthalen, Belgium,
April 10-13, 1989, Proceedings, Lecture Notes in Computer Sci-
ence, vol. 434, pp. 208–217. Springer (1989). doi:https://doi.org/
10.1007/3-540-46885-4_23

4. Crépeau, C., Kilian, J.: Discreet solitary games. In: D.R. Stinson
(ed.) Advances in Cryptology - CRYPTO ’93, 13th Annual Inter-
national Cryptology Conference, Santa Barbara, California, USA,
August 22-26, 1993, Proceedings, Lecture Notes in Computer Sci-
ence, vol. 773, pp. 319–330. Springer (1993). doi:https://doi.org/
10.1007/3-540-48329-2_27

5. D’Arco, P., Prisco, R.D.: Secure computation without computers.
Theor. Comput. Sci. 651, 11–36 (2016). https://doi.org/10.1016/j.
tcs.2016.08.003

6. Goldwasser, S.:Multi-party computations: Past andpresent. In: J.E.
Burns, H. Attiya (eds.) Proceedings of the Sixteenth Annual ACM
Symposium on Principles of Distributed Computing, Santa Bar-
bara, California, USA, August 21-24, 1997, pp. 1–6. ACM (1997).
doi:https://doi.org/10.1145/259380.259405

7. Koch, A., Walzer, S., Härtel, K.: Card-based cryptographic proto-
cols using a minimal number of cards. In: T. Iwata, J.H. Cheon
(eds.) Advances in Cryptology - ASIACRYPT 2015 - 21st Inter-
national Conference on the Theory and Application of Cryptology
and Information Security, Auckland, New Zealand, November 29 -
December 3, 2015, Proceedings, Part I, Lecture Notes in Computer
Science, vol. 9452, pp. 783–807. Springer (2015). doi:https://doi.
org/10.1007/978-3-662-48797-6_32

8. Kocher, P.C.: Timing attacks on implementations of Diffie-
Hellman, RSA, DSS, and other systems. In: N. Koblitz (ed.)
Advances in Cryptology - CRYPTO ’96, 16th Annual International
Cryptology Conference, Santa Barbara, California, USA, August
18-22, 1996, Proceedings, Lecture Notes in Computer Science, vol.
1109, pp. 104–113. Springer (1996). doi:https://doi.org/10.1007/
3-540-68697-5_9

9. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: M.J.
Wiener (ed.) Advances in Cryptology - CRYPTO ’99, 19th Annual
International Cryptology Conference, Santa Barbara, California,
USA, August 15-19, 1999, Proceedings, Lecture Notes in Com-
puter Science, vol. 1666, pp. 388–397. Springer (1999). doi:https://
doi.org/10.1007/3-540-48405-1_25

10. Komano,Y.,Mizuki, T.:Multi-party computationbasedonphysical
coins. In: D. Fagan, C. Martín-Vide, M. O’Neill, M.A. Vega-
Rodríguez (eds.) Theory and Practice of Natural Computing - 7th
International Conference, TPNC 2018, Dublin, Ireland, December
12-14, 2018, Proceedings, Lecture Notes in Computer Science, vol.
11324, pp. 87–98. Springer (2018). doi:https://doi.org/10.1007/
978-3-030-04070-3_7

11. Mangard, S., Oswald, E., Popp, T.: Power analysis attacks - reveal-
ing the secrets of smart cards. Springer (2007)

12. Marcedone, A., Wen, Z., Shi, E.: Secure dating with four or fewer
cards. Cryptology ePrintArchive. https://eprint.iacr.org/2015/1031
(2015). Accessed 15 May 2020

13. Miyahara, D., Komano, Y., Mizuki, T., Sone, H.: Cooking cryptog-
raphers: secure multiparty computation based on balls and bags.
In: 34th IEEE 34th Computer Security Foundations Symposium
(CSF), Dubrovnik, Croatia. IEEE (2021). https://doi.org/10.1109/
CSF51468.2021.00034

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-3-030-36030-6_15
https://doi.org/10.1016/S0304-3975(03)00210-X
https://doi.org/10.1007/3-540-46885-4_23
https://doi.org/10.1007/3-540-46885-4_23
https://doi.org/10.1007/3-540-48329-2_27
https://doi.org/10.1007/3-540-48329-2_27
https://doi.org/10.1016/j.tcs.2016.08.003
https://doi.org/10.1016/j.tcs.2016.08.003
https://doi.org/10.1145/259380.259405
https://doi.org/10.1007/978-3-662-48797-6_32
https://doi.org/10.1007/978-3-662-48797-6_32
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/978-3-030-04070-3_7
https://doi.org/10.1007/978-3-030-04070-3_7
https://doi.org/10.1109/CSF51468.2021.00034
https://doi.org/10.1109/CSF51468.2021.00034

846 Y. Komano, T. Mizuki

14. Mizuki, T.: Card-based protocols for securely computing the con-
junction of multiple variables. Theor. Comput. Sci. 622, 34–44
(2016). https://doi.org/10.1016/j.tcs.2016.01.039

15. Mizuki, T., Komano, Y.: Analysis of information leakage due
to operative errors in card-based protocols. In: C.S. Iliopoulos,
H.W. Leong, W. Sung (eds.) Combinatorial Algorithms - 29th
International Workshop, IWOCA 2018, Singapore, July 16-19,
2018, Proceedings,LectureNotes inComputer Science, vol. 10979,
pp. 250–262. Springer (2018). doi:https://doi.org/10.1007/978-3-
319-94667-2_21

16. Mizuki, T., Kumamoto, M., Sone, H.: The five-card trick can be
done with four cards. In: X. Wang, K. Sako (eds.) Advances in
Cryptology - ASIACRYPT 2012 - 18th International Conference
on the Theory and Application of Cryptology and Information
Security, Beijing, China, December 2-6, 2012. Proceedings, Lec-
ture Notes in Computer Science, vol. 7658, pp. 598–606. Springer
(2012). doi:https://doi.org/10.1007/978-3-642-34961-4_36

17. Mizuki, T., Shizuya, H.: A formalization of card-based crypto-
graphic protocols via abstractmachine. Int. J. Inf. Sec. 13(1), 15–23
(2014). https://doi.org/10.1007/s10207-013-0219-4

18. Mizuki, T., Shizuya, H.: Computational model of card-based
cryptographic protocols and its applications. IEICE Trans. Fun-
dam. Electron. Commun. Comput. Sci. 100-A(1), 3–11 (2017).
doi:https://doi.org/10.1587/transfun.E100.A.3

19. Mizuki, T., Sone, H.: Six-card secure AND and four-card secure
XOR. In: X. Deng, J.E. Hopcroft, J. Xue (eds.) Frontiers in Algo-
rithmics, Third International Workshop, FAW 2009, Hefei, China,
June 20-23, 2009. Proceedings, Lecture Notes in Computer Sci-
ence, vol. 5598, pp. 358–369. Springer (2009). doi:https://doi.org/
10.1007/978-3-642-02270-8_36

20. Mizuki, T., Uchiike, F., Sone, H.: Securely computing XOR with
10 cards. Australas. J Comb. 36, 279–294 (2006)

21. Moran, T., Naor, M.: Basing cryptographic protocols on tamper-
evident seals. Theor. Comput. Sci. 411(10), 1283–1310 (2010).
https://doi.org/10.1016/j.tcs.2009.10.023

22. Nishimura, A., Nishida, T., Hayashi, Y., Mizuki, T., Sone, H.:
Card-based protocols using unequal division shuffles. Soft Com-
put. 22(2), 361–371 (2018). https://doi.org/10.1007/s00500-017-
2858-2

23. Ueda, I., Miyahara, D., Nishimura, A., Hayashi, Y., Mizuki, T.,
Sone, H.: Secure implementations of a random bisection cut. Int. J.
Inf. Sec. 19(4), 445–452 (2020). https://doi.org/10.1007/s10207-
019-00463-w

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1016/j.tcs.2016.01.039
https://doi.org/10.1007/978-3-319-94667-2_21
https://doi.org/10.1007/978-3-319-94667-2_21
https://doi.org/10.1007/978-3-642-34961-4_36
https://doi.org/10.1007/s10207-013-0219-4
https://doi.org/10.1587/transfun.E100.A.3
https://doi.org/10.1007/978-3-642-02270-8_36
https://doi.org/10.1007/978-3-642-02270-8_36
https://doi.org/10.1016/j.tcs.2009.10.023
https://doi.org/10.1007/s00500-017-2858-2
https://doi.org/10.1007/s00500-017-2858-2
https://doi.org/10.1007/s10207-019-00463-w
https://doi.org/10.1007/s10207-019-00463-w

	Coin-based Secure Computations
	Abstract
	1 Introduction
	1.1 Related Work: Card-based Protocol
	1.2 Our Contribution
	1.3 Organization

	2 Model of Coin-based Protocols
	2.1 Basic Idea
	2.2 Coin-based Protocols
	2.3 Feasibility of Actions
	2.4 Definitions for Security
	2.5 Extended Diagram

	3 Examples of the Coin-based Protocol
	3.1 NOT Protocol
	3.2 AND Protocol
	3.3 COPY Protocol
	3.4 OR Protocol
	3.5 XOR Protocol

	4 Toward More Protocols
	4.1 Pickup Action
	4.2 Modified Protocols Suitable for Composition
	4.3 Examples of Composition Protocols

	5 Effect of Human Error
	6 Conclusions
	Acknowledgements
	References

