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Abstract

Perfect information coin-flipping and leader-election

games arise naturally in the study of fault toler-

ant distributed computing and have been con-

sidered in many different scenarios. Answering a

question of Ben-Or and Linial we prove that for

every c < 1 there are such games on n players in

which no coalition of cn players can influence the

outcome with probability greater than some uni-

versal constant times c. We show that a random

protocol of a certain length has this property and

give an explicit construction as well.

1 Introduction

A fundamental problem of fault tolerant distributed

computing is that of n processors wishing to agree

on a random value. The problem becomes non-

trivial when some of the processors are faulty.

The problem has been considered in many dif-

ferent scenarios, depending on the assumptions

made on the type of communication between the

processors, the kind and number of faults, and

the power of the adversary. See the surveys of

Chor and Dwork [10] and Ben-or, Linial and Saks

[7]. In the present paper we consider it in the

natural model formulated by Ben-Or and Linial

[6] (whose formal description is given in the next

subsection): the processors have complete infor-

mation, (i.e. the communication type is a pub-

lic broadcast channel), the processors take turns

broadcasting some random values and the out-

come is a function of all the bits that were sent.

The adversary is assumed to be computationally

unlimited. The problem is to design protocols

where the influence on the outcome of any set of

faulty processors not exceeding a certain size is

bounded.

A closely related problem is that of leader

election: the processors take turns broadcast-

ing messages. At the end of the protocol, as a

function of the bits transmitted, one processor

is considered the leader. The problem is to de-

sign protocols that have the property that for any

coalition of faulty processors whose size does not

exceed a certain threshold, the probability that

a member of the coalition be elected is bounded.

Unlike the Byzantine case, where the exact

thresholds for achieving an agreement were known

[10, 11], for the perfect information scenario a

gap existed: it was known that n
2 cheaters (out

of n players) can completely control the protocol,

yet the best known protocol [13, 1] (improving

the one in [6]) has the property that only sets

of cheaters of size less than n
3 log n have influence

bounded away from 1.

In this paper we resolve this problem and

show that there are protocols where even a linear

number of cheaters have only bounded influence.

We first show in Section 2, via a probabilistic



construction , the existence of an election proto-

col that can tolerate up to 1
3n cheaters (i.e. the

elected leader will not be faulty with some non-

zero probability). Then, in section 3, we show

an explicit construction that works for a smaller

(yet linear in n) threshold. This easily gives coin

flipping protocols with a similar behaviour.

Our proofs combine probabilistic arguments

with an iterative procedure based on the pseudo-

random properties of projective and affine planes.

The analysis requires a study of a game which

we call faulty baton passing that is performed in

each iteration of the procedure.

1.1 Preliminaries, background and re-

sults

A perfect-information coin-flipping game of n play-

ers is a rooted tree T whose leaves are labeled by

0 or 1 and whose internal vertices are labeled by

the names of the players. In addition, each inter-

nal vertex v is associated with a probability dis-

tribution Dv on its children. Starting from the

root, the player whose name labels the current

vertex v chooses one of its children according to

the distribution Dv, and the game proceeds to

the chosen child. When a leaf is reached the

game ends and its value is the label of the leaf.

Note that the same player may have to make

more than one choice in a game. It is sometimes

assumed that the tree T is binary and that the

probability distribution associated with each in-

ternal vertex is the uniform distribution on its

two children. This makes no essential difference,

and hence we use here the more general defini-

tion.

Let N denote the set of players. We say that

a player I ∈ N plays fairly if he makes his choice

randomly (according to the corresponding prob-

ability distribution) whenever it is his turn to

make a choice in the course of the game.

Let pT
1 be the probability of reaching a leaf

labeled 1 if all players play fairly. T is a fair

game if p1(T ) = 1/2. For a subset S of the set

of players N , let pT
1 (S) denote the probability of

reaching a 1-leaf when the coalition S plays the

optimal strategy trying to maximize the proba-

bility of reaching a 1-value. Here we assume that

all the other players play fairly and that each

player in S knows exactly which other players are

in S. The influence IT
1 (S) of S towards 1 in the

game T is defined by IT
1 (S) = pT

1 (S) − pT
1 . The

influence IT
0 (S) of S towards 0 in T is defined

similarly and the (total) influence I(S) = IT (S)

is defined by I(s) = IT
1 (S) + IT

0 (S). Therefore,

I(S) measures the capability of S to control the

game, and a game is robust if I(S) is small for

every relatively small S. In [6] it is proved that

for every perfect-information coin-flipping game

T of a set N of n players, where pT
1 is bounded

away from 0 and 1, and for every k ≤ n there

is a subset S ⊂ N of cardinality k whose influ-

ence I(S) is at least Ω(k/n). In the same paper

the authors construct a fair game of n players

in which the influence of each set of k players,

where k ≤ O(nlog32) is at most O(k/n). Improv-

ing the estimates of Saks in [13], Ajtai and Linial

[1] showed that there is a fair game on n players

in which the influence of each set of k ≤ n
3 log n is

at most O(k/n). These results lead to the follow-

ing problem, raised in [6], and referred to as the

most outstanding problem in this area in some

of the more recent papers on the subject.

Problem ( [6], see also [1] ) Are there fair perfect-

information coin-flipping games of n players in

which for every k ≤ n the influence of every set

of k players is at most O(k/n)? In particular,

are there such games in which there is no set of

size o(n) whose influence is 1− o(1)?

In the present paper we show that the an-

swer to both questions is ”yes”. We first present



a probabilistic proof of existence of such games.

Afterwards we describe, for every positive c < 1,

an explicit construction of perfect-information

coin-flipping fair games of n players in which

there is no set of cn players whose influence ex-

ceeds O(c).

Our results are better formulated in terms of

leader-election games. A leader-election game of

n players is a rooted tree T whose vertices are

labeled by the names of the players, and each

internal vertex v is associated with a probability

distribution Dv on its children. Starting from the

root, the player whose name labels the current

vertex v chooses one of its children according to

the distribution Dv, and the game proceeds to

the chosen child. When a leaf is reached the

game ends and the chosen leader is the label of

this leaf.

For a subset S of players, let pT (S) denote the

probability that a leader from S is chosen, when

the coalition S plays the optimal strategy try-

ing to maximize the probability of such a choice,

(and when all other players play fairly). For a

constant δ > 0 and for t ≤ n let us call, following

[13], a leader-election game T δ-robust against t-

cheaters if pT (S) ≤ δ for any subset S of at most

t players. Let t(n, δ) denote the maximum t such

that there exists a leader-election game of n play-

ers which is δ-robust against t cheaters. From

any leader-election game T one can construct its

associated coin-flipping fair game C(T ) obtained

by letting the chosen leader flip a coin and decide

the value of the game. Thus formally, C(T ) is

the game obtained from the tree T by adding to

each leaf v of T two children labeled 0 and 1, and

by associating v with the uniform distribution on

these two children. It is obvious that for a subset

S of players, the influence of S towards 0 or to-

wards 1 in C(T ) is precisely pT (S)/2. Therefore,

the existence of robust leader-election games im-

plies the existence of robust coin-flipping games.

This leads naturally to the problem of estimating

t(n, δ).

In [13] Saks constructed a leader election game

which is δ-robust against c(δ)n/ log n cheaters,

for any 0 < δ < 1, where c(δ) is a positive

constant depending only on δ. This shows that

t(n, δ) > c(δ)n/ log n. Answering a question raised

in [13] we show that in fact t(n, δ) > Ω(δn) for

all 0 < δ < 1. Moreover, for any ǫ < 1/3 there

is a δ < 1 such that t(n, δ) > ǫn. As noted in

[13] there is a simple argument that shows that

t(n, δ) < n/2 for all δ < 1. It would be interest-

ing to close the gap between the two constants

1/2 and 1/3 here.

Our best lower bounds (in terms of the con-

stants) for t(n, δ) are obtained by probabilistic

arguments, described in the next section. How-

ever, we also give an explicit construction of leader-

election games of n players which are δ-robust

against Ω(δn)-cheaters.

2 The existence of robust games

Let T be a full binary rooted tree of depth d.

Put N = {1, . . . , n}, and let us label each inter-

nal vertex v of T , randomly and independently,

by a number in N chosen according to a uni-

form distribution on N . Observe that T is a

leader-election game of n players. Our first result

in this section is the following theorem, which

demonstrates the existence of very robust leader-

election games.

Theorem 2.1 Let T be the leader-election game

chosen randomly as above. Then, the probability

that there is a set S ⊂ N of cardinality ǫn, where

ǫ < 1/3, such that pT (S) is at least

ǫ +
ǫ3/2

√
2(1−

√

1/2 + 3ǫ/2)
+ γ



does not exceed
(

n

ǫn

)

ǫ(1/2 + 3ǫ/2)d

γ2
.

In particular, there is an n-player leader-election

game T of depth O(n) in which for any set of

ǫn ≤ 1
4n players pT (S) ≤ ǫ + 12ǫ3/2.

Note that even if all players in an n-players

leader-election game play fairly, then for every ǫ

(which is an integral multiple of 1/n) there is a

set S of ǫn players such that the leader is chosen

among the members of S with probability of at

least ǫ. This shows that the last estimate for

pT (S) in the theorem above is sharp, up to the

additive lower order term 12ǫ3/2.

The theorem is proved by deriving estimates

on the expectation and variance of the the value

of pT (S) in a randomly chosen leader election

game. Then, using Chebyschev’s Inequality it is

shown that with the required probability there

is no set S where pT (S) is larger than the bound

in the theorem. A similar strategy is used in the

proof of the main result of [5], but the proof here

contains several additional ideas.

First we establish the following two lemmas.

Lemma 2.2 Let Y, Z be two independent ran-

dom variables with equal expectations E(Y ) =

E(Z) = E and equal variances V ar(Y ) = V ar(Z) =

σ2. Let ǫ ≤ 1 be a positive constant and let X be

the random variable defined as Y +Z
2 with prob-

ability 1 − ǫ and Max{Y, Z} with probability ǫ.

Then:

E(X) = E +
ǫ

2
E(|Y − Z|) ≤ E +

ǫσ√
2

(1)

V ar(X) ≤ σ2(
1

2
+

3ǫ

2
). (2)

The proof is based on the fact that Max(Y, Z) =
Y +Z

2 + |Y −Z|
2 and applies Jensen’s and Cauchy-

Schwartz inequalities. The details appear in the

full version [4].

In order to state the next lemma we need

some more notation. Let T be, as before, a full

binary rooted tree of depth d, whose vertices are

labeled randomly and independently by the ele-

ments of N = {1, . . . , n}. Let a < 1 be a posi-

tive number and let us choose, for every leaf v of

T randomly and independently, a weight w(v),

where w(v) = 1 with probability a and w(v) = 0

with probability 1 − a. Let S ⊂ N be a fixed

subset of cardinality |S| = ǫn. Define a weight

function wa,S on the vertices of T as follows. If v

is a leaf of T then wa,S(v) = w(v). If u is an in-

ternal vertex of T and v1, v2 are its two children

then:

wa,S(u) = Max{wa,S(v1), wa,S(v2)} if u is la-

beled by an element of S, and

wa,S(u) =
wa,S(v1)+wa,S(v2)

2 otherwise.

Obviously, for fixed S, a and for every fixed

vertex v of T , wa,S(v) is a random variable whose

value depends on the random choices of the la-

bels of the internal vertices of T and on the ran-

dom choices of the weights w(v) of the leaves of

T .

Lemma 2.3 Let v be a vertex of T whose dis-

tance from the leaves is h. Then the expectation

and the variance of the random variable wa,S(v)

satisfy:

E(wa,S(v)) ≤ a + ǫ

√
a√
2

h−1
∑

i=0

(
1

2
+

3ǫ

2
)i/2

≤ a + ǫ

√
a√

2(1−
√

1/2 + 3ǫ/2)

V ar(wa,S(v)) ≤ a(
1

2
+

3ǫ

2
)h.

The lemma is proved by induction on h. See the

full version [4].

Returning, now, to our randomly-chosen leader-

election game given by the randomly labeled tree

T of depth d, let us fix a set S with S = ǫn, where



ǫ < 1/3 and let us estimate the probability that

for this specific set S, the inequality

pT (S) > ǫ +
ǫ3/2

√
2(1−

√

1/2 + 3ǫ/2)
+ γ

holds. For every vertex v, let Tv denote the sub-

tree of T rooted at v. If the leader election game

is played on Tv then the probability that a leader

from S is chosen, when the coalition S plays the

optimal strategy trying to maximize the proba-

bility of such a choice, is pTv(S). Obviously, if v

is a leaf of T , then pTv(S) is 1 if the label of v is

in S and is 0 otherwise. More interesting is the

case that v is an internal vertex of T and u and

w are its two children. It is not too difficult to

check that in this case:

pTv(S) = Max{pTu(S), pTw(S)} if v is labeled by

an element of S, and

pTv(S) = pTu (S)+pTw (S)
2 otherwise.

Therefore, the random variables pTv(s) are

defined exactly as the random variables wa,S(v)

discussed in Lemma 2.3, where here a = ǫ. It fol-

lows that the expectations and variances of these

random variables satisfy the bounds appearing

in this lemma (with a = ǫ). In particular, when

we let v be the root of T we conclude that the

expectation and the variance of pTv(S) = pT (S)

satisfy

E(pT (S)) ≤ ǫ + ǫ

√
ǫ√
2

d−1
∑

i=0

(
1

2
+

3ǫ

2
)i/2

≤ ǫ +
ǫ3/2

√
2(1−

√

1/2 + 3ǫ/2)
,

and

V ar(pT (S)) ≤ ǫ(
1

2
+

3ǫ

2
)d.

Combining this with Chebyschev’s Inequality we

obtain:

Lemma 2.4 let S be a fixed set of ǫn < 1
3n play-

ers and let T be the leader-election game chosen

randomly as above. Then, for every positive γ,

the probability that

pT (S) ≥ ǫ +
ǫ3/2

√
2(1−

√

1/2 + 3ǫ/2)
+ γ

does not exceed

ǫ(1/2 + 3ǫ/2)d

γ2
.

✷

Proof of Theorem 2.1 By Lemma 2.4, for ev-

ery fixed subset of players S of cardinality |S| =
ǫn < 1

3n, the probability that pT (S) exceeds

ǫ +
ǫ3/2

√
2(1−

√

1/2 + 3ǫ/2)
+ γ

does not exceed

ǫ(1/2 + 3ǫ/2)d

γ2
.

Since the number of choices for S is
( n
ǫn

)

, the

desired result follows. ✷

Theorem 2.1 shows that for every ǫ that sat-

isfies

ǫ +
ǫ3/2

√
2(1−

√

1/2 + 3ǫ/2)
< 1

there is a δ < 1 such that t(n, δ) ≥ ǫn; i.e., there

are leader-election games on n players which are

δ-robust against ǫn-cheaters. This does not suf-

fice to prove the existence of such a δ for ǫ which

is, e.g., at least 1/4. Still, one can modify the

proof to show that such a δ exists for every ǫ <

1/3. To do so, we need one of the simple prop-

erties of the baton-passing game, together with a

randomized construction similar to the one given

above. The somewhat complicated details are

given in the full version [4].

As mentioned in the introduction, robust leader

election games supply robust coin-flipping games

by allowing the leader choose the random bit.

Therefore, as a simple consequence of Theorem

2.1 and its improvement described in the full ver-

sion [4] we obtain:



Theorem 2.5 (i) There are fair n-players coin

flipping games of depth O(n) such that the influ-

ence of every set of ǫn ≤ 1
4n players towards 0

or towards 1 is at most 1
2ǫ + 6ǫ3/2.

(ii) For every ǫ < 1/3 there are fair n-players

coin flipping games such that the influence of ev-

ery set of ǫn players towards 0 or towards 1 is

bounded away from 1/2.

This theorem solves the problem mentioned

in the introduction.

3 Explicit construction

In this section we show how to explicitly con-

struct coin-flipping games where the influence of

any set whose cardinality is smaller than some

linear threshold is bounded away from 1. We use

the idea put forth by Bracha [8] in the Byzantine

context of forming virtual players from commit-

tees of actual players. Say that a committee is

good if it has a certain ratio of good players to

bad players. The advantage of an assignment to

committees is that the ratio of good committees

to bad committees can be much better than the

ratio of good players to bad players.

Recall that baton passing is the game ana-

lyzed by Saks [13] and Ajtai and Linial [1] where

a leader is chosen by passing a baton among the

players. Initially the baton is held by some ar-

bitrary player and each player that receives the

baton picks a player that has not been selected

so far and gives him the baton.

In our scheme, the committees formed play

baton passing. When a committee gets the baton

it elects a leader (recursively) and decides on the

next committee to get the baton. The leader of

the last committee to hold the baton is the global

leader.

The advantage our game has over baton pass-

ing is that the bad players do not know in ad-

vance which committees will elect good leaders

and which bad leaders. Thus, though the per-

centage of bad leaders is high, a bad leader does

not necessarily choose a committee which elects

a good leader (which is the optimal strategy in

baton passing)

The committees are assigned using an affine

plane: each player corresponds to a point in the

plane and a committee is a line.

In the next subsection we analyze the vari-

ant of the baton passing game which is relevant

to our scheme: a good player might turn bad

when he receives the baton. (This corresponds

to the case that a good committee elects a bad

leader.) In subsection 3.2 we discuss the prop-

erties of the assignment to committees by affine

planes. Finally in subsection 3.3 we analyze the

resulting construction.

3.1 Faulty baton passing

In this subsection we analyze the baton passing

game when even the good players have a certain

probability ǫ of becoming faulty. We call this

variant the faulty baton passing game.

In the regular baton passing game the best

strategy for the bad participants is to select a

good player to receive the baton. By the mo-

ment reflection argument of [1] (or by induction

as in [13]) this is the best strategy in the faulty

baton passing game as well. Thus we can assume

that whenever a bad participant has the baton

he selects a good participant to receive it and a

good participant that becomes faulty also selects

a good participant to receive the baton.

We would like to find bounds on f(s, t) =

fǫ(s, t) the probability of the baton ending at

a bad player starting from a good player when

there are s (as yet unselected) good players, t

(as yet unselected) bad players and a good player

has probability ǫ of becoming faulty when he gets



the baton. (It is important that it not be known

in advance whether a good player would become

faulty when he will receive the baton.)

We assume 0 ≤ ǫ < 1
4 .

Clearly, f(0, t) = 1 ∀t ≥ 1 and f(s, 0) = 0 ∀s ≥ 0.

From the bad players strategy, for all s, t ≥ 1

f(s, t) =
s + ǫt

s + t
·f(s−1, t)+

t− ǫt

s + t
·f(s−1, t−1).

(3)

Lemma 3.1 For all s, t ≥ 0, 0 ≤ ǫ < 1
4

f(s, t) ≤ 8 · (t log2(t + 1))
1

1−4ǫ

(s + 1)1−ǫ
(4)

The proof is by induction on s+t, which involves

a technical computation and is given in the full

version [4].

3.2 Amplification via affine planes

In this subsection we describe a pseudo-random

property of projective planes which is applied in

[2, 3] and show how affine planes have a similar

property. Affine planes better fit our purposes

here. The property we need can be proved by an

eigenvalue argument and also more directly. We

omit the details.

Lemma 3.2 [2, 3] Let P = (P,L) be a projec-

tive plane of order p with a set P of n = p2+p+1

points and a set L of n lines. If A ⊂ P , |A| = ǫn,

then

∑

ℓ∈L

(|ℓ
⋂

A| − ǫ(p + 1))2 = ǫ(1− ǫ)p · n

Corollary 3.3 Let A = (P̄ , L̄) be an affine plane

of order p, obtained by deleting a line from the

projective plane of that order. Put m = p2 =

|P̄ | = |L̄| and recall that each ℓ ∈ L̄ has p points.

Suppose that A ⊂ P̄ , |A| = ǫm and suppose that

δ > 0. Then

|{ℓ ∈ L̄ : |ℓ
⋂

A| ≥ (ǫ + δ) · p}|

≤ ǫ(p2 + p + 1)

δ2p
≤ ǫ

δ2
(
√

m + 2)

Proof Let x =
∣

∣{ℓ ∈ L̄ : |ℓ⋂A| ≥ (ǫ + δ) · p}
∣

∣.

Embed A in the projective plane of order p, P =

(P,L). Observe that |A|
p2+p+1

= ǫp2

p2+p+1
and hence

|A|
p2+p+1

(p + 1) = ǫp2(p+1)
p2+p+1

≤ ǫp. By Lemma 3.2

∑

ℓ∈L̄

(|ℓ
⋂

A|− |A|
p2 + p + 1

(p+1))2 ≤ ǫp(p2 +p+1)

Each line among the x defined above contributes

to the left hand side at least δ2p2. Thus xδ2p2 ≤
ǫp(p2 + p + 1) implying the desired result. ✷

Remark: For every p = 2k there is an affine

plane of order p. Our algorithm uses the planes

of order 22k
. Note that the number of points in

a plane of order 22k
is equal to the number of

points in one line of a plane of order 22k+1

. This

is used for recursive application of the algorithm.

Remark The first author has suggested previ-

ously using projective planes as a construction

meeting some of the requirements of [8]. (See [10]

for details.) As we shall see, unlike the Byzan-

tine case, for our purposes it is not essential that

the size of the committees be small (logarithmic

in n).

Remark The construction is an instance of graphs

called dispersers that have many other applica-

tions. (See [9] for an extensive survey of con-

structions and applications.) There are several

other constructions of dispersers that can be used

for our purposes.

3.3 The construction

We are now ready to present the construction

in detail. We can assume without loss of gen-

erality that n is of the form 22j
: otherwise let

n′ = 22⌈log log n⌉
and make each of the n partici-

pants play the role of ⌊n′

n ⌋ or ⌈n′

n ⌉ in a game of

n′ participants. The ratio of bad players has not

increased by more than 1
n .



The scheme is as follows: form committees

by treating each player a as a point a ∈ P̄ in

the affine plane A = (P̄ , L̄) of order 22j−1

. Each

committee ℓ corresponds to a line ℓ ∈ L̄, i.e. a

player a is in committee ℓ iff a ∈ ℓ.

• Set m← threshold

• If n ≤ m than choose leader by baton pass-

ing. Otherwise:

1. Construct committees via affine planes.

2. ℓ← first committee

3. Repeat

(a) Let ℓ choose a leader recursively.

(b) Let the leader of ℓ choose a com-

mittee ℓ′ as yet unselected.

(c) ℓ← ℓ′

Until there are no unselected commit-

tees.

4. The leader of the last chosen commit-

tee ℓ is crowned as the leader of all

players.

The value of threshold is a function of ǫ. We

let it be the smallest number of the form 22r
,

where r is an integer, such that 22r ≥ (1
ǫ )

100.

(Note that for this choice (1
ǫ )

100 ≤ m ≤ (1
ǫ )

200.)

Observe that the total amount of work done

by each player is polynomial in n, since at each

stage of the recursion every two players are to-

gether in exactly one committee.

The next theorem implies that no set smaller

than some linear threshold can control the lead-

ership, and hence shows that our construction

gives a leader election game which is immune

against linear sized coalitions.

Theorem 3.4 There exists a positive constant

c such that for every positive ǫ < 1 the proto-

col specified above with an appropriately chosen

threshold (as a function of ǫ) is cǫ robust against

ǫn cheaters.

The theorem is established by proving two

lemmas that combine the pseudo-random prop-

erties of affine planes described in Corollary 3.3

with the analysis of faulty baton passing sum-

marized in Lemma 3.1. Due to space limitations

we omit the details, which appear, together with

some related remarks in the full version [4].
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