
COIN: Opening the Internet of Things

to People’s Mobile Devices

Maria Laura Stefanizzi∗, Luca Mottola+, Luca Mainetti∗, Luigi Patrono∗

∗University of Salento (Italy), +Politecnico di Milano (Italy) and SICS Swedish ICT

Abstract—People’s interaction with Internet of Things (IoT)
devices such as proximity beacons, body-worn sensors, and
controllable light bulbs is often mediated through personal
mobile devices. Current approaches often make applications
operate in separate silos, as the functionality of IoT devices
is fixed by vendors and typically accessed only through low-
level proprietary APIs. This limits the flexibility in designing
applications and requires intense wireless interactions, which
may impact energy consumption. COIN is a system architecture
that breaks this separation by allowing developers to flexibly
run a slice of a mobile app’s logic onto IoT devices. Mobile
apps can dynamically deploy arbitrary tasks implemented as
loosely-coupled components. The underlying run-time support
takes care of the coordination across tasks and of their real-
time scheduling. Our prototype indicates that COIN both enables
increased flexibility and improves energy efficiency at the IoT
device, compared to traditional architectures.

I. INTRODUCTION

The rise of smartphones and tablets makes them the estab-

lished means for people to interact with Internet of Things

(IoT) devices such as proximity beacons, body-worn sensors,

and controllable light bulbs. A multitude of applications

employs personal mobile devices to allow people to control,

interact, and query sensors and actuators in the environment

or on the human body. Technologies such as Bluetooth Low

Energy (BLE), now commonly found both on personal mobile

devices and IoT ones, are key facilitators for this trend.

Motivation. Architectures applied in these applications, how-

ever, treat the IoT devices as immutable black-boxes and

operate in separate silos. Mobile apps are sometimes re-

routed to intermediate gateways. Whenever direct access to the

IoT device is allowed, the latter typically offers application-

agnostic APIs that mainly enable extracting raw data and/or

controlling basic actuator functionality. Changes to the on-

board software are limited to firmware updates released by

manufacturers to patch bugs or security flaws.

Such a state of affairs entails that: i) mobile apps are

developed based on vendor-specific APIs, preventing porta-

bility; ii) even the simplest functionality requires intense

wireless interactions, affecting energy consumption; and iii)

app functionality are limited to the time of wireless connection,

that is, disconnected operations are fundamentally hampered.

Unlike current practice, many foresee the interaction be-

tween humans and IoT devices to happen over an open,

vendor-independent programmable substrate that enables a

multitude of apps to co-exist, similar to smartphones and

tablets. For example, an IoT device with body temperature

and heart rate sensors may serve both fitness apps to track an

individual’s well-being and smart-health apps that communi-

cate vital parameters to doctors. Individual building blocks

necessary to realize these functionalities are often already

available, yet a system architecture that blends them together

in a working realization is arguably still lacking.

COIN. We bridge this gap by designing a system architecture

that allows IoT devices to: i) run an arbitrary slice of a mobile

app’s logic in an on-demand fashion, and ii) host application

data according to programmer-provided criteria, independent

of the connection to user devices.

The problem is unique in many respects. Unlike traditional

sensor networking, for example, applications are supplied by

third parties. Their characteristics, such as processing and

memory requirements, are difficult to anticipate. Multiple ap-

plications may need to operate concurrently, that is, not simply

run side-by-side, but be able to exchange data with other a

priori unknown apps. Processing is also expected to be largely

event-driven; for example, being dictated by connections of

mobile devices, rather than occurring periodically.

COIN rests upon two pillars: a custom programming model

and a dedicated run-time support. The former is based on a

notion of lightweight task as a programmer-defined relocatable

slice of mobile app logic. In a fitness scenario, for example,

programmers may define a task that computes burned calories

based on the sensors available on fitness trackers. The mobile

phone may opportunistically deploy such a task on the fitness

tracker to limit data exchanges to a single quantity rather raw

data. Multiple tasks on an IoT device can interact in a loosely-

coupled manner, based on an actor-like [1] model.

COIN’s run-time support accommodates existing building

blocks to efficiently implement the required semantics. A

message broker mediates interactions across tasks, while their

executions are scheduled using an Earliest Deadline First

(EDF) policy. Dynamic deployment of tasks is supported

using a Virtual Machine (VM) developers plug in. Although

COIN is independent of the underlying hardware platform,

our prototype targets Cortex M microcontrollers (MCUs) and

BLE radios, representative of target applications where energy

budgets are as small as a COIN-cell battery.

We describe the design and implementation of a pervasive

game using COIN, an application otherwise unfeasible with

comparable features using vendor-specific architectures. We

also report on the performance of COIN in energy consumption

and execution times. The results indicate that the energy sav-

ings enabled by reducing wireless interactions through device-



local processing overcome the cost of code interpretation,

validating our design choices. The price to pay are larger

execution times, yet the values we obtain are not expected

impact the application responsiveness.

COIN’s main contributions are therefore: i) to increase

the flexibility in the design of IoT applications by giving

developers the ability to relocate slices of a mobile app’s logic

onto IoT devices, and ii) to improve the energy efficiency at

the IoT devices in applications where real-time requirements

are soft or absent. The remainder of the paper describes how

we concretely achieve these contributions.

II. STATE OF THE ART

We report on application scenarios, requirements to over-

come current limitations, and existing functionality.

A. Applications

Employing personal mobile devices as people’s interface

to the IoT yields applications with distinct characteristics,

exemplified next.

Body sensor apps. Body-worn devices with physiological or

inertial sensors are often used to monitor physical parameters,

for example, temperature and heart rate. The raw sensor values

are streamed to a smartphone, which acts as the sole process-

ing unit. Similar architectures tend to be inefficient. Frequent

wireless interactions between smartphones and sensors are

costly in energy consumption. Algorithms exist to relocate

part of the processing closer to the sensors. Examples are

found in activity recognition and electrocardiogram analysis

(ECG) [2]. The amount of data to transmit thus reduces, and

so energy consumption improves. Flexible system support on

the IoT device is required to employ these algorithms in a

vendor-independent and reconfigurable manner.

Immersive computing. Interactions between people’s devices

and IoT ones need not be continuous, but simply occur op-

portunistically whenever the two are in range. Representative

examples are pervasive games [12], where embedded devices

are hidden in the environment to bridge the game’s virtual

world with the physical reality. These devices are often used

as environment-immersed data stores to handle information

relevant to the game plot. Access to digital information is

dictated by physical location, enhancing the experience. Per-

vasive games are currently installed using dedicated hardware,

deployed solely for running the game and later removed.

Reusing already installed hardware is generally not possible,

as it misses the necessary programming facilities.

Monitoring and tracking. The continuous interactions be-

tween mobile and IoT devices may break also because the

latter are mobile. In supply chain applications [7], sensors are

attached to packages to log information such as temperature

and vibrations during transportation. When a package enters

a warehouse, locally stored information are uploaded to the

mobile phones of the warehouse personnel for inspection. In

this scenario as well, the ability to store and process sensor

data on the IoT device independent of the connection to a

person’s device is fundamental. Right now, such degree of

decoupling can only be realized with one-off application-

specific implementations.

B. Requirements

System architectures at the IoT device that overcome these

limitations should fulfill several requirements:

• Device-local processing: running application-specific func-

tionality on the IoT device decouples its operation from the

mobile device and allows one to reduce wireless interac-

tions, saving energy.

• Data persistency: the IoT device must be able to retain

application data according to programmer-provided criteria

independent of the connection to a mobile device, enabling

disconnected operations.

• Dynamic deployment: the logic at the IoT device may not

be known beforehand, but be provided on-the-fly by the

mobile device; the run-time support at the IoT device must

accommodate this need.

• Real-time scheduling: independently-developed applica-

tions may need to coexist on the same IoT device; the

system must ensure that their real-time requirements are

fulfilled whenever possible.

• High-level programming and portability: application

functionality for the IoT device must be developed using

high-level languages and not require increased efforts to

adapt to different hardware.

In contrast, current applications are normally developed

with a “sense-and-send” design. IoT devices are employed as

shipped by manufacturers, that is, with pre-loaded firmwares

that only enable low-level interactions. As a result, the en-

tire application logic executes at the mobile device and is

encoded in a vendor-specific manner. Besides not enabling

any disconnected operation, these designs decrease portability,

consequently increase development efforts, and are detrimental

to energy consumption.

C. Building Blocks

Approaches exist that address specific issues in the scenarios

we target; for example, in the field of operating systems (OSes)

for sensor nodes, VM technology for resource-constrained

devices, and interoperability frameworks.

Sensor network OSes such as Contiki and LiteOS offer

dynamic linking capabilities, which allow different applica-

tions to be added or replaced at run-time. However, the OS

per se does not provide a programming model that allows

dynamically-deployed applications to discover each other and

exchange data. Differently, components must be developed

based on how they bind to already running components, which

requires intimate knowledge of the latter. Most importantly,

OSes in this area offer low-level programming interfaces based

on languages such as C, which contrasts with the modern

development tools available for mobile apps.

VMs for resource-constrained devices retain the ability of

dynamic code deployment while offering hardware indepen-

dence and higher-level programming languages, such as Java



Task 1 Task 2 Task n…

Data store

Sensors Actuators

deploy task

read data

connected device

Fig. 1. Tasks interacting in a loosely coupled manner.

or Python. These aspects motivate us to base COIN on VM

technology. The cost of code interpretation is the price we pay

to facilitate the development process. Because of the rise of

energy-efficient 32-bit MCUs, such as ARM’s Cortex M series,

we demonstrate this represents an effective design point.

The design of COIN is orthogonal to the specific VM

one plugs into the architecture. Maté [10] offers a custom

language that can be tailored to specific application domains.

TakaTuka [3] and Darjeeling [5] provide Java VMs for 16-

bit MCUs, whereas Squawk [14] targets higher-end devices.

DAViM [8] focuses on isolating multiple applications from

each other. In general, the design of embedded VMs targets

efficient code interpretation, without providing dedicated ab-

stractions for coordinating concurrent third-party applications.

The heterogeneity of IoT devices motivates efforts in inter-

operability frameworks and reference architectures. Examples

are AllJoyn and IoTivity. These ease development by defining

vendor-agnostic APIs for applications to inter-operate, based

on IoT devices with much greater resources compared to

ours and without providing the ability to relocate parts of

the application logic. Efforts such as IoT-A, SENSEI, and

OpenIoT provide open architectures to facilitate application

development via semantically-interoperable interfaces. These

are complementary to COIN, which may help realize more

flexible or efficient implementations exported through the

same interfaces as in these architectures.

III. COIN ARCHITECTURE

COIN revolves around a dedicated programming model and

a run-time support to implement the required semantics. We

only provide a few highlights here, and refer the reader to a

companion technical report [11] for details.

A. Programming Model

We design COIN’s programming model based on the char-

acteristics of mobile apps where relocating a slice of the logic

onto the IoT device may achieve benefits such as better designs

or improved performance, as we exemplified in Section II.

On the other hand, we do not target applications where

IoT devices need only be equipped with application-agnostic

functionality; for example, in case they are used as “beacons”

in the environment for indoor localization.

The key feature in COIN’s programming model is the shift

of interactions to data rather devices. At the core of this is a

notion of task as a relocatable slice of app logic.

Decoupling. To facilitate interactions among third-party func-

tionality, tasks are fully decoupled. They cannot share global

1 def foo(x):

2 # do something...

3

4 def boo(x):

5 # do something else...

6

7 startTask()

8 y = foo(inputData)+boo(inputData)

9

10 output(y)

Fig. 2. Example task code.

data and only interact asynchronously in an actor-like fash-

ion [1]. Data exchanges occur through a single abstract data

store, as in Figure 1. This spares the need of dynamically

reconfiguring the bindings among tasks as these come and go,

and enables data-driven discovery of available functionality.

Tasks are completely defined by the data types they consume

or produce. Information on these are included in a manifest

deployed with the task. The data types are specified as named

data structures. The manifest of the task deployed by the

fitness app, for example, may indicate input types that include

acceleration and blood pressure as double precision numerical

values, and outputs such as burned calories as integer values.

Existing sensor data models [4] can be applied to uniform

naming and format.

Execution. Figure 2 shows a code snippet for a simple

task using the Python syntax, yet the programming model is

independent of the specific language.

Task execution is reactive, and triggered only by the avail-

ability of any of the input data types. For example, we dis-

courage the use of long-running threads whose fair scheduling

may become difficult. Input data is made available using a

dedicated API, which also provides operations to output the

results and to indicate the start of processing, required to

simplify Python’s modularity model. An example of the former

is the output() function in Figure 2. This API is the only

interface developers employ to write tasks; other than this,

developers can encode arbitrary application logic.

The input data of a task may come from the sensors

aboard the device, or be the result of a different task. In

the former case, sensors are automatically probed according

to the required input rates specified in the manifest. For

example, a health-monitoring app may employ the burned

calorie information of the fitness app to augment the long-

term time analysis. Such a data-driven programming facilitates

developing vendor-independent interaction paradigms.

Execution of tasks is also decoupled from the connection

to a person’s mobile device. Tasks may, for example, reside

on the IoT device also whenever the mobile device that

originally deployed them moves away. Unlike the traditional

actor model [1] where data is lost if no actor immediately

consumes it, COIN applies persistency to data as well. Data

resides on the IoT device according to programmer-defined

criteria, such as a given time interval, catering for the needs

of immersive mobile computing applications [12].



B. Run-time Support

COIN’s run-time support includes three components: i) a

data broker to mediate task interactions, ii) a scheduler to

regulate task execution, and iii) a VM layer.

Broker and scheduler. The broker matches data producers

and consumers based on data types. Whenever a match is

identified, the consumer task is handed over to the scheduler.

In our prototype, the broker maps items in the data store to

BLE characteristics to give mobile devices standard-compliant

access to data.

If multiple tasks consume the same data type, the match

happens simultaneously. The scheduler thus implements an

Earliest Deadline First (EDF) policy. Information on the

absolute deadline of a task and its expected execution time

are part of the manifest. Static analysis tools and emulators

can be used to estimate the latter. The scheduler also ensures

that every task runs to completion; concurrent events, such as

connection requests from other mobile devices, are postponed

until the task finishes.

We choose EDF because of its real-time optimality: if a

schedule able to meet all task deadlines exist, EDF finds one.

The processing overhead of EDF is no issue in our setting,

also because we do not expect a large number of tasks to

be triggered simultaneously. As tasks should be short-lived,

running them to completion does not pose problems, as in

architectures with similar design rationales.

Virtual machine. We port PyMite, a reduced Python inter-

preter, as VM layer. COIN is independent of the language to

write tasks, but we choose Python for several reasons. Com-

pared to languages such as Java, its implementation on em-

bedded devices is less limited; for example, PyMite retains the

support to multiple programming paradigms, including object-

oriented and functional. Moreover, Python directly compiles

to bytecode, which reduces network traffic when deploying

tasks. The most complex application we tested so far yields

slightly more than 1 KB of bytecode.

We map COIN tasks to PyMite threads, which requires

adapting the latter along multiple dimensions. We replace

the built-in round-robin scheduler with EDF. In the original

PyMite, the state of a thread is lost when the execution exits;

we thus extend the VM to maintain the thread state across

executions of the same task. Finally, we choose to save the

precious RAM segments and store the Python bytecode on

flash memory, which demands the VM to execute off the latter.

Prototype. Our prototype targets 32-bit Cortex M MCUs and

BLE radios. Albeit COIN’s programming model is independent

of the underlying network technology, BLE is arguably a

natural choice whenever integration with people’s mobile

devices is necessary and interactions may be triggered by

proximity, as determined by radio connectivity [13]. We offer

a primary example in Section IV. The prototype is mainly

intended to provide a basis to assess the design rationale. It has

a few limitations, which would require further implementation

work and yet would not alter COIN’s conceptual design.

PyMite does not offer per se resource arbitration, required

to ensure that tasks by different parties safely share resources.

This feature may be seen as desirable in any IoT VM.

There exist literature on the subject [9] that can be applied

to address this issue. Moreover, interactions across personal

mobile devices and IoT ones are currently encoded by directly

accessing the APIs of the BLE stack, that is, by reading

and writing BLE characteristics. A dedicated APIs would be,

however, needed on both sides to express such interactions at

a higher-level of abstraction.

Modern networking stacks, such as BLE, are already

equipped with built-in security features. As a result, the main

security threat for COIN is likely going to be the authenticity of

the Python bytecode. Techniques such as code signing [6] exist

to address this issue, and are shown to be applicable to devices

even more constrained than the ones we target. For example,

the digital signatures employed in the Deluge protocol [6]

incur very limited processing overhead. Porting these solutions

to COIN should therefore be feasible with limited effort. Most

importantly, code signing would be a one-time cost at the

moment of deploying a task. The performance figures we

discuss in Section V—obtained after a task is successfully

deployed—would therefore retain their validity.

IV. USING COIN

We report on the use of COIN in the design and implemen-

tation of a pervasive game [12] whose logic spans smartphone

and IoT devices in the environment.

The game. Only the bravest can become pirates! To prove

their qualities, the aspiring pirates must travel to a mysterious

island and overcome several challenges.

Players are divided into teams. The team who obtains the

highest score becomes the pirate crew. To accumulate points,

a team must collect items scattered across the island. Items are

of different types: compasses, rare seeds, parrot eggs, bottles

of rum, and sabers. The value of the first three kinds of items is

10 points. The latter two give 200 points, and can be obtained

by paying a merchant with some of the collected items.

A team may decide to transform rare seeds and parrot

eggs into plants and parrots, respectively. By doing so, the

transformed item yields a score 10 times higher of the original

one. However, eggs and seeds grow only if they live at the

right temperature for a sufficient time. To this end, teams must

deposit the collected eggs or seeds in suitable places, taking

care not to be seen by opponents, who could kidnap the items

after their transformation.

From virtual to physical. COIN allows us to develop the

game in a way that no other existing platform would enable.

Real-time user interactions happen through the touch interface

of a standard smartphone. We deploy COIN on ST Nucleo-

F091RC prototyping boards equipped with a BlueNRG BLE

radio and an ST X-Nucleo-IKS01A1 sensor shield, as shown

in Figure 3, and install them in our department building.

We map virtual items in the game to dedicated data struc-

tures dynamically stored through COIN aboard the Nucleo

boards. As a result, accessibility of items corresponds to



Fig. 3. User interface on a person’s smartphone and environment-immersed
sensor device in our pervasive game.

1 from coin import *
2

3 # ... initialization ...

4 startTask()

5

6 #get temperature value

7 temp = getIntInput(0)

8

9 # ...seed germination ...

10 if (count == TIME_TO_GERMINATE):

11

12 # process and output germination level

13 output(germination)

Fig. 4. Task code to simulate seed germination over time and depending on
physical temperature.

proximity to the Nucleo board storing the corresponding

data structure—as dictated by BLE communication range—

and mobility on the island maps to physical mobility in our

building. Implementing the collection or release of items in

the game is thus as simple as reading or writing from/to

COIN’s data store from a player’s smartphone. With this de-

sign, straightforwardly enabled by COIN, virtual and physical

dimensions spontaneously blend together.

However, there is more that COIN enables. Temperature

conditions that determine how eggs and seeds grow are now

simple to link to temperature in the physical environment. A

player’s smartphone can dynamically deploy, together with

the item itself, a simple COIN task that periodically probes

the temperature sensor on the Nucleo board and accordingly

modifies the values of the data structures representing eggs and

seeds. This may happen independent of the connection to a

player’s smartphone, giving players the illusion that the game

unfolds across the virtual and the physical world. Figure 4

shows an excerpt of the task implementation that simulates the

germination of seeds, which becomes as small as 320 Bytes

at the time of deploying the task from the smartphone.

Finally, unlike existing pervasive games [12], COIN nat-

urally allows other apps to re-use the deployed sensing in-

frastructure. Say, for example, a new app is developed to

control air conditioning in our offices based on temperature

and individual preferences. A user’s smartphone may deploy

a new COIN task that computes short- and long-term trends

of relevant quantities, useful as inputs for implementing the

feedback loop. Provided the sampling periods are compatible,

the new task may just re-use part of the sensed data that the

game already requires.

V. PERFORMANCE

Our prototype requires about 154 KB of program memory

and about 10 KB of data memory. About 90% of this is due to

PyMite and BLE drivers. However, PyMite is only meant to

provide a working Python interpreter and its memory demands

could be significantly reduced by tailoring it to COIN. Even

at prototype stage, COIN fits most existing 32-bit embedded

platforms. For example, the Cortex M0 core often used in

SoC designs with a BLE radio provides 256 KB (16 KB) of

program (data) memory.

Replacing wireless transmissions with device-local process-

ing typically improves energy consumption. With energy effi-

cient protocols such as BLE, 32-bit MCUs, and the overhead

of code interpretation, such a claim needs to be newly demon-

strated. Therefore, we measure COIN’s energy performance in

a set of representative applications against a traditional “sense-

and-send” design implemented in C to validate our design

choices. Similarly, we compare the execution times of COIN

against functionally-equivalent implementations in C. In both

cases, the C implementations are deployed as an immutable

binary on the target platform.

A. Benchmarks and Metrics

We consider three applications based on the scenarios and

requirements previously discussed. Each application corre-

sponds to a COIN task.

We first consider Run Length Encoding (RLE) compres-

sion. RLE is often advocated for applications where sensors

report stable values. Next, we consider an activity-detection

algorithm to distinguish between standing or walking activi-

ties. The activity detection (AD) occurs on 5 Hz accelerometer

data by computing average and standard deviation of the signal

amplitude. Finally, we consider an algorithm to extract ECG

information [2]. The signal is passed through multiple tap

filters and then compared against a threshold to detect peaks

indicating physiological issues.

We consider four prototyping platforms: a Freescale FRDM-

KL46Z, a Nordic nRF51-DK, a NXP LPCXpresso1549, and

a NXP LPCXpresso4337. These offer the full range of Cortex

M MCUs, as well as varying amounts of program (256 KB to

1024 KB) and data (16 KB to 136 KB) memory. We attach

Bluetooth extension boards where necessary. In the absence

of an earth-rate sensor, we use the accelerometer; this does

not impact the execution of the ECG algorithm. We disable all

unnecessary peripherals.

We measure energy consumption and execution times

through a Tektronix 1072B oscilloscope. The values we

present are averages over at least five repetitions. The standard

deviation across different runs, not shown in the charts, is

always within 5% of the average. Detailed information on the

experimental setup are found in the companion report [11].



FRDM-KL46Z
nRF51-DK

nRF51-DK
LPCXpresso1549
LPCXpresso4337

 0

 5

 10

 15

 20

 25

 30

 35

 40

RLE AD ECG

E
n
e
rg

y
 i
m

p
ro

v
e
m

e
n
t 
(%

)

Application

Fig. 5. Energy performance of COIN compared to a sense-and-send design.

TABLE I
EXECUTION TIMES OF TASKS WITH PCXPRESSO4337.

Task Plain C [us] COIN [ms] Ratio

RLE 108,37 8,63 79,93

AD-local 163,97 4,98 30,55

AD-transmission 68,31 5,22 76,76

ECG-local 127,82 3,78 29,76

ECG-transmission 89,21 4,55 51,12

B. Results

Energy consumption. We feed data to RLE so to achieve a

50% compression ratio, in fact pessimistic for RLE compres-

sion of sensor data [15]; AD reports data to a smartphone every

30 sec, whereas ECG samples the sensors at 30 Hz. Results

by varying these parameters are, nonetheless, available [11].

Figure 5 reports the results. The trade-off between saving

transmissions by deploying COIN tasks and the additional

MCU overhead due to code interpretation is in favor of COIN.

In our experiments, the improvement in energy consumption

is at least 25%, with a best case of 35%. This is despite the

efficient energy performance of BLE radios.

The LPCXpresso4337 board shows the best performance in

Figure 5 when running the AD task. The FPU of the Cortex M4

core speeds up the execution of the floating point operations

in AD. In contrast, the Cortex M0+ core on the nRF51-

DK provides the best performance with sequential byte-level

operations, as in RLE.

Note that the energy cost for deploying the task is a one-

time cost. The AD task, for example, requires about 50 packets.

These may be transmitted using BLE’s streaming mode, which

reduces efforts for packet trains. Thus, the energy overhead

quickly amortizes as a task continues to run.

Execution times. Larger execution times represent the cost

for increased flexibility and better energy efficiency in COIN.

For the AD and ECG tasks, we separate the case of regular

local processing at every iteration from the case of data

transmission that requires extra computations to prepare data

for transmission.

Table I shows the results for PCXpresso4337 board. The

ratios are similar for the other platforms. The values are still

in the same order of magnitude of packet transmissions, and

should not be detrimental to the app responsiveness, including

user interactions. The slowdown is vastly dominated by code

interpretation, and yet the values in Table I are in line with

existing literature [5], [3]. Note that PyMite is not expressly

designed for the platforms we target, neither we explicitly

optimize it besides the adaptations in the previous section.

As each task takes longer to run, the slowdown may impact

the overall schedulability, limiting the number of tasks con-

currently executing. However, we can run up to six instances

of the AD task on a Cortex M0 MCU, for example, before

scheduling becomes unfeasible.

VI. CONCLUSION

We presented COIN, a software architecture that provides

the glue necessary to create an open vendor-independent

programming substrate of IoT devices accessible from people’s

mobile devices. COIN offers a high-level programming model

based on a lightweight notion of task as a relocatable unit

of mobile app logic. Its run-time support takes care of the

tasks’ dynamic deployment, real-time scheduling, and cross-

task coordination. We demonstrated how COIN overcomes the

limitations of traditional designs; for example, by enabling a

degree of flexibility in the design of immersive computing

applications that no other existing platform may similarly

provide. We also showed that the device-local processing

COIN enables can improve a device’s energy consumption up

to a 35% factor in our tests, at the expense of larger execution

times due to code interpretation.

Acknowledgments. The authors would like to thank Riccardo

Paccagnella for the implementation work on the pervasive

game described in Section IV, and Naveed Bhatti for sup-

porting the authors during the experimental evaluation.

REFERENCES

[1] G. Agha. Actors: a model of concurrent computation in distributed

systems. PhD thesis, MIT Artificial Intelligence Laboratory, 1985.
[2] D. Albu, J. Lukkien, and R. Verhoeven. On-node processing of ECG

signals. In IEEE CCNC, Jan 2010.
[3] F. Aslam et al. Optimized Java binary and virtual machine for tiny

motes. In IEEE DCOSS, 2010.
[4] M. Botts and A. Robin. OpenGIS sensor model language (SensorML).

OpenGIS Implementation Specification OGC, 7, 2007.
[5] N. Brouwers et al. Darjeeling, a feature-rich VM for the resource poor.

In ACM SENSYS, 2009.
[6] P. K. Dutta, J. W. Hui, D. C. Chu, and D. E. Culler. Securing the deluge

network programming system. In IEEE/ACM IPSN, 2006.
[7] S. Hoppough. Shelf life. Forbes Magazine, 2006.
[8] W. Horré, S. Michiels, W. Joosen, and P. Verbaeten. DAVIM: Adaptable

middleware for sensor networks. IEEE Distributed Systems Online, 9(1),
2008.

[9] A. Lachenmann et al. Meeting lifetime goals with energy levels. In
ACM SENSYS, 2007.

[10] P. Levis and D. Culler. MatÉ: A tiny virtual machine for sensor networks.
SIGOPS Oper. Syst. Rev., 36(5), 2002.

[11] M. L. Stefanizzi, L. Mottola, L. Mainetti, L. Patrono. Coin: Opening the
internet of things to people’s mobile devices. Technical report 2016.17,
Politecnico di Milano, http://goo.gl/oMHRRT.

[12] C. Magerkurth, A. D. Cheok, R. L. Mandryk, and T. Nilsen. Pervasive
games: Bringing computer entertainment back to the real world. Comput.

Entertain., 3(3), 2005.
[13] L. Mottola et al. Enabling scope-based interactions in sensor network

macroprogramming. In IEEE MASS, 2007.
[14] D. Simon et al. JavaTMon the bare metal of wireless sensor devices:

The Squawk Java virtual machine. In ACM VEE, 2006.
[15] N. Tsiftes et al. Efficient sensor network reprogramming through

compression of executable modules. In IEEE SECON, 2008.


