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1 Introduction
Consistent with [] (see also []), Y denotes an arbitrary nonempty set, (X,d) a met-
ric space and CL(X) (resp. CB(X)), the collection of all nonempty closed (resp. closed
bounded) subsets of X. The hyperspace (CL(X),H) (resp. (CB(X),H)) is called the gen-
eralized Hausdorff (resp. the Hausdorff) metric space induced by the metric d on X.
For nonempty subsets A, B of X, d(A,B) denotes the gap between the subsets A and B,

while

ρ(A,B) = sup
{
d(a,b) : a ∈ A,b ∈ B

}
,

BN(X) = {A :∅ �= A⊆ X and the diameter of A is finite}.

As usual, we write d(x,B) (resp. ρ(x,B)) for d(A,B) (resp. ρ(A,B)) when A = {x}.
For the sake of brevity, we choose the following notations, wherein S, T , f , and g are

maps to be defined specifically in a particular context, while x and y are elements of some
specific domain:

M(S,T ; fx, gy) =max

{
d(fx, gy),d(fx,Sx),d(gy,Ty),

d(Sx, gy) + d(Ty, fx)


}
;

M(Sx,Ty) =max

{
d(x, y),d(x,Sx),d(y,Ty),

d(Sx, y) + d(Ty,x)


}
.

Let CB(X) denote the class of all nonempty closed bounded subsets of X.
A map T : X → CB(X) is called a Nadler multivalued contraction if there exists k ∈ [, )

such that, for every x, y ∈ X, H(Tx,Ty) ≤ kd(x, y).
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The classical multivalued contraction theorem due to Nadler [] states that Nadler mul-
tivalued contraction on a complete metric space X has a fixed point in X, that is, there
exists z ∈ X such that z ∈ Tz. For a detailed discussion of this theorem on generalized
Hausdorff metric spaces and applications, one may refer to [–], and [].
Nadler’s multivalued contraction theorem [] has led to a rich fixed point theory for

multivalued maps in nonlinear analysis (see, for instance [, –, –], and [, , ,
]). It has various applications in mathematical sciences (see, for instance, [, , –],
and []).
The following important result involving two pairs of hybrid maps on an arbitrary

nonempty set with values in a metric space is due to Singh andMishra [] (see also []).

Theorem . Let S,T : Y → CL(X) and f , g : Y → X be such that S(Y ) ⊆ g(Y ) and T(Y ) ⊆
f (Y ) and one of S(Y ), T(Y ), f (Y ) or g(Y ) is a complete subspace of X. Assume there exists
r ∈ [, ) such that, for every x, y ∈ Y ,

H(Sx,Ty)≤ rM(S,T ; fx, gy).

Then
(i) S and f have a coincidence point v in Y ;
(ii) T and g have a coincidence point w in Y .

Further, if Y = X, then
(iii) S and f have a common fixed point v provided that fv is a fixed point of f , and f and

S commute at v;
(iv) T and g have a common fixed point w provided that gw is a fixed point of g , and g

and T commute at w;
(v) S, T , f , and g have a common fixed point provided that (iii) and (iv) both are true.

The following result due to Kikkawa and Suzuki [] (see also [, ]) generalizes
Nadler’s multivalued contraction theorem.

Theorem . Let X be a complete metric space and T : X → CB(X). Assume there exists
r ∈ [, ) such that, for every x, y ∈ X,

d(x,Tx)≤ ( + r)d(x, y) (.)

implies

H(Tx,Ty) ≤ rd(x, y). (.)

Then T has a fixed point in X.

Subsequently, some interesting extensions and generalizations of Theorem . have re-
cently been obtained among others by Abbas et al. [], Dhompongsa and Yingtaweesit-
tikul [], Doric̀ and Lazovic̀ [], Kamal et al. [], Moţ and Petruşel [], Singh and
Mishra [, ] and Singh et al. [, ], and [].
The importance of Suzuki contraction theorem [, Theorem ], Theorem . and sub-

sequently obtained coincidence and fixed point theorems (cf. [, , , , , –],
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and others) for maps in metric spaces satisfying Suzuki type contractive conditions is that
the contractive conditions are required to be satisfied not for all points of the domain. For
example, the condition (.) of Theorem . puts some restrictions on the domain of the
map T .
In all that follows, we take a nonincreasing function ϕ from [, ) onto (, ] defined by

ϕ(r) =

⎧⎨
⎩
 if  ≤ r < 

 ,

 – r if 
 ≤ r < .

Recently, Singh et al. [] obtained the following coincidence and common fixed point
theoremwhich generalizes a result of Doric̀ and Lazovic̀ [] and some other results from
[, ], and [].

Theorem . Let S,T : Y → CL(X) and f : Y → X be such that S(Y ) ⊆ f (Y ) and T(Y ) ⊆
f (Y ). Assume there exists r ∈ [, ) such that, for every x, y ∈ Y ,

ϕ(r)min
{
d(fx,Sx),d(fy,Ty)

} ≤ d(fx, fy)

implies

H(Sx,Ty) ≤ rM(Sx,Ty; fx, fy).

If one of S(Y ), T(Y ) or f (Y ) is a complete subspace of X, then there exists a point z ∈ Y such
that fz ∈ Sz ∩ Tz.
Further, if Y = X, and fz is a fixed point of f , then fz is common fixed point of S and T

provided that f is IT (Itoh-Takahashi)-commuting [] with S and T at z.

Now a natural question arises whether Theorem . can further be generalized. In this
paper, we answer this question affirmatively under tight minimal conditions. Our main
result (Theorem .) also presents an extension of Theorem . for a quadruplet of maps.
Some recent results are discussed as special cases. Further, using two corollaries of the
main result (Theorem .), we obtain other common fixed point theorems for multival-
ued and single-valued maps on metric spaces. We also deduce the existence of common
solution for a certain class of functional equations arising in dynamic programming. Ex-
amples are given to justify applications.

2 Main results
The following definition is due to Itoh and Takahashi [] (see also []).

Definition . Let T : X → CL(X) and f : X → X. Then the hybrid pair (T , f ) is IT-
commuting at z ∈ X if fTz ⊆ Tfz.

Evidently a pair of commutingmultivaluedmapT : X → CL(X) and a single-valuedmap
f : X → X are IT-commuting but the reverse implication is not true [, p.]. However, a
pair of single-valued maps f , g : X → X are IT-commuting (also called weakly compatible
by Jungck and Rhoades []) at x ∈ X if fgx = gfx when fx = gx.

http://www.fixedpointtheoryandapplications.com/content/2014/1/147
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We shall need the following lemma, essentially due to Nadler [] (see also [], [, p.],
[, p.].

Lemma . If A,B ∈ CL(X) and a ∈ A, then for each ε > , there exists b ∈ B such that
d(a,b)≤ H(A,B) + ε.

Let C(S, f ) denote the collection of all coincidence points of S and f , that is, C(S, f ) =
{z ∈ Y : fz ∈ Sz} when S : Y → CL(X) and f : Y → X; and C(S, f ) = {z ∈ Y : fz = Sz} when
S, f : Y → X. The following is the main result of this section.

Theorem. Let S,T : Y → CL(X) and f , g : Y → X be such that S(Y )⊆ g(Y ) and T(Y ) ⊆
f (Y ). Assume there exists r ∈ [, ) such that, for every x, y ∈ Y ,

ϕ(r)min
{
d(fx,Sx),d(gy,Ty)

} ≤ d(fx, gy)

implies

H(Sx,Ty) ≤ rM(S,T ; fx, gy).

If one of S(Y ), T(Y ), f (Y ) or g(Y ) is a complete subspace of X, then
(I) C(S, f ) is nonempty, i.e. there exists a point z ∈ Y such that fz ∈ Sz;
(II) C(T , g) is nonempty, i.e. there exists a point z ∈ Y such that gz ∈ Tz.

Furthermore, if Y = X, then
(III) S and f have a common fixed point provided that the maps S and f are

IT-commuting just at coincidence point z and fz is fixed point of f ;
(IV) T and g have a common fixed point provided that the maps T and g are

IT-commuting just at coincidence point z and gz is fixed point of g ;
(V) S, T , f , and g have a common fixed point provided that both (III) and (IV) are true.

Proof Without loss of generality, we may take r >  and f , g non-constant maps.
Let ε >  be such that β = r + ε < . We construct two sequences {xn} and {yn} in Y as

follows.
Let x ∈ Y and y = gx ∈ Sx. By Lemma ., there exists y = fx ∈ Tx such that

d(fx, gx) ≤ H(Sx,Tx) + εM(S,T ; fx, gx).

Similarly, there exists y = gx ∈ Sx such that

d(fx, gx) ≤ H(Sx,Tx) + εM(S,T ; fx, gx).

Continuing in this manner, we find a sequence {yn} in Y such that

yn = gxn+ ∈ Sxn, yn+ = fxn+ ∈ Txn+

and

d(fxn, gxn+)≤ H(Sxn,Txn–) + εM(S,T ; fxn, gxn–),

d(fxn+, gxn+) ≤ H(Sxn,Txn+) + εM(S,T ; fxn, gxn+).

http://www.fixedpointtheoryandapplications.com/content/2014/1/147
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Now, we show that, for any n ∈N ,

d(yn, yn–) ≤ βd(yn–, yn–). (.)

Suppose if d(gxn–,Txn–)≥ d(fxn,Sxn), then

ϕ(r)min
{
d(fxn,Sxn),d(gxn–,Txn–)

} ≤ d(fxn, gxn–).

Therefore by the assumption,

d(fxn, gxn+) ≤ H(Sxn,Txn–) + εM(S,T ; fxn, gxn–)

≤ rM(S,T ; fxn, gxn–) + εM(S,T ; fxn, gxn–)

= βM(S,T ; fxn, gxn–)

= β max

{
d(fxn, gxn–),d(fxn,Sxn),d(gxn–,Txn–),

d(gxn–,Sxn) + d(fxn,Txn–)


}
.

This yields (.). Suppose if d(fxn,Sxn) ≥ d(gxn–,Txn–), then

ϕ(r)min
{
d(fxn,Sxn),d(gxn–,Txn–)

} ≤ d(fxn, gxn–).

Therefore by the assumption,

d(fxn, gxn+) ≤ H(Sxn,Txn–) + εM(S,T ; fxn, gxn–)

≤ rM(S,T ; fxn, gxn–) + εM(S,T ; fxn, gxn–)

= βM(S,T ; fxn, gxn–)

= β max

{
d(fxn, gxn–),d(fxn,Sxn),d(gxn–,Txn–),

d(gxn–,Sxn) + d(fxn,Txn–)


}

≤ β max
{
d(fxn, gxn–),d(fxn, gxn+)

}
,

yielding (.). So, in both cases we obtain (.). In an analogous manner, we show that

d(yn+, yn) ≤ βd(yn, yn–). (.)

We conclude from (.) and (.) that, for any n ∈N ,

d(yn+, yn)≤ βd(yn, yn–).

Therefore the sequence {yn} is Cauchy. Assume that the subspace g(Y ) is complete. Notice
that the sequence {yn} is contained in g(Y ) and has a limit in g(Y ). Call it u. Let z ∈ f –u.
Then z ∈ Y and fz = u. The subsequence {yn+} also converges to u. Let z ∈ g–u. Then

gz = u. (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/147
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Now we show that, for any gy ∈ X – {fz},

d(u,Ty) ≤ rmax
{
d(u, gy),d(gy,Ty)

}
, (.)

and for any fy ∈ X – {gz},

d(u,Sy) ≤ rmax
{
d(u, fy),d(fy,Sy)

}
. (.)

Since fxn → fz, there exists n ∈N (natural numbers) such that

d(fxn, fz) ≤ 

d(fz, gy)q for gy �= fz and all n≥ n.

Also gxn+ → fz, there exists n ∈N such that

d(gxn+, fz) ≤ 

d(fz, gy) for gy �= fz and all n≥ n.

Then as in [, p.] (see also []),

ϕ(r)d(fxn,Sxn) ≤ d(fxn,Sxn) ≤ d(fxn, gxn+)

≤ 

d(fz, gy)

= d(fz, gy) –


d(fz, gy)

≤ d(fz, gy) – d(fxn, fz)

≤ d(fxn, gy).

Therefore

ϕ(r)d(fxn,Sxn) ≤ d(fxn, gy). (.)

Now, either d(fxn,Sxn) ≤ d(gy,Ty) or d(gy,Ty) ≤ d(fxn,Sxn).
In either case, by (.) and the assumption,

d(fxn+,Ty) ≤ H(Sxn,Ty) ≤ rM(S,T ; fxn, gy)

≤ rmax

{
d(fxn, gy),d(fxn,Sxn),d(gy,Ty),

d(fxn,Ty) + d(gy,Sxn)


}
.

Making n→ ∞,

d(u,Ty) ≤ rmax

{
d(u, gy),d(u,u),d(gy,Ty),

d(u,Ty) + d(u, gy)


}
,

≤ rmax

{
d(u, gy),d(gy,Ty),

d(u,Ty) + d(u, gy)


}
,

that is, d(u,Ty) ≤ rmax{d(u, gy),d(gy,Ty)}.

http://www.fixedpointtheoryandapplications.com/content/2014/1/147
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This yields (.), that is,

d(fz,Ty) ≤ rmax
{
d(fz, gy),d(gy,Ty)

}
.

Analogously, we can prove (.), that is,

d(gz,Sy)≤ rmax
{
d(gz, fy),d(fy,Sy)

}
.

Now, we show that C(S, f ) is nonempty.
First we consider the case ≤ r < 

 .
Suppose fz /∈ Sz. Then as in [, p.], let ga ∈ Sz be such that rd(ga, fz) < d(Sz, fz).
Since ga ∈ Sz implies ga �= fz, we have from (.) and (.),

d(fz,Ta) ≤ rmax
{
d(fz, ga),d(ga,Ta)

}
. (.)

On the other hand, since ϕ(r)d(fz,Sz) ≤ d(fz,Sz) ≤ d(fz, ga),

ϕ(r)min
{
d(fz,Sz),d(ga,Ta)

} ≤ d(fz, ga).

Therefore, by the given assumption,

d(ga,Ta) ≤ H(Sz,Ta)

≤ rmax

{
d(fz, ga),d(fz,Sz),d(ga,Ta),

d(fz,Ta) + d(ga,Sz)


}

= rmax
{
d(fz, ga),d(ga,Ta)

}
.

This gives d(ga,Ta) ≤ H(Sz,Ta) ≤ rd(fz, ga) < d(fz, ga).
So by (.), d(fz,Ta) ≤ rd(fz, ga).
Therefore,

d(fz,Sz) ≤ d(fz,Ta) +H(Sz,Ta) ≤ rd(fz, ga) + rd(fz, ga)

= rd(fz, ga) < d(fz,Sz).

This contradicts fz /∈ Sz. Consequently fz ∈ Sz, and C(S, f ) is nonempty.
In an analogous manner, we can prove in the case  ≤ r < 

 that C(T , g) is nonempty.
Now we consider the case 

 ≤ r < .
We first show that

H(Sz,Ty) ≤ rmax

{
d(fz, gy),d(fz,Sz),d(gy,Ty),

d(gy,Sz) + d(fz,Ty)


}
.

Assume that fz �= gy. Then for every n ∈N , there exists zn ∈ Ty such that

d(fz, zn) ≤ d(fz,Ty) +

n
d(fz, gy).

http://www.fixedpointtheoryandapplications.com/content/2014/1/147
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Therefore

d(gy,Ty) ≤ d(gy, zn)

≤ d(gy, fz) + d(fz, zn)

≤ d(gy, fz) + d(fz,Ty) +

n
d(fz, gy). (.)

So, using (.), the inequality (.) implies

d(gy,Ty) ≤ d(fz, gy) + rmax
{
d(fz, gy),d(gy,Ty)

}
+

n
d(fz, gy). (.)

If d(fz, gy) ≥ d(gy,Ty), then (.) gives

d(gy,Ty) ≤ d(fz, gy) + rd(fz, gy) +

n
d(fz, gy)

=
(
 + r +


n

)
d(fz, gy).

Making n→ ∞,

d(gy,Ty) ≤ ( + r)d(fz, gy).

Thus

ϕ(r)d(gy,Ty) = ( – r)d(gy,Ty)≤
(


 + r

)
d(gy,Ty) ≤ d(fz, gy).

Then

ϕ(r)min
{
d(fz,Sz),d(gy,Ty)

} ≤ d(fz, gy),

and by the assumption,

H(Sz,Ty) ≤ rmax

{
d(fz, gy),d(fz,Sz),d(gy,Ty),

d(gy,Sz) + d(fz,Ty)


}
. (.)

If d(fz, gy) < d(gy,Ty), then (.) gives

d(gy,Ty) ≤ d(fz, gy) + rd(gy,Ty) +

n
d(fz, gy),

that is, ( – r)d(gy,Ty) ≤ ( + 
n )d(fz, gy).

Making n→ ∞,

ϕ(r)d(gy,Ty) ≤ d(fz, gy).

Then ϕ(r)min{d(fz,Sz),d(gy,Ty)} ≤ d(fz, gy), and by the assumption, we get (.).
Now taking y = un+ in (.) and passing to the limit, we obtain d(fz,Sz) ≤ rd(fz,Sz).

http://www.fixedpointtheoryandapplications.com/content/2014/1/147
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This gives fz ∈ Sz, that is, z is a coincidence point of f and S. Analogously, fz ∈ Tz. Thus
(I) and (II) are completely proved.
Further, if Y = X, and fz is a fixed point of f , and S and f are IT-commuting at z, then

fSz ⊆ Sfz. Therefore, fz ∈ Sz implies ffz ∈ fSz ⊆ Sfz, so fz ∈ Sfz. This proves that u = fz is a
common fixed point of f and S. Therefore (.) implies that u is a common fixed point of
f and S. This proves (III). Analogously, T and g have a common fixed point gz. Therefore
(.) implies that u is a common fixed point of T and g . This proves (IV). Now (V) is
immediate. �

Remark . In Theorem ., the hypothesis ‘fz is a fixed point of f ’ is essential for the
existence of a common fixed point of S and f (see [, ] and the following example).
Similarly, the hypothesis ‘gz is a fixed point of g ’ is essential for the existence of a common
fixed point of T and g .

Example . Let X = R+ (nonnegative reals) be endowed with the usual metric. Define
for x ∈ X, fx = x, gx = x, Sx = [  ,x

 + 
 ] and Tx = [  ,x

 + 
 ]. Then S(X) = T(X) =

[  ,∞) ⊂ X = f (X) = g(X), and all other hypotheses of Theorem . with Y = X = R+ are
satisfied for r = 

 = ϕ(r). Notice that gz = Tz = 
 , where z = –/. Thus g and T have a

coincidence at z, but gz = 
 is not a fixed point of g andhence not a commonfixedpoint of

g andT . Note that z = 
 is a coincidence point of f and S, and Sf (z) = [  ,


 ] ⊂ [  ,


 ] = fS(z),

that is, f and S are IT-commuting at z. Evidently, z = f (z) is a common fixed point of f
and S.

The following result due to Singh et al. [] extends and generalizes certain results of
[, , ] and others.

Corollary . Let S : Y → CL(X) and f , g : Y → X be such that S(Y ) ⊆ f (Y ) ∩ g(Y ). As-
sume there exists r ∈ [, ) such that, for every x, y ∈ Y ,

ϕ(r)min
{
d(fx,Sx),d(gy,Sy)

} ≤ d(fx, gy)

implies

H(Sx,Sy)≤ rM(S; fx, gy).

If one of S(Y ), f (Y ) or g(Y ) is a complete subspace of X, then
(I) C(S, f ) is nonempty, i.e. there exists a point z ∈ Y such that fz ∈ Sz;
(II) C(S, g) is nonempty, i.e. there exists a point z ∈ Y such that gz ∈ Sz.

Furthermore, if Y = X, then
(III) S and f have a common fixed point provided that the maps S and f are

IT-commuting just at coincidence point z and fz is fixed point of f ;
(IV) S and g have a common fixed point provided that the maps S and g are

IT-commuting just at coincidence point z and gz is fixed point of g ;
(V) S, f , and g have a common fixed point provided that both (III) and (IV) are true.

Proof It follows from Theorem . when T = S. �

http://www.fixedpointtheoryandapplications.com/content/2014/1/147
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We remark that in general the coincidence points z and z guaranteed by Theorem .
or Corollary . may be different. However, if we take f = g in Theorem ., the maps S,
T , and f have a common coincidence point. So we have a slightly sharp result.

Corollary . Theorem ..

Proof It follows from Theorem . when g = f . �

The following result extends and generalizes certain results of [, ] and others.

Corollary . [] Let X be a complete metric space and S,T : X → CL(X). Assume there
exists r ∈ [, ) such that, for every x, y ∈ X,

ϕ(r)min
{
d(x,Sx),d(y,Ty)

} ≤ d(x, y) implies H(Sx,Ty)≤ rM(Sx,Ty).

Then there exists an element z ∈ X such that z ∈ Sz ∩ Tz.

Proof It follows from Theorem . when Y = X and f and g are the identity maps on
Y = X. �

The following result due to Doric̀ and Lazovic̀ [] generalizes many fixed point theo-
rems from [, ] and [].

Corollary . Let X be a complete metric space and S : X → CL(X). Assume there exists
r ∈ [, ) such that, for every x, y ∈ X,

ϕ(r)d(x,Sx)≤ d(x, y) implies H(Sx,Sy)≤ rM(Sx,Sy).

Then there exists an element z ∈ X such that z ∈ Sz.

Proof It follows from Theorem . when Y = X, T = S, and f , g are the identity maps
on X. �

The following result extends a common fixed point theorem of [, Theorem .].

Corollary . Let f , g,P,Q : Y → X be such that P(Y ) ⊆ g(Y ), Q(Y ) ⊆ f (Y ), and one of
P(Y ) or Q(Y ) or f (Y ) or g(Y ) is complete subspace of X. Assume there exists r ∈ [, ) such
that, for every x, y ∈ Y ,

ϕ(r)min
{
d(fx,Px),d(gy,Qy)

} ≤ d(fx, gy)

implies

d(Px,Qy) ≤ rM(P,Q; fx, gy).

Then C(P, f ) and C(Q, g) are nonempty. Further, if Y = X, and if f , g , P, and Q are com-
muting at a common coincidence point, then f , g , P, and Q have a unique common fixed
point, that is, there exists a unique point z ∈ X such that fz = gz = Pz =Qz = z.

http://www.fixedpointtheoryandapplications.com/content/2014/1/147
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Proof Set Sx = {Px} and Tx = {Qx} for every x ∈ Y . Then it easily comes fromTheorem .
that C(P, f ) and C(Q, g) are nonempty. Furthermore, if Y = X and f and g commute, re-
spectively, with P and Q at z, then ffz = fPz = Pfz, ffz = fQz = Qfz, ggz = gPz = Pgz, and
ggz = gQz =Qgz.
Also ϕ(r)min{d(fz,Pz),d(ffz,Qfz)} =  ≤ d(fz,ffz), and this implies

d(Pz,Qfz) ≤ rmax

{
d(fz,ffz),d(fz,Pz),d(ffz,Qfz),

d(fz,Qfz) + d(ffz,Pz)


}

= rd(Pz,Qfz).

This says that fz is fixed point of f and P. Analogously gz is fixed point of g and Q. The
uniqueness of the common fixed point follows easily. �

The following result extends and generalizes coincidence and common fixed point the-
orems of Goebel [], Jungck [], Fisher [], and others.

Corollary . [] Let f , g,P : Y → X be such that P(Y ) ⊆ f (Y )∩ g(Y ). Let P(Y ) or f (Y ) or
g(Y ) be a complete subspace of X. Assume there exists r ∈ [, ) such that, for every x, y ∈ Y ,

ϕ(r)min
{
d(fx,Px),d(gy,Py)

} ≤ d(fx, gy)

implies

d(Px,Py) ≤ rM(P; fx, gy).

Then C(P, f ) and C(P, g) are nonempty. Further, if Y = X and if P commutes with f and g
at a common coincidence point, then f , g , and P have a unique common fixed point, that
is, there exists a unique point z ∈ X such that fz = gz = Pz = z.

Proof It follows from Corollary . when Q = P. �

Corollary . Let (X,d) be a complete metric space and f , g : X → X be onto maps. As-
sume there exists r ∈ [, ) such that, for every x, y ∈ X,

ϕ(r)min
{
d(x, fx),d(y, gy)

} ≤ d(fx, gy) implies d(x, y)≤ rM(fx, gy).

Then f and g have a unique common fixed point.

Proof It follows from Corollary . when Y = X and P, Q both are the identity maps
on X. �

Corollary . Let (X,d) be a complete metric space and f : X → X be an onto map. As-
sume there exists r ∈ [, ) such that, for every x, y ∈ X,

ϕ(r)d(x, fx)≤ d(fx, fy) implies d(x, y)≤ rM(fx, fy).

Then f has a unique fixed point.
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Proof It follows from Corollary . when f = g . �

The following example shows that Theorem . is indeed more general than Theo-
rem ..

Example . Consider a metric space X = {(, ), (, ), (, ), (, ), (, )}, where d is de-
fined by

d
[
(x,x), (y, y)

]
= |x – y| + |x – y|.

Let S, T , f and g : X → X be such that

S(x,x) =

⎧⎪⎪⎨
⎪⎪⎩
(, ) if (x,x) �= (, ), (, ),

(, ) if (x,x) = (, ),

(, ) if (x,x) = (, ),

T(x,x) =

⎧⎪⎪⎨
⎪⎪⎩
(, ) if (x,x) �= (, ), (, ),

(, ) if (x,x) = (, ),

(, ) if (x,x) = (, ),

f (x,x) =

⎧⎨
⎩
(x,x) if (x,x) �= (, ), (, ),

(x,x) if (x,x) = (, ), (, )

and

g(x,x) = (x,x) for all (x,x) ∈ X.

Then S, T , f , and g do not satisfy the assumption in Theorem . at x = (, ), y = (, )
or at x = (, ), y = (, ). However,

d(Sx,Ty)≤ 

max

{
d(fx, gy),d(fx,Sx),d(gy,Ty),

d(Sx, gy) + d(Ty, fx)


}

if (x, y) �= ((, ), (, )) and (x, y) �= ((, ), (, )).
Since at (x, y) = ((, ), (, )), ϕ(r)min{d(fx,Sx),d(gy,Ty)} = ϕ(r)min{d(f (, ),S(, )),

d(g(, ),T(, ))} = ϕ(r)min{, } = ϕ(r).
Here we note that the value of r is /, so by definition, ϕ(r) = /, so ϕ(r)min{d(fx,Sx),

d(gy,Ty)} =  >  = d(fx, gy).
Thus S, T , f , and g satisfy the assumption of Theorem . (and also Corollary .).

In the following example, we show that two multivalued maps and two single-valued
maps satisfy all the hypotheses of Theorem . to ensure common coincidence points of
pairwise maps.

Example . Let Y = {a,b, c,d} and X = {, , , , }. Let d be the usual metric on X, and
S, T , f , and g be defined on Y with values in X as

S(x) =

⎧⎨
⎩

{, , } if x = a,b, c,

{} if x = d,
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T(x) =

⎧⎨
⎩

{, , } if x = a,b, c,

{} if x = d,

f (x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

 if x = a,

 if x = b,

 if x = c,

 if x = d

and

g(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

 if x = a,

 if x = b,

 if x = c,

 if x = d.

Notice that S(Y )⊂ g(Y ) and T(Y ) ⊂ f (Y ). Further, all other conditions of Theorem . are
readily verified with r = / and ϕ(r) = /. Evidently, fa ∈ Sa, fb ∈ Sb, fc ∈ Sc, and ga ∈ Ta,
gb ∈ Tb, gc ∈ Tc. Moreover, C(f ,S) = C(g,T) = {b, c,d}.

Now we give an application of Corollary ..

Theorem . Let S,T : Y → BN(X) and f , g : Y → X be such that S(Y ) ⊆ g(Y ), T(Y ) ⊆
f (Y ), and let one of S(Y ), T(Y ), f (Y ) or g(Y ) be a complete subspace of X. Assume there
exists r ∈ [, ) such that, for every x, y ∈ Y ,

ϕ(r)min
{
ρ(fx,Sx),ρ(gy,Ty)

} ≤ d(fx, gy) (.)

implies

ρ(Sx,Ty)≤ rmax

{
d(fx, gy),ρ(fx,Sx),ρ(gy,Ty),

d(fx,Ty) + d(gy,Sx)


}
. (.)

Then C(S, f ) and C(T , g) are nonempty.

Proof Choose λ ∈ (, ). Define single-valued maps h,h : X → X as follows. For each
x ∈ X, let hx be a point of Sx which satisfies

d(fx,hx)≥ rλρ(fx,Sx).

Similarly, for each y ∈ X, let hy be a point of Ty such that

d(gy,hy) ≥ rλρ(gy,Ty).

Since hx ∈ Sx and hy ∈ Ty,

d(fx,hx)≤ ρ(fx,Sx) and d(gy,hy) ≤ ρ(gy,Ty).

http://www.fixedpointtheoryandapplications.com/content/2014/1/147
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So (.) gives

ϕ(r)min
{
d(fx,hx),d(gy,hy)

} ≤ ϕ(r)min
{
ρ(fx,Sx),ρ(gy,Ty)

} ≤ d(fx, gy), (.)

and this implies (.). Therefore

d(hx,hy) ≤ ρ(Sx,Ty)

≤ r · r–λ max

{
rλd(fx, gy), rλρ(fx,Sx), rλρ(gy,Ty),

rλd(fx,Ty) + rλd(gy,Sx)


}

≤ r–λ max

{
d(fx, gy),d(fx,hx),d(gy,hy),

d(fx,hy) + d(gy,hx)


}
.

So (.), viz., ϕ(r′)min{d(fx,hx),d(gy,hy)} ≤ d(fx, gy) implies

d(hx,hy) ≤ r′ max

{
d(fx, gy),d(fx,hx),d(gy,hy),

d(fx,hy) + d(gy,hx)


}
,

where r′ = r–λ < .
Hence by Corollary ., there exist z, z ∈ Y such that hz = fz and hz = gz. This

implies that z is a coincidence point of f and S, and z is a coincidence point of g and T .
�

Corollary . Let S : Y → BN(X) and f , g : Y → X be such that S(Y ) ⊆ f (Y )∩ g(Y ), and
let one of S(Y ), f (Y ) or g(Y ) be a complete subspace of X. Assume there exists r ∈ [, ) such
that, for every x, y ∈ Y ,

ϕ(r)min
{
ρ(fx,Sx),ρ(gy,Sy)

} ≤ d(fx, gy) (.)

implies

ρ(Sx,Sy)≤ rmax

{
d(fx, gy),ρ(fx,Sx),ρ(gy,Sy),

d(fx,Sy) + d(gy,Sx)


}
. (.)

Then C(S, f ) and C(S, g) are nonempty.

Proof It follows from Theorem . when T = S. �

Corollary . [] Let S,T : Y → BN(X) and f : Y → X be such that S(Y )⊆ f (Y ),T(Y ) ⊆
f (Y ) and let S(Y ) or T(Y ) or f (Y ) be a complete subspace of X.Assume there exists r ∈ [, )
such that, for every x, y ∈ X,

ϕ(r)min
{
ρ(fx,Sx),ρ(fy,Ty)

} ≤ d(fx, fy)
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implies

ρ(Sx,Ty)≤ rmax

{
d(fx, fy),ρ(fx,Sx),ρ(fy,Ty),

d(fx,Ty) + d(fy,Sx)


}
.

Then there exists z ∈ Y such that fz ∈ Sz ∩ Tz.

Proof It follows from Theorem . when g = f . �

Corollary . [] Let X be a complete metric space and let S,T : X → BN(X). Assume
there exists r ∈ [, ) such that, for every x, y ∈ X,

ϕ(r)min
{
ρ(x,Sx),ρ(y,Ty)

} ≤ d(x, y)

implies

ρ(Sx,Ty)≤ rmax

{
d(x, y),ρ(x,Sx),ρ(y,Ty),

d(x,Ty) + d(y,Sx)


}
.

Then there exists a unique point z ∈ X such that z ∈ Sz ∩ Tz.

Proof It follows from Theorem . when f and g are the identity maps on X. �

Corollary . Let S : Y → BN(X) and f : Y → X be such that S(Y )⊆ f (Y ), and let S(Y ) or
f (Y ) be a complete subspace of X. Assume there exists r ∈ [, ) such that, for every x, y ∈ Y ,

ϕ(r)ρ(fx,Sx)≤ d(fx, fy)

implies

ρ(Sx,Sy)≤ rmax

{
d(fx, fy),ρ(fx,Sx),ρ(fy,Sy),

d(fx,Sy) + d(fy,Sx)


}
.

Then there exists z ∈ Y such that fz ∈ Sz.

Proof It follows from Theorem . when g = f and T = S. �

Corollary . Let X be a complete metric space and let S : X → BN(X). Assume there
exists r ∈ [, ) such that, for every x, y ∈ X,

ϕ(r)ρ(x,Sx)≤ d(x, y)

implies

ρ(Sx,Sy)≤ rmax

{
d(x, y),ρ(x,Sx),ρ(y,Sy),

d(x,Sy) + d(y,Sx)


}
.

Then there exists a unique point z ∈ X such that z ∈ Sz.

Proof It follows from Theorem . that S has a fixed point when f = g is the identity map
on X and T = S. The uniqueness of the fixed point follows easily. �
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3 Applications
Throughout this section, we assume thatU and V are Banach spaces,W ⊆U and D ⊆ V .
Let R denote the field of reals, τ : W × D → W , g, g ′ : W × D → R and G,G,F,F :
W × D × R → R. Considering W and D as the state and decision spaces respectively,
the problem of dynamic programming reduces to the problem of solving the functional
equations:

pi = sup
y∈D

{
g(x, y) +Gi

(
x, y,p

(
τ (x, y)

))}
, x ∈W , i = , , (.a)

qi = sup
y∈D

{
g ′(x, y) + Fi

(
x, y,q

(
τ (x, y)

))}
, x ∈W , i = , . (.b)

Indeed, in the multistage process, some functional equations arise in a natural way (cf.
Bellman [] and Bellman and Lee []; see also [, –], and []). In this section,
we study the existence of a common solution of the functional equations (.a) and (.b)
arising in dynamic programming.
Let B(W ) denote the set of all bounded real-valued functions on W . For an arbitrary

h ∈ B(W ), define ‖h‖ = supx∈W |h(x)|. Then (B(W ),‖ · ‖) is a Banach space. Suppose that
the following conditions hold:
(DP-) G, G, F, F, g , and g ′ are bounded.
(DP-) Let ϕ(r) be defined as in the previous sections. Assume that there exists

r ∈ [, ) such that, for every (x, y) ∈W ×D, h,k ∈ B(W ), and t ∈W ,

ϕ(r)min
{∣∣Jh(t) –Ah(t)

∣∣, ∣∣Jk(t) –Ak(t)
∣∣} ≤ ∣∣Jh(t) – Jk(t)

∣∣

implies

∣∣G
(
x, y,h(t)

)
–G

(
x, y,k(t)

)∣∣ ≤ rM(A,A; Jh, Jk),

where

M(A,A; Jh, Jk)

=max

{∣∣Jh(t) – Jk(t)
∣∣, ∣∣Jh(t) –Ah(t)

∣∣, ∣∣Jk(t) –Ak(t)
∣∣,

|Jh(t) –Ak(t)| + |Jk(t) –Ah(t)|


}
,

and A, A, J, and J are defined as follows:

Aih(x) = sup
y∈D

{
g(x, y) +Gi

(
x, y,h

(
τ (x, y)

))}
, x ∈W ,h ∈ B(W ), i = , ,

Jih(x) = q = sup
y∈D

{
g ′(x, y) + Fi

(
x, y,h

(
τ (x, y)

))}
, x ∈W ,h ∈ B(W ), i = , .

(DP-) For any h,k ∈ B(W ), there exist u, v ∈ B(W ) such that

Ah(x) = Ju(x) and Ak(x) = Jv(x), x ∈W .
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(DP-) There exist h,k ∈ B(W ) such that

Jh(x) = Ah(x) implies JAh(x) = AJh(x)

and

Jk(x) = Ak(x) implies JAk(x) = AJk(x).

Theorem . Assume the conditions (DP-)-(DP-) hold. Let J(B(W )) be a closed convex
subspace of B(W ). Then the functional equations (.a) and (.b), i = , , have a unique
bounded common solution in B(W ).

Proof For any h,k ∈ B(W ), let d(h,k) = sup{|h(x)–k(x)| : x ∈W }. Then (B(W ),d) is a com-
plete metric space.
Let λ be an arbitrary positive number and h,h ∈ B(W ). Pick x ∈W , and choose y, y ∈

D such that

Ajhj < g(x, yj) +Gj
(
x, yj,hj(xj)

)
+ λ, xi = (x, yi), i = , , (.)

where xj = τ (x, yj).
Further,

Ah ≥ g(x, y) +G
(
x, y,h(x)

)
, (.)

Ah ≥ g(x, y) +G
(
x, y,h(x)

)
. (.)

Therefore, the first inequality in (DP-) becomes

ϕ(r)min
{∣∣Jh(x) –Ah(x)

∣∣, ∣∣Jh(x) –Ah(x)
∣∣}

≤ ∣∣Jh(x) – Jh(x)
∣∣, (.)

and this together with (.), (.), and (.) implies

Ah –Ah <G
(
x, y,h(x)

)
–G

(
x, y,h(x)

)
+ λ

≤ ∣∣G
(
x, y,h(x)

)
–G

(
x, y,h(x)

)∣∣ + λ

≤ rM(A,A; Jh, Jh) + λ. (.)

Similarly, (.), (.), and (.) imply

Ah(x) –Ah(x) ≤ rM(A,A; Jh, Jh) + λ. (.)

So, from (.) and (.), we obtain

∣∣Ah(x) –Ah(x)
∣∣ ≤ rM(A,A; Jh, Jh) + λ. (.)
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As λ >  is arbitrary and (.) is true for any x ∈ W , taking supremum, we find from (.)
and (.) that

ϕ(r)min
{
d(Jh,Ah),d(Jh,Ah)

} ≤ d(Jh, Jh)

implies

d(Ah,Ah) ≤ rM(A,A; Jh, Jh).

Therefore, Corollary . applies, wherein A, A, J, and J correspond, respectively, to
the maps P, Q, f , and g . So A, A, J, and J have a unique common fixed point h∗, that
is, h∗(x) is the unique bounded common solution of the functional equations (.a) and
(.b), i = , . �

Now we furnish an example in support of Theorem ..

Example . Let X = Y = R be a Banach space endowed with the standard norm ‖ · ‖
defined by ‖x‖ = |x|, for all x ∈ X. Suppose W = [, ] ⊂ X be the state space, and D =
[,∞)⊂ Y be the decision space.
Define τ :W ×D→W by

τ (x, y) =
x

y + 
, x ∈W , y ∈D.

For any h,k ∈ B(W ), and i = , , define pi,qi :W → R by

pi(x) = qi(x) = x +


.

Define Gi,F :W ×D× R→ R by

G(x, y, t) =



{
x

(x + )(y + )
sin

y
y + 

+ 
}
;

G(x, y, t) =



{
x

(x + )(y + )
sin

y
y + 

+ 
}
;

F(x, y, t) =


x + y + 
+


sin t;

F(x, y, t) =


x + y + 
+


sin t;

g(x, y) =
xy

x + y
and g ′(x, y) =

xy

x + y
.

Notice that G, G, F, F, g , and g ′ are bounded. Also

Jh(x) = sup
y∈D

{
g ′(x, y) + F

(
x, y,h

(
τ (x, y)

))}
= x +



= q(x), x ∈W ,h ∈ B(W );

Jk(x) = sup
y∈D

{
g ′(x, y) + F

(
x, y,k

(
τ (x, y)

))}
= x +



= q(x), x ∈W ,h ∈ B(W );
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Ah(x) = sup
y∈D

{
g(x, y) +G

(
x, y,h

(
τ (x, y)

))}
= x +



= p(x), x ∈W ,h ∈ B(W );

Ak(x) = sup
y∈D

{
g(x, y) +G

(
x, y,k

(
τ (x, y)

))}
= x +



= p(x), x ∈W ,h ∈ B(W ).

We see that

ϕ(r)min
{∣∣Jh(t) –Ah(t)

∣∣, ∣∣Jk(t) –Ak(t)
∣∣}

= ϕ(r)min
{∣∣q(x) – p(x)

∣∣, ∣∣q(x) – p(x)
∣∣}

=  =
∣∣Jh(t) – Jk(t)

∣∣.
Thus

ϕ(r)min
{∣∣Jh(t) –Ah(t)

∣∣, ∣∣Jk(t) –Ak(t)
∣∣} = ∣∣Jh(t) – Jk(t)

∣∣,
and this implies

∣∣G
(
x, y,h(t)

)
–G

(
x, y,k(t)

)∣∣ =  ≤ rM
(
A,A; Jh(t), Jk(t)

)
.

Finally for any h,k ∈ B(W ) with Ah = Jh, we have AJh = p(x) = q(x) = JJh = JAh, that is,
JAh = AJh, and with Ak = Jk, we have AJk = p(x) = q(x) = JJk = JAk, that is, JAk =
AJk.
Thus all the assumptions of Theorem . are satisfied. So the system of equations (.a)

and (.b) has a unique solution in B(W ).

Corollary . Suppose that the following conditions hold:
(i) G, F, F, g , and g ′ are bounded.
(ii) Let ϕ(r) be defined as in the previous sections. Assume that there exists r ∈ [, )

such that, for every (x, y) ∈W ×D, h,k ∈ B(W ), and t ∈W ,

ϕ(r)min
{∣∣Jh(t) –Ah(t)

∣∣, ∣∣Jk(t) –Ak(t)
∣∣} ≤ ∣∣Jh(t) – Jk(t)

∣∣
implies

∣∣G(
x, y,h(t)

)
–G

(
x, y,k(t)

)∣∣ ≤ rM(A; Jh, Jk),

where

M(A; Jh, Jk) = max

{∣∣Jh(t) – Jk(t)
∣∣, ∣∣Jh(t) –Ah(t)

∣∣, ∣∣Jk(t) –Ak(t)
∣∣,

|Jh(t) –Ak(t)| + |Jk(t) –Ah(t)|


}
,

and A, J, and J are defined as follows:

Ah(x) = sup
y∈D

{
g(x, y) +G

(
x, y,h

(
τ (x, y)

))}
, x ∈W ,h ∈ B(W ),

Jih(x) = q = sup
y∈D

{
g ′(x, y) + Fi

(
x, y,h

(
τ (x, y)

))}
, x ∈W ,h ∈ B(W ), i = , .
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(iii) For any h,k ∈ B(W ), there exist u, v ∈ B(W ) such that

Ah(x) = Ju(x) and Ak(x) = Jv(x), x ∈W .

(iv) There exist h,k ∈ B(W ) such that

Jh(x) = Ah(x) implies JAh(x) = AJh(x)

and

Jk(x) = Ak(x) implies JAk(x) = AJk(x).

Then the functional equations (.a) and (.b), i = , , have a unique bounded common
solution in B(W ).

Proof It follows from Theorem . when G =G =G. �

Corollary . [] Suppose that the following conditions hold:
(i) G, G, F , g , and g ′ are bounded.
(ii) Assume there exists r ∈ [, ) such that, for every (x, y) ∈ W ×D, h,k ∈ B(W ) and

t ∈W ,

ϕ(r)min
{∣∣Jh(t) –Ah(t)

∣∣, ∣∣Jk(t) –Ak(t)
∣∣} ≤ ∣∣Jh(t) – Jk(t)

∣∣

implies

∣∣G
(
x, y,h(t)

)
–G

(
x, y,k(t)

)∣∣
≤ rmax

{∣∣Jh(t) – Jk(t)
∣∣, ∣∣Jh(t) –Ah(t)

∣∣, ∣∣Jk(t) –Ak(t)
∣∣,

|Jh(t) –Ak(t)| + |Jk(t) –Ah(t)|


}
,

where A, A, and J are defined as follows:

Aih(x) = sup
y∈D

{
g(x, y) +Gi

(
x, y,h

(
τ (x, y)

))}
, x ∈W ,h ∈ B(W ), i = , ,

Jh(x) = q = sup
y∈D

{
g ′(x, y) + F

(
x, y,h

(
τ (x, y)

))}
, x ∈W ,h ∈ B(W ).

(iii) For any h,k ∈ B(W ), there exist u, v ∈ B(W ) such that

Ah(x) = Ju(x) and Ak(x) = Jv(x), x ∈ W .

(iv) There exist h,k ∈ B(W ) such that

Jh(x) = Ah(x) implies JAh(x) = AJh(x)
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and

Jk(x) = Ak(x) implies JAk(x) = AJk(x).

Then the functional equations (.a) and (.b)with F = F = F possesses a unique bounded
common solution in W .

Proof It follows from Theorem . when F = F = F . �

As an immediate consequence of Theorem . and Corollary ., we obtain the follow-
ing.

Corollary . [] Suppose that the following conditions hold:
(i) G, G, and g are bounded.
(ii) There exists r ∈ [,) such that, for every (x, y) ∈W ×D, h,k ∈ B(W ), and t ∈W ,

ϕ(r)min
{∣∣h(t) –Ah(t)

∣∣, ∣∣k(t) –Ak(t)
∣∣} ≤ ∣∣h(t) – k(t)

∣∣

implies

∣∣G
(
x, y,h(t)

)
–G

(
x, y,k(t)

)∣∣
≤ rmax

{∣∣h(t) – k(t)
∣∣, ∣∣h(t) –Ah(t)

∣∣, ∣∣k(t) –Ak(t)
∣∣,

|h(t) –Ak(t)| + |k(t) –Ah(t)|


}
,

where A and A are defined as follows:

Aih(x) = sup
y∈D

{
g(x, y) +Gi

(
x, y,h

(
τ (x, y)

))}
, x ∈W ,h ∈ B(W ), i = , .

Then the functional equation (.a) possesses a unique bounded solution in W .

Proof It follows from Corollary . when g = , τ (x, y) = x, and F(x, y, t) = t as the assump-
tion (DP-) becomes redundant in this context. �

The following result generalizes a recent result of Singh and Mishra [, Corollary .],
which in turn extends certain results from [] and [].

Corollary . Suppose that the following conditions hold:
(i) G and g are bounded.
(ii) There exists r ∈ [, ) such that, for every (x, y) ∈W ×D, h,k ∈ B(W ), and t ∈W ,

ϕ(r)
∣∣h(t) –Kh(t)

∣∣ ≤ ∣∣h(t) – k(t)
∣∣

implies

∣∣G(
x, y,h(t)

)
–G

(
x, y,k(t)

)∣∣ ≤ rmaxM
(
K ,K ;h(t),k(t)

)
,
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where K is defined as

Ah(x) = sup
y∈D

{
g(x, y) +G

(
x, y,h

(
τ (x, y)

))}
, x ∈ W ,h ∈ B(W ).

Then the functional equation (.a) with G =G =G possesses a unique bounded solution
in W .

Proof It follows from Corollary . when G =G =G. �
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