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Abstract
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1 Introduction and preliminaries

In the last decades, several authors have worked on domain theory in order to equip se-
mantics domain with a notion of distance. In 1994, Matthews [29] introduced the notion of
a partial metric space as a part of the study of denotational semantics of dataflow networks
and showed that the Banach contraction principle [16] can be generalized to the partial
metric context for applications in program verification. Later on, many researchers stud-
ied fixed point theorems in partial metric spaces as well as ordered partial metric spaces.
For more details, see [5, 6, 9-15, 19, 20, 33, 34, 36].

Recently, there have been so many exciting developments in the field of existence of fixed
points in partially ordered sets. For instance, Ran and Reurings [38] extended the Banach
contraction principle in partially ordered sets with some applications to matrix equations.
For more details on fixed point theory in partially ordered sets, we refer the reader to [1-4,
7, 8,17, 18, 24, 28, 30-32, 39, 41] and the references cited therein.

In this paper, we establish some coincidence and common fixed point results for three
self-mappings on an ordered partial metric space satisfying a generalized weak contractive
condition. The presented theorems extend some recent results in the literature. Moreover,
as application, we give a unique fixed point theorem for a mapping satisfying a weak cycli-
cal contractive condition.

Throughout this paper, R, will denote the set of all non-negative real numbers. First, we
start by recalling some known definitions and properties of partial metric spaces.

Definition 1.1 ([29]) A partial metric on a nonempty set X is a function p: X x X - R,
such that for all x,y,z € X:
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(p) x =y &= p(x,x) = p(x,y) = p(3,9),

(p2) p(x,x) < p(x,7),

(p3) plx,y) = p(y,x),

(p4) plx,y) < px,2) + p(z,y) - p(z,2).
A partial metric space is a pair (X, p) such that X is a nonempty set and p is a partial metric
on X.

It is clear that, if p(x,y) = 0, then from (pl) and (p2), x = y; but if x = y, p(x,y) may not
be 0. A basic example of a partial metric space is the pair (R,, p), where p(x, y) = max{x, y}
forallx,y e R,.

Other examples of partial metric spaces which are interesting from a computational
point of view may be found in [22, 29].

Each partial metric p on X generates a T, topology 7, on X which has as a base the
family of open p-balls {B,(x,¢),x € X,& > 0}, where B,(x,¢) = {y € X : p(x,y) < p(x,%) + ¢}
forallx € X and ¢ > 0.

If p is a partial metric on X, then the function p*: X x X — R, given by

(%) =2px,y) - p(x,x) = p(y,y) 11)
is a metric on X.

Definition 1.2 ([29]) Let {x,} be a sequence in X. Then
(i) {x,} converges to a point x € X if and only if p(x, x) = lim,_, ;o p(x, x,,). We may
write this as x,, — x.
(ii) {x,} is called a Cauchy sequence if limy; y— 400 P(¥1, X1,) €Xists and is finite.
(iii) (X,p) is said to be complete if every Cauchy sequence {x,} in X converges, with

respect to 7, to a point x € X, such that p(x, x) = limy,;— +c0 P(¥, Xim).

Lemma 1.3 ([29]) Let (X,p) be a partial metric space. Then
(a) {x.} is a Cauchy sequence in (X, p) if and only if it is a Cauchy sequence in the metric
space (X, p°).
(b) A partial metric space (X, p) is complete if and only if the metric space (X, p®) is
complete. Furthermore, limy,_; .00 p* (%4, %) = 0 if and only if

plx,x)= lim p(x,,x)= lim p(x,,x,).
n—+00 ,M—> +00

Definition 1.4 ([5]) Let (X,p) be a partial metric space and T : X — X be a given map-
ping. We say that T is continuous at xg € X, if for every ¢ > 0, there exists 1 > 0 such that
T (By(%0,1)) € B,(Txo,¢).

Lemma 1.5 (Sequential characterization of continuity) Let (X, p) be a partial metric space
and T : X — X be a given mapping. T : X — X is continuous at xo € X if it is sequentially

continuous at xo, that is, if and only if

Vix,) CX: lim x,=xy = lim Tx, = Txy,.
n—+00

n—+00
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Let X be a nonempty set and R: X — X be a given mapping. For every x € X, we denote
by R1(x) the subset of X defined by

R7Y(x) := {u € X|Ru = x}.

Definition 1.6 Let X be a nonempty set. Then (X, <, p) is called an ordered partial metric
space if and only if
(i) (X,p) is a partial metric space,

(i) (X, =) is a partially ordered set.

Definition 1.7 Let (X, <) be a partially ordered set. Then x,y € X are called comparable
ifx <y or y < x holds.

Definition 1.8 ([30]) Let (X, <) be a partially ordered set and 7,S,R : X — X be given
mappings such that 7X C RX and SX C RX. We say that S and T are weakly increasing
with respect to R if and only if, for all x € X, we have

Tx < Sy, VyeRYTIx)
and
Sx<Ty, VyeRSx).

Remark 1.9 If R : X — X is the identity mapping (Rx = x for all x € X, shortly R = Iy),
then the fact that S and T are weakly increasing with respect to R implies that S and T
are weakly increasing mappings, that is, Sx < TSx and Tx < STx for all x € X. Finally, a
mapping T : X — X is weakly increasing if and only if Tx < TTx for all x € X.

Example 1.10 Consider X = R, endowed with the usual ordering of real numbers and
define T,S,R: X — X by

x ifxe[0,3],
Tx=3 forallx e X, Sx = and Rx=x forallxeX.
3 ifx>3

Now, R7Y(Tx) = {3} and R71(Sx) = Sx, then S and T are weakly increasing with respect to R.

Definition 1.11 Let (X, <, p) be an ordered partial metric space. We say that X is regular
if and only if the following hypothesis holds: {z,} is a non-decreasing sequence in X with

respect to < such that z, — zas n — +00, then z, < zforall » € N.

Finally, we recall the following definition of partial-compatibility introduced by Samet
et al. [40].

Definition 1.12 Let (X, p) be a partial metric space and T, R : X — X be given mappings.
We say that the pair {7, R} is partial-compatible if the following conditions hold:
(bl) p(x,x) = 0 implies that p(Rx, Rx) = 0.
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(b2) limy,—, 00 p(TRx,, RTx,) = 0, whenever {x,} is a sequence in X such that Tx, — ¢
and Rx,, — t for some t € X.

Note that Definition 1.12 extends and generalizes the notion of compatibility introduced
by Jungck [25].

2 Main results
We start this section with some auxiliary results (see also [37]).

Lemma 2.1 Let (X,d) be a metric space and let {x,} be a sequence in X such that

{d(x41,%,)} is non-increasing and

lim d(x,,1,%,) = 0.
n—+00
If {x2,,} is not a Cauchy sequence, then there exist € > 0 and two sequences {my} and {ny}
of positive integers such that my > ny > k and the following four sequences tend to ¢ when

k — +o0:

{d(x2mk:x2nk)}: {d(mek’xZMkJrl)}: {d(mek—l;xZ;fzk)}’ {d(mek—lxenkH)}'

As a corollary, applying Lemma 2.1 to the associated metric p° of a partial metric p, and
using Lemma 1.3, we obtain the following lemma (see also [21]).

Lemma 2.2 Let (X, p) be a partial metric space and let {x,} be a sequence in X such that

{p(x441,%4)} is non-increasing and

lim (xn+1,xn) =0.
n—+00
If {x2,,} is not a Cauchy sequence, then there exist ¢ > 0 and two sequences {my} and {ny}
of positive integers such that my > ny > k and the following four sequences tend to € when

k — +o0:

{p(mek’xZVIk)}; {p(mek:x2nk+1)}) {p(mek—lernk)}r {p(x2mk—lrx2nk+l)}-

In the sequel, let ¥ be the set of functions ¥ : R, — R, such that ' is continuous, strictly
increasing and v (¢) = 0 if and only if £ = 0. Also, let ® be the set of functions ¢ : R, — R,
such that ¢ is lower semi-continuous and ¢(¢) = 0 if and only if £ = 0. Such ¥ and ¢ are
called control functions.

Our first main result is the following.

Theorem 2.3 Let (X, <) be a partially ordered set. Suppose that there exists a partial met-
ric p on X such that the partial metric space (X, p) is complete. Let T,S,R : X — X be given
mappings satisfying

(a) T, S and R are continuous,

(b) the pairs {R, T} and {S, R} are partial-compatible,

(c) T and S are weakly increasing with respect to R.
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Suppose that for every (x,y) € X x X such that Rx and Ry are comparable, we have

p(Tx, Rx) + p(Sy, Ry)
2

v (p(T, ) < w( ) — o(p(Rx, RY), @)

where y € ¥ and ¢ € ®. Then T, S and R have a coincidence point u € X, that is, Tu =
Su = Ru.

Proof By Definition 1.8, it follows that X U SX € RX. Let %o be an arbitrary point in X.
Since TX C RX, there exists x; € X such that Rx; = Txy. Since SX C RX, there exists x, € X

such that Rx; = Sx;. Continuing this process, we can construct a sequence {x,} in X defined
by

Rx301 = Ty, Rxye2 = Sxops1, VmeN. (2.2)

By construction, we have x; € R™}(Tx,) and x5 € R™1(Sx;). Then using the fact that S and
T are weakly increasing with respect to R, we obtain

Rxy = Txy < Sx1 = Rxy < Txy = Rxs.
We continue this process to get
Rx; < Rxy <+« X Rxppy1 X Rxopin X -+ (2.3)

We claim that {Rx,} is a Cauchy sequence in the partial metric space (X, p). To this aim,
we distinguish the following two cases.

Case 1. We suppose that there exists k € N such that p(Rxyx, Rxox,1) = 0, so that Rxqy =
Rxyp41. By (2.3), applying (2.1) with x = xox and y = X441, we get

¥ (p(Rxa 12, Rxoxs1)) = ¥ (p( Tk, Sxoxan))

<y (P(szk, Rxop) + 5(59621@1, Rxtojes1)

) — o (p(Rxok, Rxos1))

v <P(Rx2k+1:Rx2k) + p(RXok+2, RXok41)
2

(P(Rx2k+2, Rxoks1) )
e )

) = @ (p(Rxax, Rxgps1))

Since 1 is strictly increasing, we have

1
P(RXok12, Rxopsn) < EP(szkarz, Rxtoies1).

This implies that p(Rxax2, R¥ax41) = 0. Continuing this process, we obtain p(Rx;,, Rxor) = 0
for all #n > 2k. This implies that Rx,, = Rxy, therefore {Rx,} is Cauchy in (X, p). The same
conclusion holds if Rxyx,1 = Rxy.o for some k € N.

Case 2. Now, we suppose that

Rx, #Rx,,1, VnmeN. (2.4)
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Here, we have p(Rx,, Rx,,,1) # 0 for all n > 0. Thanks to (2.3), Rx,, and Rx,,,; are compa-
rable, then using (2.2) and taking x = x,,5 and y = x5,,41 in (2.1), we get

4 (p(Rx2n+3: Rx2n+2))

= Y (P(Tx2n:2, S¥241))

<y (P(szmz,szmz) ;P(szmbszml)

) - ¢(P(Rx2n+2, Rx2n+1))

" (P(Rx2n+3, Rxg42) + p(RX2y142, R%241)

2 ) - ‘/’(p(sz;Hz, Rx2n+1))

f w (p(RerHs; Rx2n+2) ;'P(R?sz: Rx2n+1) ) )

Since v is strictly increasing, the above inequality implies that

p(Rx2n+3’ Rx2n+2) < p(Rx2n+2: Rx2n+1)' (25)
Now, taking x = x5, and y = x3,,,1 in (2.1), we have

4 (P(RxZnH’ Rx2n+2))
=y (P(szm Sx2n+1))

T ,R S + ;R +
< 1p(p( Koms RXoy) +}2’7( Xon+1s I8X2y 1)) _(p(p(RerquZ"*l))

_ 1/[ <p(Rx2n+lx RxZn) +p(Rx2n+2’Rx2n+1)

) -9 (P(szm Ry ))

2
< w(p(sznu,szn) +p(Rx2n+2’Rx2n+l)>’ (2.6)
2
which implies that
P(Rx3442, Rxgps1) < p(Rx2p11, Ryy). (2.7)
Combining (2.5) and (2.7), we get
P(Rxy41, Rxyy10) < p(Rxy, Rxyyq)  forallm > 0. (2.8)

It follows that the sequence {p(Rx,,Rx,,1)} is non-increasing and bounded below by 0.
Hence, there exists r > 0 such that

Pp(Rx,, Rx,1) = 1 asm— +00.

We claim that = 0. Suppose that r > 0. Taking the limsup as # — +00 in (2.6) and using

the properties of the functions ¥ and ¢, we have

Y (r) = ¥ (r) - o(r).
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This implies that ¢(r) = 0, and by a property of the function ¢, we have r = 0, that is a
contradiction. We deduce that » =0, i.e.,

PRx,, Rxy1) > 0 as m— +00. (2.9)

We shall show that {Rx,} is a Cauchy sequence in the partial metric space (X, p). For this,
it is sufficient to prove that {Rx,,} is Cauchy in (X, p). Suppose to the contrary that {Rx;,}
is not a Cauchy sequence. Then, having in mind that {p(Rx,, Rx,,1)} is non-increasing and
(2.9), it follows by Lemma 2.2 that there exist ¢ > 0 and two sequences {m} and {n;} of
positive integers such that my > n > k and the following four sequences tend to ¢ when
k — +o0:

{p(RxZWIkYRxZHk)}’ {p(RxZMk’Rx2nk+l)}’

{P(Rx2m -1, Rx2) } {P(Rx2m -1, R 11) )
Applying (2.1) with x = x5, and y = x5,,, 1, we get

¥ (p(Rxamg 1, Ry ))
=y (P(Txan: Smek—l))

<y (P(sznk,sznk) +1;(Sx2mk—l’Rx2mk—l)

) -9 (p(RxZHk ’ Rx2mk—1 ))

v (p(RxanH: Rxyu(ty) + P(RX2ym(k)s RX2my 1)
- 2

) - (D(P(sznk,szmk—l))-

Taking limsup,_, , ., in the above inequality and using the continuity of ¥/ and the lower
semi-continuity of ¢, we obtain

w6 = v (%3 -ote) =0 210

from which a contradiction follows since ¢ > 0. Then, we deduce that {Rx,} is a Cauchy
sequence in the partial metric space (X, p), which is complete, so {Rx,} converges to some
u € X, that is, from (p3) and Definition 1.2,

p(u,u) = lim p(Rx,,u)= lim p(Rx,,Rx,).

n—+00 n—+00

But from (2.9) and condition (p2), we have

lim p(Rx,,Rx,) =0,

n—+00

therefore, it follows that

p(u,u) = lim p(Rx,,u)= lim p(Rx,,Rx,)=0. (2.11)

n—+00 n—+00

From (2.11) and the continuity of R, we get

lim p(R(Rx,,),Ru) = p(Ru, Ru). (2.12)

n—+00
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The triangular inequality yields
P(Ru, Tu) < p(Ru, R(Rx2141)) + p(R(Tx2), T(R%24)) + p(T (R, Tit). (2.13)
By (2.2) and (2.11), we have
Rxy, — u, Txo,; = Rxop1 —> U asm—> +00. (2.14)
Having in mind that the pair {R, T} is partial-compatible, then
p(R(szn), T(sz,,)) — 0 asn— +o0. (2.15)

Also, since p(u, ) = 0, then we have p(Tu, Tu) = 0. The continuity of T together with (2.11)
give us

p(T(Rxg,,), Tu) — p(Tu, Tu) = 0. (2.16)
Combining (2.12) and (2.15) together with (2.16) and letting n — +00 in (2.13), we obtain

p(Ru, Tu) < p(Ru, Ru). (2.17)
By condition (p2) and (2.17), one can write

P(Ru, Ru) = p(Ru, Tu). (2.18)
Similarly, by triangular inequality, we get

P(Ru, Su) < p(Rut, RRx201)) + P(R(S%2011), S(R¥a1)) + p(S(R¥2s1), Su)- (2.19)
By (2.2) and (2.11), we have

Rxyy1 — U, SXope1 — U AS M —> +00. (2.20)
Since the pair {S, R} is partial-compatible, then

P(R(Sx241), S(Rx211)) = 0 as n — +00. (2.21)
Also, since p(u, u) = 0, it follows p(Ru, Ru) = 0. Thus, from (2.18), p(Ru, Tu) = p(Ru, Ru) = 0
and so Ru = Tu.

The continuity of S and (2.20) give us

P(S(Rx341), Sut) — p(Su, Su) as n— +oo. (2.22)

Combining (2.12) and (2.21) together with (2.22) and letting » — +o00 in (2.19), we obtain

P(Ru, Su) < p(Ru, Ru) + p(Su, Su) = p(Su, Su). (2.23)

Page 8 of 18
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By condition (p2) and (2.23), we get
P(Ru, Su) = p(Su, Su). (2.24)

Applying (2.1) with x = y = u, we get

¥ (p(Tu, Su)) < w(P(Tu’ Ru) ;p(Su,Rm

. w(@) —(0)

p(Tu, Su)
f(757)

) - go(p(Ru,Ru))

This implies that

p(Tu, Su) < %p(Tu, Su),
and so it follows p(Tu, Su) = 0, that is Tu = Su. Thus, we have obtained
Ru =Tu = Su,
that is, u is a coincidence point of 7, S and R. O

Remark 2.4 We point out that the order in which the mappings in condition (b) of The-
orem 2.3 are considered is crucial. Trivially, Theorem 2.3 remains true if we assume that
the partial-compatible pairs are {7, R} and {R, S}.

Example 2.5 Let X =[O0, %] be endowed with the partial metric p(x, y) = max{x, y} and the
order given as follows:

X<y & x>y

Consider the mappings T,S,R : X — X defined by Tx = Sx = x* and Rx = x for all x € X.
Also, define the functions ¥,¢ : R, — R, by ¥(¢) = t and ¢(¢) = ﬁ, for all £ > 0. Clearly,
condition (2.1) is satisfied. In fact, for every (x,y) € X x X with x > y, we get

Tx,R Sy, R
=¢<P( x x)2+p(y y))_w(p(Rx,Ry)).

All the other hypotheses of Theorem 2.3 are satisfied and 7', S and R have a coincidence
point u = 0. (Moreover, « = 0 is the unique common fixed point of 7, S and R.)

Note that Theorem 2.3 is not applicable in respect of the usual order of real numbers
because T is not weakly increasing. It follows that the partial order may be fundamental.

Under different hypotheses, the conclusion of Theorem 2.3 remains true without as-
suming the continuity of 7, S and R, and the partial-compatibility of the pairs {T', R} and
{R, S}. This is the purpose of the next theorem.
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Theorem 2.6 Let (X, <) be a partially ordered set. Suppose that there exists a partial met-
ric p on X such that (X, p) is complete. Let T, S,R : X — X be given mappings satisfying
(a) RX is a closed subspace of (X, p),
(b) T and S are weakly increasing with respect to R,
(c) X is regular.
Suppose that for every (x,y) € X x X such that Rx and Ry are comparable, we have

0 (T 59) = (PP (i ) 225

where ¥ € V and ¢ € ®. Then, T, S and R have a coincidence point u € X, that is, Tu =
Su = Ru.

Proof Following the proof of Theorem 2.3, we have that {Rx,} is a Cauchy sequence in the
closed subspace RX, then there exists v = Ru, with u € X, such that

Rx, —>v=Ru asn— +00. (2.26)

Thanks to (2.3), {Rx,} is a non-decreasing sequence, and so, since it converges to v = Ru,
from the regularity of X, we get

Rx, <Ru, VmeN,

Therefore, Rx,, and Ru are comparable. Putting x = x,, and y = u in (2.25) and using (2.2),

we get

w(p(Rerle Su))
= W(p(Txgn, Su))

< ]// (p(TXZm Rx2n2) +l7(5bt, RM)) _ (p(p(szn,Ru))

=y (p (sz”“’RxZ;) P Ru)) — ¢ (p(Rxz, R1)).

Taking limsup,,_, , ., in the above inequality, using (2.26) and the properties of ¢ and v,
we obtain

v (p(Ru, Su)) < 1#(@) - ¢(p(Ru, Ru))

p(Su, Ru)
f(55%)

IA

This implies that

p(Ru, Su) < =p(Su, Ru),

N =

which is true if p(Su, Ru) = 0. This means that Su = Ru.
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Analogously, putting x = 4 and y = xy,,,; in (2.25), we have

Y (p(Tu, Rxzni2) = ¥ (p(Tut, Sx211))

< w (p( Tur Ru) + P(25x2n+1, Rx2n+1)

<p(Rx2n+2;Rx2n+1) +]9(Tu: Ru)
= '[/[ 2

) -9 (p(RM1 Rx2n+1))

> - ¢ (p(Rut, Rxzy1.1)).

Taking limsup,,_, , ., in the above inequality, using (2.26) and the properties of ¢ and v,
we obtain

1
p(Tu, Ru) < - p(Tu, Ru),
which yields that
Tu = Ru.

We conclude that « is a coincidence point of T, S and R. O

If R: X — X is the identity mapping Iy, by Theorem 2.6, we obtain the following com-
mon fixed point result involving two mappings.

Corollary 2.7 Let (X, <) be a partially ordered set. Suppose that there exists a partial
metric p on X such that the partial metric space (X, p) is complete. Let X be regular and
T,S: X — X be given mappings such that T and S are weakly increasing. Suppose that for
every (x,y) € X x X such that x and y are comparable, we have

Tx, Sy,
¥ (p(Tx,5y)) < ¥ (’W) — o(p(x.2)), (227)

where € WV and ¢ € ®. Then, T and S have a common fixed point u € X, that is, Tu =
Su=u.

The following example shows that the hypothesis ‘T and S are weakly increasing (with
respect to R)’ has a key role for the validity of our results.

Example 2.8 Let X = [0,1] be endowed with the partial metric p(x, y) = max{x, y} and the
order < given as follows:

X=Xy < x=).

Consider the mappings 7,S : X — X defined by Tx = g and Sx = ’g‘, for all x € X. Also,
define the functions ¥, ¢ : R, — R, by ¢(¢) = t and () = %, forall £ > 0. It is easy to show
that Sx < TSx and Tx < STx, for all x € X, thatis, 7' and S are weakly increasing. Now, take
x and y comparable and, without loss of generality, assume y < x, so that x < y. It is easy
to show that (2.27) holds and all the other hypotheses of Corollary 2.7 are satisfied. Then,

T and S have a unique common fixed point & = 0.
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Note that Corollary 2.7 is not applicable in respect of the usual order of real numbers
because T and S are not weakly increasing.

Now, we shall prove the existence and uniqueness of a common fixed point for three
mappings.

Theorem 2.9 [n addition to the hypotheses of Theorem 2.3, suppose that for any (x,y) €
X x X, there exists z € X such that Tx < Tz and Ty < Tz. Then, T, S and R have a unique
common fixed point, that is, there exists a unique u € X such that u = Ru = Tu = Su.

Proof Referring to Theorem 2.3, the set of coincidence points of T, S and R is nonempty.
Now, we shall show that if x" and y" are coincidence points of T, S and R, that is, Rx" =
Tx =Sx and Ry = Ty = Sy, then

p(Rx,Ry’) = 0. (2.28)
For the coincidence points x” and y', Theorem 2.3 gives us that

p(Rx*, Tx*) =p(Tx*,Sx¢) =0 =p(Ry*, Ty*) =p(Ty*,Sy*).
By assumption, there exists zo € X such that

Tx < Tz, Ty < Tz. (2.29)

Now, proceeding similarly to the proof of Theorem 2.3, we can immediately define a se-
quence {Rz,} as follows:

Rz9,:1 = T2zoy, Rz9,00 = Szops1, VmeN. (2.30)
Since T and S are weakly increasing with respect to R, we have

Tx = Rx < Rz, Ty =Ry <Rz,, VmeN. (2.31)
Putting x = z,, and y = x” in (2.1) and using (2.31), we get

¥ (p(Rear, RY)) = 0 (p(Tzns 55))

<y (p T o) + P ’Rx‘)) — o(p(Rzzns R¥))

= w(w) _ﬁo(p(RZzn,Rx*))

<y (p(RZZn;l» Rzy,) ) )

Since V¥ is strictly increasing, we have

p(RZZ;«Hlv Rx*) =

1 1 . 1 .
= Ep(RZ2n+1sz2n) = EP(RZZ}’I+1)R»X ) + Ep(Rx ,RZzn).
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This gives us
P(Rz31, Rx") < p(Rzay, RX').

Putting x = x” and y = 2y, in (2.1), then similarly to the above, one can find
P(Rz212,Rx') < p(Rzann, Rx).

We combine (2.32) and (2.33) to remark that

P(Rzp1,Rx’) < p(Rzy,Rx'), VnmeN.

(2.32)

(2.33)

(2.34)

Then, the sequence {p(Rz,, Rx’)} is non-increasing and bounded below, so there exists

r > 0 such that

p(Rzn,Rx*) —7r asu— +00.

Adopting the strategy used in the proof of Theorem 2.3, one can show that r = 0, i.e.,

p(Rz,,Rx') —> 0 asn— +oo.
The same idea yields

p(Rz,,Ry’) > 0 asn— +oo.

(2.35)

(2.36)

Now, p(Rx", Ry’) < p(Rx’, Rz,)) + p(Rz,,, Ry") and from (2.35), (2.36), we obtain p(Rx", Ry’) =

0, and so (2.28) holds.
Thanks to (2.30) and (2.35), one can write

Tz, — Rx = Ry*, Szopi1 — Rx' = Ry* as 1 — +00.

(2.37)

From partial-compatibility of the pairs {R, T} and {S, R}, using (2.35) and (2.37), we obtain

P(R(Tz2), T(Rz24)) = 0, p(R(Szans1), S(Rz241)) — 0 as m — +o0.

Denote

u=Rx.

(2.38)

Since p(u,u) = p(Rx",Ry’) = 0, so again by partial-compatibility of the pairs {R, T} and

{S,R}, we get
p(Tu, Tu) = p(Ru, Ru) = 0.
By triangular inequality, we have

P(Ru, Tu) < p(Ru, R(Tz2,)) + p(R(Tz20), T(Rz24)) + p(T (Rz2,), Tts).

(2.39)

Page 13 0f 18
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Using (2.37), (2.38), (2.39), the continuity of 7" and letting # — +00 in the above inequality,
we get

P(Ru, Tu) < p(Ru, Ru) + p(Tu, Tu) =

that is, Ru = Tu and u is a coincidence point of 7 and R.
Analogously, the triangular inequality gives us

P(RM: Su) = P(R”’ R(SZZn+l)) + p(R(SZZVH—l)’ S(RZ2VI+1)) + p(S(RZZVH—l)’ SM)

Using (2.37), (2.38), (2.39), the continuity of S and letting n — +o00 in the above inequality,
we get

P(Ru, Su) < p(Ru, Ru) + p(Su, Su) = p(Su, Su).
By condition (p2), it follows immediately
P(Ru, Su) = p(Su, Su).

Now, applying (2.1) with x = y = u, we have

¥ (p(Tu,Su)) <

"
2
( p(Su, Tu) )

= ®(0

(p(Tu ,Su)

( p(Tu, Ru) + p(Su, Ru)) — o(p(Ru, Ru))

This implies that

1
p(Tu,Su) < 5p(Tu, Su),
then we deduce that p(Tu, Su) = 0, and so Tu = Su. Until now, we have obtained
Ru =Tu = Su.
With y" = u and from (2.28), we have
u=Rx =Ru="Tu=Su.
This proves that u is a common fixed point of the mappings T, S and R.
Now our purpose is to check that such a point is unique. Suppose to the contrary that
there is another common fixed point of 7, S and R, say g. Then, applying (2.1) with x =
y = q, we obtain easily that p(q, Tg) = p(q,Sq) = p(q,Rq) = 0. It is immediate that ¢q is a

coincidence point of 7, S and R. From (2.28), this implies that

Rq = Ru.
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Hence, we get
q=Rq=Ru=u,

which yields the uniqueness of the common fixed point of 7, S and R. This completes the
proof. O

Remark 2.10 We leave, as exercise for the reader, to verify that our results hold even if
we replace condition (2.1) by the following

¥ (p(T6,5) < v (p Sl Zhe Lol R")) — o (p(Rx,RY))

for all x,y € X such that Rx and Ry are comparable.

3 Application to cyclical contractions

In this section we use the previous results to prove a fixed point theorem for a mapping
satisfying a weak cyclical contractive condition. In 2003, Kirk et al. [27] studied existence
and uniqueness of a fixed point for mappings satisfying cyclical contractive conditions in
complete metric spaces.

Definition 3.1 Let (X,d) be a metric space, m a positive integer and Y3, ..., Y;, nonempty
subsets of X. A mapping T on UZI Y; is called a m-cyclic mapping if T(Y;) C Yi1, i =
1,...,m,where Y,,,; = Y.

Later on, Pacurar and Rus [35] introduced the following notion, suggested by the con-
siderations in [27].

Definition 3.2 Let Y be a nonempty set, m a positive integer and 7': Y — Y an operator.
By definition, Y = [ J!, ¥; is a cyclic representation of ¥ with respect to 7T if T is a m-cyclic
mapping and Y; are nonempty sets.

Example 3.3 Let X = R. Assume Y; = Y3 = [-2,0] and Y, = Yy = [0,2], so that ¥ =
Uf‘zl Y; = [-2,2]. Define T : Y — Y such that Tx = —g, for all x € Y. It is clear that
Y= Uil Y; is a cyclic representation of Y.

Inspired by Karapinar [26] and Gopal et al. [23], we present the notion of a cyclic weak
(¥, @)-contraction in partial metric spaces.

Definition 3.4 Let (X, X,p) be an ordered partial metric space, Y3, Ys,...,Y,, be closed
subsets of X and Y = [J/’; Y;. An operator T : Y — Y is called a cyclic weak (¥, ¢)-
contraction if the following conditions hold:

(i) Y =J%,Y;is a cyclic representation of ¥ with respect to T,

(ii) there exist ¥ € W and ¢ € ® such that

(3.1)

Tx, Ty,
¥ (p(Tx, Ty)) < ¢ <w) -¢(px),

2

for every comparable x € Y;, y € Y31 (i =1,2,...,m).
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Now, we state and prove the following result.

Theorem 3.5 Let (X, <) be a partially ordered set. Suppose that there exists a partial met-
ric p on X such that the partial metric space (X,p) is complete. Let T : | J", Y; — U, Y
be a given mapping satisfying

(a) T is a cyclic weak (W, )-contraction,

(b) T is weakly increasing and continuous,

(c) the pair {1, T} is partial-compatible,

(d) for any (x,y) € X x X, there exists z € X such that Tx < Tz and Ty < Tz.
Then, T has a unique fixed point u € (-, Y;, that is, Tu = u.

Proof Letxg € Y =", ¥; and set
Xpe1 = Ix,, VmeN. (3.2)

For any n € N, there is i, € {1,...,m} such that x,, € ¥;, and x,,; € Y;,,1. Then, following
the lines of the proof of Theorem 2.3, it is easy to show that {x,} is a Cauchy sequence in
the partial metric space (Y, p), which is complete, so {x,} converges to some y € Y. On the
other hand, by condition (i) of Definition 3.4, it follows that the iterative sequence {x,} has
an infinite number of terms in Y; for each i = 1,2,..., m. Since (Y, p) is complete, from each
Y;,i=1,2,...,m, one can extract a subsequence of {x,} that converges to y. In virtue of the
fact thateach Y;,i=1,2,...,m, is closed, we conclude that y € ()", ¥; and thus (), Y; # .
Obviously, (N, ; is closed and complete. Now, consider the restriction of T on (%, Y,
thatis 7|, Yi: (-, Y: — (), ¥: which satisfies the assumptions of Theorem 2.3 and
thus, T[N, Y; has a unique fixed point in (%, Y, say , which is obtained by iteration
from the starting point xy € Y. To conclude, we have to show that, for any initial value
x € Y, we get the same limit point u € (), ¥;. Due to condition (c) and using the analogous
ideas of the proof of Theorem 2.9, it can be obtained that, for any initial valuex € Y, x,, — u

as n — +00. This completes the proof. d
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