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COINCIDENCE SETS IN THE OBSTACLE PROBLEM

FOR THE p-HARMONIC OPERATOR

SHIGERU SAKAGUCHI

Abstract. We consider the obstacle problem for the/»-harmonic operator

div(|v -f   "v •)    with/> > 1,

and show that the coincidence set is star shaped under certain conditions on the

obstacle.

1. Introduction. In the previous paper [13], we considered the obstacle problem for

the harmonic operator which H. Lewy and G. Stampacchia treated in [10], and using

an idea of L. Caffarelli and J. Spruck [2] we showed that the coincidence set is star

shaped under certain conditions on the obstacle. The purpose of this paper is to

show that the same is true also in the case of the p-harmonic operator withp > 1.

Recently the obstacle problem for the p-harmonic operator was considered by C.

Bandle and J. Mossino [1], S. Granlund, P. Lindqvist and O. Martio [5], and P.

Lindqvist [11]. In the case of the harmonic operator the regularity for the obstacle

problem is well known, but in the case of the p-harmonic operator the regularity is

not known.

On the other hand, the C1+ "-estimates of solutions to the p-harmonic equation

withp > 1,

div(| Vwf    Vw) = /,

were obtained recently by P. Tolksdorf [14, 15], J. Lewis [9], and E. DiBenedetto [3].

We use the estimates of P. Tolksdorf [15], and obtain the Cl+a-regularity for the

obstacle problem with a concave obstacle. Furthermore, using an idea of J. Lewis [8],

we show that the solution to our obstacle problem is real analytic in the noncoinci-

dence set. Proceeding as in the case of the harmonic operator, we obtain the

starshapedness of the coincidence set.

Finally we note that starshapedness of level sets of the solution to the obstacle

problem with p = 2 was proved by B. Kawohl [6].

2. Result. Let £2 be a bounded convex domain in R" with smooth boundary 3ñ.

Suppose that the origin 0 is contained in fi. Let /g Cl(Q) n C2(S2 -{0}) be a

nonnegative convex function which is positive on 3Í2 and homogeneous of degree

s > 1. Consider the obstacle 4> g Cx(ß) n C2(ß -{0}), which is negative on 3S2,

Received by the editors September 17. 1984.

1980 Mathematics Subject Classification. Primary 49-00; Secondary 35R35.

'1985 American Mathematical Society

0002-9939/85 $1.00 + $.25 per page

382

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



COINCIDENCE SETS IN THE OBSTACLE PROBLEM 383

defined by

(2.1) *(x)--/(*) +c

with positive constant c. We fix a number p > 1 and consider the following obstacle

problem.

Find a function u in the closed convex set

(22> K(i)= {ueW¿-p{Q);u>yf>ma}

which minimizes the integral Ja \ Vu\p dx.

It follows from the direct method in the calculus of variations that there exists a

solution to this problem (see J. Lewis [8] for proof). We can prove the uniqueness by

using the variational inequality

Find u g K( \p ) such that

f |v«f    Vu ■ v(t) - u) dx > 0    for allí; G K(ip),
Ja

which is equivalent to (2.2). Let u be the solution to (2.2). Denote by I(4>) its

coincidence set, namely,

(2.4) I(*l>)= {xeQ:u(x) = ^(x)}.

Now our result is

Theorem. The coincidence set I(ip) is starshaped with respect to the origin.

3. Preliminaries. We quote a lemma from [14] (see [14, p. 129, Lemma 1] for

proof).

Lemma 3.1. For <?, £ G R" we have

f-2       lt*-2t\   , lk(p-l){l+\q\+\è\)P'2\q-è\2     ifp<2,

' \{\y-\~$ ifp>2.

The uniqueness of the solution to (2.2) follows from this lemma and the varia-

tional inequality (2.3) directly.

With the help of Lemma 3.1 we obtain a characterization of the solution u to (2.2)

by the same argument as in [7, p. 41, Theorem 6.4].

Proposition 3.2. Let g g W1'/'(ß) be a super p-harmonic function in ß (that is,

div(| Vg\p~2 Vg) < 0 in the weak sense) satisfying g > \p in Í2 and g > 0 on 3Í2. Then

we have u < g in ß.

4. Regularity of the solution to (2.2). First of all, we prove

Proposition 4.1. There exists a number r > 0 such that Br(Q) c I(\p) where Br(0)

denotes an open ball in R" centered at the origin with radius r.

Proof. We prove this by the same argument as in [7, p. 176]. Let Ix be the set of

points j G ß for which the tangent plane of the graph (-,\p(-))at(y,\p(y)),

ny:xn+x = wy(x)= v4'(y)-(x-y) + 4'(y),

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



384 shigeru sakaguchi

does not meet ß X {0}. Since max^ ^(.x) = \p(0) = c > 0, we see that 0 g Iv

Furthermore, since 4> g C:(Í2), so /[ contains an open neighborhood of 0. Let

y e Iv Since \p is concave, we see that WY > ^ in ß. Of course, WY > 0 on 3ß and

WY is p-harmonic in ß Therefore, by Proposition 3.2, we get u < Wy in ß. Since

\p(y) < u(y) < WY(y) = 4>(y), so y G I(\p). Then /, c I(^). This completes the

proof.

Using the penalty method we obtain

Proposition 4.2. The solution u belongs to C1 + a(ß - {0})for some 0 < a < 1.

Proof. In view of Proposition 4.1 it suffices to show that the solution u belongs to

C1 + a(ß -Br/2(0)). Let B = Br/4(0). As in [7, p. 108] we specify, for e > 0,

¡I ifr<0,

0e(r)=    l-(i/e)     if0<r<e,

(O if?>£,

and consider the penalized problem with 0 < e < 1.

Find m„ G W^ß - 5) satisfying

(4.1) div(|vW/"2VMf) = div(|v^r"2Vi//)^(«e-^)    infl-5,

wf = 0   on 3ß   and   ut = ip   on 35.

The existence of ue is due to the variational method. Precisely, we consider the

functional

J(v) = (1/p) (       \wf dx
Ja-B

+ j       {div(\^\P~\^) f'* Ut) dt) dx

over the class of admissible functions

C={o6 W1'"^ - B); v = Oon3í2andíj = fon3fi}.

In view of the definition of \p in (2.1) we see that

(4.2) -C < di\(\Vyp\P~2V^) < -p < 0    in ß - B

with some positive constants C and p. Then it follows that J(v) is nonnegative on G

and the functional J is lower semicontinuous. Hence there exists a function weG

satisfying/(w) = mint,eG/(t;) (see [8, p. 203] for proof), and this function w is also

a solution to (4.1). By virtue of (4.2) and the fact that #E is decreasing, using the

weak comparison principle due to P. Tolksdorf (see [15, pp. 800-801, Lemma 3.1]),

we obtain the uniqueness to the solution to (4.1). Thus there exists a unique solution

to (4.1), say uc.

Here, we see that this solution ue has the following properties:

(4.3) 0 < ue < maXfj \p = c in ß - B,

(4.4) there exist positive constants C0 and a independent of e, which satisfy

ll"fllcl+«(í2-s,/2(0))< Q. and
(4.5) u ^ uF ^ u + e in ß - B.
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It follows from the comparison principle due to P. Tolksdorf that the inequality

(4.3) holds. In view of (4.1), (4.2), and (4.3), we get (4.4) by using the C1+a-estimate

due to P. Tolksdorf (see [15, p. 806, Proposition 3.7]). With the help of Lemma 3.1,

we get the inequality (4.5) by the same argument as in [7, pp. 109-111].

Now, since the imbedding C1 + a "-* C1 is compact, the bounded family {ue} in

C1 + a(ß -Br/2(0)) has a subsequence {ut,} which converges to a function u~ in

C\Ü -Br/2(0)). By virtue of (4.5), we get u~ = u. It follows from (4.4) that u

belongs to C1+a(ß -Br/2(Q)). This completes the proof.

In particular, from Proposition 4.2 we see that I(\p) is a closed set. Furthermore

we show

Proposition 4.3. inia_rw\ v«| > 0.

Proof. Recalling an idea of J. Lewis [8], we show that

x ■ Vu(x) < 0   in ß - l(\¡/) .

Since the C^function u - \p attains its minimum at any point in I(\p), it follows that

x ■ \7u(x) = x ■ V<K*) in I(\p). In view of the definition of \¡¿, we obtain x ■

VifH*) = sf(x) < 0 in ß - {0}. Then we have

x ■ vu(x) < 0    on3/(v//).

Therefore, since ß is convex and u > 0 is p-harmonic in fi - /( t|/ ), proceeding as in

[8, pp. 207-208], we get x ■ Vu(x) < 0 on 3ß and conclude that x ■ Vu(x) < 0 in

a-j(^).
By Propositions 4.2 and 4.3, and the regularity theory for the elliptic partial

differential equation, we see that the solution u is real analytic in Í2 — 1(4*) (see [4

and 12]).

5. Proof of Theorem. First of all, as in [13] we introduce the function v,

(5.1) v(x) = x • v(w - 4>)(x) - s(u - \p)(x) = x ■ Vu(x) - su(x) + sc.

Then v is continuous in ß by Proposition 4.2. Here it suffices to show that v is

nonnegative in ß - I(¡p). Indeed, suppose that this is true. Then, since u - \p > 0 in

ß - /(j), we have

x ■ v(w - ¡p)(x) > 0    inß-/(>//).

Therefore, in view of the definition of I(\¡/) (see (2.4)), we see that the coincidence

set /(ip) is starshaped with respect to the origin.

We observe that

(5.2) v = 0   in/(^)-

With the help of Proposition 3.2 we obtain by the same argument as in [13, Lemma

2.1]

(5.3) v > 0   on3fi.
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By virtue of the regularity of u and Proposition 4.3, we obtain

|Vm|2Au +(p - 2)Y.DiuDluDiJu = 0    in ß - l($),

since u is p-harmonic in ß — I(\p). Here D, = 3/3.*, and D^ = d2/dx¡dxj. Applying

the differential operator x • V to this and using (5.1), we obtain

(5.4) Lv = Y,a'J(x)DiJv+ Y1bJ(x)DJv = 0   in ñ-/(>),

where a'J(x) = \vu(x)\28jJ■ + (p - 2)Diu(x)Dju(x) (8lf is Kronecker's symbol)

and

V(x) = 2{DJu(x)Au(x)+(p - 2)ZDku(x)Djku(x)}.

Observing that the operator L is a uniformly elliptic operator with locally bounded

coefficients in ß - I(\p), we have from (5.2), (5.3), (5.4), and the maximum principle

í; > 0 in ß — 7(v//). This completes the proof.
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