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1 The Background

Elementary courses in statistics introduce at an early stage the key assump-
tion of “random sampling”. In more technical language, the data set is
assumed to be identically and independently distributed (i.i.d.). In this
framework a range of simple and elegant results can be derived, for exam-
ple, that the variance of the mean of n observations is 1/n times the variance
of the observations themselves. Given a random sample of n pairs (x, y) with
sample correlation coefficient rxy, if at least one of the pair has a Gaussian
(normal) distribution the existence of a relationship between them is tested

by comparing the “t statistic” rxy/
√
(1− r2xy)/(n− 2) with the Student t

distribution with n − 2 degrees of freedom. All the inference procedures in
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classical regression analysis follow the same basic approach. The Gaussian-
ity assumption may be dropped by appeal to a large sample and the central
limit theorem, but independent sampling is strictly needed to validate these
procedures.

The received theory notwithstanding, often the first data sets that stu-
dents meet in econometrics class are time series for GDP, aggregate con-
sumption, money stock and the like — samples that are neither indepen-
dently nor identically distributed. Such disjunctions between theory and
practice often sew confusion in the understanding of statistical relationships
in economics.

One of the first authors to study the problem of inference in time series
was G. Udny Yule (1926), who reflected in his presidential address to the
Royal Statistical Society on the high correlation (0.9512) between standard-
ized mortality and the proportion of marriages solemnized by the Church
of England, recorded in the years 1866 to 1911. It is interesting with the
benefit of hindsight to read of the difficulties that professional statisticians
would have — both then and much more recently — with the interpretation
of such facts. The two series of Yule’s example share a pronounced down-
ward drift over the 46 years of the observations. “Large goes with large and
small with small”, which is the classic indicator of a positive correlation. In
what sense is this correlation to be regarded as spurious? It is true that
both variables are subject to systematic variation with the passage of time.
However, to be driven by a common factor is a perfectly legitimate way of
understanding the phenomenon of correlation between variables. This fact
alone does not explain why we regard this particular correlation as spurious.

The true explanation requires us to distinguish between correlation as a
description of data, and correlation as a theoretical construct; an expected
association as a feature of a fixed joint distribution of random variables. Our
problem arises when this fixed joint distribution does not exist. The exam-
ples Yule analyses in his paper include integrated processes, formed by a cu-
mulation of independent random shocks. As is well known, such processes —
often called random walks — can “wander anywhere”, having no central ten-
dency. Short realizations often give the appearance of deterministic-seeming
time trends. Averages of repeated drawings from such processes do not con-
verge to fixed limits as the sample size increases; in other words, they do not
obey the law of large numbers. The sample variances of such processes, and
likewise covariances, diverge to infinity. While correlation coefficients are
normalized to lie between −1 and +1, the correlations of pairs of mutually
independent random walk processes do not converge to zero, but remain
random variables even asymptotically. As famously demonstrated in a set
of computer simulations by Granger and Newbold (1974), independent ran-
dom walks exhibit “significant” correlations, such that the t statistic defined
above diverges to infinity as n increases. Additional data do not serve to re-
solve a spurious correlation but, rather, to reinforce the false conclusion. It
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follows that the conventional equating of sample and theoretical correlations
in an estimation exercise has no validity.

These phenomena presented a dilemma for econometricians in the mid-
dle years of the 20th century, as they attempted to model macroeconomic
and financial data sets that are well-described as the integrals (cumulations)
of stationary series. One approach was to model the relationships between
the differences (the changes from period to period) but clearly a great deal
of information about relationships between series is lost in such transforma-
tions. It is easy to construct examples where the correlation between the
differences of time series have signs opposite to that between the levels. A
second approach is to treat trends as deterministic, and remove them by
regression on dummy (straight-line) trend variables. Although the relations
between fitted trend components can be discounted as spurious (one straight
line always “explains” another) the deviations of economic series from linear
trend often exhibit random walk characteristics in practice, so the problem
is not resolved.

It was in the context of this unsatisfactory hiatus in the progress of time
series econometrics, in the course of the 1970s, that Clive Granger initiated
his researches into the modelling of economic trends. The culmination of
this research was the key idea that relationships between integrated time
series must be understood as a sharing of common trends; not correlation,
but cointegration. The story of these discoveries, well told in an article
by David Hendry (2004) celebrating Granger’s 2003 Nobel Prize, provides
a fascinating mix of debates and disagreements, false trails, penetrating
intuitions and the insightful re-interpretation of applied studies. Hendry’s
(1980) inaugural lecture at LSE is often cited as an accessible exposition of
the issues, although the term ‘cointegration’ had yet to be coined at that
date.

The complete story of the cointegration concept has to acknowledge the
indispensable contributions of two other researchers, Peter C. B. Phillips at
Yale, who developed the essential links with mathematical stochastic process
theory that were needed for a theory of inference in nonstationary data, and
Søren Johansen in Copenhagen, who developed a rigorous theory of vector
autoregressions in nonstationary data. The net result of these endeavours is
that econometrics can deal effectively with time series data, whether or not
the “identically and independently distributed” sampling paradigm has any
practical relevance.

2 A Linear Model of Nonstationary Data

To fix ideas, consider first the simplest multiple time series model, the first-
order VAR. Let xt (m × 1) denote a vector of variables evolving according
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to the equation
xt = a0 +Axt−1 + εt (1)

where A is an m×m matrix of coefficients and εt (m×1) is i.i.d. with mean
vector 0 and variance matrix Σ. Suppose that this process has been running
for a large number of periods, that we can treat as effectively infinite. Then
the equation has the solution

xt =
∑∞

j=0
Aj(a0 + εt−j)

where Aj = AA · · ·A (the j-fold product) and A0 = Im, the identity
matrix of order m.

Write the Jordan canonical form of the matrix as A = PMP−1, where
if the eigenvalues are all distinct, M is a diagonal matrix with the eigen-
values of A (either real or complex valued) on the diagonal.1 Provided the
eigenvalues all have modulus strictly less than unity, it is easy to see that
Aj = PM jP−1 → 0 and

∑
∞

j=0A
j = (Im −A)−1 < ∞. In this case, we

note that xt has a distribution independent of t, with mean (Im −A)−1a0
and variance matrix Σx =

∑
∞

j=0A
jΣ(Aj)′.2 We say that the process is

stationary.
If A has one or more eigenvalues equal to 1, on the other hand, Aj does

not converge to zero and Im −A is singular, by construction. In this case,
the assumption that it has been running for an infinite number of periods
is not compatible with a well-defined distribution for xt; such a process
has infinite magnitude with probability 1. We must instead postulate a
finite initial condition x0 and consider the cases t = 1, 2, 3, ... to see what
happens. Clearly, this process is nonstationary, and its variance is increasing
with time. A particularly simple case is A = Im, where all m eigenvalues
are equal to 1, and

xt = x0 + ta0 +
∑t−1

j=0
εt−j . (2)

This is a vector of so-called random walks, with drifts a0. Note how the
equation intercepts no longer measure a unique location, or central tendency
of the distribution, but the rate of divergence of the central tendency with
time. The variance matrix of the process, treating x0 as fixed, is tΣ. Even
with a0 = 0 the average distance from the starting point, as measured by
the standard deviation of the coordinates, increases like

√
t.

1With repeated eigenvalues M is generally not diagonal. When µk = µk+1, a ‘1’
appears in position {k, k + 1}. However, note that A and M have the same rank and
M is either diagonal or upper triangular. While only in symmetric matrices is the rank
always equal to the number of nonzero eigenvalues, a singular matrix always has one or
more zero eigenvalues.

2This matrix can be written in closed form only with the use of Vec notation, but it’s
easy to see that it must satisfy the identity Σx −AΣxA

′ = Σ.
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More generally, we may have some of the eigenvalues of the system equal
to unity, and others in the stable range. It is convenient in this case to recast
the model in the form in which the singular matrix appears explicitly. Write
Π = A− Im and then (1) can be written

∆xt = a0 +Πxt−1 + εt (3)

where ∆xt = xt − xt−1.3 Note that the eigenvalues of Π are the diagonal
elements ofM−Im and, hence, unit eigenvalues of A are zero eigenvalues of
Π. With one or more zero eigenvalues, Π is singular, say with rank s < m,
and note that the case s = 0 implies Π = 0 and hence corresponds to the
random walk model (2).4

A m×m matrix with rank s always has a representation Π = αβ′ where
α and β are m× s matrices with full rank s. This decomposition is not of
course unique, since we can also write Π = α∗β∗′ where α∗ = αD−1 and
β∗ = βD′ for any s× s nonsingular matrix D. However. the columns of β
must always span the same space.5 It is also possible that known restrictions
on the model could allow α and β to be identified uniquely, an issue that
we discuss further in Section 6.

Consider the relationship between the processes xt and ∆xt appearing
in (3). Differencing is the inverse of the operation of integrating (i.e., cu-
mulating) a series. If x0 = 0 and xt = y1 + y2 + · · · + yt, then ∆xt = yt
for t ≥ 1. We define the notion of the “order of integration” of a series,
denoted d, such that if xt has order of integration d then ∆xt has order of
integration d − 1. A convenient shorthand for this is to write xt ∼ I(d).
If we (arbitrarily) assign d = 0 to the case where the process is stationary
with finite variance, then a random walk of the type shown in (2) must be
assigned d = 1. Differencing an I(0) process yields the case I(−1), again
a stationary process but this one is also stationary after integrating; hence
this case, sometimes called an over-differenced process, is distinct from I(0).

The interesting feature of (3) is that processes with different orders of
integration feature on the two sides of the equation. It is not too difficult to
deduce from the definitions that I(d) + I(d − p) ∼ I(d) for any p > 0, and
also that εt ∼ I(0). Writing (3) in the form

∆xt = a0 +αβ
′xt−1 + εt (4)

we see, given that α is a full-rank matrix, that β′xt must be I(d− 1) when
xt ∼ I(d). Taking a certain linear combination of the variables in the model
results in a process of lower integration order than that of the variables
themselves. While we have not shown by this argument that d = 1 in

3The difference operator is ∆ = 1− L where L is the lag operator.
4s cannot be less than the number of nonzero eigenvalues, but could be greater.
5The space spanned by β is the collection of vectors βr for all s-vectors r 6= 0. Clearly,

this is identical with the collection βD′r, for any s× s nonsingular D.
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the “reduced rank VAR” (4), this is intuitively clear from considering the
limiting cases s = m and s = 0, the stationary and random walk models
respectively.

With no loss of generality the intercept may be decomposed as a0 =
δ −αµ where µ is s× 1. Then the model can be further rearranged as

∆xt = δ +αzt−1 + εt (5)

where zt is the s-vector of cointegrating residuals, defined as

zt = β
′xt − µ (s× 1). (6)

The elements of α are often referred to as the ‘loadings coefficients’ or ‘error
correction coefficients’. Premultiplying (5) by β′ and rearranging yields the
VAR(1) representation of the residuals,

zt = β
′δ + (Is + β

′α)zt−1 + β
′εt. (7)

This relation defines a modified form of stability condition. If the matrix
Is + β

′α has all its eigenvalues in the stable region, then the series possess
s stationary linear combinations. If δ 6= 0 the system contains a drift,
the variables of the system having a persistent tendency to either rise or fall
depending on the signs of the elements, although if β′δ = 0 the cointegrating
relations cancel the drift and E(zt) = 0. On the other hand, if δ = 0 the
processes are drift-neutral, their variances increasing with time but as likely
to fall as to rise in any period. Such a process is said to exhibit a pure
stochastic trend. Take care to note that µ does not contribute to the drift
so that a0 = 0 is not necessary for drift-neutrality.

We have now derived a simple form of the celebrated Granger represen-
tation theorem, which says, in essentials, the following. A vector autore-
gression containing unit roots generates nonstationary processes, but if the
number of these roots is smaller than the dimension of the system there
must at the same time exist a set of s < m stationary linear combinations
of the variables, forming the so-called cointegrating relations. s is called the
cointegrating rank of the system. A necessary feature of the system is that
the cointegrating residuals Granger-cause6 future changes of the process, so
that the model can always be cast in the so-called error-correction form.
The variables of the model are said to exhibit m − s common trends. The
variables evolve along nonstationary paths, but these paths are tied together
by the cointegrating relations. The error correction form has a very natural
interpretation, that to maintain the common trends through time requires
that changes in the variables must respond to deviations from the cointe-
grating relations measured by zt. For this to happen requires the elements

6A variable x is said to Granger-cause another variable y if knowledge of xt improves
the forecasts of yt+j for j > 0. This concept is defined in Granger (1969), Clive Granger’s
first notable contribution to time series econometrics.
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of α to have appropriate signs and magnitudes to ensure stable adjustment,
according to (7). This feature is of course implicit in the requirement that
the non-unit eigenvalues of A fall in the stable region.

3 The General Linear Case

We next consider the standard generalization of the foregoing simple case.
An m-dimensional linear process is defined as a process whose nondetermin-
istic component (after subtracting intercepts, trends, etc.) has the repre-
sentation

yt = C(L)εt (8)

where7 C(z) =
∑
∞

j=0Cjz
j (m × m) and {εt, −∞ < t < ∞} is an i.i.d.

sequence of random m-vectors with mean 0 and variance Σ. This is some-
times called the Wold representation of the process (Wold, 1938) although
remember that Wold’s representation exists for any stationary process if the
innovation process is white noise (i.e., stationary and uncorrelated). The
definition of a linear process specifies independence of the innovations, a
stronger condition than white noise. We assume C0 = Im, although this
entails no loss of generality if Σ is arbitrary, and could be replaced by the
requirement Σ = Im.

If (a)
∑
∞

j=0 ‖Cj‖ <∞ 8 and (b)
∑
∞

j=0Cj 6= 0, we call the process I(0).
Note that (a) is a stronger condition than is required for stationarity. Define

Γk = E(yty
′

t+k) =
∑∞

j=0
CjΣC

′

j+k

for k > 0, where Γ−k = Γ′k. Then, writing C as shorthand for C(1) =∑
∞

j=0Cj , note that (a) is sufficient for Ω <∞ where

Ω =
∑∞

k=−∞
Γk = CΣC

′. (9)

This matrix is called the ‘long-run variance’ of the process,9 and observe
that

Ω = lim
T→∞

1

T
E

(∑T

t=1
yt

∑T

t=1
y′t

)
.

Thus, the I(0) property embodies the “square root rule”, which says that
the average variability of the partial sums grows like the square root of the

7 It is convenient to give the properties of a lag polynomial in the context of a dummy
numerical argument z, in general complex-valued.

8‖A‖ =
√
tr(A′A) is one of several alternative definitions of the matrix norm. This is

a simple way to specify absolute summability, ruling out the possibility of off-setting signs
allowing elements to be summable while their squares, for example, are not summable.

9 In the VAR(1) case (1), Ω = (I−A)−1Σ(I−A′)−1. Be careful to distinguish between
this formula and Σx.
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sample size. Condition (b) rules out the case of an over-differenced process.
It is easy to verify that if yt is given by (8), then ∆yt is a linear process
with coefficients C0, C1 − C0, C2 − C1,. . . , and condition (b) is violated
in this case if condition (a) holds.

The significance of these properties is that they suffice to validate the
standard asymptotic distribution results, such as the central limit theorem
for re-scaled sums of the yt. Simple stationarity is not sufficient for this by
itself, and over-differencing presents an obvious counter-example, featuring
Ω = 0. We shall appeal to some stronger assumptions on the sequence of
coefficients for our present development, in particular (c)

∑
∞

j=0 j ‖Cj‖ <∞,
which we call 1-summability (the “1” referring to the power of j)10. Note
that 1-summability is equivalent to the condition

∑
∞

j=0

∑
∞

k=j+1 ‖Ck‖ <∞.
Many operational models in econometrics, in particular stable finite-order
vector ARMA models, satisfy the still stronger condition ‖C(z)‖ < ∞ for
|z| ≤ 1 + δ, for some δ > 0, implying that the coefficients converge to zero
at an exponential rate. However, this is not required for present purposes.

The particular case we consider here is the I(1) linear process xt, such
that the Wold representation of the differences is

∆xt = C(L)εt (10)

where conditions (a), (b) and (c) are satisfied in the right-hand side. The
key relation in this analysis is commonly known as the Beveridge-Nelson
(BN) decomposition (Beveridge and Nelson 1981). This is nothing but an
easily verified identity for polynomials,

C(z) = C(1) + (1− z)C∗(z)

where C∗(z) =
∑
∞

j=0C
∗

jz
j and C∗

j = −
∑
∞

k=j+1Ck. Thus, we can write,

∆xt = Cεt + ζt − ζt−1.

where ζt = C
∗(L)εt is a I(0) process, by 1-summability. Integrating

11 this
sequence from an initial value x0,

12 which we must assume finite, yields

xt − x0 = Cwt + ζt (11)

10Some of the results in this theory can be proved under the weaker condition (c′)∑
∞

j=0 j
1/2 ‖Cj‖ < ∞, see for example Phillips and Solo (1992). The conditions stated

here are sufficient for the properties we discuss, and are hopefully the most intuitive ones.
11Note the conventions governing the use of the difference operator ∆ and its inverse,

the integration operator ∆−1 = 1 + L + · · · + Lt. Consider a sequence y1, . . . , yT . Since
∆−1y1 = y1, the operator ∆ must be accordingly defined by ∆y1 = y1 and ∆yt = yt−yt−1
for t > 1.
12Some care is needed in the treatment of initial conditions. Expressing the observed

process as the deviation from an initial value x0 allows assumptions about how x0 is
generated to be sidelined. To avoid infinities, this clearly has be by a different mechanism
from that generating xt for t > 0.
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where wt =
∑t
s=1 εs is a random walk process. Thus, we are able to de-

compose a linear process rather straightforwardly into stationary and non-
stationary components. Since the first right-hand side term is Op(t

1/2) and
the second one is Op(1),

13 equation (11) can be used to verify directly the
result that was previously determined by substitution in (9), that is,

lim
T→∞

1

T
E(xT − x0)(xT − x0)′ = CΣC ′ = Ω. (12)

Now, consider the case where C, and hence Ω, is singular with rank
m− s. There must exist in this case a matrix β (m× s) of rank s such that
β′C = 0, and it follows immediately that

zt = β
′(xt − x0) = β′ζt

is an I(0) process. In other words, deficient rank of the matrix C implies
the existence of cointegration in the nonstationary series xt. In the extreme
case, C = 0 implies that xt is stationary, since the factor ∆ cancels in (10).

Next, consider an autoregressive representation of the process. Suppose

A(L)(xt − x0) = εt.

Writing A(z) = A+(z)(1 − z) shows that the Wold polynomial C(z) must
have the representation A+(z)−1.14 Substituting the BN decomposition
A(z) = (1− z)A∗(z) +A where A = A(1) yields

εt = A
∗(L)∆xt +A(xt − x0). (13)

For this equation to balance requires A(xt−x0) ∼ I(0), so there must exist
a decomposition of the form A = −αβ′ for some α (m × s) of rank s.
Therefore, note from (13) and (10) that

(1− z)Im = C(z)A(z)
= C(z)A∗(z)(1− z)−C(z)αβ′

= C(z)B(z)(1− z)− zC(z)αβ′ (14)

where B(z) = A∗(z) − αβ′. Evaluating (14) at the point z = 1 yields
Cα = 0, since β has full rank, and hence CA = 0 and also note that AC =
−αβ′C = 0. The matrices A and C span orthogonal spaces, respectively

13We write XT = Op(T
k) to denote that for every ε > 0, there exists Bε <∞ such that

P (|XT | /T
k > Bε) < ε. In particular, a stationary process is Op(1).

14Be careful to note that A+(z) is an invertible autoregressive polynomial, of finite or
infinite order, driving the stationary differences, whereas A(z) involves the finite-order
integration operator ∆−1. Cumulation must be initiated at some finitely remote date.
However, considering the sequence xt−x0 allows us to set this date as t = 1 without loss
of generality.
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the cointegrating space of dimension s and the space of dimension m − s
containing the common trends, through (11).

Evaluating (14) at the point z = 0, noting C0 = Im, also yields B0 =
Im. Accordingly, defining Γ(z) by B(z) = Im − zΓ(z), the error correction
form of the system is obtained from (13), after some rearrangement, as

∆xt = Γ(L)∆xt−1 +αzt−1 + εt (15)

where zt = β′xt − µ and µ = β′x0. This is the generalization of (5),
although it is also a simplification since the possibility of drift terms has
been excluded here. (To re-introduce these would be a useful exercise for
the reader.) Note that an intercept appears in the cointegrating relation, in
general, unless the data are explicitly initialized at zero.

This system has the feature that ∆xt is explained only by lagged vari-
ables, whereas the macro-econometrics literature generally allows for the
existence of contemporaneous interactions between variables, which might
either be truly simultaneous relations, or involve some kind of causal order-
ing within the period of observation. The extension to cover this case is a
simple matter of treating (15) as a solved form. Writing

B0∆xt = B1(L)∆xt−1 + ρzt−1 + ut, (16)

where B0 is a square nonsingular matrix, we then recover (15) with the
substitutions Γ(L) = B−1

0
B1(L), α =B

−1

0
ρ and εt = B−1

0
ut, so that

E(utu
′

t) = B0ΣB
′

0. We call (16) a structural form, where B0 = Im is
a permissible case but not a requisite.

While (15) is perhaps the commonest representation of a cointegrated
system in the applied literature, the Park-Phillips triangular form (see Park
and Phillips 1988, 1989, Phillips and Loretan 1991, Phillips 1991 inter alia)
has considerable virtues of simplicity and ease of manipulation. Partitioning
the vector of variables as xt = (x

′

1t,x
′

2t)
′ where x1t is s×1 and x2t (m−s)×1,

write15

x1t = Bx2t + v1t (17a)

∆x2t = v2t (17b)

where v1t and v2t are constrained solely to be I(0) stochastic processes. If
we form the partition

β =

[
β1
β2

]
s× s

(m− s)× s

after re-ordering variables as necessary to ensure β1 has full rank, the first
equation shows the cointegrating relations expressed as a reduced form with

15We follow the cited papers by Phillips and co-authors in using B for the reduced
form cointegrating coefficients. Don’t confuse this usage with the lag polynomial B(z)
appearing earlier.
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B = −β−1
1
β2. This matrix is accordingly unique, given this partition of the

variables.
The second block of equations is merely the relevant block from the Wold

representation (10). Writing the system as A(L)xt = vt where

A(L) =

[
Is −B
0 ∆Im−s

]
,

the Wold form is obtained as ∆xt = ∆A(L)
−1vt or, in partitioned form,

[
∆x1t
∆x2t

]
= ∆

[
Is ∆−1B
0 ∆−1Im−s

] [
v1t
v2t

]
=

[
∆v1t +Bv2t

v2t

]
.

This simple case gives a little insight into the mechanism of cointegration.
The m− s common trends are supplied as the integrals of v2t, whereas v1t
contributes only the noise component in the cointegrating relations. We
discuss below how the triangular form can be the basis for a useful approach
to estimation and inference.

Let’s summarize the conclusions of this section. We have shown that
an arbitrary linear model, that need not have a finite-order VAR represen-
tation but has 1-summable coefficients in its Wold representation, satisfies
the Granger representation theorem. In other words, if the matrix C has
reduced rank m− s in the representation ∆xt = C(L)εt, then the variables
are cointegrated with rank s and the system admits an error-correction rep-
resentation. Note that the choice of a first-order lag in (15) is completely
arbitrary. It can be set to any finite value, p, by a suitable redefinition of
the polynomial Γ(L). It is customary in the literature to let p match the
order of the VAR when this is finite, such that Γ(L) is a polynomial of order
p− 1.

4 Interpreting Cointegration

In his earliest contributions on the topic of cointegration, Granger (1981) was
keen to emphasize his debt to the macro-econometric research of the time,
in particular Sargan (1964) on wages and prices and Davidson et al. (1978)
on consumption and income. These authors had explicitly built dynamic
equations for nonstationary series that correlated logarithmic changes with
the logarithms of “long-run” ratios, which were now to be recognized as
cointegrating relations. In both the cited cases the relations happily involved
no unknown parameters so the resulting regressions were easily fitted by
ordinary least squares. The technical challenges involved for estimation
when zt in (15) involves unknown parameters (of which more later) did not
have to be faced.

However, these models were somewhat casual in their approach to the
dynamics of economic behaviour. It was assumed, first, that there existed
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identifiable economic relations that described behaviour in a “steady state”,
abstracting from business cycle fluctuations but possibly allowing for a sec-
ular drift; and second, that these relations are not expected to hold period-
to-period (nor of course are they observed to) due to unspecified dynamic
effects about which economic theory is taken to be mute. There was a
simple presumption that in a dynamic setting agents would formulate plans
(say, for the consumption/savings balance as income changes) that combined
“rule of thumb” responses to changes in driving variables represented by the
Γ(L) coefficients in (15) with compensating adjustments, represented by the
α coefficients, to achieve a proportion of the required adjustment towards
the long-run (steady state) relation in each period. The actual behavioural
mechanisms were treated as beyond the reach of economics to explain, and
hence this modelling approach is often spoken of as ad hoc, with a mildly
pejorative tone.

We should not overlook that the error correction form is only nominally
dynamic, and subsumes instantaneous adjustment. The static equation yt =
βxt + εt, where εt is an independent disturbance, can of course be written
equivalently as

∆yt = β∆xt + α(yt−1 − βxt−1) + εt
with α = −1. However, empirical work with such equations invariably shows
α closer to zero than to −1, and also no match between the ‘dynamic’ and
‘long run’ coefficients. These observed adjustment dynamics called for some
explanation, and a number of authors have attempted to lay more rigorous
economic foundations for the ECM scheme, notably Salmon (1982), Nickell
(1985) and Campbell and Shiller (1988). Natural precursors are the partial
adjustment model of Lovell (1961) and the habit persistence model of Brown
(1952). Assuming that agents face costs associated with speedy adjustment
(physical building costs in the case of inventory investment, psychological
costs of changing behaviour in the case of decisions by consumers) it is
straightforward to formulate a quadratic loss function for a decision variable
yt involving both the costs of change yt − yt−1, and the costs of deviation
from equilibrium yt−y∗t , where y∗t is the function of forcing variables defining
equilibrium. Optimizing with respect to the choice of yt leads directly to a
plan to set yt to a value intermediate between y

∗

t and yt−1,

yt = λyt−1 + (1− λ)y∗t , 0 ≤ λ ≤ 1

which after a simple rearrangement, and the addition of a shock representing
random deviations from the plan, can be cast in the ECM form

∆yt = (1− λ)∆y∗t + (1− λ)(y∗t−1 − yt−1) + εt

replacing y∗ in practice by a linear combination of forcing variables.
The constraints across these dynamic adjustment coefficients are a con-

sequence of the extreme simplicity (or maybe we should say naïveté) of this
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particular setup. However, the framework is easily elaborated to allow for
forward-looking behaviour and multi-step dynamic optimization. See Nickell
(1985) also Davidson (2000, Section 5.5.4) for illustrations. What these ex-
amples show is that the solved form of the dynamic adjustment depends not
only on the agent’s optimization rule but also on the form of the processes
generating the forcing variables.

Campbell and Shiller (1988) argue that error-correction behaviour can
be observed even without the existence of adjustment costs, and illustrate
their case with the class of present value models. Theory has the spread
between long and short rates depending mechanically on the difference be-
tween the former and rational forecasts of the latter; but if these forecasts
use information not available to the modeller, the spread involves a random
component that, moreover, must Granger-cause the future changes in the
short rate. This gives rise to an error correction structure with the spread
representing the cointegrating residual, but note that this structure does
not arise through agents reacting to resolve perceived disequilibria, as the
classic ECM framework suggests.

Cointegration has been derived in the preceding sections as the attribute
of a system of dynamic equations. However, many of the models that ap-
pear in the applied literature, the prototypical examples of Sargan (1964),
Davidson et al. (1978), Hendry (1979) and many others, are cast as single
equations and estimated by least squares. The driving variables are as-
sumed to be weakly exogenous within the time frame of observation. Weak
exogeneity is a technical concept, defined formally in Engle et al. (1983), but
it can be loosely interpreted to describe a variable that is regarded as given
and conditionally fixed by agents within the decision period, even though it
could be endogenous in the wider sense of depending on past values of the
variables it drives. A key implication of weak exogeneity is that the variable
is uncorrelated with the shocks in the regression model, and hence ordinary
least squares is a consistent estimator for the dynamic equation.

Without loss of generality, assume that the equation of interest is the
first equation in the system, and so partition the variables as xt = (x1t, x

′

2t)
′.

Further assume, in concert with the cited references, that the cointegrating
rank is 1. The structural system (16) is then partitioned as

[
1 b′0,12
b0,21 B0,22

] [
∆x1t
∆x2t

]

=

[
b1,11(L) b′1,12(L)

b1,21(L) B1,22(L)

] [
∆x1,t−1
∆x2,t−1

]
+

[
ρ1
ρ2

]
zt−1 +

[
u1t
u2t

]
(18)

where zt = β
′xt − µ. The noteworthy feature of this setup is the potential

dependence of all the variables on zt−1. If β is known then zt can be treated
as a datum and there is no obstacle to estimating the first equation by least
squares, subject to the usual weak exogeneity restrictions on the distribution
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of x2t, specifically that b0,21 = 0 and E(u1tu2t) = 0. On the other hand,
if β is unknown, then it is potentially involved in all the equations of the
system. Weak exogeneity of x2t in the first equation requires the extra
condition ρ2 = 0, so that the error correction effect is wholly focused on
the evolution of x1t. Under these circumstances, the first equation can be
studied in isolation, conditional on x2t. Note that β could be estimated by
nonlinear least squares applied to this equation. We say more about this
estimation question below.

5 Estimating Cointegrating Relations

We start the discussion of estimation with the focus of attention on the
matrix β of cointegrating coefficients. Immediately, we run into the difficulty
that this matrix is not in general unique. It is defined merely to span
a space of m-vectors having the property that any element of the space
cointegrates the variables of the model. One approach to estimation is to
impose normalization restrictions, such as having the columns orthogonal
and with unit length. The structural modelling approach, on the other
hand, supposes that cointegration is to be explained by the existence of some
long-run economic relations, and the cointegrating space is relevant because
these structural vectors span it, in particular. When the cointegrating rank
s is greater than 1, however, any linear combination of the hypothesized
structural vectors is also a cointegrating vector. We therefore face a problem
of identifying the parameters of interest.

Before approaching that more difficult case, assume initially that s = 1.
Then β (m× 1) is unique up to a choice of normalization and, normalizing
on x1t in the partition xt = (x1t, x

′

2t)
′, with almost no loss of generality,16

we can write the cointegrating relation as a regression model,

x1t = γ
′x2t + µ+ zt (19)

where β = (1,−γ ′)′, and it is natural to consider the possibility of OLS
estimation. If

S(g,m) =
∑T

t=1
(x1t − g′x2t −m)2

it can be shown that S(γ,m) = Op(T ) for anym, whereas S(g,m) = Op(T
2)

at points where g 6= γ. The proof of consistency of least squares is therefore
very direct, and (letting hats denote the least squares estimators) γ̂ − γ =
Op(T

−1) by comparison with the usual convergence rate of Op(T
−1/2) in

16Where the choice of normalization has unintended consequences is in the case where
the first element of β is actually zero, so that x1t is not in the cointegrating set. This
is a valid special case of the model and obviously needs be ruled out by assumption. To
pre-empt this possibility it’s desirable to compare alternative normalizations.
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stationary data. This property is known as superconsistency.17 The other
features of this regression include R2 → 1 as T →∞.

However, notwithstanding these desirable properties, the large-sample
distribution of T (γ̂ − γ) is non-standard, and depends critically on the
structure of the model. Consider the OLS formula in the standard notation
γ̂ = (X ′X)−1X ′y, the rows ofX having the form (x2t−x̄2)′ for t = 1, . . . , T
where x̄2 is the vector of sample means, and y = (x11, . . . , x1T )

′. The prob-
lem with cointegrating regression is that the regressors do not obey the law
of large numbers. It can be shown that

T (γ̂ − γ) =
(
X ′X

T 2

)−1
X ′u

T
d→ P−1q (20)

where
d→ denotes convergence in distribution, and u = (z1, . . . , zT )

′. P and
q, the limits in distribution of the normalized sums of squares and products
matrices, are in general random variables and correlated with each other.
Since q typically has a mean different from zero, there can be substantial
finite sample biases. Similarly, the usual regression standard errors do not
converge to constants, as in the stationary data analysis, but to random ele-
ments proportional to the square roots of the diagonal elements of P−1. The
asymptotic distributions of the regression t-ratios are therefore not merely
non-standard, but depend on nuisance parameters and cannot be tabulated.
All these facts are bad news for making inferences on cointegrating vectors.

However, there is a favourable special case. Suppose that x2t is strictly
exogenous in equation (19), which means that E(x2t−jzt) = 0 for −∞ < j <
∞. For this condition to be satisfied, note that in (18) the parameters b0,21,
b1,21(L) and ρ2 will all need to be zero, and in addition, E(u1tu

′

2t) = 0. In
this case, the distribution of T (γ̂ − γ) is asymptotically mixed normal. Un-
der strict exogeneity, X in (20) can be treated as conditionally fixed when
considering the distribution of u. It can be shown that T (γ̂ − γ) is asymp-
totically normally distributed under the conditional distribution, holdingX
fixed, although its variance matrix is a random drawing under the uncondi-
tional distribution, hence ‘mixed normal’. Further, we can compute t ratios
that (on the null hypothesis) are conditionally N(0,1) in the limit. However,
since this distribution is the same for any set of conditioning variables, the
same limit result holds unconditionally. This means that standard inference
procedures, using tabulations of the standard normal and chi-squared distri-
butions, are asymptotically valid. The only modification of the usual least
squares inference procedure that may be necessary, since the residuals are
typically autocorrelated, is to use a heteroscedasticity and autocorrelation

17Note however that µ̂− µ = Op(T
1/2) in the usual way.
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consistent (HAC) estimator for the residual variance, such as that derived
by Newey and West (1987).18

Unfortunately, strict exogeneity is a very strong assumption in macro-
economic data, and this favourable case is the exception to the rule. An
alternative approach, while maintaining the single-equation framework, is
to estimate the dynamic error correction model itself by nonlinear least
squares. This method is analysed by Stock (1987). The first equation of
(18) may be written

∆x1t = a0 − b′0,12∆x2t + b1,1(L)′∆xt−1 + ρ1(x1,t−1 − γ ′x2,t−1) + u1t (21)

This equation can be estimated unrestrictedly by least squares, and γ̂ recov-
ered by dividing the coefficients of x2,t−1 by minus the coefficient of x1,t−1.
Alternatively, a nonlinear optimization algorithm may be used. This es-
timator can be shown to be superconsistent, and it is also asymptotically
mixed normal (meaning that standard inference applies, as above) subject
to the weak exogeneity condition detailed following (18). In particular, in
addition to the usual requirements of no simultaneity, the condition ρ2 = 0
is needed to ensure that all the sample information about the cointegrating
relation is contained in (21). Without these conditions, there is once again
a failure of mixed normality, and a dependence of the limit distributions on
nuisance parameters. However, note that these conditions are less severe
than those required to obtain the equivalent result for the OLS estimator of
the cointegrating relation itself.

To achieve standard asymptotic inference in arbitrary cases of (18), a
number of proposals have been made to modify the least squares estimator.
Saikkonen (1991) and Stock and Watson (1993) independently proposed
similar procedures. Consider the triangular representation in (17), assum-
ing s = 1 for present purposes. Saikkonen shows that the x2t variables
can be treated as conditionally fixed in the regression of the first block if
E(v1tv

′

2,t−j) = 0 for −∞ < j <∞ where, in this context, v2t = ∆x2t. How-
ever, by augmenting the first equation in (17) with these observed variables,
the same condition can be engineered. Substituting from the second block,
the ideal set of additional regressors are ∆x2,t−j for −∞ < j <∞. Whereas
this is not a feasible choice, the same asymptotic distribution is obtained by
running the finite-order regression

x1t = γ
′x2t +

∑KT

j=−KT

πj∆x2,t−j + µ+ et (22)

where KT increases with T , although at a slower rate. Saikkonen proposes
KT = o(T 1/3).19 In this regression, the regressors are “as if” strictly ex-
ogenous. The coefficients πj are merely projection parameters and their

18Think of this as a method for estimating (an element of) Ω in (9), rather than the
corresponding (element of) Σ.
19The o() notation is a shorthand for the condition |KT | /T

1/3 → 0 as T →∞.
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values are generally not of direct interest. The unusual (from an econo-
metric modelling point of view) step of including leads as well as lags in
the regression has to be understood as allowing for the possibility that x1t
Granger-causes x2t through endogenous feedbacks, hence the disturbance
term must be purged of both past and future dependence on x2t. Thus,
(22) must not be confused with a conventional structural equation describ-
ing agents’ behaviour. Implicitly, we need the full multi-equation system to
do this correctly.

The augmented least squares estimator is asymptotically mixed normal
when correctly specified. Note that the regression in (22) does not make al-
lowance for autocorrelation in the residual disturbance et, which can clearly
exist even following the projection onto the ∆x2,t−j variables. This fact
does not invalidate the asymptotic distribution results, provided that the
covariance matrix is computed in the correct manner. As already noted for
the strictly exogenous case, it is typically necessary to use a HAC estimator
for the residual variance. Conventional t and F test statistics then have
standard distributions asymptotically and the usual normal and chi-squared
tables can be used to get approximate critical values. Saikkonen also shows
that the augmented estimator is optimal, in the sense of achieving the max-
imum concentration of the asymptotic distribution about the true values.

An alternative approach to this type of correction is the fully modified
least squares (FMLS) estimator of Phillips and Hansen (1990). The essential
idea here is to derive the limiting distribution of P−1q in (20), identify
the components of this formula that produce the deviation from the centred
mixed normal distribution, and estimate these components using the sample.
The ingredients of these modifications include the covariance matrix of the
data increments and disturbances, estimated by an HAC formula using the
consistent OLS estimator of the parameters computed in a preliminary step.
The resulting formulae are somewhat technical, and will not be reproduced
here. The main thing to be aware of is that the asymptotic distribution
of this estimator matches that of the Saikkonen-Stock-Watson augmented
least squares estimator. Both of these methods are suitable for dealing with
arbitrary forms of the distribution of the cointegrating VAR, and hence are
inherently more robust than the single-equation ECM method of (21).

We have discussed the estimation of the vector γ, but naturally we shall
also be interested in inference on the dynamic parameters of an equation
such as (21). In particular, we may be interested in knowing how rapidly
the error-correction mechanism moves the variables towards their cointegrat-
ing relations. However, given an efficient estimator of γ, we can now exploit
the super-consistency property. Construct ẑt = x1t − γ̂ ′x2t, and insert this
constructed sequence into (21) with coefficient ρ1. These residuals can be
treated effectively as data from the standpoint of the asymptotic distribu-
tion, and are (by hypothesis) I(0), so the usual asymptotics for stationary
data can be used to make inferences about ρ1 and the other parameters of
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the equation.

6 Multiple Cointegrating Vectors

Consider the case when there are two or more linearly independent vectors
spanning the cointegrating space. Here is a simple example with m = 3.
Suppose that xt = (x1t, x2t, x3t)

′ ∼ I(1) and

pt = x1t − µx2t ∼ I(0) (23a)

qt = x2t − νx3t ∼ I(0). (23b)

Then, for any λ,

pt + λqt = x1t − (µ− λ)x2t − λνx3t ∼ I(0).

The vectors βλ = (1,−(µ − λ), −λν)′ are cointegrating for all choices of
λ. If an attempt is made to estimate this vector, say by OLS regression of
x1t onto x2t and x3t, then the estimated coefficients will merely correspond
to the case of λ that minimizes the sum of squares, which in turn depends
on the relative sample variances of the variables pt and qt. It cannot tell us
anything about the values of µ or ν, as such. While setting λ = 0 returns us
relation (23a), there is in fact no value of λ that can return (23b) because
of the choice of normalization.

Nonetheless, there is a simple way to estimate µ and ν, given that we
know the structure. This is to run two regressions20, the first one excluding
x3t and the second one excluding x1t and normalized on x2t. In fact the,
regression of x1t onto x3t will estimate a third cointegrating vector of the
system, βµ = (1, 0,−µν)′.

On the other hand, suppose that (23a) holds, but not (23b), and instead
there exists a cointegrating relation of the form

x1t − δ1x2t − δ2x3t ∼ I(0) (24)

It is easy to see that while the same restricted regression procedure will
consistently estimate µ, there is no way to estimate the coefficients of (24).
Running the regression with all three variables inevitably gives us an arbi-
trary linear combination of (23a) and (24). We say in this situation that the
coefficients δ1 and δ2 are unidentified.

Generalizing from this example we see that the problem has a strong
affinity with the analysis of static simultaneous equations that we now asso-
ciate with the research agenda of the Cowles Commission at the University
of Chicago in the 1940s (see Koopmans 1949, and also any number of econo-
metrics texts, such as Johnston and DiNardo 1997). If β (m×s) is a matrix
20Here we use the term "regression" generically, to denote any of the consistent methods

described in Section 5
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spanning the cointegrating space, any vector of the form βr is a cointegrat-
ing vector where r (s×1) is arbitrary. The only way that one of these vectors
can be distinguished from another is by the existence of known restrictions
on the coefficients. Assume for the sake of argument that the columns of
β are “structural” in the sense that the elements have a specific interpreta-
tion in terms of economic behaviour. In particular, some of these elements
are known to be zero, since structural economic relations do not in general
involve all the variables in a system. Such a relation (say, the first column
of β with no loss of generality) is said to be identified if the only choice of
r that preserves the known restrictions is r = e1 = (1, 0, . . . , 0)′. Assume,
without loss of generality, that the variables are ordered so that the first g1
of the elements of column 1 of β are nonzero, with the first element set to
1 as normalization, and the last m − g1 elements are zeros. Accordingly,
partition β by rows as β =

[
β1
β2

]
where β2 (m− g1 × s) has first column

equal to zero by construction, so that its rank cannot exceed s − 1. The
following well-known proposition is the rank condition for identification:

• Equation 1 is identified if and only if β2 has rank s− 1.

Clearly, β2 having maximum rank means that it is not possible to construct
a zero linear combination of its columns except for the specific cases of ae1
for scalar a, where the normalization rules out all of these cases except
a = 1. An important by-product of this result is the order condition for
identification (necessary but not sufficient) that requires g1 ≤ m− s+ 1.

We now have the following result: a structural cointegrating relation that
is identified by zero restrictions is consistently estimated by a least squares
regression (or efficient counterpart) imposing these zero restrictions.21 In
text-book accounts of the simultaneous equations model, recall that it is
necessary to separate the variables of the model into endogenous and exoge-
nous categories, and implement estimation by (for example) two-stage least
squares, where the order condition for identification determines whether
sufficient instruments are available to estimate the unrestricted coefficients.
Here, there is no such separation. All the variables are on the same foot-
ing and least squares is consistent, with identification achieved by excluding
variables to match the known restrictions. Every identified structural coin-
tegrating relation can be consistently and efficiently estimated by running
either the Saikkonen-Stock-Watson or Phillips-Hansen procedures on equa-
tions containing only the non-excluded variables. For example, following
Saikkonen’s notation, equation (22) would become

x1t = γ
′x2t +

∑KT

j=−KT

πj∆xc,t−j + µ+ et (25)

21Further discussion of this and related results can be found in Davidson (1994, 1998b).
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where xct = (x
′

2t,x
′

3t)
′, and the subscript 3 denotes the excluded variables.

Each identified relation is estimated with a different partition of the variables
into inclusions and exclusions, not overlooking the fact that the identity of
the normalizing variable x1t needs to be changed if it is itself to be excluded
from the relation.

A further point of interest about identified structural relations is that
they are irreducible. In other words, no variable can be dropped without the
relation ceasing to be cointegrating. The examples in (23) are a good case in
point, and this is how in practice we can detect the fact that a relation such
as (24) cannot be both structural and identified. To appreciate the role of ir-
reducibility, consider the triangular form (17) once again. We had assumed
s = 1. Suppose however that, contrary to the implicit assumption, the
variables x2t in fact featured a cointegrating relation amongst themselves.
Clearly, in this case, the first relation is not irreducible, although to discover
this it may be necessary to change the normalization. Likewise if there are
two or more cointegrating vectors containing x1t, so that the estimated γ
is a composite relation, there will necessarily exist a linear combination of
these vectors that excludes one of the variables, and is cointegrating. So,
again, it cannot be irreducible. Ideally, the irreducibility property should be
checked (see Section 8 on cointegration testing) on each postulated struc-
tural relation. However, it’s important to note that irreducibility is not an
exclusive property of identified structures. In the three-variable example,
it is of course shared by the solved relation involving x1t and x3t. There is
no way except by prior knowledge of the structure that we can be sure of
distinguishing structural from irreducible solved forms.

7 Estimating Cointegrated Systems

In a series of papers focusing chiefly on the triangular parameterization (17),
Peter Phillips and coauthors (Phillips 1988, Park and Phillips 1988, 1989,
Phillips and Hansen 1990, Phillips 1991, Phillips and Loretan 1991) have
provided a careful analysis of the issue of valid inference in cointegrated
systems. One feature of their approach is that the cointegrated relations are
always parameterized in reduced form. In other words, if

β =

[
β1
β2

]
s× s

(m− s)× s

then, in (17), B = −β−1
1
β2. While the normalization on x1t is basically

arbitrary — any partition of the variables that delivers a β1 of full rank
will do — there is no reason in principle why the matrix [I : −B]′ should
not be replaced with a matrix β of structural vectors, subject to identifying
restrictions. Such an approach is less easy to implement in practice, however.
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The primary lesson of this research is that the number of cointegrating
vectors in the system is the crucial piece of information for efficient, mixed
normal estimation. It’s convenient as a pedagogical device to consider the
case where vt = (v′1t,v

′

2t)
′ in (17) is an i.i.d. vector. Then the efficient,

asymptotically mixed normal estimator of the system is simply computed
by applying least squares to the s augmented equations.

x1t = Bx2t + Γ12∆x2t + et

where we define Γ12 = Ω−1
22
Ω21 with Ω22 = E(v2tv

′

2t), Ω21 = E(v2tv
′

1t)
and, with Gaussian disturbances,

et = v1t − Γ12∆x2t = v1t − E(v1t|v2t).

In the event that vt is autocorrelated, the further augmentation by leads and
lags of ∆x2t will provide efficiency, as detailed in Section 5 above. Contrast
this with the case of the triangular model

x1t = Bx2t + v1t (26)

x2t = Πx2t−1 + v2t

where Π is unrestricted. The roots of the autoregressive system could be
either unity or stable and the identity v2t = ∆x2t no longer obtains. Phillips
(1991) shows that the maximum likelihood estimator of B in this system
has an asymptotic distribution contaminated by nuisance parameters such
that conventional inference is not possible. The knowledge that Π = Im−s
is the key to mixed-normal asymptotics.

Thanks largely to the influential contributions of Søren Johansen (1988a,b,
1991, 1995), the most popular approach to system estimation is the reduced
rank regression estimator. This works with the representation in (15), al-
though specialized by assuming a finite-order vector autoregressive specifi-
cation. To describe how this method works with the maximum clarity we
develop the case of the first-order VECM

∆xt = a0 +αβ
′xt−1 + εt (27)

as in (4). As before, the key piece of prior information is the cointegrating
rank of the system.

The natural estimator for a system of reduced form equations is least
generalized variance (LGV), which is also the maximum likelihood estimator
when the disturbances are Gaussian. This minimizes the determinant of the
system covariance matrix,

Λs(α,β) =

∣∣∣∣
∑T

t=2
εtε

′

t

∣∣∣∣ =
∣∣S00 −αβ′S10 − S01βα′ +αβ′S11βα′

∣∣ (28)
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where

S00 =
∑T

t=2
(∆xt −∆x)(∆xt −∆x)′

S01 =
∑T

t=2
(∆xt −∆x)(xt−1 − x̄−1)′

S11 =
∑T

t=2
(xt−1 − x̄−1)(xt−1 − x̄−1)′

and S10 = S
′

01. Note that the value of s is built into this function through
the dimensions of the unknown matrices α and β, and so is indicated in
the subscript in (28). If additional non-I(1) variables are to be included in
(27), such as dummy variables and lagged values of ∆xt, these are removed
by regressing ∆xt and xt−1 onto them and taking the residuals. The mean-
deviations shown here are just the simplest possible case of this “partialling
out” operation. It’s conventional to replace xt−1 by xt−p where p is the
maximum lag order, but this is optional. Either choice of lag will yield the
same asymptotic properties.

To minimize Λs, first fix β temporarily and regress ∆xt onto β
′xt−1 to

get a conditional estimate of α; that is,

α̂ = (β′S11β)
−1β′S10. (29)

Substitution of (29) into (28) yields the concentrated criterion function

Λ∗s(β) =
∣∣S00 − S01β(β′S11β)−1β′S10

∣∣ (30)

Now, the rule for determinants of partitioned matrices gives the twin iden-
tities

∣∣∣∣
S00 S01β

β′S10 β′S11β

∣∣∣∣ =
∣∣β′S11β

∣∣ ∣∣S00 − S01β(β′S11β)−1β′S10
∣∣

= |S00|
∣∣β′S11β − β′S10S−100 S01β

∣∣

from which we obtain the alternative form of (30),

Λ∗s(β) = |S00|
∣∣β′(S11−S10S−100 S01)β

∣∣
∣∣β′S11β

∣∣ (31)

where |S00| does not depend on β and so can be omitted from the function.
The next step is to appeal to a well-known result from multivariate analysis.
The minimum with respect to β of the ratio of determinants in (31) is
obtained by solving the generalized eigenvalue problem

∣∣λS11−S10S−100 S01
∣∣ = 0. (32)

Specifically, Λ∗s(β) is minimized uniquely when the columns of β are the
solutions q1, . . . , qs of the s homogeneous equations

(λjS11−S10S−100 S01)qj = 0 (33)
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where λ1, . . . , λs are the s largest solutions to (32), subject to the normal-
ization

q′iS11qj =

{
1, i = j
0, otherwise.

(34)

The eigenvalues must fall in the interval [0, 1]. Noting that S11 = O(T
2)

whereas S10S
−1

00
S01 = O(T ), observe how necessarily λj = Op(T

−1) unless
the solution to (33) is a cointegrating vector. The normalization in (34)
is not convenient, but letting L (m × m) be defined by S−1

11
= LL′, so

that L′S11L = Im, the λ1, . . . , λm are also the simple eigenvalues of the
matrix L′S10S

−1

00
S01L, whereas the eigenvectors are β̂j = Lqj , which are

orthonormal (orthogonal with unit length).
Care is needed in interpreting this result. The orthonormal matrix

β̂ = (β̂
1
, . . . , β̂s) asymptotically spans the cointegrating space, but it is not

a reduced form nor, of course, a structural form. Given the arbitrary nature
of the normalization, it is difficult to give an interpretation to these vec-
tors, but for the fact that any structural cointegrating vector can be found
asymptotically as a linear combination of the columns.

While inference on the elements of β̂ itself is neither possible nor indeed
useful, it is possible to impose and test linear restrictions on the cointegrating
space. Following Johansen and Juselius (1992), one can write for example

β =Hφ

whereH is a m× (m−r) matrix of known constants (0 and 1 typically) and
φ (m−r×s) is an unrestricted matrix of parameters. This parameterization
allows the cointegrating space to satisfy a certain type of linear restriction,
and permits a likelihood ratio test of these restrictions.

Davidson (1998a) shows how to test a set of p restrictions expressed in
the form

• There exists a vector a (s× 1) such that Hβa = 0

where here, H is a p×m matrix of known constants. This approach allows
testing of hypotheses such as “a vector subject to p specified zero restrictions
lies in the cointegrating space”. Given asymptotic mixed normality of the
estimators β̂, which can be demonstrated subject to regularity conditions,
these tests can be performed making use of the standard chi-squared tables
in large samples.

8 Testing Cointegration

We have shown that the cointegrating rank of a collection of I(1) processes is
the key piece of information, without which inference on the system cannot
realistically proceed. It is in this context in particular that Søren Johansen’s
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contributions have proved essential. The discussion of the last section has
already provided the clue. Consider the m solutions to (32), ordered as
λ1 ≥ λ2 ≥ · · · ≥ λm. These are functions of the data set but their compu-
tation does not depend on a choice of s. The m − s smallest converge to
zero as T → ∞, because the corresponding eigenvectors qj are not cointe-
grating vectors, and the terms S11qj and S10S

−1

00
S01qj in (33) are therefore

diverging at different rates, respectively Op(T
2) and Op(T ). Balancing the

equation imposes λj = Op(T
−1) for s < j ≤ m, while λj = Op(1) for

1 ≤ j ≤ s.
This provides the basis for a test based on the statistics Tλj , which are

computed as a by-product of the reduced rank regression. If j ≤ s then
Tλj = Op(T ), otherwise Tλj = Op(1). Suppose that the distributions of the
Tλj in the second case can be tabulated. We can then proceed to compare
the statistic with this distribution for the cases j = 1, 2, . . . ,m, in decreasing
order of magnitude, until the chosen critical value is not exceeded. Then, s
can be estimated as the last case of j before this non-rejection occurs. For
any choice of s, the tests can be formally cast in the form H0 : cointegrating
rank = s against the alternative H1 : cointegrating rank ≥ s+ 1.

It is shown by an ingenious argument that, under the null hypothesis,
the non-divergent Tλj (the cases j = s+1 . . . ,m) are tending as T →∞ to
the eigenvalues of a certain random matrix of dimension (m− s)× (m− s)
whose distribution is free of nuisance parameters. This limiting distribution
is shared with matrices that can be generated on the computer using pseudo-
random numbers, so the distribution of its eigenvalues can be tabulated in
a Monte Carlo simulation exercise.

There are two ways in which this idea might be implemented as a test.
One is to look at Tλs+1, the largest of the set of the m− s smallest rescaled
eigenvalues. This is called the maximum eigenvalue test. The second im-
plementation is to look at

∑m
j=s+1 Tλj . This latter statistic converges to

the trace of the limit matrix, and so this is known as the trace test. Each
of these distributions has been tabulated for a range of values of m − s,
although not depending on m, note, since the cases (m, s) and (m+1, s+1)
are equivalent.

It can also be shown that the minimized value of the generalized variance
is

Λ∗s(β̂) =
∏s

j=1
(1− λj)

(the product of the s terms) and hence, using the fact that log(1 + x) ≈ x
when x is small,

T log Λ∗s(β̂)− T log Λ∗s+1(β̂) = −T log(1− λs+1) ∼ Tλs+1

and

T log Λ∗s(β̂)− T log Λ∗m(β̂) = −T
∑m

j=s+1
log(1− λj) ∼

∑m

j=s+1
Tλj
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where ‘∼’ denotes that the ratio of the two sides converges to 1. Hence,
asymptotically equivalent tests can be based on the estimation minimands.
If the disturbances are Gaussian, the maximized likelihood takes the form
−1

2
T log Λ∗s(β̂) and then these forms have the natural interpretation of likeli-

hood ratio tests. However, be careful to note that these limiting distributions
are not chi-squared. It is a general rule of I(1) asymptotics that restrictions
affecting the orders of integration of variables — in other words that concern
unit roots — give rise to non-standard distributions. Be careful to note that
the standard asymptotic tests that we have described in this chapter all
share the feature that the cointegrating rank is given and not part of the
tested hypothesis.

An interesting special case is the test based on the statistic Tλm, for the
null hypothesis of a single common trend (cointegrating rank s = m − 1)
against the alternative that the data are stationary. In this case the trace
and maximal eigenvalue statistics coincide and, interestingly enough, the
null limiting distribution is none other than the square of the Dickey-Fuller
distribution associated with the standard test for a unit root.

An alternative approach to testing cointegration is to estimate a single
equation and test whether the resulting residual is I(0). In these tests, non-
cointegration is the null hypothesis. This is basically comparable to testing
the hypothesis H0 : s = 0 in the cointegrating VECM framework, but avoids
modelling the complete system. A well-known paper by Phillips and Ouliaris
(1990) compares a range of alternative implementations of this idea. The
best known is based on the augmented Dickey-Fuller (ADF) test for a unit
root (Dickey and Fuller 1979, 1981, Said and Dickey 1984) applied to the
residuals from an ordinary least squares regression. The test statistic takes
the form of the t ratio for the parameter estimate φ̂ in the regression

∆ût = φût−1 +
∑KT

j=1
πj∆ût−j + et (35)

where ût = x1t − µ̂− γ̂ ′x2t and KT = o(T 1/3).
Although this test closely resembles the augmented Dickey-Fuller test for

a unit root, there are a number of important issues to be aware of. When
the null hypothesis is true, there is no cointegration and γ̂ does not converge
in probability and is a random vector even in the limit as T →∞. A linear
combination of random walks with random coefficients, where these coeffi-
cients are computed specifically to minimize the variance of the combination,
is not itself a random walk, in the sense that the regular Dickey-Fuller dis-
tribution should be expected to apply. In fact, the asymptotic distribution
of this test depends only on the number of elements in x2t, and tabulation
of the distributions is therefore feasible (see Engle and Yoo 1987). However,
while it might be assumed that an efficient single-equation estimator would
be a better choice than OLS for the estimator of γ, in fact the limit distrib-
utions have been derived on the assumption of OLS estimation and depend
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on this for their validity. The requirement that KT → ∞ is important
because, under H0, ∆ût is a random combination of stationary processes.
Even if these have finite-order autoregressive structures individually, there
is no reason to assume this of the combination. The idea of approximating
a finite-order ARMA process by an AR(∞), approximated in finite samples
by the AR(KT ), is due to Said and Dickey (1984). In practice it should give
an adequate account of the autocorrelation structure of most I(0) processes.

Leading alternatives to the ADF statistic are the statistics denoted Ẑα
and Ẑt in Phillips (1987), where the coefficient φ̂ is subjected to specifically
tailored corrections that play an equivalent role to the lag-difference terms
in (35). These corrections are similar in principle to those in the Phillips-
Hansen (1990) fully modified least squares estimator of γ, and make use of
HAC estimates of the data long-run covariance matrix.

9 Conclusion

This chapter has aimed to survey the main issues in the specification and
estimation of cointegrating relationships in nonstationary data. This is now
a very large literature, and inevitably there are many aspects which there
has been no space to deal with here. In particular, while a number of conclu-
sions about the large-sample distributions of estimators have been asserted,
no attempt has been made to describe the asymptotic analysis on which
these conclusions rest. This theory makes a clever use of the calculus of
Brownian motion, following from the fundamental idea that nonstationary
economic time series, when viewed in the large, move much like pollen grains
suspended in water as first observed microscopically by the botanist Robert
Brown. The same mathematics can be used to analyse either phenomenon.
The key result in this theory is the functional central limit theorem, general-
izing the ordinary central limit theorem to show the limiting Gaussianity of
every increment of the path of a normalized partial sum process. Interested
readers can find many of the details omitted here in Part IV of the present
author’s text Econometric Theory (Davidson 2000).
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