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Abstract. This paper provides an updated survey of a burgeoning literature on 
testing, estimation and model speciftcation in the presence of integrated 
variables. Integrated variables are a speciftc class of non-stationary variables 
which seem to characterise faithfully the properties of many macroeconomic 
time series. The analysis of cointegration develops out of the existence of unit 
roots and offers a generic route to test the validity of the equilibrium predictions 
of economic theories. Special emphasis is put on the empirical researcher's point 
of view. 
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1. Introduction 

Economic theory generaHy deals with equilibrium relationships. Most empirical 
econometric studies are an attempt to evaluate such relationships by 
summarising economic time series using statistical analysis. To apply standard 
inference procedures in a dynamic time series model we need the various 
variables to be stationary, since the majority of econometric theory is built upon 
the assumption of stationarity. Until recently, this assumption was rarely 
questioned, and econometric analysis proceeded as if aH the economic time series 
were stationary, at least around sorne deterministic trend function which could 
be appropriately removed. However, stationary series should at least have 
constant unconditional mean and variance over time, a condition which appears 
rarely to be satisfied in economics. The importance of the stationarity 
assumption had been recognised for many years, but the important papers by 
Granger and Newbold (1974), Nelson and Kang (1981) and Nelson and Plosser 
(1982) alerted many to the econometric implications of non-stationarity. 
Integrated variables are a specific class of non-stationary variables with 
important economic and statistical properties. These are derived from the 
presence of unit roots which give rise to stochastic trends, as opposed to pure 
deterministic trends, with innovations to an integrated process being permanent 
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~nstead of transient. For example, the presence of a large permanent component 
m aggregate output conflicts with traditional formulations of both Keynesian 
and Classical macroeconomic theories in terms of countercyclical policies, 
implying, in addition, that the welfare costs and benefits of policy actions are far 
different than when output movements are seen as transitory deviations from a 
slowly growing natural leve!. 

The presence of, at least, a unit root is implied by many economic models by 
the rational use of available information by economic agents. Standard 
applications inelude futures contracts, stock prices, yield curves, real interest 
rates, exchange rates, money velocity, hysteresis theories of unemployment, and, 
perhaps the most popular, the implications of the permanent in come hypothesis 
for real consumption. 

Statisticians have been aware for many years of the existence of integrated 
series and, in fact, Box and Jenkins (1970) argue that a non-stationary series can 
be transformed into a stationary one by successive differencing of the series. 
Therefore, from their point of view, the differencing operation seemed to be a 
pre-requisite for econometric modelling both from an univariate and a 
multivariate perspective. However Sargan (1964), Hendry and Mizon (1978) and 
Davidson et al. (1978), among others, have criticised on a number of grounds 
the specification of dynamic models in terms of differenced variables only, 
especially because it is then impossible to infer the long-run steady state solution 
from the estimated mode!. 

Granger (1983) and Granger and Weiss (1983), resting upon the previous ideas 
point out that a vector of variables, all of which achieve stationarity afte; 
differencing, may have linear combinations which are stationary without 
differencing. Engle and Granger (1987) formalise the idea of variables sharing an 
equilibrium relationship in terms of cointegration between time series, providing 
us with tests and an estimation procedure to evaluate the existence of equilibrium 
relationships, as implied by economic theory, within a dynamic specification 
framework. Standard examples inelude the relationship between real wages and 
productivity, nominal exchange rates and relative prices, consumption and 
disposable income, long and short-term interest rates, money velocity and 
interest rates, production and sales, etc. 

In view of this epidemic of martingales in economics, a voluminous literature 
on testing, estimation, prediction, control and model specification in the 
presence of integrated variables has developed in the last few years. 1 The 
purpose of this survey is to provide a useful guide through this increasingly 
technical literature, paying special attention to the point of view of the applied 
researcher with a good grounding in econometrics, who being a non-specialist in 
this particular subject wants to get a unified coverage of the main techniques 
available in this field. 

The paper is organised as follows. The concepts of cointegration and unit 
roots are introduced in Section 2. In Section 3 we survey several alternative tests 
for the existence of unit roots, ineluding cases where seasonality is present. 
Section 4 deals with alternative definitions of integration. Section 5 examines 
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the applicatiotl ~j~me of the previous tests to determine the existence of 
cointegrating relationships. Section 6 contains a review of some new test 
procedures for cointegration. Finally, brief conelusions follow in Section 7. 

2. Unit roots and cointegration 
Wold's (1938) decomposition theorem states that a stationary time series process 
with no deterministic component has an infinite moving average (MA) 
representation. This, in turn, can be represented approximately by a finite 
autoregressive moving average (ARMA) process (see, e.g. Hannan, 1970). 

However, as was mentioned in the Introduction, some time series need to be 
appropriately differenced in order to achieve stationarity. From this comes the 
~efi~ition of ~ntegration (as adopted by Engle and Granger, 1987): A variable Yt 
IS sald to be mtegrated of order d [or Yt - I(d)] if it has stationary, invertible 
non-deterministic ARMA representation after differencing d times. Thus, a tim~ 
series integrated of order zero is stationary in levels, while for a time series 
integrated of order one, the first difference is stationary. A white noise series and 
a s~able first-order autoregressive [AR(I)] process are examples of 1(0) series, 
whIle a random walk process is an example of an 1(1) series. 

Granger (1986) and Engle and Granger (1987) discuss the main differences 
between pro ces ses that are 1(0) and 1(1). They point out that an 1(0) series: (i) 
has finite variance which does not depend on time, (ii) has only a limited memory 
of its. past be~.~viour (i.e. the effects of a particular random innovation are only 
transttory), (m) tends to fluctuate around the mean (which may inelude a 
~eterministic trend), and (iv) has autocorrelations that deeline rapidly as the lag 
mcreases. For the case of an 1(1) series, the main features are: (i) the variance 
depends. upo.n time and goes to infinity as time goes to infinity, (ii) the process 
has an mfimtely long memory (i.e. an innovation will permanently affect the 
process), (iii) it wanders widely, and (iv) the autocorrelations tend to one in 
magnitude for all time separations. 

Consider now two time series Yt and Xt which are both I(d) (i.e. they have 
c~mpatible long-run properties). In general, any linear combination of Yt and Xt 

wl11 be also I(d). If, however, there exists a vector (1, -(3)', such that the 
combination 

Zt = Yt - ex - (3Xt (1) 

is I(d - b), b > O, then Engle and Granger (1987) define Yt and Xt as cointegrated 
of arder (d, b) [or (Yt, Xt)' - CI( d, b)], with (1, - (3)' called the cointegrating 
vector. Note that a constant term has been included in (1) in order to allow for 
the possibility that Zt may have a non-zero mean. 

The concept of cointegration tries to mimic the existence of a long-run 
equilibrium to which an economic system converges over time. If, e.g., economic 
theory suggests the following long-run relationship between Yt and Xt 

Yt = ex + (3Xt (2) 
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then Zt can be interpreted as the equilibrium error (i.e., the distance that the 
system is away from the equilibrium at any point in time). 

Engle and Granger also show that if Yt and Xt are cointegrated C/(I, 1), then 
there must exist an error correction model (ECM) representation of the following 
form 2 

(3) 

where .:l denotes the first-order time difference (i.e . .:lYt = Yt - Yt-I) and where 
{e¡) is a sequence of independent and identically distributed random variables 
with mean zero and variance CT~ (i.e. et - iid(O, CT~». Furthermore, they prove 
the converse result that an ECM generates cointegrated series. 

Note that the term Zt-I in equation (3) represents the extent of the 
disequilibrium between levels of y and x in the previous periodo The ECM states 
that changes in Yt depend not only on changes in Xt, but al so on the extent 
of disequilibrium between the levels of y and x. The appeal of the ECM 
formulation is that it combines flexibility in dynamic specification with desirable 
long-run properties: it could be seen as capturing the dynamics of the system 
whilst incorporating the equilibrium suggested by economic theory (see Hendry 
and Richard, 1983).3 

Based upon the concept of cointegration (and on its closely related concept of 
ECM representation), Engle and Granger suggest a 2-step estimation procedure 
for dynamic modelling which has become very popular in applied research. Let 
us assume that Yt and Xt are both 1(1), then the procedure goes as follows: 

(i) First, in order lO test whether the series are cointegrated, the 'cointegrating 
regression' 

Yt = ex + (3Xt + Zt (4) 

is estimated by ordinary least squares (OLS) and it is tested whether the 
'cointegrating residuals' Zt = Yt - eX - SXt are 1(0). Stock (1987) has shown that 
if two 1(1) series are cointegrated, then the OLS estimates from equation (4) 
provide 'super-consistent' estimates of the cointegrating vector, in the sense that 
they converge to the true parameter at arate proportional to the inverse sample 
size, T- I, rather than at T- 1I2 as in the ordinary stationary case. 4 The intuition 
behind this remarkable result can be seen by analysing the behaviour of the OLS 
estimator of (3 in (4) (where the constant is eliminated for simplicity), when 
Zt - iid(O, CT~) and Xt follows a random walk: 

.:lXt = et; (xo = O, et - iid(O, CT~» 

Integrating (5) backwards we get 
t 

Xt = 2:: e; = St 
;=1 

(5) 

and therefore var(xr) = tCT~, exploding as Tt oo. 5 Nevertheless T- 2ExT 

converges to a random variable. Similarly the cross-moment T-1I2ExtZt will 
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explode, in contrast to the stationary case, where it is asymPtoticall~ normally 
distributed. In the 1(1) case T-1ExtZt converges also to a random vanable. Both 
random variables are functionals of Brownian Motions or Wiener processes, 
which will be denoted henceforth, in general, as I(W) (see Phillips (1987), 
Phillips and Perron (1988) and Park and Phillips (1988) for a general discussion 
on convergence of the aboye mentioned distributional limits). From the 
expression for the OLS estimator of (3 we obtain 

S - (3 = EXtZt/ExT 

it follows from the previous discussion that T(S - (3) is asymptotically the ratio 
of two non-degenerate random variables, and it is in general not normal. Thus, 
standard inference cannot be applied to S, even if it is 'super-consistent', a 
question to which we will come back in Section 6. 

(ii) Finally, the residuals Zt are entered into the ECM. Now, all the variables in 
equation (3) are 1(0) and conventional modelling strategies can be applied. 

3. Testing the order of integration of the relevant variables 
Once the relevant set of variables suggested by economic theory has been 
identified, the first stage in testing for cointegration between those variables is 
to determine the order of integration of the individual time series. 

Several statistical tests for unit roots have been developed to test for 
stationarity in time series. Since many macroeconomic series have been found to 
be integrated of order one (see, e.g. Nelson and Plosser, 1982), we will only 
consider tests for a single unit root. 

The previous tests can also be applied, with a slight change in their 
interpretation, for sequential testing of unit roots, i.e. when one wants to 
compare a null hypothesis of k unit roots with an alternative of k - 1 unit roots. 
In the sequential procedure, the investigator should start with the largest k under 
consideration and work down; that is, decrease d by one each time the null 
hypothesis is rejected. 6 

3.1. Tests 01 unit roots 

(i) Dickey and Fuller (1979, 1981) present a class of test statistics, known as 
Dickey-Fuller (DF) statistics, generally used to test that apure AR(1) process 
(with or without drift) has a unit root. 

Let the time series Yt satisfy the following data generating pro ces s (DGP) 

Yt = (30 + (3¡( + PYt-1 + et (6) 

where et - iid(O, CT~), t is a time trend and the initial condition, Yo, is assumed 
to be a known constant (zero, without loss of generality). Equation (6) can al so 
be written as 

t t t 
Yt = (30 2:: p t-) + (31 2:: jp t -) + 2:: e}pt-} (7) 

}=I }=I }=I 
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while in the case that P = 1 

Yt = (3ot + (3¡(t + 1)/2 + St (8) 

where St = ~5=1 ej 

Dickey and Fuller (1979) consider the problem of testing the null hypothesis 
Ho: p = 1 versus H I: P < 1, i.e. non-stationarity vs. stationarity around a 
deterministic trend, suggesting OLS estimation of a reparameterised version of 
(6), i.e. 

LlYt = (30 + (3lt + ')'Yt-I + et (9) 

where Ho: p = 1 is equivalent to Ho: ')' = O (since ')' = p - 1). The test is 
implemented though the usual t-statistic of ..y, denoted here as T7 • In addition, 
Dickey and Fuller (1981) suggest two F-statistics for the joint null hypothesis 
(30 = (31 = ')' = O and (31 = ')' = O, denoted as <P2 and <P3 respectively. Note that 
under the null hypothesis Tn <P2 and <P3 will not have the standard t and F 
distributions, instead they are functions of Brownian motion; we must use the 
asymptotic distributions tabulated in Fuller (1976, p. 373) and in Dickey and 
Fuller (1981, p. 1,063) respectively. If (31 = O «(30 = O) in (9), the t and Fstatistics, 
corresponding to Ho: ')' = O and H I: (30 = ')' = O, are denoted T,,(T) and <PI 
respectively and the corresponding critical values are also given in the previous 
references. In all cases the critical values given there crucially depend upon the 
sample size. It should al so be noted that the critical values depend upon the 
'nuisance' parameters contained in the model and in the DGP. To discuss this 
more formally, consider the sample variance of Yt when it is generated by (8) (i.e. 
p = 1) 

T-IEyl= T-IE [«(30 + (31/2)2t2 + «(31/2)2t4 + sl + «(30 + (31/2)(3¡(3 
+ 2«(30 + (31/2)tSt + (3lt 2St] (10) 

From the distributional results in Park and Phillips (1988), it is known that 
T- 2ESl, T- 5/2EtSt and T- 712Et 2St tend to j(W), hence, by taking probability 
limits in (10), we get 

T-IEYl~(3f!20 O(T4
) + «(30 + (31/2)(31/4 O(T3) + (3j(W)O(T5/2) 

+ «(30 + (31/2)2/3 O(T2) + 2«(30 + (31/2)j(W)O(T3/2) + j(W)O(T) 

whereby it is seen that 

T-5Eyl~(3T/20 

T-3Eyl~(3ij¡3 

T-2Eyl~ j(W) 

if (31 -,é. O 
if (30 -,é. O, (31 = O 
if (30 = (31 = O 

(11) 

That is, if the unit root pro ces s contains a linear trend or a drift, its variability 
will be dominated by a quadratic or a linear trend which, appropriately 
normalised, converges to constants. It is only when (30 = (31 = O that it converges 
to a non-standard distribution. This means that for example, if (31 -,é. O in (8) and 
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the modd is estimated as in (9), the quadratic term in (10) will dominate the 
integrated process and normality of the T7 will follow. Similarly if (30 -,é. O in (8) 
(with (31 = O) and only a constant appears in (9), the linear trend will dominate 
and normality of T" will also follow. 7 It is only when (30 = (31 = O, both in the 
DGP and in the model, that the non-standard distribution will dominate. This 
implies that in order to use the DF critical values if a linear trend is included in 
the maintained hypothesis (9), the relevant null hypothesis should be a random 
walk with drift «(30 -,é. O), whilst if only a drift is included in (9), the relevant null 
hypothesis is a random walk without drift. 8 

From the previous discussion we consider that the following testing strategy 
is most appropriate. First, start by the most unrestricted model (9), 
«(30 -,é. O, (31 -,é. O) if it is suspected that the differenced series has a drift. Then use 
T7 to test for the null hypothesis. If it is rejected there is no need to go further. 
If it is not rejected, test for the significance of the trend under the null. If it is 
significant, then test again for a unit root using the standardised normal. If the 
trend is not significant in the maintained model, estimate (9) without trend 
«(31 = O). Test again for the unit root using T". If the null hypothesis is rejected, 
again there is no need to go further. If it is not rejected, test for the significance 
of the constant under the null hypothesis and so on. 

(ii) In the analysis of the DF tests, we have assumed that the DGP is apure 
AR(l) process. If instead, the DGPis AR(p) 

let 

p 

Yt = (30 + (3¡( + ~ PiYt-i + et 
i=1 

p 

AP - ~ PiAP-i = O 
i=1 

(12) 

(13) 

be the characteristic equation of the time series, where A(i = 1, ... , p) are the 
eigenvalues of the process. Dickey and Fuller (1979, 1981) consider the problem 
of testing the null hypothesis Ho: Al = 1 and 1 A21 < 1 for i = 2, ... , p, suggesting 
OLS estimation of the reparameterised regression model 

P- I 

LlYt = (30 + (3¡( + ')'IYt-1 + ~ ')'2iLlYt-i + et 
i=1 

(14) 

where p is large enough to ensure that the residual series et is white noise. The 
tests are based on the t-ratio on..yl and are known as 'Augmented Dickey Fuller' 
(ADF) statistics. The critical values are the same as those discussed for the DF 
statistics, since the ..y2i (i = 1, ... , p - 1) estimates converge to their true values at 
arate O(T- 1I2

), being asymptotically dominated by the distribution of "YI which, 
as we mentioned in (4), is O(T- I

). The same testing strategy discussed aboye, 
applies in this case. 9 

The sample distribution of the ADF statistics critically depend on the 
assumption that the time series Yt is generated by apure AR process. However, 
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since there is evidence that many macroeconomic series contain moving average 
(MA) components (see Schwert, 1987), we would want to consider also the 
possibility of an MA component in the DGP, so that the mill hypothesis would 
be that the data are generated by a mixed autoregressive integrated moving 
average (ARIMA) process. 

Said and Dickey (1984) extend the ADF test by exploiting the fact that an 
ARIMA (p, 1, q) process can be adequately approximated by a high-order 
autoregressive process, AR(I), where / = O(T II3

) as Ti oo. In practice the test 
proceeds as before with p in (12) and (14) equal to /. This approach permits one 
to test the null hypothesis of the presence of a unit root without knowing the 
orders of p and q. However, it involves the estimation of additional nuisance 
parameters which reduces the effective number of observations due to the need 
for extra initial conditions. 

When p and Q. are known, Said and Dickey (1985) present a test for the 
hypothesis that the process is ARIMA (p, 1, q), Le. 

Ho: cP(L)~Yt = O(L)et 

where cP(.) and 0(.) are pth and qth order polynomials in the lag operator L, 
versus the alternative hypothesis that it is ARIMA (p, O, q) 

HI: cP(L)(l - pL)Yt = O(L)et 

To perform the test of p = 1, we specify initial estimates of the parameters that 
are consistent under the null and alternative hypothesis. We next perform a one-
step of the Gauss-Newton numerical estimation procedure (see, e.g., Harvey, 
1981 p. 17). The t-statistic associated with p, after applying the iteration has the 

. limiting distribution of 7, tabulated by Fuller (1976, p. 373). Similarly if the 
series mean y is subtracted from each observation of Yt prior to analysis, the 
t-statistic has the limiting distribution of 7". 

(iii) An alternative approach, based upon the DF procedure has been presented 
by Phillips (1987) and Phillips and Perron (1988). While the ADF statistics are 
based upon the assumption that the disturbance term et is identically and 
independently distributed, they suggest amending these statistics to allow for 
weak dependence and heterogeneity in et. Under such general conditions, a wide 
class of DGP's for et, such as most finite order ARIMA (p, 0, q) models, can 
be allowed. The procedure consists of computing the DF statistics and then using 
sorne non-parametric adjustment of 7" and 7 7 in order to eliminate the 
dependence of their limiting distributions on additional nuisance parameters 
stemming from the ARIMA process followed by the error terms. Their adjusted 
counterparts are denoted Z(7,,) and Z(77 ), respectively. 

For the regression model (9), with (31 = O, Phillips and Perron (PP) define 

[ 

T ] -112 
Z(7,,) = (S/STm)7,,-0.5(S}m-S2)T S}m ~ (Yt-y_¡)2 (15) 

where T is the sample size and m is the number of estimated autocorrelations; 
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Y_I = (T- l)-Ib ! Yt_l,S2 and 7" are, respectively, the sample variance of the 
residual s and the t-statistic associated with 'Y from the regression (9) (with 
(31 = O); and S}m is the long-run variance estimated as lO 

T I T 

S}m = T- I ~ el + 2T- 1 ~ W sm ~ etet-s (16) 
t=1 s=1 t=s+1 

where e are the residuals from the regression (9) and where the triangular kernel 

Wsm = [1 - s(m + 1)], s = 1, ... , m (17) 

is used to ensure that the estimate of the variance S}m is positive (see Newey and 
West, 1987) 

When (31 .,t. O in (9), the corresponding statistic is 

Z(77 ) = (§/Srm)77 - (§}m - §2)T3 {4Srm [3Dxx] 1121- 1 (18) 

where § and §Tm are defined as aboye, but with the residual e obtained from the 
estimation of (9) with (31 .,t. O. Dxx is the determinant of the regressor cross-
product matrix, given by 

Dxx = [T2(T2 - l)fl2] EY~-1 - T(EtYt- ¡)2 
+ T(T + 1)EtYt-1EYt-l - [T(T + 1)(2T + 1)/6] (EYt- ¡)2 

The Phillips and Perron statistics have the same limiting distributions as the 
corresponding DF and ADF statistics, provided that mi 00 as Ti 00, such that 
m/TI14 iO. 

(iv) Simulation evidence in Molinas (1986) and Schwert (1986, 1989), shows that 
the tests proposed by Dickey and Fuller and by Phillips and Perron are affected 
by the process generating the data in large finite samples. In particular, when the 
underlying process is ARIMA (0,1,1) with a MA parameter close to one, the 
ADF and PP statistics have critical values that are far below the Dickey-Fuller 
distributions (Le. these tests will lead to the conclusion that economic data are 
stationary too frequently). The intuition behind this result is that if the DGP of 
Yt is 

~Yt = (1 - OL)et (19) 

if O is close to one, (1 - L) will tend to cancel on both sides of (19), giving the 
impression that Yt behaves like a white noise. However, the Said and Dickey 
(1984) high-order autoregressive t test for the unit root, with a suitable choice 
of /, has size close to its nominal level for all values of the MA parameter. 
Schwert suggests searching for the correct specification of the ARIMA process 
before testing for the presence of a unit root in the AR polynomial and provides 
the relevant critical values for the Said and Dickey (1984), Phillips (1987) and 
Phillips and Perron (1988) tests based on Monte Carlo experiments. 

(v) Hall (1989) proposes a new approach to testing for a unit root in a time series 
with a moving average component based on an instrumental variable (IV) 
estimator 
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Let Yt be generated by the DGP 

Yt = #0 + #It + PYt-1 + (J(L)ct (20) 

where (J(L) is again a q-th order lag polynomial. Then, the IV estimator for 
model (20) is defined as follows 

- - - IV' I 

( )
-I(T) [#0, #1, p¡] = ~ ZItXIt ~ ZItYt (21) 

where ZIt=(I,t,Yt-k) and X It =(1,t,Yt-¡), k=(q+ 1) (see Dolado (1989) for 
the choice of optimal IV in this framework). For the model (20) when #1 = O, the 
IV estimator is given by 

[#0, ¡h] IV' = (~ Z2tXiJ 1 (~ Z2tyr) (22) 

where now Z2t=(I,Yt-d,XIt =(1,Yt-¡) 
Let l(¡j IV) and i(Plv ) be the t-statistics associated with the null hypothesis 

P = 1 in (19) (with and without trend), then Hall proves that 

- -(;: IV)/ -Trv = Se7 \jJI S=? 7 7 (23) 
and 

A A{';, IV)/ A Trv = Set\jJ2 S=?7p. (24) 

where S~, §2 and §2 are consistent estimators of the variances of c and the long-
run variance e(=(J(L)c) obtained as in (16) and (17). 

(vi) As it might have been noticed, one important limitation of aH of the 
previous testing procedures is that they are not independent of the nuisance 
parameters contained in the deterministic component of the time-series process. 
This limitation has produced an alternative strand in the literature on testing. In 
this respect, Bhargava (1986) has developed most powerful invariant (MPI) tests 
for the null hypothesis corresponding to DGP (9) (with and without trend). 
These tests are valid in smaH samples and are independent of the nuisance 
parameters, but only valid for the AR(1) case. They are based upon trans-
formations of Von Neumann type ratios, as for example the Durbin-Watson 
approach emphasised by Sargan and Bhargava (1983) in a different context, as 
discussed below. The statistics proposed to test Ho: P = 1, when #1 = O and 
#1 -:¡t. O, are given by 

(25) 

and 

(26) 
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wher.e 
D = (T - 1)-2 ¿; {[(T - I)Yt - (t - I)YT - (T - t)YI - (T - 1)(y - 0.5(YI + YT »] 2 

The corresponding critical values are given by Bhargava (1986, p. 378). The 
test is found to have slightIy greater power than the tests proposed by Dickey and 
Fuller, when the data are generated by an AR(1) process. 

(vii) Another limitation of all the previous testing procedures is that the 
distributions of the corresponding statistics are non-standard and hence a 
different set of critical values has to be used in each case. This problem has 
originated a new strand of research (see Phillips and Ouliaris, 1988), which 
exploits the fact that differencing a stationary series induces a unit root in the 
moving average representation. This fact pfovides a diagnostic for testing 
whether the series is 1(0) or 1(1), by using the long-run variance of the first 
difference of the time series Yt. To clarify the interpretation of the test, let us 
assume that Yt is generated by 

Then the long-run variance of ~Yt is a2 = (T~ (1) 2. If (JI -:¡t. 1 and (J '(1) -:¡t. O, then 
a2 is finite, whilst if (J¡ = 1, a 2 is zero. In other words, if the time series Yt is 1(0), 
~Yt will have a 2 = O, whereas if it is 1(1), (T2 -:¡t. O. Therefore the null hypothesis 
is Ho: a 2 -:¡t. O or Ho: 7

2 = a2/a~ -:¡t. O, getting rid of the units of measurement. 
Obtaining an estimate of a 2 as in (16), Phillips and Ouliaris prove that 

(27) 

Since only the alternative hypothesis is a simple hypothesis, i.e. H¡: 7 2 = O, 
Phillips and' Ouliaris propose a bounds procedure based upon the corresponding 
confidence interval in (27), yielding 

(28) 

where z", is the (1 - a) percentage point of the standard normal distribution. 
According to the bounds test, Ho is rejected if the upper limit of 7

2 in (28) is 
sufficiently small. Similarly Ho is not rejected if the lower bound is sufficientIy 
large. Phillips and Ouliaris recommend using 0.10 as the rejection point for the 
upper and lower bound. Simulation results show, however, that the suggested 
value can be very conservative in sorne instances. For example if the DGP is 
ARIMA (1, 1, 1) with parameter values in the interval ( - 0.6,0.6), the average 
upper bound is 0.45 whereas the value of the lower bound is close to 0.10. 

A very nice implication of this type of tests is that, given their asymptotic 
normality, they can be applied to deal with very general trend-cycle models (e.g. 
piecewise linear functions of time, any type of impulse or step dummy). All that 
is needed is to perform the previous test on the differenced residuals of the 
regression of Yt on the general trend function. 
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3.2. Integralion and seasonalily 

Due to the fact that many economic time series contain important seasonal 
components, there have been several developments in the concept of seasonal 
integration. 

Osborn el al. (1988) amend the Engle and Granger (1987) definition of 
integration to account for seasonality: a variable Yt, is said to be integrated of 
order (d, D) [or Yt - I(d, D)], if it has a stationary, invertible, non-deterministic 
ARMA representation after one-period differencing d times and seasonaIly 
differencing D times. 

FolIowing Pierce (1976), let us assume that seasonality has both deterministic 
and stochastic components, then a seasonal observed series Yt can be seen as the 
sum of a purely stochastic process Xt and a purely deterministic seasonal 
component /lt 

where 

Yt= Xt + /lt 

q-I 

/lt = t30 + t3 ¡/ + ¿:; t3 2}S}t 
}=I 

(29) 

(30) 

where S}t are zer%ne seasonal dummies, and q = 12 for monthly data, q = 4 for 
quarterIy data and so on. 
~y regressing Yt on /lt, we can remove the deterministic seasonality, using the 

reslduals from that regression as if they were the true Xt. Then, the foIlowing 
tests can be applied for testing I(d, D) integration, where we present the case for 
q = 4 (i.e. we are dealing with quarterIy data). 

(i) Dickey el al. (1984) present a test for the presence of a single unit root at a 
seasonal lag. The nuIl hypothesis is Ho: 1(0,1) and the aIternative is HI: 1(0, O). 
The test is a 3-step procedure as foIlows: 

1. The regression equation 
p 

D.4Xt = 80 + ¿:; 8iD.4Xt-i + et 
i=1 

is estimated by OLS, where ~4Xt = Xt - Xt-4 
2. Using the estimates 81,82 , •.• , 8p define 

Zt = 8(L )Xt = (1 - 81L - ... - 8pLP)xt 

3. Run the regression 
p 

D.4Xt = ~OZt-l + ¿:; ~iD.4Xt-i + et 
i=1 

and compute the l-ratio on ~o. This sample statistic, denoted 7 1<4 is compared to 
the tabulated critical values given in Table 7 of Dickey, Hasza and FulIer (1984), 
p. 362). 
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(li) Dickey el al. (1986, Appendix B) show that the limiting distribution of the 
unit root statistics is not affected by removal of seasonal means from 
autoregressive series. Therefore, we can use the ADF statistic from the regression 
equation 

P 

~Xt = 'YI~Xt-1 + ¿:; 'Y2i~Xt-; + et 
;=1 

(31) 

to test the nulI hypothesis Ho: Xt - 1(1, O) versus the aIternative HI: Xt - 1(0, O). 
The relevant critical values are given by FuIler (1976, p. 373) for TI'-. 

(iii) Engle et al. (1987) present the folIowing 3-step procedure to test for 
seasonal unit roots in the possible presence of a zero frequency unit root: 

1. Compute 8(L) as for the Dickey et al. (1984) statistic 
2. Compute 

Zlt = 8(L)(1 + L + L 2 + L 3
)xt 

Z2t= -8(L)(1- L+ L2_ L 3)xt 

Z3t= -8(L)(1- L 2 )xt 

3. Run the regression 
p 

D.4 Xt = 1I"1Zlt-1 + 1I"2Z2t-1 + 1I"3Z3t-2 + ¿:; 1I"4i~4Xt-i + et 
i=1 

and compute the values of the t-ratios on 1ft, 11-2 and 1r3. The critical values are 
given in Table 2.1 of Engle el al. (1987, p. 14). If Xt - 1(0, O), then alI three of 
these statistics should be significant. If the test statistic for 11"1 = ° is not 
significant, then Xt - 1(1, O). If either of the test statistics for 11"2 = ° or 11"3 = ° is 
not significant, then Xt - 1(0, 1) 

(iv) Osborn et al. (1988) present an alternative 3-step test procedure: 

1. Run the regression 
p 

D.D.4Xt = 1/10 + ¿:; 1/IiD.D.4 Xt- i + et 
;=1 

and compute 'f;1, 'f;2, ... , 'f;p 
2. Compute Z4t = 'f;(L)D.4Xt and Z5t = 'f;(L)D.xto where 

'f;(L) = (1 - 'f;IL - ... - 'f;pLP) 

3. Run the regression 
P 

D.~Xt = ePIZ4t-1 + eP2Z5t-4 + ¿:; eP3i~~Xt-i + et 
i=1 

and compute the F-statistics for the nuIl hypothesis Ho: ePI = eP2 = 0, and the 
t-ratio on ePI and eP2. The nuIl hypothesis for both type of statistics is 
Ho: Xt - 1(1,1) with alternative hypothesis HI: Xt - 1(0,0) or H 2: Xt - 1(0,1). The 
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critical values of these statistics are given in Table A.l of Osborn el al. (1988, 
p. 376). 

4. Other forms of integration 
In this section, we review alternative forms of integration based upon the 
possibility that the model parameters are allowed to vary (periodic integration) 
or the possibility of using non-integer differencing orders to achieve stationarity 
in the data (fractional integration). BotlÍ ideas have received recent attention in 
the literature. 

4.1. Periodic Inlegralion 

Osborn el al. (1988), building upon the framework developed by Tiao and Grupe 
(1980), investigate the use of a periodic model (whose parameters are allowed to 
vary according to the time at which observations are made) as an alternative to 
the conventional approaches to modelling for seasonal data. 

The non-deterministic periodic AR(1) process is given by the following 
expression 

or 

q 

Yt = b WjSjtYt-1 + et 
j=1 

(32) 

(33) 

when I falls in season j. As in equation (30), Sjt are seasonal dummy variables 
corresponding to season jU= 1, ... ,q). Equation (33) states that Yt is seasonal, 
seasonality arising not from any direct dependence of Yt on Yt-q, but from the 
annual variation in the autoregressive coefficients Wj. This dependence can arise, 
for example, if the allocation of expenditure over the year reflects seasonal tastes 
and hence seasonality in the underlying utility function (see Osborn, 1988). 

Osborn el al. (1988) define periodic integration as follows: A variable Yt is 
periodically integrated of order one [or Yt - PI(1)] if Yt is non-stationary and 
ÓjYt is stationary, where the generalised difference operator Ój is defined as 

ÓjYt = Yt - WjYt-1 (34) 

the product WI, W2, •.. , Wq being equal to one. 
Osborn el al. (1988) propose two ways of testing for periodic integration: 

(i) After regressing Yt on JLt (as defined in (30» to remove conventional 
deterministic seasonality, a non-deterministic periodic AR(1) pro ces s (as defined 
in (33» is fitted to the residuals Xt. This case is referred to as the removed 
deterministic seasonality case. 

(ii) The case of inc1uded deterministic seasonality is given by fitting the 
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following periodic AR(I) process to the original observations Yt 

Yt = Oj + WjYt-i + et U = 1, ... , q) 

To allow for the possibility of a periodic disturbance variance, they suggest a 
2-step estimation procedure for both cases. In the first step, the appropriate 
eqUéition is estimated by OLS applied to observations on each of the q seasonal 
realisations, (i.e. four for quarterly data); then the equation is transformed by 
dividing each variable by the appropriate seasonal residual standard deviation 
estimated in this first stage regression. U sing the transformed data, in the second 
step the periodic AR(1) model is estimated in its two versions (i.e. removed and 
included deterministic seasonality), with imposition of the restriction 
W¡,W2, ... ,wq=l. 

Finally, the tests (i) to (iii) in Section 3.2 are applied to the residuals of the 
periodic AR( 1) mode!. 

4.2. Fractional inlegralion 

As was seen in Section 2, one of the main characteristics of the existence of unit 
roots in the Wold representation of a time series is that they have 'long memory' 
(i.e. shocks have a permanent effect on the level of the series). In general it is 
known that the coefficient on et-j in the MA representation of any I(d) process 
has a leading term jd-I (for example, the coefficient in a random walk is unity, 
since d = 1). This implies that the variance of the original series is O(t2d-I). So, 
all that is needed to have 'long-memory', in the sense that the variance explodes 
as It 00, is a degree of differencing I di> 0.5. Thus, it is clear that a wide range 
of dynamic behaviour is ruled out a priori if d is restricted to integer values. 

Granger and Joyeux (1980) and mOre recently Diebold and Rudebusch (1989) 
have proposed a new family of "long-memory" processes, denoted by ARFIMA 
(autoregressive fractionally integrated moving-average processes), of which the 
ARIMA processes are particular cases: A variable Yt is fractionally integrated of 
order d[or Yt - FI(d)] if Yt is non-stationary and Il d is stationary, where the 
operation Il d, using a binomial expansion, is as follows 

(1- L)d= 1- dL + d(d-l) L2_ d(d-l)(d-2) L 3 + ... (35) 
2! 3! 

where d belongs to the rational set of numbers and d> 0.5. 
Note that these processes can always be constrained to belong to the open 

interval (0.5,1.0) by subtracting the integer part of the differencing order. So if 
the degree of differencing is, for example, 1.7, we can always redefine the degree 
of differencing as d - 1 (0.7 in this case). 

Diebold and Rudebusch (1989) propose the following method of testing and 
estimation for fractional integration: 

(i) First difference the relevant series denoted Yt = (1 - L )Yt. As d of the level 
series equals 1 + d, a value of d equal to zero corresponds to a unit root in Yt. 

8



Thus. we wish to estimate d in the model 

(1- L)dYt = O(L)et 

(ii) Estimate by OLS the following regression 

In[I(Aj)] =(3o-{31In(4 sin 2 (Aj/2)J +f/j, j= 1, ... ,Tl/2 

(36) 

(37) 

where Aj = 27rj/ TU = O, ... , T - 1) denote the harmonic ordinates of the sample 
and I(Aj) denote the periodogram at ordinate j (see Harvey, 1981, p.66). 
Geweke and Porter-Hudak (1983) prove that {JI is a consistent and 
asymptotically normal estimate of d. Furthermore, the variance of the estimate 
of (31 is given by the usual OLS estimator, which can be used to test the null 
hypothesis Ho: d = O [i.e. Yt - 1(1)] . Moreover they show that the variance of the 
disturbance f/j is known to be equal to 7r 2/6, which can be imposed to increase 
efficiency. 

(iii) Given an estimate of d we transform the series Yt by the 'long-memory' 
filter (35), truncated at each point to the available sample. The transformed 
series is then modelled as in (36) (or in the ARMA representation) following the 
traditional Box and Jenkins (1970) procedure. 

5. Testing for stationarity in the cointegrating residuals 
In the two previous sections we have discussed procedures to test for the order 
of integration of individual time series. This is, as we mentioned in Section 2, a 
first stage in the estimation and testing of cointegrating relationships. The reason 
is a matter of 'integration or growth accounting' in the words of Pagan and 
Wickens (1989) (i.e. the left and right hand sides of an equation, such as (4) must 
be of the same order of integration, otherwise, the residual will not be 
stationary). If for example, the dependent variable is 1(1), the independent 
variables need to be 1(1) and not cointegrate among themselves to an 1(0) 
variable or, perhaps, be 1(2) and cointegrate among themselves to an 1(1) 
variable. 

In order to illustrate testing for cointegration, we will consider a bivariate case 
where say, Yt and Xt have been found to contain a single unit root at the regular 
frequency (i.e. both are 1(1». Then, the following part of the cointegration test 
is to estimate the cointegrating regression (4) and test whether the 'cointegrating 
residuals' (Zt = Yt - & - (JXt) are 1(0). 

Engle and Granger (1987) suggest seven alternative tests for determining if Zt 

is sta~ionary. Here we will consider only two of their suggested tests, namely the 
Durbm-Watson statistic for the cointegration equation (CRDW) and the ADF 
statistic for the cointegrating residual s (CRADF). 

The DW statistic for equation (4) will approach zero if the cointegrating 
residuals contain an autoregressive unit root, and thus the test rejects the null 
hypothesis of non-cointegration if the CRDW is significantly greater than zero. 
The intuition underlying this test can be understood by means of a simple 
example. Suppose that Zt is assumed to follow an AR(1) process witn coefficient 
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p. Then the null hypothesis of non-cointegration is Ho: p = l. Since it can be 
shown that the DW statistic is such that DW:::: 2(1 - p) (see, e.g. Harvey, 1981, 
p. 20), the previous null hypothesis can be translated into Ho: DW = O versus the 
alternative Hl: DW > O. Engle and Granger (1987, p. 269) present the critical 
values of this test for 100 observations. 

The CRADF statistic is based upon the OLS estimation of 
p 

~Zt = 'YtZt-l + ~ 'Y2i~Zt-i + et (38) 
;=1 

where again p is selected on the basis of being sufficiently large to ensure that 
et is a close approximation to white noise. The (-ratio statistic on 1'1 is the 
CRADF statistic. We cannot use the critical values tabulated by Fuller (1976) 
to test for a unit root in the cointegrating residuals. Intuitively, since OLS 
estimation of the cointegrating regression equation chooses a and (3 to 
mini mise the residual variance, we might expect to reject the null hypothesis Ho: 
Zt - 1(1) rather .more often than suggested by the nominal test size, so that the 
critical values have to be raised in order to correct the test bias. Engle and 
Granger (1987, p. 269) present the critical values for the CRADF statistic 
generated from Monte Carlo simulations of 100 observations. 

Note that the critical values for both CRDW and CRADF statistics are for the 
bivariate case (i.e., for one dependent and one independent variable in the 
cointegrating regression), and for 100 observations. Engle and Yoo (1987) 
produce expanded critical values for CRDW and CRADF statistics for 50, 100 
and 200 observations, and for systems of up to five variables. 

6. Sorne new developrnents in cointegration 
In this section we survey sorne new test procedures for cointegration that have 
recently been proposed in the literature. Most of these procedures extend the 
testing and estimation approach introduced in Section 2 to a multivariate context 
where there may exist more than a single cointegrating relationship among a set 
of n variables. For example, among nominal wages, prices employment and 
productivity, there may exist two relationships, one determining employment 
and another determining wages (see, inter alia, Hall, 1986, and Jenkinson, 1986). 

In general, if X t represents a vector of n 1(1) variables whose Wold 
representation is 

~Xt= C(L)et (39) 

where now et - nid(O, E), E being the covariance matrix of et and C(L) an 
invertible matrix of polynomial lags. If there exists a cointegrating vector a, 
then, premultiplying (39) by a' , we obtain 

a' é1Xt = a' [C(1) + C*(L)(1- L)]et (40) 

where C(L) has been expanded around L = 1 and C*(L) can be shown to be 
invertible (see Engle and Granger, 1987). If the linear combination a' X t is 
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stationary, then O!'C(1)=O and then (1- L) would cancel out on both sides of 
(40). If (39) is represented in AR form, we have that 

A(L)C(L) = (1 - L)I (41) 

where I is an identity matrix, and hence 

A(1)C(1) = O (42) 

This implies that A (1) can be written as A (1) = 'YO!' . If there were r cointegrating 
vectors (r ~ n - 1), then A (1) = Br' , where B and r are (n x r) matrices which 
collect the r different 'Y and O! vectors. Testing the rank of A(1) or C(1) 
constitutes the basis of the following procedures: 

(i) Johansen (1988) and Johansen and Juselius (1988) develop a maximum 
likelihood estimation procedure that has several advantages on the 2-step 
regression procedure suggested by Engle and Granger. It relaxes the assumption 
that the cointegrating vector is unique and it takes into account the error 
structure of the underlying process. 

Johansen considers the p-th order autoregressive representation of X t 

(43) 

which, following a similar procedure to the ADF test, can be reparameterised as 

.::lXt = ñí.::lXt-, + ... + ñp-,.::lXt-p+, + ñpxt- p + et (44) 

where ñp = -TI(1) (= - (TII + ... + TIp ». To estimate ñp by maximum-
likelihood, we estimate by OLS the following regressions 

.::lXt = rOI.::lXt-1 + ... + rOk-I.::lXt- k+1 + eOt 

and 

X t- p = rll.::lXt-1 + ... + rlk-I.::lXt-k+1 + elt 

and compute the product moment matrices of the residual s 
T 

Sij = T- ' ~ ei~Jt; i,} = 0,1 
t=1 

The likelihood ratio test statistic of the null hypothesis Ho: TIp = Br " i.e. 
there are at most r cointegrating vectors, is 

p 

-2In(Q)=-T ~ (1-).¡) (45) 

where ).r+l, ... ,).p are the p - r smallest eigenvalues of SIOSOOSOI with respect to 
8", obtained from the determinant 

I ).SII - SIOSOOSOI I = O 

Under the hypothesis that there are at most r cointegrating vectors, Johansen 
(1988) shows that the likelihood ratio test (45) is asymptotically distributed as a 
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functional f(W). Johansen (1988, p. 239) provides atable with various quantiles 
of the distribution of the likelihood ratio test for r = 1,2, ... , 5. He also shows 
that these quantiles can be obtained by approximating the distribution by cx2(f) 
where e = 0.85-0.85/f, and x2(f) is a central chi-square distribution with 
f= 2(p - r)2 degrees of freedom. 

(ü) Stock and Watson (1988) focus on testing for the rank of C(1) in (40) and 
denote their approach as a 'common trends' approach, by noticing that if there 
exist r cointegrating vectors in (40), then there exists a representation such that" 

where 4> is an nx(n - r) matrix and Tt is an n - r vector random walk. In other 
words, Xt can be written as the sum of n - r common trends and an 1(0) 
component. Estimating (39) as a multivariate ARMA (1, q) model, the null 
hypothesis that there are r cointegrating vectors is equivalent to the null 
hypothesis that there are n-r 'common trends'. This implies that, under the null 
hypothesis, the first (n - r) eigenvalues of the autoregressive matrix should be 
unity and the remaining eigenvalues should be smaller than one. The test is based 
on T()'n-r+1 - 1) and the critical values can be found in Stock and Watson 
(1988, p. 1104) . 

Phillips and Ouliaris (1988) have also proposed a multivariate extension of 
their unit root test, as discussed in Section 3, based upon the eigenvalues of the 
long-run variance of the differenced multivariate series. 

(üi) As discussed in Section 2, when concentrating on a single equation 
estimator in the case of a single cointegrating C(1,1) relationship, the OLS 
estimator of the slope in the static regression (4) is 'super-consistent' but its 
distribution is, in general, non-normal and in finite samples is biased (see 
Banerjee el al., 1986 and Gonzalo, 1989). 

This bias and non-normality stem from the 1(1) character of the regressor and 
its possible correlation with the 1(0) disturbance Zt. Phillips (1988) has shown 
that in the case where Xt and Zt are independent at all leads and lags, the 
distribution is a 'mixture of normals' and, hence, the distribution of the 
l-statistic on {3 is asymptotically normal. Phillips and Hansen (1988) have 
developed an estimation procedure, equivalent to FIML, which corrects for the 
bias and yields asymptotic normality in the case where such correlation exists. 
The procedure, denoted as a 'fully modified estimator' (FME), is based upon a 
'non-parametric' correction by which the error term Zt is conditioned on the 
process followed by .::lXt and, hence, orthogonality between regressors and 
disturbance is achieved by construction. The FME estimators of O! and (3 in (4) 
are given by 
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where X t = (1, Xt), e2 = (0,1)' and 
I T 

~21 = T- 1 L; L; DoXt-d.t 
k=O t=k+l 

the long-run variances obtained from the first-stage residuals Ze. as in Engle and 
Granger (1987). Notice that when O'J= Do21 = O the FME estimators coincide 
with OLS for the static regression (4). 

It is interesting to notice that the FME procedure coincides with the 
Hendry-Sargan approach, as summarised in (3), through the ECM 
representation of dynamic single equation models, except when Zt or DoXt contain 
a moving-average disturbance in their respective representations. Even in that 
case it is possible to modify slightly equations like (3) by including leads of DoXt 

in the regression model (see Saikkonen, 1989). 

7. Brief conclusion 
The considerable gap between the economic theorist, who has much to say about 
equilibrium but relatively little to say about dynamics, and the econometrician, 
whose models concentrate on dynamic adjustment process, has, to some extent, 
been bridged by the concept of cointegration. In addition to allowing the data 
to determine the dynamics of the model, cointegration suggests that models can 
be significantly improved by introducing, and allowing the data to parameterise, 
equilibrium conditions suggested by economic theory. Furthermore, the generic 
existence of such long-run relationship can, and should, be tested, using the 
battery of tests for unit roots discussed in this paper. 
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Notes 
1. There is an early survey by two of us (see Dolado and Jenkinson, 1987) and a more 

recent one by one of us (see Sosvilla-Rivero, 1989), and sorne excellent overviews by 
Granger (1986), Hendry (1986), Gilbert (1986), Stock and Watson (1987), Diebold 
and Nerlove (1988), Pagan and Wickens (1989) and Haldrup and Hylleberg (1989). 

2. Even though cointegration implies at least one causal direction, it does not imply any 
explicit causal relationship. Here we have assumed that the causal relation suggested 
by the theory (i.e. XI causes YI) is the correct one. See Granger (1988) for a study of 
cointegration and causality. 

3. Nickell (1985) shows that the ECM is also consistent with optimising behaviour on 
the part of economic agents. 
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4. Alternatively we would say that a 'sup~r-consistent' estimator is such that i3 - {3 has 
probabilistic order of magnitude O(T- ~. ,. ., ., . 

5. The explosivity of the variance charactenses the lOtegratlOn lO vanance . IntegratlOn 
can also be applied to other higher moments (see Escribano (1987) and Hansen 
(1988». . . 

6. See the Appendix for a description for the sequentlal test procedure k(k ~ 2) umt 
roots. Note that the alternative sequence of testing for the presence of a unit root in 
the series levels and if it is not rejected, then test for a second unit root, Le. a unit 
root in the differences, and so on is not well founded on statistical grounds since the 
unit root tests described in Section 3 are based on the assumption of stationarity 
under the alternative hypothesis. 

7. This result has been noticed by West (1988) and it is applicable al so to regression 
models like (2) where Xt has a unit root with drift. However, Hylleberg and Mizon 
(1989) have noted in simulation studies that the drift has to be quite large for the 
deterministic trend to dominate the integrated component. If there are two 1(1) 
regressors with drift in the model, a trend should also be included to avoid asymptotic 
perfect collinearity. 

8. Ouliaris el al. (1988) compute critical values when in the maintained hypothesis there 
is up to a quintic trend. Similarly, Perron (1987) computes critical values when there 
is a piecewise linear trend under the maintained hypothesis. . 

9. Sims el al. (1986) and Banerjee and Dolado (1988), have shown that the estImates of 
coefficients on 1(0) variables in regression mode1s with 1(1) variables are 0(T

1I2
) and 

asymptotically normally distributed. 
10. In the frequency domain notation, the long-run variance is equal to 27r!e(0), where 

!e(O) in the spectrum of el evaluated at frequency zero. 
11. The size of C(I) in a univariate context, has been called the 'size the unit root', giving 

rise to a literature (see Cochrane (1988) and references therein) which deals with the 
relative importan ce of the trend and cyclical components in the decomposition of a 
time-series. 

Appendix: testing for k unit roots 
Dickey and Pantula (1987) suggest a sequence of tests for unit roots, starting 
with the largest number of roots under consideration (k) and decreasing by one 
each time the null hypothesis is rejected, stopping the procedure when the null 
hypothesis is accepted. 

They illustrate their sequential procedure for the case k = 3. It is as follows: 

1. Run the regression 

Do 3Yt = ~O + ~lDo2Yt-l + Ct 

(where Do 3 denotes third difference), and compute the 'pseudo t-statistic' ti,n (3) 
(i.e. the t-statistic on ~¡). Reject the null hypothesis H3 of three unit roots and 
go to step 2 if ti,n(3) < T/L (or ti,n(3) > T/L if absolute values are considered) where 
T/L is given by Fuller «1976), p. 373). 

2. Run the regression 

Do 3Yt = ~6 + ~íDo2Yt_l + ~2DoYt-l + Ct 

and compute ti,n(3) and ti,n(3). Reject the null hypothesis H 2 of exactly two unit 

11
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roots and go to step 3 if in addition to t:.n(3) < TI' it is also found that t:'n(3) < TI' 

3. Run the regression 

~ 3 Yt = ~ó + ~r~ 2 yt-I + ~!~Yt-I + ~jYt-1 + et 

and compute t~n(3), ti:n(3) and t~n(3). Reject the null hypothesis HI of exactly 
one unit root in favour of the hypothesis Ho if ttn (3) < TI' (i = 1,2, 3). 
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